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21. Binding and Association 
Molecular associations are at the heart of biological processes. Specific functional interactions 

are present at every level of cellular activity. Some of the most important: 

1) Proteins Interacting with Small Molecules and Ions 

 Enzyme/substrate interactions and catalysis 

 Ligand/receptor binding 

 Chemical energy transduction (for instance ATP) 

 Signaling (for instance neurotransmitters, cAMP) 

 Drug or inhibitor binding  

 Antibody binding antigen 

 Small molecule and ion transport  

o Mb + O2 → MbO2 

o Ion channels and transporters 

2)  Protein–Protein Interactions 

 Signaling and regulation networks 

 Receptors binding to ligands activate receptors 

o GPCRs bind agonist/hormone for transmembrane signal transduction 

 Assembly and function of multi-protein complexes 

o Replication machinery in replisome consists of multiple proteins including 

DNA polymerase, DNA ligase, topoisomerase, helicase 

o Kinetochore orchestrate interactions of chromatin and the motor proteins 

that separate sister chromatids during cell division 

3)  Protein–Nucleic Acid Interactions 

 All steps in the central dogma 

 Transcription factor binding 

 DNA repair machinery  

 Ribozymes 

In all of these examples, the common thread is a macromolecule, which typically executes a 

conformational change during the interaction process. Conformational flexibility and entropy 

changes during binding play an important role in describing these processes.  
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Thermodynamics of Bimolecular Reactions 

To begin, we recognize that binding and association processes are bimolecular reactions. Let’s 

describe the basics of this process. The simplest kinetic scheme for bimolecular association is 

 A B C    (1) 

A and B could be any two molecules that interact chemically or physically to result in a final 

bound state; for instance, an enzyme and its substrate, a ligand and receptor, or two specifically 

interacting proteins. From a mechanistic point of view, it is helpful to add an intermediate step: 

A B AB C    

Here AB refers to transient encounter complex, which may be a metastable kinetic intermediate 

or a transition state. Then the initial step in this scheme reflects the rates of two molecules 

diffusing into proximity of their mutual target sites (including proper alignments). The second 

step is recognition and binding. It reflects the detailed chemical process needed to form specific 

contacts, execute conformational rearrangements, or perform activated chemical reactions. We 

separate these steps here to build a conceptual perspective, but in practice these processes may be 

intimately intertwined.  

Equilibrium Constant 

Let’s start by reviewing the basic thermodynamics of bimolecular reactions, such as reaction 

scheme (1). The thermodynamics is described in terms of the chemical potential for the 

molecular species in the system (i = A,B,C) 
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where Ni is the number of molecules of species i. The dependence of the chemical potential on 

the concentration can be expressed as  
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ci is the concentration of reactant i in mol L−1, and the standard state concentration is c0 = 1 mol 

L−1. So the molar reaction free energy for scheme (1) is 
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i is the stoichiometric coefficient for component i. K is the reaction quotient 
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At equilibrium, 0G  , so   

 0 ln aG RT K     (4) 

where the association constant Ka is the value of the reaction quotient under equilibrium 

conditions. Dropping c0, with the understanding that we must express concentration in M units: 

 C
a

A B

c
K

c c
   (5) 

Since it is defined as a standard state quantity, Ka is a fundamental constant independent of 

concentration and pressure or volume, and is only dependent on temperature. The inverse of Ka 

is Kd the equilibrium constant for the C dissociation reaction C A B . 

