
Journal Pre-proof

Scale Invariance in fNIRS as a Measurement of Cognitive Load

Chu Zhuang, Kimberly L. Meidenbauer, Omid Kardan, Andrew J. Stier, Kyoung Whan
Choe, Carlos Cardenas-Iniguez, Theodore J. Huppert, Marc G. Berman

PII: S0010-9452(22)00155-1

DOI: https://doi.org/10.1016/j.cortex.2022.05.009

Reference: CORTEX 3492

To appear in: Cortex

Received Date: 24 September 2021

Revised Date: 29 April 2022

Accepted Date: 23 May 2022

Please cite this article as: Zhuang C, Meidenbauer KL, Kardan O, Stier AJ, Choe KW, Cardenas-Iniguez
C, Huppert TJ, Berman MG, Scale Invariance in fNIRS as a Measurement of Cognitive Load, CORTEX,
https://doi.org/10.1016/j.cortex.2022.05.009.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cortex.2022.05.009
https://doi.org/10.1016/j.cortex.2022.05.009


Scale Invariance in fNIRS as a Measurement of Cognitive 

Load 

 

Chu Zhuang1*, Kimberly L. Meidenbauer1*‡, Omid Kardan1, Andrew J. Stier1, Kyoung Whan 

Choe1,2, Carlos Cardenas-Iniguez1, Theodore J. Huppert3, Marc G. Berman1,4‡ 

 

*authors contributed equally 

 

Affiliations: 

1Environmental Neuroscience Lab, Department of Psychology, The University of Chicago 

2Mansueto Institute for Urban Innovation, The University of Chicago  

3Department of Electrical and Computer Engineering, The University of Pittsburgh  

4Neuroscience Institute, The University of Chicago 

 

‡Corresponding authors 

Kim Lewis Meidenbauer 

Email: meidenbauer@uchicago.edu 

Address: 

5848 S University Avenue 

Chicago, IL 60637 

 

The authors declare no conflicts of interest. 

 

Jo
urn

al 
Pre-

pro
of



1 

Abstract  

Scale invariant neural dynamics are a relatively new but effective means of measuring 

changes in brain states as a result of varied cognitive load and task difficulty. This study tests 

whether scale invariance (as measured by the Hurst exponent, H) can be used with functional 

near-infrared spectroscopy (fNIRS) to quantify cognitive load, paving the way for scale-

invariance to be measured in a variety of real-world settings. We analyzed H extracted from the 

fNIRS time series while participants completed an N-back working memory task. Consistent with 

what has been demonstrated in fMRI, the current results showed that scale-invariance analysis 

significantly differentiated between task and rest periods as calculated from both oxy- (HbO) 

and deoxy-hemoglobin (HbR) concentration changes. Results from both channel-averaged H 

and a multivariate partial least squares approach (Task PLS) demonstrated higher H during the 

1-back task than the 2-back task. These results were stronger for H derived from HbR than from 

HbO. This suggests that scale-free brain states are a robust signature of cognitive load and not 

limited by the specific neuroimaging modality employed. Further, as fNIRS is relatively portable 

and robust to motion-related artifacts, these preliminary results shed light on the promising 

future of measuring cognitive load in real life settings. 

Key words: functional near-infrared spectroscopy, Hurst exponent, N-back task, partial least 

squares, task difficulty 
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1. Introduction 

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique that has gained 

increasing attention in recent years due to its relative robustness to motion artifacts and 

environmental noise, making it more suitable for neuroimaging outside standard laboratory 

settings [1,2] and with hard-to-test populations [3]. Like functional MRI, fNIRS measures 

changes in the brain’s hemodynamic response, but does so using light spectroscopy at near-

infrared wavelengths. At the onset of regional neural activity, metabolic demands rise, and blood 

flow increases in that area. This increased blood flow leads to higher concentrations of 

oxygenated hemoglobin concentrations (HbO) and lower concentrations of deoxyhemoglobin 

concentrations (HbR). Measuring these oxy- and deoxy-hemoglobin concentration changes in 

fNIRS provide a complementary method to fMRI with lower cost and greater use-case flexibility 

[4]. Many findings from fMRI have been replicated using fNIRS, such as activation changes that 

result from varying cognitive load in working memory tasks [5–7]. 

Cognitive load refers to the level of demand and difficulty people bear when performing a 

cognitive task [8,9]. More specifically, it often indicates the amount of working memory used or 

the number of items people are actively holding in working memory [6,7]. However, when 

people are continuously under high cognitive load and there are sustained demands on 

attention and working memory, performance can decrease, and people may suffer from high 

levels of mental fatigue. This fatigue can be very dangerous, especially for those who work in 

positions requiring sustained attention, such as pilots, doctors, technicians under military duties 

etc [10,11]. Similarly, in an educational setting, children may not learn effectively or perform well 

if they are already experiencing high levels of cognitive fatigue [12].  

Both behavioral (i.e., speed and accuracy in a task) and physiological measures (i.e., skin 

conductance, blood glucose, cardiac function) have been used to measure cognitive load in 

previous work [13,14]. However, behavioral measures do not directly reflect cognitive load and 

may neglect 'compensatory effort' [15]. That is, people may exert extra effort and experience 
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higher cognitive load and fatigue while maintaining the same level of performance. Physiological 

methods do not index cognitive load directly as well, as they measure cardiovascular and 

sympathetic nervous activities, which are an indirect proxy of cognitive load. It can be hard to 

tell what changes may be predominantly due to cognitive effort and what might be primarily due 

to arousal [16] and stress [17,18]. Thus, behavioral and physiological methods are neither 

specific nor fully sensitive to detect changes in cognitive load. To better monitor these changes, 

it would be advantageous to identify a reliable neural measure, both sensitive and specific to 

cognitive difficulty, effort, or fatigue, which utilizes mobile neuroimaging technology. 

