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17. Directed and Active Transport 

Motor Proteins 

Many proteins act as molecular motors using an energy source to move themselves or cargo in 

space. They create directed motion by coupling energy use to conformational change. 

Motor Classes 

Translational  

 Cytoskeletal motors that step along filaments (actin, microtubules) 

 Helicase translation along DNA  

Rotary 

 ATP synthase 

 Flagellar motors 

Polymerization 

 Cell motility 

Translocation 

 DNA packaging in viral capsids 

 Transport of polypeptides across membranes 

Translational Motors 

Processivity 

 Some motors stay on fixed track for numerous cycles 

 Others bind/unbind often—mixing stepping and diffusion 

Cytoskeletal motors 

 Used to move vesicles and displace one filament relative to another 

 Move along filaments—tracks have polarity (±) 

 Steps of fixed size 

Classes 

 Dynein moves on Microtubules (+ → ‒) 

 Kinesin  Microtubules (mostly ‒ → +) 

 Myosin  Actin 

http://bpc.uchicago.edu/
https://creativecommons.org/licenses/by-nc-sa/4.0/
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Molecular Motors 

We can make a number of observations about common properties of translational and rotational 

motor proteins. 

Molecular motors are cyclical 

 They are “processive” involving discrete stepping motion 

 Multiple cycles lead to directional linear or rotary motion 

Molecular motors require an external energy source 

 Commonly this energy comes from ATP hydrolysis 

o ~50 kJ/mol or ~20 kBT or ~80 pN/nm 

o ATP consumption correlated with stepping 

 Or from proton transfer across a transmembrane proton gradient 

Protein motion is strongly influenced by thermal fluctuations and Brownian motion 

 Molecular motors work at energies close to kBT 

 Short range motions are diffusive—dominated by collisions 

 Inertial motion does not apply 

  



 

 3

Passive vs Active Transport 

Directed motion of molecules in a statistically deterministic manner (i.e., x̅(t) = v̅ t) in a thermally 

fluctuating environment cannot happen spontaneously. It requires a free energy source, which may 

come from chemical bonds, charge transfer, and electrochemical gradients. From one perspective, 

displacing a particle requires work, and the force behind this work originates in free energy 

gradients along the direction of propagation 


  

 revpath

G
w f dx f

x
  

An example of this is steady-state diffusion driven by a spatial difference in chemical potential, 

for instance the diffusion of ions through a membrane channel driven by a transmembrane 

potential. This problem is one of passive transport. Although an active input of energy was required 

to generate the transmembrane potential and the net motion of the ion is directional, the ion itself 

is a passive participant in this process. Such processes can be modeled as diffusion within a 

potential. 

Active transport refers to the direct input of energy into the driving the moving object in a 

directional manner. At a molecular scale, even with this input of energy, fluctuations and Brownian 

motion remain very important.  

Even so, there are multiple ways in which to conceive of directed motion. Step-wise processive 

motion can also be viewed as a series of states along a free energy or chemical potential gradient. 

Consider this energy landscape:  

 

Under steady state conditions, detailed balance dictates that the ratio of rates for passing forward 

or reverse over a barrier is dictated by the free energy difference between the initial and final states:  
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and thus the active driving force for this downhill process is 
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This perspective is intimately linked with a biased random walk model when we remember that  

– –

 
k P

k P  

If our free energy is the combination of a chemical process ( 0G ) and an external force, then we 

can write 

 
 0

–

exp ( ) / B

k
G f x k T

k
     

  

 

Feynman’s Brownian Ratchet  

Feynman used a thought experiment to show you cannot get work from thermal noise.1 Assume 

you want to use the thermal kinetic energy from the molecules in a gas, and decide to use the 

collisions of these molecules with a vane to rotate an axle. The direction or rotation will be based 

on the velocity of the molecules hitting the vane, so to assure that this rotation proceeds only one 

way, we use a ratchet with a pawl and spring to catch the ratchet when it advances in one direction. 

This is the concept of rectified Brownian motion.  

At a microscopic level, this reasoning does not hold, because the energy used to rotate the ratchet 

must be enough to lift the pawl against the force of the spring. If we match the thermal energy of 

gas 21
2 xT m v    to the energy needed to raise the pawl 21

2U x   we find that the pawl will also 

be undergoing fluctuations in x with similar statistics to the bombardment of the vane 
2/Bmk T x    . Therefore, the ratchet will instead thermally diffuse back and forth as a random 

walk. Further, Feynman showed that if you imbedded the vane and ratchet in reservoirs of 

temperature T1 and T2, respectively, then the ratchet will advance as desired if T1 > T2, but will 

move in reverse if T1 < T2. Thus, one cannot extract useful work from thermal fluctuations alone. 

