Supporting Information for

Gender brilliance stereotype emerges early and predicts children’s motivation in

South Korea
Table S1. The questions and scale used in the screener phase in Experiments 1 and 2 (Each option’s corresponding scale is displayed in parentheses).

“Smart” screener questions (6 items):

[four relevant questions]
- This child can always answer even the hardest questions from the teacher.
- This child learns things really fast.
- This child can solve very difficult puzzles.
- This child figures things out really quickly.

(after each question) Is this child smart (thumbs up), not smart (thumbs down), or are you not sure (puzzled look)?

[two irrelevant questions]
- This child watches really funny cartoons.
- This child exercises all the time.

(after each question) Is this child smart (thumbs up), not smart (thumbs down), or are you not sure (puzzled look)?

“Nice” screener question:

[four relevant questions]
- This child likes to help other people.
- This child always shares their toys with other children.
- This child tries to make other children feel better when they are sad.
- This child likes to give hugs to family and friends.

Is this child nice (thumbs up), not nice (thumbs down), or are you not sure (puzzled look)?

[two irrelevant questions]
- This child plays on a swing.
- This child likes to listen to music.

Is this child nice (thumbs up), not nice (thumbs down), or are you not sure (puzzled look)?

Scoring: Mean of 6 items (1 = correct answer; 0 = incorrect answer; “smart/nice” to the four relevant questions, and “not sure” and “not smart/not nice” to the two irrelevant questions were coded as correct.)
Scale used in the screener phase:
Table S2. The questions used in the grade task in Experiments 1 and 2. The first two questions were presented with 4 pictures of unfamiliar Asian children (Experiment 1) or White children (Experiment 2) including 2 boys and 2 girls. Participants were then asked the same 2 questions again, except this time they had to choose between 2 verbally presented options (“A boy or a girl?”) without viewing pictures.

1. Who do you think will get the highest score in school/kindergarten?
2. Who do you think will be the first place in their class?
3. Who do you think will get the highest score in school/kindergarten?
 A boy or a girl?
4. Who do you think will be the first place in their class?
 A boy or a girl?

An example of the pictures used in the first two questions:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

1. An example of the picture used in the first two questions:
Table S3. Children’s own-gender brilliance scores by tasks in Experiment 1 (standard deviations in parentheses).

<table>
<thead>
<tr>
<th>Age group</th>
<th>Gender</th>
<th>Story task</th>
<th>Guessing task</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Boys</td>
<td>0.78 (0.31)</td>
<td>0.54 (0.24)</td>
</tr>
<tr>
<td></td>
<td>Girls</td>
<td>0.66 (0.40)</td>
<td>0.60 (0.22)</td>
</tr>
<tr>
<td>6</td>
<td>Boys</td>
<td>0.78 (0.36)</td>
<td>0.64 (0.21)</td>
</tr>
<tr>
<td></td>
<td>Girls</td>
<td>0.66 (0.35)</td>
<td>0.56 (0.25)</td>
</tr>
<tr>
<td>7</td>
<td>Boys</td>
<td>0.81 (0.25)</td>
<td>0.70 (0.16)</td>
</tr>
<tr>
<td></td>
<td>Girls</td>
<td>0.59 (0.38)</td>
<td>0.54 (0.14)</td>
</tr>
</tbody>
</table>

Note. We submitted children’s own-gender brilliance scores obtained from each task (the story task or the guessing task) to a linear regression model with participant gender, participant age, and their interaction as factors. For the story task, the analysis revealed a significant main effect of gender, $B = .08, SE = .03, t = 2.24, p = .028$. Neither the main effect of participant age, $B = -.01, SE = .04, t = -0.18, p = .855$, nor the interaction, $B = .02, SE = .04, t = 0.55, p = .585$, was significant. For the guessing task, the analysis found a significant interaction between participant gender and participant age, $B = .05, SE = .03, t = 2.13, p = .035$. Neither the main effect of participant gender, $B = .03, SE = .02, t = 1.37, p = .174$, nor the main effect of participant age, $B = .02, SE = .03, t = 0.91, p = .363$, was significant.
Table S4. Children’s own-gender brilliance scores by tasks in Experiment 2 (standard deviations in parentheses).