Previous neuroimaging studies investigating cognitive load with fNIRS and fMRI have often 

centered around localized activation that differs based on task difficulty or working memory load 

[16–18]. However, the present study aimed to measure levels of cognitive load through a whole 

brain neural signature, scale invariance of the broadband brain signal, quantified by the Hurst 

exponent (H). This signature has been validated with fMRI and EEG studies and has proved 

sensitive and specific to changes of cognitive load [15,19,20]. H is considered a global measure 

as changes in scaling due to task demands or individual differences have been found across the 

whole brain (in fMRI which provides whole brain coverage) and H changes are unidirectional, 

following the same pattern of effects across regions examined [21,22]. Changes in H are 

stronger in some regions than others, particularly those that are task-relevant and also show 

changes in activation and/or functional connectivity due to task demands [19,22]. Thus, H is 

both a unidirectional signature and shows a certain level of spatial selectivity.  

Scale invariance (also called scale-free or fractal scaling) refers to the property of a time 

series signal that it has persistent autocorrelation with long-range dependency. By this, we 

mean that similar fluctuation patterns appear at all time scales (whether examined over a short 

window or a longer window) and no specific frequency band (i.e., alpha band vs. beta band, 

etc.) plays a dominant role. From the frequency perspective, scale invariant neural signals 

exhibit a power-law relationship between Power Spectral Density of the signal (PSD), and its 
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frequency (f), where PSD(f) ~ f -β, β >= 0. When the signal is scale-invariant, the slope of this 

function, β, should be positive (PSD close to 1/f). The more scale-invariant the signal is, the 

more inclined the slope is and the higher value of β. Conversely, if the signal is less scale-free, 

the slope is shallower, with a lower value of β [22]. According to this formula, the degree of 

temporal scale invariance can be calculated by the Hurst exponent (H), which is related to the 

slope β via the equation H = (β+1) / 2, or β = 2H - 1. Therefore, if a signal is scale invariant and 

shows larger long-range dependency, it will lead to a higher value of H, which corresponds to a 

higher value of β (steeper slope). 

The range of possible values of H are somewhat different however, depending on whether 

the signal being recorded is stationary (that is, the mean and variance does not change over 

time as is typical in fMRI; [19,23,24]) or nonstationary (as is typically found in neural field 

potentials or EEG; [25–27]). If the signal is stationary, the slope (β) of power spectral density 

should be between 0 and 1 and the Hurst exponent should fall between 0.5 and 1 because H = 

(β+1) / 2. The floor of H is 0.5, as this represents white noise, where power is not related to 

frequency, but rather power is uniformly distributed across frequency. If examined in log space, 

this would represent a line with zero slope.  

In contrast, if the brain signals  are nonstationary, then the slope β can exceed 1. For 

example, in EEG recordings, typical values for β are in the range of 1 to 2.5, leading to a  

calculation of H in the range of approximately 1 to 1.75 [28,29]. Similarly, nonstationary field 

potentials yield estimates of H in the range of 2 to 4 [30,31]. Though fNIRS is measuring the 

same metabolic process as fMRI, fNIRS data does exhibit a certain amount of nonstationarity 

due to how the data is measured. Specifically, the underlying biological signal in fNIRS is slower 

than the rate at which the data are sampled can lead to some nonstationarity in the data.  

Previous research has found that H, the scale invariance index, is a robust neural indicator 

of cognitive load [19,23,24]. The effectiveness of H in quantifying cognitive load and task 
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engagement has been validated in both fMRI (BOLD signals) and EEG studies (oscillatory 

activity, [15]. H decreases globally with changes in cognitive load and task difficulty, where it is 

highest during rest, lower while participants perform tasks, and shows the most suppression 

during highly cognitively demanding tasks. A defining characteristic of temporal scale-invariance 

is that this persistent autocorrelation and fractal-like self-similarity is unaffected by the 

magnitude of the time window examined. As H has been extracted from multiple neuroimaging 

modalities spanning very different sampling rates and time scales (i.e. 0.01-0.2 Hz in minutes-

long fMRI time series, ~30 Hz in seconds-long downsampled EEG time series data), and is not 

dominated by any particular frequency band [15,19], this suggests that H is a truly scale-free 

measure. In other words, slower signals and faster/more frequent signals exhibit the same 

relationships of higher H indicating lower cognitive effort, and that the Hurst measure applies to 

all frequencies and not to narrow frequency bands. In this way, this measure is a useful metric 

to unite different neuroimaging modalities. 

It has been proposed that H measures how close the brain is to a “critical state”. Criticality 

is a concept taken from physics that reflects how readily a system can transition between 

different states and has been applied to biological systems, such as the brain [32]. In this case, 

a brain state close to a critical point is minimally stable and maximally sensitive to perturbations 

from exogenous inputs [22]. In neural network simulations, a critical brain state increases the 

dynamic range of the system [33,34] and facilitates the transfer of information [35]. This 

framework supports the findings that more scale-free brain states, which are closer to the point 

of criticality, are associated with exerting less cognitive effort, engaging in an easier task, being 

younger, or experiencing minimal or no psychopathology symptoms [15,19,22,36]. In other 

words, higher H values reflect brain activity closer to a critical state, allowing higher H brains to 

take in external information and shift to a different state if needed. H decreases as cognitive 

load increases as the brain is less able to take in external information needed to transition to a 

different task-relevant state if required.    
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However, while the effectiveness of the Hurst exponent as a cognitive load measurement 

has been validated in both fMRI and EEG studies, it has not yet been examined in fNIRS. 