You need some input of energy—any source of free energy. 
  

                                                 
1. http://www.feynmanlectures.caltech.edu/I_46.html 
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Brownian Ratchet2  

The Brownian ratchet refers to a class of models for directed transport using Brownian motion that 

is rectified through the input of energy. For a diffusing particle, the energy is used to switch 

between two states that differ in their diffusive transport processes. This behavior results in biased 

diffusion. It is broadly applied for processive molecular motors stepping between discrete states, 

and it therefore particularly useful for understanding translational and rotational motor proteins.  

One common observation we find is that directed motion requires the object to switch between 

two states that are coupled to its motion, and for which the exchange is driven by input energy. 

Switching between states results in biased diffusion. The interpretation of real systems within the 

context of this model can vary. Some people consider this cycle as deterministic, whereas others 

consider it quite random and noisy, however, in either case, Brownian motion is exploited to an 

advantage in moving the particle.   

We will consider an example relevant to the ATP-fueled stepping of cytoskeletal motors along a 

filament. The motor cycles between two states: (1) a bound state (B), for which the protein binds 

to a particular site on the filament upon itself binding ATP, and (2) a free state (F) for which the 

protein freely diffuses along the filament upon ATP hydrolysis and release of ADP + Pi. The bound 

state is described by a periodic, spatially asymmetric energy profile UB(x), for which the protein 

localizes to a particular energy minimum along the filament. Key characteristics of this potential 

are a series of sites separated by a barrier ΔU > kBT, and an asymmetry in each well that biases the 

system toward a local minimum in the direction of travel. In the free state, there are no barriers to 

motion and the protein diffuses freely. When the free protein binds another ATP, it returns to UB(x) 

and relaxes to the nearest energy minimum. 

        

                                                 
2.  K. Dill and S. Bromberg, Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, 

and Nanoscience. (Taylor & Francis Group, New York, 2010); R. Phillips, J. Kondev, J. Theriot and H. Garcia, 
Physical Biology of the Cell, 2nd ed. (Taylor & Francis Group, New York, 2012). 
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Let’s investigate the factors governing the motion of the particle in this Brownian ratchet, using 

the perspective of a biased random walk. The important parameters for our model are: 

 The distance between adjacent binding sites is Δx.  

 The position of the forward barrier relative to the binding 

site is xf. A barrier for reverse diffusion is at –xr, so that  

f rx x x  
 

The asymmetry of UB is described by  

 ( – ) /f rx xx  
  

 The average time that a ratchet stays free or bound are τF and τB. Therefore, the average 

time per bind/release cycle is  

   BFt  

 We define a diffusion length 0 which is dependent on the time that the protein is free  

0 ( ) 4   F FD  

Conditions For Efficient Transport 

Let’s consider the conditions to maximize the velocity of the Brownian ratchet. 

1) While in F: the optimal period to be diffusing freely is governed by two opposing concerns. 

We want the particle to be free long enough to diffuse past the forward barrier, but not so 

long that it diffused past the reverse barrier. Thus we would like the diffusion length to lie 

between the distances to these barriers: 

 0

0

4 F

r F

D

x x
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 




  

 Using the average value as a target:  

0

2
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r F

F

x x x

x

D

 
 


 


 

2) While in B: After the binding ATP, we would like the particle to stay with ATP bound long 

enough to relax to the minimum of the asymmetric energy landscape. Competing with this 

consideration, we do not want it to stay bound any longer than necessary if speed is the 

issue.  
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We can calculate the time needed to relax from the barrier at xr forward to the potential 

minimum, if we know the drift velocity vd of this particle under the influence of the 

potential.  

 /B r dx v    

The drift velocity is related to the force on the particle through the friction coefficient, 

/dv f  , and we can obtain the magnitude of the force from the slope of the potential: 

r

U
f

x


  

 So the drift velocity is d
B r B

f D U D
v

k T x k T


   and the optimal bound time is 

2
r B

B

x k T

U D
 

  

Now let’s look at this a bit more carefully. We can now calculate the probability of diffusing 

forward over the barrier during the free interval by integrating over the fraction of the population 

that has diffused beyond xf during τF. Using the diffusive probability distribution with x0→0,  

2

0

41

4

1

2




 

 

 
  

 





f

F

x
F

f

x DP dx
D

x
erfc

e

 

Similarly, the probability for diffusing backward over the barrier at x = ‒xr is 

–
0

1

2
rx

P erfc
 

  
   

Now we can determine the average velocity of the protein by calculating the average displacement 

in a given time step. The average displacement is the difference in probability for taking a forward 

versus a reverse step, times the step size. This displacement occurs during the time interval Δt. 