Concentration and Fraction Bound 

Experimentally one controls the total mass TOT A B Cm m m m   , or concentration 

 TOT C A Bc c c c     (6) 

The composition of system can be described by the fraction of concentration due to species i as 
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We can readily relate Ka to θi, but it is practical to set some specific constraint on the 

composition here. If we constrain the A:B composition to be 1:1, which is enforced either by 

initially mixing equal mole fractions of A and B, or by preparing the system initially with pure C, 

then  
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This expression might be used for mixing equimolar solutions of binding partners, such as 

complementary DNA oligonucleotides. Using eq. (6) (with cA=cB) and (7) here, we can obtain 

the composition as a function of total concentration fraction as a function of the total 

concentration 
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In the case where A=B, applicable to homodimerization or hybridization of self-complementary 

oligonucleotides, we rewrite scheme (1) as the association of monomers to form a dimer  

2M D  

and find: 

 22(1 )a D D TOTK c     (9) 
2(1 ) 2a M M TOTK c    

  1
1 1 1 8

4D TOT a
TOT a

c K
c K

       (10) 

1M D    

These expressions for the fraction of monomer and dimer, and the corresponding concentrations 

of monomer and dimer are shown below. An increase in the total concentration results in a shift 

of the equilibrium toward the dimer state. Note that cTOT = (9Ka)−1 = Kd/9 at θM = θD = 0.5, 

 

For ligand receptor binding, ligand concentration will typically be much greater than that of the 

receptor, and we are commonly interested in fraction of receptors that have a ligand bound, 

θbound. Re-writing our association reaction as  

L R LR    LR
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we write the fraction bound as 
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This is equivalent to a Langmuir absorption isotherm.  

Temperature Dependence 

The temperature dependence of Ka is governed by eq. (4) and the fundamental relation 

      0 0 0G T H T T S T       (11) 

Under the assumption that ΔH0 and ΔS0 are temperature independent, we find 
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This allows us to describe the temperature-dependent composition of a system using the 

expressions above for θi. While eq. (12) allows you to predict a melting curve for a given set of 

thermodynamic parameters, it is more difficult to use it to extract those parameters from 

experiments because it only relates the value of Kd at one temperature to another.  

Temperature is often used to thermally dissociate or melt dsDNA or proteins, and the analysis of 

these experiments requires that we define a reference temperature. In the case of DNA melting, 

the most common and readily accessible reference temperature is the melting temperature Tm 

defined as the point where the mole fractions of ssDNA (monomer) and dsDNA (dimer) are 

equal, θM = θD = 0.5. This definition is practically motivated, since DNA melting curves typically 

have high and low temperature limits that correspond to pure dimer or pure monomer. Then Tm is 

commonly associated with the inflection point of the melting curve or the peak of the first 

derivative of the melting curve. From eq. (9), we see that the equilibrium constants for the 

association and dissociation reaction are given by the total concentration of DNA: Ka(Tm) = 

Kd(Tm)−1 = ctot
−1 and ΔGd

0(Tm) = ‒RTmlnctot. Furthermore, eq. (12) implies Tm = ΔH0/ΔS0.  

The examples below show the dependence of melting curves on thermodynamic parameters, Tm, 

and concentration. These examples set a constant value of Tm (ΔH0/ΔS0). The concentration 

dependence is plotted for ΔH0 = 15 kcal mol−1 and ΔS0 = 50 cal mol−1 K−1. 
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For conformational changes in macromolecules, it is expected that the enthalpy and entropy will 

be temperature dependent. Drawing from the definition of the heat capacity,  

, ,N P N P
p

H S
TC

T T

              

we can describe the temperature dependence of ΔH0 and ΔS0 by integrating from a reference 

temperature T0 to T. If ΔCp is independent of temperature over a small enough temperature range, 

then we obtain a linear temperature dependence to the enthalpy and entropy of the form 
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These expressions allow us to relate values of ΔH0, ΔS0, and ΔG0 at temperature T to its value at 

the reference temperature T0. From these expressions, we obtain a more accurate description of 

the temperature dependence of the equilibrium constant is 
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where 0 0 ( )m mH H T    and 0 0 ( )m mS S T    are the enthalpy and entropy for the dissociation 

reaction evaluated at Tm. 
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Statistical Thermodynamics of Bimolecular Reactions 