Compared with fMRI and EEG, fNIRS is more robust to motion artifacts and environmental 

noise and is more portable, making it ideal for investigations in ecologically valid settings (for 

example, measuring fatigue during driving [37], or learning in school aged children [38]. The 

results of this study will shed light on future theoretical and practical investigation of cognitive 

load, fatigue with fNIRS, and even monitoring cognitive load levels and signaling changes by 

neuro-feedback to mitigate fatigue [39]. This would allow researchers to measure cognitive 

fatigue in some difficult scenarios, such as in school settings where children are trying to learn 

different cognitive tasks, workplace settings such as aeronautics, transportation and even 

possibly space travel. We expected that, if scale invariant brain states are indeed robust 

indicators of cognitive load or task difficulty, the effects should be generalizable across 

neuroimaging modalities, and we should be able to replicate previous findings with fNIRS. The 

present study therefore addresses whether this temporal neural signature is also feasible in 

quantifying cognitive load with fNIRS.  

 

Study Design and Hypothesis 

Based on previous findings in fMRI and EEG studies [19,23,24,40], we hypothesize that 

increasing levels of cognitive load will be associated with suppression of H, indicating 

decreased scale invariance as measured by fNIRS signals. To test this in the current study, we 

examined H in an N-back working memory task while fNIRS data were recorded, in a dataset 

previously analyzed and reported in Meidenbauer et al. (2021) [35]. 

The N-back task is a classic working memory paradigm which places high demands on 

working memory and attention with varying levels of task difficulty and cognitive load [6,7]. In the 

N-back working memory task, participants are required to match the current word/stimulus with 

the word presented in the previous Nth trial and make a response. The task's difficulty is 
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adjusted by changing the value of N. In the current study, N is equal to 1, 2, or 3, and defined as 

‘1-back’, ‘2-back’ and ‘3-back’ conditions. Here, the ‘1-back’ is the easiest and the ‘3-back’ is the 

most difficult. Accordingly, we hypothesize that scale invariance of fNIRS signal, measured as 

Hurst exponent (H), will decline with the increasing task difficulty: whereby the ‘1-back’ will show 

the highest H, while the ‘3-back’ will have the most suppressed/lowest H, indicating a higher 

cognitive load. We also hypothesize that H will be higher during rest blocks than during task 

blocks. We test these hypotheses using H averaged across all frontal channels as well as using 

a Task partial least squares (Task PLS) multivariate approach which incorporates channels, as 

we may also see some spatial-specificity in where changes in H are the strongest.  

 

2.             Method 

This paper uses a dataset previously reported in Meidenbauer et al. (2021). We report how we 

determined our sample size, all data exclusions, all inclusion/exclusion criteria, whether 

inclusion/exclusion criteria were established prior to data analysis, all manipulations, and all 

measures in the study. 

2.1. Participants 

Seventy adults participated in this study. Participants were recruited from the Chicago 

area. Participants were only excluded from participating if they did not have normal or corrected-

to-normal visual acuity or reported a history of neurological disorders. Participants gave written 

informed consent before participation and experimental procedures were approved by the 

University of Chicago’s Committee for Institutional Review Board (IRB). Participants were 

compensated $26 or 2 units of course credit, plus a performance-based bonus of up to $10. The 

full procedure included approximately 15 minutes of additional study elements related to a video 

intervention that were separate from the current work. Our sample size was determined based 

on hypotheses related to these interventions. The full study procedures lasted between 75 and 

90 minutes. From the original 70 participants, 8 participants were excluded from all data 
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analysis due to technical issues, participant non-compliance with the task procedures, or low-

quality data. For this particular analysis, 10 additional participants were excluded due to 

insufficiently high data quality as defined by the structured noise index (SNI; see section 

Exclusion of participants based on SNI), leading to a final sample of 52 participants. Of the 52 

participants analyzed here, 26 were male and 26 were female, and the mean age was 24.5 

years (SD = 6.9 years). 10 participants identified as Hispanic or Latino/a, 13 as Asian or Asian 

American, 9 as Black or African American, 13 as White or European American, 5 participants 

reported 2 or more racial or ethnic identity groups, and 2 preferred not to disclose.   

 

2.2. fNIRS Data Acquisition 

fNIRS data were acquired using a continuous-wave NIRx Nirsport2 device (NIRx 

Medical Technologies, LLC) and NIRx acquisition software Aurora 1.2 at a sampling rate of 

~4.4Hz. Near-infrared light of two different wavelengths (760 and 850 nm) was used to detect 

the concentration change of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin 

(HbR). There were 16 sources and 16 detectors used, creating 43 channels in total, 33 

channels covering the bilateral frontal cortex and 10 channels covering the right parietal cortex. 

Because of the low quality of parietal data collected, the following analysis focuses on data 

collected in the frontal region (Fig. 1; See section Exclusion of noisy channels based on 

Structured Noise Index). The montage was created using fOLD (fNIRS Optodes’ Location 

Decider; [41]), which allows placement of optodes in the international 10-10 system to 

maximally cover anatomical regions of interest. The AAL2 (Automated Anatomical Labeling; 

[42]) parcellation was used to generate the montage and provide as much coverage of the 

prefrontal cortex (PFC) as possible, including bilateral superior and inferior frontal gyri. 
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Figure 1. Locations of the channels in the International 10/20 coordinates All 33 channels 
covering bilateral frontal cortex are used in H analysis. 10 Parietal channels (highlighted in 
orange) were excluded (see section 2.5.3). 