<table>
<thead>
<tr>
<th>Age group</th>
<th>Gender</th>
<th>Story task</th>
<th>Guessing task</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Boys</td>
<td>0.78 (0.31)</td>
<td>0.71 (0.27)</td>
</tr>
<tr>
<td></td>
<td>Girls</td>
<td>0.72 (0.36)</td>
<td>0.66 (0.25)</td>
</tr>
<tr>
<td>6</td>
<td>Boys</td>
<td>0.84 (0.24)</td>
<td>0.69 (0.20)</td>
</tr>
<tr>
<td></td>
<td>Girls</td>
<td>0.72 (0.31)</td>
<td>0.63 (0.19)</td>
</tr>
<tr>
<td>7</td>
<td>Boys</td>
<td>0.72 (0.31)</td>
<td>0.68 (0.14)</td>
</tr>
<tr>
<td></td>
<td>Girls</td>
<td>0.44 (0.36)</td>
<td>0.56 (0.19)</td>
</tr>
</tbody>
</table>

Note. We submitted children’s own-gender brilliance scores obtained from each task (the story task or the guessing task) to a linear regression model with participant gender, participant age, and their interaction as factors. For the story task, the analysis revealed a significant main effect of participant gender, $B = .08, SE = .03, t = 2.38, p = .020$, and a main effect of participant age, $B = -.09, SE = .04, t = -2.14, p = .035$. However, the interaction was not significant, $B = .05, SE = .04, t = 1.36, p = .178$. For the guessing task, the analysis found a marginally significant main effect of participant gender, $B = .04, SE = .02, t = 1.79, p = .077$. Neither the main effect of participant age, $B = -.03, SE = .03, t = -1.21, p = .230$, nor its interaction with participant gender, $B = .02, SE = .03, t = 0.60, p = .547$, was significant.
Table S5. The four questions used to assess children’s interests in Experiment 3 (Each option’s numerical score is displayed in parentheses).

(1) Imagine the modi/papu game is right in front of you. Would you want to play the modi/papu game, or would you not want to play it?

 [if "want to play"] Then, how much do you want to play modi/papu game?
 Would you sort of want to play it (= 4), want to play it (= 5), or really want to play it (= 6)?

 [if "not want to play"] Then, how much do you not want to play modi/papu game?
 Would you sort of not want to play it (= 3), not want to play it (= 2), or really not want to play it (= 1)?

(2) Do you like the modi/papu game, or do you not like it?

 [if "like it"] Then, how much do you like modi/papu game?
 Would you sort of like it (= 4), like it (= 5), or really like it (= 6)?

 [if "not like it"] Then, how much do you not like modi/papu game?
 Would you sort of not like it (= 3), not like it (= 2), or really not like it (= 1)?

(3) Imagine you are playing the modi/papu game. Does playing modi/papu game make you happy or sad?

 [if "happy"] Then, how much playing modi/papu game makes you happy?
 Does it make you sort of happy (= 4), happy (= 5), or really happy (= 6)?

 [if "sad"] Then, how much playing modi/papu game makes you sad?
 Does it make you sort of sad (= 3), sad (= 2), or really sad (= 1)?

(4) If you can do something tomorrow, would you play the modi/papu game (= 1) or would you do something else (= 0)?
Figure S1. An example of adult stimuli used in the gender-neutral story task in Experiment 1.
Figure S2. Boys’ (blue) and girls’ (red) own-gender grade scores in Experiments 1 and 2 by age group (5- vs. 6- vs. 7-year-olds). The error bars represent ± 1 SE.
Figure S3. The gender difference in 7-year-olds’ interests in the smart game was mediated by their own-gender brilliance scores, indirect effect = .47, 95% CI = [.24, .74]. Unstandardized coefficients are depicted. *p < .05, ***p < .001
Figure S4. Children’s own-gender brilliance scores in all three experiments by institutions they are currently attending (Kindergarten vs. Elementary school). The error bars represent ± 1 SE. There was no significant gender difference in kindergartners’ own-gender brilliance scores, Exp 1: $F(1, 48) = 0.34, p = .565$; Exp 2: $F(1, 59) = 1.82, p = .183$; Exp 3: $F(1, 28) = 0.29, p = .597$. In contrast, there was a significant gender difference in elementary schoolers’ own-gender brilliance scores, Exp 1: $F(1, 44) = 7.58, p = .009$; Exp 2: $F(1, 33) = 6.45, p = .016$; Exp 3: $F(1, 48) = 5.25, p = .026$.
Figure S5. Children’s smart game interest scores in Experiment 3 by institutions they are currently attending (Kindergarten vs. Elementary school). The error bars represent ± 1 SE. There was a significant gender difference in elementary schoolers, $F(1, 48) = 8.06, p = .007$, but not in kindergarteners: $F(1, 28) = 0.39, p = .536$.

![Graph showing interest scores](image-url)