Statistical mechanics can be used to calculate Ka on the basis of the partition function. The 

canonical partition function Q is related to the Helmholtz free energy through 

 lnBF k T Q    (16) 

 Q  eE /kBT


   (17) 

where the sum is over all microstates (a particular configuration of the molecular constituents to 

a macroscopic system), Boltzmann weighted by the energy of that microstate Eα. The chemical 

potential of molecular species i is given by  

  µ
i
 k

B
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  (18) 

We will assume that we can partition Q into contributions from different molecular components 

of a reacting system such that   

 Q  Q
i

i
   (19) 

The ability to separate the partition function stems from the assumption that certain degrees of 

freedom are separable from each other. When two sub-systems are independent of one another, 

their free energies should add (FTOT = F1 + F2) and therefore their partition functions are 

separable into products: QTOT = Q1Q2. Generally this separability is a result of being able to write 

the Hamiltonian as HTOT = H1 + H2, which results in the microstate energy being expressed as a 

sum of two independent parts: Eα = Eα,1+Eα,2. In addition to separating the different molecular 

species, it is also very helpful to separate the translational and internal degrees of freedom for 

each species, Qi = Qi,transQi,int. The entropy of mixing originates from the translational partition 

function, and therefore will be used to describe concentration dependence.  

For Ni non-interacting, indistinguishable molecules, we can relate the canonical and molecular 

partition function qi for component i as   

 
!

iN
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i
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q
Q

N
   (20) 

and using Sterling’s approximation we obtain the chemical potential, 

 ln i
i

i

q
RT

N
     (21) 

Following the reasoning in eqs. (2)–(5), we can write the equilibrium constant as  
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This expression reflects that the equilibrium constant is related to the stoichiometrically scaled 

ratio of molecular partition functions per unit volume  / i

a ii
K q V


 . Then the standards 

binding free energy is determined by eq. (4). 
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DNA Hybridization2 

To illustrate the use of statistical thermodynamics to describe binding, we discuss simple models 

for the hybridization or melting of DNA. These models are similar to our description of the 

helix–coil transition in their approach. These do not distinguish the different nucleobases, only 

considering nucleotides along a chain that are paired (bp) or free (f).   

Consider the case of the pairing between self-complementary oligonucleotides. 

S S D   

S refers to any fully dissociated ssDNA and D to any dimer forms that involve two strands which 

have at least one base pair formed. We can then follow expressions for monomer–dimer 

equilibria above. The equilibrium constant for the association of single strands is  

 
2
D

a
S

c
K

c
   (23) 

This equilibrium constant is determined by the concentration-dependent free-energy barrier for 

two strands to diffuse into contact and create the first base pair. If the total concentration of 

molecules present is either monomer or dimer, the form is  

 2tot S DC c c    (24) 

then the fraction of the DNA strands in the dimer form is  

 
2 D

D
tot

c

C
    (25) 

and eq. (10) leads to  

 1 1 21 (4 ) (1 (4 ) ) 1D a tot a totK C K C         (26) 

We see that at the total concentration, which results in a dimer fraction 0.5D  , the association 

constant is obtained from 1(9 )a totK C  . This is a traditional description of the thermodynamics 

of a monomer–dimer equilibrium. 

We can calculate Ka from the molecular partition functions for the S and D states: 

2
D

a
S

q
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q
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2. C. R. Cantor and P. R. Schimmel, Biophysical Chemistry Part III: The Behavior of Biological Macromolecules. 