 

 

 

 

 

 

 

 

2.3. N-back Task 

Experimenters first took participants through step-by-step instructions of the N-back task 

before they began practice. Participants were told that they would see a sequence of short 

words that are separated by brief fixations (small circles), and that a word would be presented 

every 2 seconds which should be compared to the word “N” trials back. In the current study, N = 

1, 2, or 3. Participants were instructed to press the “m” key every if the current word matched 

the word N trials back, and to press the “n” key if the current word did not match the word N 

trials back [Fig. 2]. Blocks began by first displaying the N-back level for that round and a fixation 

cross (5 seconds). Each task block contained a 15-length pseudorandom sequence of two 

words, presented for 2 seconds each (total of 30 seconds), followed by 20 seconds of rest. The 

length of each block was 55 seconds, and with 18 blocks the total length of the N-back task was 

approximately 16.5 minutes. To suppress sequence memory formation, the two words used in 

each block were randomly selected from the eight-word pool (‘WHAT', 'HOW', 'WHEN', 'WHY', 

'WHERE', 'WHO', 'THAT', 'BUT'), except during the first practice, in which the same two words 

(“AXE” and “BOX”) were used. The sequence of two words was determined using an m-

sequence (base = 2, power = 4; thus, one word appeared eight times, and the other word 
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appeared seven times; [43–45] to suppress autocorrelation. In all cases, words were presented 

in white text on a black background.  

 

Figure 2. The ‘N-back’ task paradigm. Participants were required to respond whether the 
current word matched the word N trials back (N=1,2,3). Task difficulty and cognitive load 
increases with larger N.  

 

2.4. Study Procedures 

After providing informed consent, experimenters measured the participants’ head to 

determine cap size and placement, then began to set up the cap while participants were taken 

through task instructions and given an opportunity to practice the N-back task. The first round of 

N-back practice consisted of 9 blocks. In this first practice, accuracy feedback was provided on 

a trial-by-trial level as well as at the end of each block. Participants completed 3 blocks of 1-

back, then 3 blocks of 2-back, then 3 blocks of 3-back, and then one more round of 1-back, 2-

back, and 3-back. After the first round of practice, the cap was placed on the participants' head, 

moving hair as needed to provide clear access to the scalp for the sources and detectors. Cap 

alignment was verified based on the international 10-20 location of Cz [46]. fNIRS data were 

calibrated and checked for quality before proceeding. If any channels were not displaying 

sufficiently high-quality data, placement and hair-clearing were performed again. After the fNIRS 

cap was set up, participants began the second round of practice designed to mimic the 

conditions of the real task more closely. In this practice, participants performed a single block of 

1-back, then 2-back, then 3-back, without trial-by-trial feedback. The main N-back task involved 
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18 blocks, with 6 blocks of each N-back level, pseudorandomly presented. After completing the 

experiment, the cap was removed, and participants completed a demographics questionnaire. 

All experimental procedures were coded and presented using PsychoPy [47]. N-back 

experiment code can be accessed at https://osf.io/sh2bf/  

Participants received a performance-based bonus during the main round (18 blocks) of N-

back task. The bonus was defined as an additional 40 cents per block if performance > 90%, an 

additional 30 cents per block if performance > 80%, and an additional 20 cents per block if 

performance > 60%. Performance under 60% did not yield a cash bonus in this study. 

Participants were informed of their performance on each block and total bonus directly following 

the 30 seconds of task. 

 

2.5. Data Analysis 

All code can be accessed at: https://osf.io/kt5cx/  

 

2.5.1. fNIRS signal preprocessing 

fNIRS data were first loaded into the HOMER2 software package [48] for visual inspection 

of overall data quality (at the level of the participant). This was done by examining the power 

spectral density plots for all channels to identify the presence of a cardiac oscillation (typically 

~1 Hz; [49], which indicates that the optical density signals are successfully coupled with a 

physiological hemodynamic response [50]. This method was used to do a first pass evaluation. 

For fNIRS data pre-preprocessing, this study used the Brain AnalyzIR Toolbox [51], and first 

converted raw light intensity values into optical density signals. Then, optical density signals 

were transformed into concentration changes of HbO and HbR values based on the modified 

Beer-Lambert law [52].  
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2.5.2. Hurst exponent calculation on HbO and HbR data 

To calculate the H value, the key index of interest in this study, we used the Detrended 

Fluctuations Analysis algorithm, which was developed for fMRI H analysis (DFA) [19,21]. We 

adopted the DFA algorithm to derive H from fNIRS signals in our analysis as fNIRS measures 

the same biological signal as fMRI. 

DFA measures the power in HbO/HbR fluctuations for different time windows of the data， 

formulated as F(n) as a function of time in windows of length n. The Hurst exponent is equal to 

the slope α of a linear fit between the log-transformed F(n) and n, with α = 1 indicating a 

perfectly fractal signal. The length of time window, n, in our analysis was set as the full length of 

rest, which was 20s, with which the sampling rate of ~4.4 Hz, yielded 87 samples/block. We 

kept this time window the same between task and rest so the two could be directly compared. 

As the task-evoked hemodynamic response occurs on a delay after the onset of the underlying 

neural activity, the last 20s of the 30s window of task was used in the DFA calculation. 

As each N-back experiment condition had 6 blocks (18 blocks in total), including both task 

and rest, after the DFA calculation, each participant had 18 H values for task and 18 for rest (6 

for each condition) for each of the 33 channels. Further visualization and statistical analysis 

were based on these H values, the key index of interest. 