Therefore,   

 
 

0 0( ) ( )2

 

 






  

   
           

B F

fr

F F

P x
v

t
xP P

xxx
erf erf

t
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It is clear from this expression that the velocity is zero when the asymmetry of the potential is zero. 

For asymmetric potentials, P+ and P‒ are dependent on τF, with one rising in time faster than the 

other. As a result, the velocity, which depends on the difference of these reaches a maximum in 

the vicinity of 2 / F fx D . 

          

So how does the ATP hydrolysis influence the free energy gradient? Here free energy gradient is 
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Polymerization Ratchet and Translocation Ratchet  

Polymerization and translocation ratchets refer to processes that result in directional displacements 

of a polymer or oligomer chain rather than a specific protein. The models for these ratchets also 

involve rectified Brownian motion, in which a binding unit is added to a diffusing chain to bias 

the diffusive motion in a desired direction. Once the displacement reaches a certain diffusion 

length, a monomer or binding protein can add to the chain, locking in the forward diffusion of the 

chain. In this case, it is the binding or attachment of protein units that consumes energy, typically 

in the form of ATP or GTP hydrolysis.  

 

Translocation Ratchet3 

Protein translocation across cell membranes is a ubiquitous process for transporting polypeptide 

chains across bacterial and organelle membranes through channels with the help of chaperone 

proteins on the inner side of the membrane. The translocation ratchet refers to a model in which 

the transport of the chain occurs through Brownian motion 

which is rectified by the binding of proteins to the chain on 

one side of the pore as it is displaced. Once the chain diffuses 

through the pore for a distance Δx, a protein can bind to the 

chain, stopping backward diffusion. At each step, energy is 

required to drive the binding of the chaperone protein.  

The translocation ratchet refers to a continuum model for the diffusion of the chain. It is possible 

to map this diffusion problem onto a Smoluchowski equation, but it would be hard to solve for the 

probability density. It is easier if we are just interested in describing the average velocity of the 

chain under steady state conditions, we can solve for the steady-state chain flux across the pore:  

                                                 
3.  C. S. Peskin, G. M. Odell and G. F. Oster, Cellular motions and thermal fluctuations: the Brownian ratchet, 

Biophys. J. 65 (1), 316–324 (1993). 
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    
    B

P f
J x D P

x k T
  (1) 

where f is the force acting against the chain displacement. Steady state behavior corresponds to 

0  P t , so from the continuity equation  

 
 

 
P J

t x  

we know that 0  J x . Therefore J is a constant. To find P, we want to solve  

0


  
 B

P f J
P

x k T D
  

for which the general solution is /
1 2

 Bfx k TP A e A . We find the integration constants using the 

boundary condition P x,t   0, which reflects that a protein will immediately and irreversibly 

bind once the diffusing chain reaches an extension x. (No back-stepping is allowed.) And we use 

the conservation statement:  

 dx P x   1
0

x

   

which says that a protein must be bound within the interval 0 to Δx. The steady-state probability 

distribution with these two boundary conditions is  

  
  
 

exp 1 / 1

1

    
   

 


f

f f x x
P x

x f e
  (2) 



 B

f x
f

k T
 


f  is a dimensionless constant that expresses the load force in units of kBT opposing ratchet 

displacement by Δx. 
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Substituting eq. (2) into eq. (1) allows us to solve for J.  

      
 

2

2
( ) 1 2exp 1

1

               





f

Df x
J x f

xx f e
   

Now, the average velocity can be determined from  v J x . Evaluating the flux at x = Δx: 

 
2 / 22

1

 
 

    



f

fD
v

x e f
  

 

Now look at low force limit f  0. Expand 21 / 2  

 
f

e f f : 

 max

2
 


D

v v
x

   

Note that this is the maximum velocity for ideal ratchet, and it follows the expected behavior for 

pure diffusive motion.  

Now consider probability of the protein binding is governed by equilibrium between free and 

bound forms:  

 a a B

d Fd

k k
F B K

kk


 


   

Here ka refers to the effecting quasi-first-order rate constant for binding at a chaperone 

concentration [chap]:  aak k chap . 
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Fast kinetics approximation 
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1

1 ( 1)
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v
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2 1

1 2

D
v

x K
     

 

Stall load  

0

1
ln 1Bk T

f
x K

     
 

 

 