(W. H. Freeman, San Francisco, 1980), Ch. 20; D. Poland and H. A. Scheraga, Theory of Helix–Coil 
Transitions in Biopolymers. (Academic Press, New York, 1970). 
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Different models for hybridization will vary in the form of these partition functions. For either 

state, we can separate the partition function into contributions from the conformational degrees 

of freedom relevant to the base-pairing and hybridization, and other degrees of freedom, qi = 

qi,confqi,ext. Assuming that the external degrees of freedom will be largely of an entropic nature, 

we neglect an explicit calculation and factor out the external degrees of freedom by defining the 

variable γ: 

,
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Short Oligonucleotides: The Zipper Model 

For short oligonucleotide hybridization, a common (and reasonable) approximation is the single 

stretch model, which assumed that base-pairing will only occur as a single continuous stretch of 

base pairs. This is reasonable for short oligomers (n < 20) where two distinct helical stretches 

separated by a bubble (loop) are unlikely given the persistence length of dsDNA. The zipper 

model refers to the single-stretch case with “perfect matching”, in which only pairing between 

the bases in precisely sequence-aligned DNA strands is counted. As a result of these two 

approximations, the only dissociated base pairs observed in this 

model appear at the end of a chain (fraying).   

The number of bases in a single strand is n and the number of 

bases that are paired is nbp. For the dimer, we consider all 

configurations that have at least one base pair formed. The dimer partition function can be 

written as 
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Here g is the number of ways of arranging nbp continuous base pairs on a strand with length n; σ 

is the statistical weight for nucleating the first base pair; and s is the statistical weight for 

forming a base pair next to an already-paired segment: /bp Bk Ts e  . Therefore, in the zipper 

model, the equilibrium constant in eq. (23) between ssDNA and dimers involving at least one 



 11

intact base pair is: Kzip = σs. In the case of homogeneous polynucleotide chains, in which sliding 

of registry between chains is allowed:   2
D,int 1

( 1) bp

bp

n n

bpn
q n n n s


   . The sum in eq. (27) 

can be evaluated exactly, giving 
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s

      
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In the case that s > 1 ( 0bp  ) and n≫1, ,intDq → σsn. Also, the probability distribution of 

helical segments is 

,int
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( , )

bpn

bp
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D

n n s
P n n

q

 
   1≤ nbp ≤ n 

The plot below shows illustrations of the probability density and associated energy landscape for 

a narrow range of s across the helix–coil transition. These figures illustrate a duplex state that 

always has a single free-energy minimum characterized by frayed configurations. 

 

In addition to the fraction of molecules that associate to form a dimer, we must also consider the 

fraction of contacts that successfully form a base pair in the dimer state  
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We can evaluate this using the identity 
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Using eq. (28) we have  
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Similar to the helix–coil transition in polypeptides, θbp shows cooperative behavior with a 

transition centered at s = 1, which gets steeper with increasing n and decreasing σ.   

 

Finally, we can write the total fraction of nucleobases that participate in a base pair as the 

product of the fraction of the DNA strands that are associated in a dimer form, and the average 

fraction of bases of the dimer that are paired.  

tot D bp  
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Bimolecular Kinetics 

Returning to our basic two-state scheme, we define the rate constants ka and kd for the 

association and dissociation reactions: 

a

d

k

k
A B C 

 

From detailed balance, which requires that the total flux for the forward and back reactions be 

equal under equilibrium conditions: 

 a
a

d

k
K

k
    

The units for Ka are M−1, M−1s-1 for ka, and s−1 for kd.   

For the case where we explicitly consider the AB encounter complex: 

 1 2

1 2

k k
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A B CAB

 
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Schemes of this sort are referred to as reaction–diffusion problems. Note, this corresponds to the 

scheme used in Michaelis–Menten kinetics for enzyme catalysis, where AB is an enzyme–

substrate complex prior to the catalytic step.  

The kinetic equations corresponding to this scheme are often solved with the help of a steady-

state approximation (∂[AB]/∂t ≈ 0), leading to 

 
1 2 1 2

1 21 2

[ ]
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 

 
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Let’s look at the limiting scenarios: 

1)  Diffusion controlled reactions refer to the case when reaction or final association is 

immediate once A and B diffusively encounter one another, i.e., k2  k–1. Then the 

observed rate of product formation ka ≈ k1, and we can then equate k1 with the diffusion-

limited association rate we have already discussed.  