 

2.5.3. Exclusion of noisy channels based on Structured Noise Index (SNI) 

Before conducting statistical analysis, we first examined data quality based on the 

Structured Noise Index (SNI), calculated from the Brain AnalyzIR toolbox. SNI was calculated 

for each channel, for each participant, and is a useful tool in capturing the systematic noise 

across channels and participants. The SNI is defined as the ratio of the variance of the full data 

trace to the variance of the auto-regressively whitened trace of the same data and reflects the 

ratio of structured (colored) noise in the data due to various physiological processes to the 
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uncorrelated (white) noise. This approach was inspired by the spatial SNI method described in 

[53] and applied to the fNIRS time signals in this work. This step was important as fNIRS signals 

are sensitive to superficial physiological noise (e.g., hair) and participants have varied levels of 

interference based on the color and texture of their hair [51]. When SNI is less than 2, it 

indicates that the data from this channel are very noisy and not appropriate for further analysis, 

and hence, we defined channels with SNI less than 2 as ‘bad’ channels. 

Based on this criterion, we found that, out of total 43 channels, participants had on average 

6.94 bad channels for HbO (16%) and 9.35 bad channels for HbR (22%), and that these bad 

channels mainly centered around parietal regions, where signals are more likely to be 

obstructed by hair. In this dataset, a large number of participants (46 out of 52) had one or more 

channels marked as “bad” in those covering the right parietal cortex (channels no. 33-43 in 

Figure 1 and Figure 3). Therefore, in the following analysis, we excluded the 10 channels in the 

right parietal cortex, resulting in a total of 33 channels for analysis. 

 
Figure 3. Number of Participants with each channel (1-43) marked as bad. The number of 
participants reporting the channel as ‘bad’ were calculated based on channel SNI < 2. Left 
figure for HbO; Right figure for HbR. Channels 33-43 reflect 10 channels over parietal cortex 
that were excluded from future analysis.  
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2.5.4. Exclusion of participants based on SNI 
 

Additionally, after excluding those 10 channels in the parietal cortex, 10 participants’ data 

were found to have many poor-quality channels (shown in Figure 4). This was defined by 

participants whose count of bad channels exceeded 1 SD (3.0 bad channels for HbO; 3.4 bad 

channels for HbR) from the average number of bad channels (2 bad channels for HbO; 3 bad 

channels for HbR). Following this criterion, participants who either had 5 bad channels for HbO 

or 6 bad channels for HbR were excluded from further analysis. On average, these 10 outlier 

participants had 8 (24%) bad channels for HbO and 9 (27%) bad channels for HbR. 

 
 
Figure 4. Number of ‘bad’ channels per participant after excluding parietal channels.  
Histograms show the number of ‘bad’ (SNI <2) channels (out of 33) each participant had after 
removing the 10 parietal channels for HbO (left) and HbR (right). The blue line represents the 
mean number of bad channels across participants and the red lines indicate 1 SD from the 
mean.   

 
 

As an additional check, after calculating the Hurst exponent, we plotted average H across 

all task sessions by channels for each participant. As H is a global signal across the whole 

brain, we expected moderate to high levels of similarity across channels [19,22].  Large 

fluctuations between channels of the same participant in the same run suggest poor data 

quality, potentially stemming from hair thickness variations. Shown in Fig. 5, we could see that 
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compared to ‘good’ participants (upper panel), ‘bad’ participants (lower panel) generally had 

more variable responses across channels that were very irregular and unexpected, which 

further justified this SNI based participants exclusion step.  

 
Figure 5. Averaged H value by channels for participants with good and bad data quality. 
Average and variance of H values by channels for participants with good and bad data quality. 
H value for each 20 second segment was averaged for each block type for each participant. The 
upper figures showed the averaged H for participants marked as ‘good’ (left for HbO, right for 
HbR); the lower figures showed the averaged H with error bars reflecting standard deviations for 
participants which were marked as ‘bad’ (left for HbO, right for HbR). 
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2.5.5. Regressing SNI from H values 

We further regressed the SNI out from the H value of each channel, which accounts for 

different degrees of noise across channels, to remove the systematic interference of noisy data. 

The value of H after SNI being regressed out was used in further analysis. 

 

2.5.6. Accounting for Motion-related Artifacts 

 Lastly, as the scale-invariance of a data time series can be influenced by the presence 

of large fluctuations not due to the underlying biological signal, such as motion-related artifacts 

[54], we evaluated the presence of such artifacts across conditions and for task and rest 

separately to ensure these were not driving any results. For example, if participants in the study 

systematically demonstrated more head movement more during rest blocks than during task 

blocks, this would lessen the interpretability of our H results. To do this, the raw data were first 

segmented into the same 20 second blocks used in the DFA calculation and statistical analysis. 

Next, statistical outliers in the 20 seconds of data were identified by calculating the innovations 

model for each segment using the function nirs.math.innovations() in the Brain AnalyzIR 

Toolbox [51]. The innovations in each time series reflect the uncorrelated (whitened) signal after 

filtering using the autoregressive model. Here, each 20 second time series for the 33 channels 

used in the Hurst analyses for each participant was fed into the function, and the maximum 

model order was set to 20. This was chosen based on the recommendation that the maximum 

model order is at least 4 times the sample rate (here ~4.4 Hz). 

 The output of this function is an innovations time series for each channel for each 

segment. Subsequently, the number of studentized outliers were calculated (outliers defined as 

p < 0.05). The counts of these outliers across all 33 channels for each segment and each 

participant were then saved. The average number of statistical outliers by segment type (all 

task, all rest, 1-back, 2-back, and 3-back) across are presented in Table 1. Paired t-tests 

(mimicking the statistical tests on averaged H values, detailed below) were also conducted to 
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compare the number of outliers/artifacts by condition. The results of these tests are also 

presented in Table 1. The number of outliers was generally quite low: out of ~2870 data points 

reflecting time (~87 samples) x 33 channels, the average number of outliers participants had for 

each condition was between 182 and 200, or roughly 6.3% to 6.9% of the data. The counts 

were also very similar across conditions [Table 1]. For those comparisons which did show a 

significant difference between conditions, the relative number of outliers were in the opposite 

direction of what would be expected if these motion artifacts were affecting the H results, as 

prior work that includes both real data and simulated data all indicate that greater motion 

artifacts lead to less scale invariant time series and lower H values [54,55]. Additionally, it is 

unlikely that this would be driving any effects, as we do not see consistently different motion 

artifacts across HbO and HbR but similar H effects in both. This suggests that these outliers 

(which exceed what is a reasonable change to be expected from the biological signal of interest) 

are not responsible for differences in H values across conditions.   

 

 

Table 1: Counts & comparisons of average number of motion related artifacts 
The average number of motion artifacts were calculated for each participant in each 20 second 
block type (all task, all rest, 1-back, 2-back, and 3-back). Each average count is out of 2871 
potential data points (33 channels x 87 samples). M and SD calculated over the 52 participants’ 
average motion artifacts in each block type. T-tests reflect paired (within-subjects) comparisons 
of motion artifact counts in each block type.  
 

 
Counts  

HbO time series 
M (SD) 

HbR time series 
M (SD) 

Task 183.6 (71.8) 197.5 (65.0) 

Rest 184.1 (71.6) 198.8 (64.1) 

1-back Task 182.7 (71.8) 200.1 (67.3) 

2-back Task 183.1 (72.1) 196.1 (64.4) 

3-back Task 185.5 (71.8) 196.2 (63.3) 
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Pairwise T-tests HbO HbR 

Task vs. Rest t(51) = -0.48, p = 0.63 t(51) = -1.78, p = 0.08 

1-back vs. 2-back t(51) = -0.36, p = 0.72 t(51) = 2.57, p = 0.01 

2-back vs. 3-back t(51) = -1.41, p = 0.16 t(51) = -0.07, p = 0.94 

1-back vs. 3-back t(51) = -1.77, p = 0.08 t(51) = 2.11, p = 0.04 

 

2.5.7. Statistical Analysis on Average H 

Using the cleaned averaged H values with SNI regressed out, planned pairwise t-tests 

between task and rest were conducted on HbO and HbR separately. Next, two repeated 

measurements ANOVAs (separately for HbO and HbR) were conducted on average H value 

with N-back condition (1-back, 2-back, or 3-back) as a within-subjects factor. Lastly, we also 

examined pairwise t-tests comparing each of the three N-back conditions. These analyses were 

carried out using R version 3.5.1 [56]. 

 

2.5.8. PLS Analysis 

 In addition to statistical analyses on the Hurst values averaged across channels, partial 

least squares (PLS; [57–59]; https://www.rotman-baycrest.on.ca) analyses were also conducted 

using Matlab v 2018b. PLS is a data-driven, multivariate statistical technique which identifies the 

relationship between two sets of variables. In neuroimaging research, PLS is often used to find 

the relationship between neural activity at different spatial locations (e.g., voxels, or ROIs in 

fMRI data, electrodes in EEG data, channels in fNIRS data) and the task design (e.g., 

experimental conditions or grouping variables). In the current work, a Task PLS was conducted 

to examine H by N-back level across channels to investigate whether there were specific 

regions of the PFC that showed a stronger relationship between H and cognitive load and as we 

may be losing important channel-level information by averaging across the full montage.  
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 The partial least squares analysis relies on the singular value decomposition (SVD) of a 

covariance matrix. In the Task PLS analysis, the input for SVD is a matrix of the H values for 

each channel by condition (N-back level) that are averaged across participants (i.e., matrix of 33 

channels x 3 N-back levels). Running an SVD on this 33 x 3 covariance matrix (R) decomposes 

it into three matrices: R = UΔVT, where the 3x3 matrix U represents the decomposition of R in 

N-back condition space, the 33 x 3 matrix V represents the decomposition of R in neural activity 

channel space, and Δ is the 3x3 diagonal matrix of singular values that quantifies the weighting 

of each of the singular vectors (i.e., columns in U and V’). These linear decompositions which 

maximize the covariance between brain activity (H values) and task design (N-back level) are 

referred to as latent variables (LVs). In other words, each LV is comprised of the singular vector 

V, which reflects a linear combination of channel-level H values (i.e. is a 1 LV x 33 channel 

vector) that best characterize R, the singular vector U which reflects the design profile (1 LV x 3 

N-back level vector) that best characterize R, and the weighting of the LV which is represented 

by a singular value in one column of the diagonal matrix, Δ. These LVs are calculated in order of 

magnitude of cross-block covariance explained and are mutually orthogonal, so the first latent 

variable (LV 1) explains the greatest proportion of cross-block covariance, the second latent 

variable (LV 2) explains the second most proportion, etc.  

Ten thousand permutation tests were performed to obtain p-values for each latent 

variable and 10,000 bootstrapped samples with replacement were created to generate the 95% 

confidence intervals for variable loadings. The bootstrap ratios (calculated as salience[weights] / 

standard error[reliability]) measure the reliability of the relationship at each channel, and a larger 

bootstrap ratio indicates a stronger and/or more consistent contribution to the LV. In this study, 

channels with bootstrap ratios larger than +2 or smaller than -2 were determined to be 

statistically significant as these bootstrap ratios can be interpreted as z-scores.  
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3. Results 

3.1. Statistical Analysis on Averaged Hurst Exponents  

For the task and rest comparison, planned pairwise t-tests with Bonferroni correction 

(critical ⍺ = 0.05/2 = 0.025) showed that compared with the rest condition, averaged H scores 

were significantly lower in the task conditions for  both HbO (Task M = 0.83, SD = 0.15, Rest M 

= 0.96, SD = 0.15, t(51)=11.76 p<0.001) and HbR (Task M = 0.88, SD = 0.17, Rest M = 0.94, 

SD = 0.16; t(51)=7.72, p<0.001). These results are shown in Figure 6.  