2)  Pre-Equilibrium. When the reaction is limited by the chemical step, an equilibrium is 

established by which A and B can associate and dissociate many times prior to reaction, 

and the AB complex establishes a pre-equilibrium with the unbound partners defined by a 

nonspecific association constant 1 1aK k k  . Then the observed association rate is 

2a ak k K .  
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What if both diffusion and reaction within encounter complex matter? That is the two rates 

1 2k k . 

a rxnk k
A B AB C     

Now all the rates matter. This can be solved in the same manner that we did for diffusion to 

capture by a sphere, but with boundary conditions that have finite concentration of reactive 

species at the critical radius. The steady-state solution gives: 

k
eff


k
a
k

rxn

k
a
 k

rxn

k
eff
1  k

a
1  k

rxn
1

 

keff is the effective rate of forming the product C. It depends on the association rate ka (or k1) and 

krxn is an effective forward reaction rate that depends on k2 and k–1.  

Competing Factors in Diffusion–Reaction Processes 

In diffusion–reaction processes, there are two competing factors that govern the outcome of the 

binding process. These are another manifestation of the familiar enthalpy–entropy compensation 

effects we have seen before. There is a competition between enthalpically favorable contacts in 

the bound state and the favorable entropy for the configurational space available to the unbound 

partners. Overall, there must be some favorable driving force for the interaction, which can be 

expressed in terms of a binding potential UAB(R) that favors the bound state. On the other hand, 

for any one molecule A, the translational configuration space available to the partner B will grow 

as R2.  

We can put these concepts together in a simple model.1 The probability of finding B at a distance 

R from A is 

1 ( ) 2( ) 4U R kTP R dR Q e R dR    

where Q is a normalization constant. Then we can define a free energy along the radial 

coordinate 

2

( ) ln ( )

( ) ln ln

B

B

F R k T P R dR

U R k T R Q

 

     

 

                                                 
1.  D. A. Beard and H. Qian, Chemical Biophysics; Quantitative Analysis of Cellular Systems. (Cambridge 

University Press, Cambridge, UK, 2008). 



 15

 

 

 

 

 

 

 

Here F(R) applies to a single A-B pair, and therefore the free energy drops continuously as R 

increases. This corresponds to the infinitely dilute limit, under which circumstance the partners 

will never bind. However, in practice there is a finite volume and concentration for the two 

partners. We only need to know the distance to the nearest possible binding partner ۦRABۧ. We 

can then put an upper bound on the radii sampled on this free energy surface. In the simplest 

approximation, we can determine a cut off radius in terms of the volume available to each B, 

which is the inverse of the B concentration: 3 14
3 [ ]cr B   . Then, the probability of finding the 

partners in the bound state is 
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At a more molecular scale, the rates of molecular association can be related to diffusion on a 

potential of mean force. g(r) is the radial distribution function that describes the radial variation 

of B density about A, and is related to the potential of mean force W(r) through 

( ) exp[ ( ) / ]Bg r W r k T  . Then the association rate obtained from the flux at a radius defined by 

the association barrier ( †r r ) is 

†

11 ( )24 ( ) BW r k T
a r

k dr r D r e
       

Here D(r) is the radial diffusion coefficient that describes the relative diffusion of A and B. The 

spatial dependence reflects the fact that at small r the molecules do not really diffuse 

independently of one another.  
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E
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For weakly attractive: 

or structural/large solutes  
or encounter complex 
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Diffusion‐Limited Reactions2 

Association Rate 

The diffusion-limited association rate is typically approximated from the expression for the 

relative diffusion of A and B with an effective diffusion constant D = DA + DB to within a critical 

encounter radius R0 = RA + RB, as described earlier.  