Figure 6. Boxplot showing within-subjects effects for Averaged H for Task vs. Rest 
Gray lines connect H values for rest and task for each participant.  
 

 
 

 

For the N-back conditions comparison, where N-back condition is a within-subjects factor, 

repeated measures ANOVAs on averaged H by both HbO and HbR showed a significant 

omnibus ANOVA for H extracted from HbR (F(2,102)=3.78, p=0.026), but not from HbO 

(F(2,102)= 1.92, p=0.153). In both H extracted from HbO and HbR, 2-back had the lowest value 

(HbO M = 0.82, SD = 0.15; HbR M = 0.86, SD = 0.19) of H, followed by 3-back (HbO M = 0.83, 
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SD = 0.15; HbR M = 0.88, SD = 0.16) and then 1-back (HbO M = 0.84, SD = 0.16; HbR M = 

0.89, SD = 0.17). 

For pairwise t-tests of the significant omnibus ANOVA for HbR, with Bonferroni correction 

(critical ⍺ = 0.05/3 = 0.017), H was significantly different between the 1-back and 2-back 

conditions (t(51) = 2.62, p = 0.011), but not between  2-back and 3-back  (p = 0.078) or between 

3-back and 1-back (p = 0.34).  

 

3.2. PLS Results 

Task PLS analyses looking at channel-level H by N-back condition were run separately 

on H extracted from HbO and from HbR time series. The first latent variable (LV 1) from the 

analysis with H from deoxyhemoglobin concentrations (HbR) was significant and explained 77% 

of the crossblock covariance (p = 0.005). LVs 2 and 3 in this analysis were not significant (all ps 

> 0.4). For the significant LV 1 in H from HbR, 11 mostly medial-frontal channels (#1, #5, #6, #7, 

#8, #11, #12, #13, #14, #20, and #25) showed stable changes in scale-invariance by N-back 

level, indicated by bootstrap ratios with absolute values greater than 2 [Table 2; Figure 7]. LV 1 

from the analysis of H calculated from oxyhemoglobin concentrations (HbO) was not significant 

(p = 0.066) but did also explain 77% of the crossblock covariance and mimicked the pattern of 

results found in H from HbR so the results are still presented in Table 2 and Figure 7. LVs 2 and 

3 in this analysis were not significant (all ps > 0.17). For LV1, 2 channels in the medial superior 

frontal gyrus (#1 and #2) and 2 in the left inferior frontal gyrus (#22 and #23) showed differences 

in H by N-back level. In all cases, the significant bootstrap ratios were greater than 2 (and none 

smaller than -2), indicating the relationship between N-back level and H was in the same 

direction. In H calculated from HbO and HbR, the first latent variable from each was driven 

primarily by the contrast between 1-back and 2-back, with higher H found during the 1-back task 

relative to the 2-back task. [Figure 7] 

Jo
urn

al 
Pre-

pro
of



22 

 
Table 2. Significant Channels for Task PLS LV 1 Top: Results for H from deoxyhemoglobin 
(HbR), Bottom: Results for H from oxyhemoglobin (HbO). Channel number based on source (S) 
- detector (D) pair. ROI label defined by maximal coverage of talairach daemon ROI. Channels 
ordered by size of bootstrap ratio. Bootstrap ratios > |2| were considered significant.  
 
H from HbR 

Channel # S D ROI Bootstrap Ratio 

8 3 2 Medial Superior Frontal Gyrus 4.1 

1 1 1 Medial SFG/ OFC 4.0 

5 2 2 Medial Superior Frontal Gyrus 3.9 

6 2 9 Medial Superior Frontal Gyrus 2.9 

12 4 2 Medial Superior Frontal Gyrus 2.7 

7 2 10 Right Inferior Frontal Gyrus 2.7 

14 4 4 Medial Superior Frontal Gyrus 2.5 

13 4 3 Medial Superior Frontal Gyrus 2.5 

25 9 1 Medial SFG/ Right IFG 2.4 

11 3 9 Medial Superior Frontal Gyrus 2.3 

20 7 6 Left Inferior Frontal Gyrus 2.2 

 
H from HbO 

Channel # S D ROI Bootstrap Ratio 

22 7 8 Left Inferior Frontal Gyrus 2.6 

2 1 2 Medial Superior Frontal Gyrus 2.6 

1 1 1 Medial SFG/ OFC 2.4 

23 8 6 Left Inferior Frontal Gyrus 2.2 
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Figure 7. LV 1 demonstrated an N-back load-dependent relationship with H extracted from 
deoxyhemoglobin (HbR; Top Panel) and oxyhemoglobin (HbO; Bottom Panel) concentrations. 
The left side plots show the relation between H and N-back level. Error bars are 95% 

confidence intervals around the mean design salience value. The right panel shows channels 

Jo
urn

al 
Pre-

pro
of



24 

(labeled by number), which had bootstrap ratios (BSR) > |2|.  
In addition to the N-back level PLS analyses reported above, supplementary analyses 

were conducted which included rest blocks. Rest was not included in the primary analyses as 

there were 3 times as many rest blocks as 1-back, 2-back, and 3-back blocks (as there was a 

rest after each block), and this would lead to a better signal-to-noise ratio by averaging across 

more data in rest vs. individual N-back level. When rest was included in the PLS model, the first 

LV examining H extracted from HbO explained 99.3% of the crossblock covariance (p < 0.001), 

with all 33 channels displaying positive, significant bootstrap ratios > 2. For H extracted from 

HbR, the first LV explained 95.7% of the crossblock covariance (p < 0.001) with 27 out of 33 

channels displaying significant bootstrap ratios (all > 2). LV 1 loadings for H from HbO and HbR 

are shown in Figure 8 [Top Panel]. The table of significant channels with corresponding ROIs 

and bootstrap ratios can be found in the Supplementary Materials.  