 04a A Bk R f D D  
 

One can approximate association rates between two diffusing partners using the Stokes–Einstein 

expression: 6A B AD k T R . For two identical spheres (i.e., dimerization) in water at T = 300 

K, where η ~ 1 cP = 100 kg m−1 s−1,  

9 1 18
6.6 10

3
B

a

k T
k M s   

  

Note that this model predicts that the association rate is not dependent on the size or mass of the 

object. 

For bimolecular reactions, the diffusion may also include those orientational factors that bring 

two binding sites into proximity. Several studies have investigated these geometric effects. 

  Example: Spheres with small binding patches 

  The combined probability that two binding patches are correctly oriented in both 

reference frames and that both are rotated into the correct azimuthal angle is: 

2 2

1 1
(1 cos ) (1 cos )

2 2
1

16

AB
r A B

A B AB

P
 


  


  


 

 

During diffusive encounter in dilute solution, once two partners collide but do not react, there is 

a high probability of re-colliding with the same partner before diffusing over a longer range to a 

                                                 
2.  D. Shoup, G. Lipari and A. Szabo, Diffusion-controlled bimolecular reaction rates. The effect of rotational 

diffusion and orientation constraints, Biophys. J. 36 (3), 697-714 (1981); D. Shoup and A. Szabo, Role of 
diffusion in ligand binding to macromolecules and cell-bound receptors, Biophys. J. 40 (1), 33-39 (1982). 
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new partner. Depending on concentration and the presence of interaction potentials, there may be 

5–50 microcollisions with the same partner before encountering a new partner. 

 

Diffusion‐Limited Dissociation Rate 

For the limit where associations are weak, k1 and k–1 are fast and in equilibrium, and the 

dissociation is diffusion limited. Then we can calculate k–1 

1

1

k

k
A B AB


 

 

Now we consider boundary conditions for flux moving away from a sphere such that 

 
1

3
0 0

( ) 0

4

3

B

B

C

C R R


 

   
   

The boundary condition for concentration at the surface of the sphere is written so that the 

number density is one molecule per sphere. 

The steady state distribution of B is found to be 

2
0

3
( )

4BC r
R r


  

The dissociation flux at the surface is 

0

4
0

3

4
B B

B
r R

C D
J D

r R

        

and the dissociation frequency is 

2 2
0 0

3

4
BDJ

R R


  

When we also consider the dissociative flux for the other partner in the association reaction,  

  2
1 03d A Bk k RD D 

   
 

Written in a more general way for a system that may have an interaction potential  
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 0

0

* 3
0

3 ( ) 2
0

4
3

4
3

U R kT

d
U r kT

R

De
k DR R

R e r dr



 


 

 
 

Note that equilibrium constants do not depend on D for diffusion-limited association/dissociation 

2
0

3
0 0

3 3

4 4
D

D
A

DRk
K

k R D R



  
   

Note this is the inverse of the volume of a sphere. 
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Protein Recognition and Binding 

The description of how a protein recognizes and binds a target is commonly discussed in terms 

of conceptual models. 

Enzyme/Substrate Binding 

Lock-and-Key (Emil Fisher) 

 Emphasizes shape complementarity 

 Substrate typically rigid 

 Concepts rooted in initial and final structure 

 Does not directly address recognition 

But protein-binding reactions typically involve conformational changes. Domain flexibility can 

give rise to dramatic increase in binding affinity. A significant conformational change/fluctuation 

may be needed to allow access to the binding pocket. 

For binding a substrate, two models vary in the order of events for conformational change vs. 

binding event: 

1) Induced fit (Daniel Koshland) 

2) Conformational selection:Pre-existing equilibrium established during which enzyme 

explores a variety of conformations. 

 

Protein–Protein Interactions 

 Appreciation that structure is not the only variable 

 Coupled folding and binding 

o Fold on contact 

o Fly-casting 

 Both partners may be flexible 
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Forces Guiding Binding 

Electrostatics 

 Electrostatics play a role at long and short range  

o Long-range nonspecific interactions accelerate diffusive encounter 

o Short range guides specific contacts 

 Electrostatic complementarity  

 Electrostatic steering 

 van der Waals, π-π stacking 

 

 
 

Shape and Geometry 

 Shape complementarity 

 Orientational registry 

 Folding 

 Anchoring residues 

Hydrogen Bonding 

 Short range 

 Cross over from electrostatic to more charge transfer with strong HBs (like DNA, 

protein–DNA binding) 

 Important in specificity 
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Solvation/Desolvation 

 To bind, a ligand needs to desolvate the active site 

 Bimolecular contacts will displace water 

 Water often intimate binding participant (crystallographic waters) 

 Hydrophobic patches 

 Charge reconfiguration in electrolyte solutions at binding interface 

 Electrostatic forces from water 

 

Depletion Forces 

 Entropic effect 

 Fluctuations that lead to an imbalance of forces that drives particles together 

o Crowding/Caging 

 

 Hydrophobicity 

o Dewetting and Interfacial Fluctuations 
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Folding/Conformational Change 

 Disorder increases hydrodynamic volume 

 Coupled folding and binding 

o Fly-casting mechanism 

 Partially unfolded partners 

 Long-range non-native interaction  

 Gradual decrease in free energy 
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Specificity in Recognition and Binding 

Specificity in Recognition 

What determines the ability for a protein to recognize a specific target amongst many partners? 

To start, let’s run a simple calculation. Take the case that a protein (transcription factor) has to 

recognize a string of n sequential nucleotides among a total of N bases in a dsDNA. 

 Assume that each of the four bases (ATGC) is present with equal probability among the 

N bases, and that there are no enthalpic differences for binding to a particular base.  

 Also, the recognition of a particular base is independent of the other bases in the 

sequence. (In practice this is a poor assumption). 

 The probability of finding a particular n nucleotide sequence amongst all n nucleotide 

strings is  

1

4







n

 

 For a particular n nucleotide sequence to be unique among a random sequence of N bases, 

we need 

1

4







n


1

N
 

 Therefore we can say 

 

ln

ln 4

N
n 

 

Example 

For the case that you want to define a unique binding site among N = 65k base pairs:  

 A sequence of n = ln (65000)/ln(4) ≈ 8 base pairs should statistically guarantee a 

unique binding site. 

 n = 9 → 262 kbp 

This example illustrates that simple statistical considerations and the diversity of base 

combinations can provide a certain level of specificity in binding, but that other 

considerations are important for high fidelity binding. These considerations include the 

energetics of binding, the presence of multiple binding motifs for a base, and base-

sequence specific binding motifs. 
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Energetics of Binding  

We also need to think about the strength of interaction. Let’s assume that the transcription factor 

has a nonspecific binding interaction with DNA that is weak, but a strong interaction for the 

target sequence. We quantify these through: 

∆G1: nonspecific binding 

∆G2: specific binding 

Next, let’s consider the degeneracy of possible binding sites: 

gn: number of nonspecific binding sites = (N – n) or since N ≫	n: (N – n) ≈ N 

gs: number of sites that define the specific interaction: n 

The probability of having a binding partner bound to a nonspecific sequence is  

P
nonsp


gn eG1 kT

gn eG1 kT  gs eG2 kT


(N  n)eG1 kT

(N  n)eG1 kT  neG2 kT


1

1
n
N

eG kT

 

where ∆G = ∆G2 – ∆G1. 

We do not want to have a high probability of nonspecific binding, so let’s minimize P
nonsp

. 

Solving for ΔG, and recognizing 

P

nonsp
1,  

G  k
B
T ln

N

n P
nonsp












 

Suppose we want to have a probability of nonspecific binding to any region of DNA that is 

P
nonsp

1% . For N = 106 and n = 10, we find 

∆G ≈ –16kBT  or    ‒1.6kBT/nucleotide 

for the probability that the partner being specifically bound with P
sp
 99% . 
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