Additionally, to further investigate whether the non-linear load effect (H higher for 3-back 

than 2-back) was indeed due to participants’ low accuracy on this task, these same PLS 

analyses were run separately on the subset of participants (N = 33) who scored higher than 

80% on average for the 3-back task and the subset (N = 19) who scored 80% or lower on 

average for 3-back. In the high accuracy subset’s H from HbO, the first LV explained 95.4% of 

the crossblock covariance (p < 0.001), with 32 out of 33 channels showing reliable bootstrap 

ratios (> 2). For H from HbR, the first LV explained 81.8% of the crossblock covariance (p = 

0.008), with 19 channels generating significant bootstrap ratios (> 2) [Figure 8, Middle Panel]. 

For the low accuracy subset, the first LV for H from HbO explained 98.4% of the crossblock 

covariance (p < 0.001), with all 33 channels showing reliable bootstrap ratios (>2). The first LV 

for H from HbR in this subset explained 91.6% of the crossblock covariance (p < 0.001), with 26 

out of 33 channels showing reliable bootstrap ratios (>2) [Figure 8, Bottom Panel]. Overall, the 

exclusion of participants with poor accuracy on 3-back led to a much clearer effect of N-back 
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level on H in the expected direction. The table of bootstrap ratios with ROIs are reported in the 

Supplementary Materials.  

Figure 8. LV 1 examining H as a function of N-back level and Rest. Plots show the relation 
between H and Rest vs each N-back level. Error bars are 95% confidence intervals around the 
mean design salience value. TOP PANEL: Including all participants (N = 52). All channels for H 
from HbO and 27 out of 33 channels for HbR showed significant, positive bootstrap ratios (BSR 
> 2). MIDDLE PANEL: Only participants scoring higher than 80% on the 3-back task (N = 33). In 
H from HbO, 32 out of 33 channels had BSRs > 2. For H from HbR, 19 out of 33 channels had 
BSRs > 2. BOTTOM PANEL: Only participants scoring 80% or lower on the 3-back task (N = 
19). In H from HbO, 33 channels had BSRs > 2. In H from HbR, 26 channels had BSRs > 2. No 
bootstrap ratios were < -2 in any analyses.  
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4. Discussion 

Previous research suggests that when people are performing a cognitively demanding 

task, the temporal property of their brain signals will be less scale invariant than at rest, as 

quantified by lower H. In addition, this suppression of scale invariance is found across the whole 

brain [15,24,40] and is unidirectional [19]. However, whether this signature could be extracted 

from fNIRS data was unclear. The present study is the first to apply a scale-invariance (Hurst 

exponent, H) analysis to measuring cognitive load with fNIRS, which can be used in a much 

wider variety of settings than other neuroimaging modalities. Consistent with previous 

neuroimaging research, we found that task and rest conditions significantly differed by their 

average H calculated from both oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) 

concentrations changes of the fNIRS signal. Compared with rest, average H for task was 

significantly lower, which suggests a higher level of cognitive effort and difficulty while 

performing the N-back task relative to rest. For N-back condition, a more subtle manipulation of 

cognitive load, pairwise t-tests also showed a significant difference between 1-back and 2-back 

by H calculated from HbR. This was not significant with H from HbO, where again, H during 2-

back had lower values than 1-back, but they do demonstrate convergence with the pattern 

observed in HbR and in comparing task vs. rest.  

The N-back level results from averaging across all 33 channels were further supported by 

those yielded from the partial least squares analysis. Specifically, in the Task PLS, which 

examines differences in H across channels and N-back level, the first latent variable from HbR 

demonstrated a robust effect of higher H in 1-back vs. 2-back across 11 frontal channels. 

Though the effect was weaker in H calculated from HbO, the same pattern was found in this 

analysis’ LV 1. These results provide complementary evidence for an effect of cognitive load 

and task difficulty on H derived from fNIRS. Additionally, they suggest that while H is believed to 
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be a relatively global brain signature [19], greater sensitivity can be achieved by adopting a 

multivariate technique which takes the full data (including channels) as input.  

It is worth noting that both in the pairwise comparisons of average H by N-back condition 

and the Task PLS analysis, this study only yielded significant results for the 1-back vs. 2-back 

comparison. In contrast, the 2-back vs. 3-back comparison was marginally significant for H by 

HbR (not with HbO), and all the other t-test results for 3-back condition (3-back vs. 1-back and 

3-back vs. 2-back) were not significant. Moreover, as observed in Meidenbauer et al. (2021) 

which used this same dataset, performance in 3-back condition was generally low and was 

highly variable. The non-significant results for the 3-back condition have also been shown in 

previous studies, indicated by a non-linear effect of N-back load [60–62]. Researchers have 

argued that if a task is too difficult, people may disengage from it or simply “give up”, since it 

exceeds one's capability [61,63]. Following this argument and based on the results reported in 

Meidenbauer et al. (2021), we infer that in this study, the 3-back condition might not be 

reflecting the highest cognitive load across all participants. Supporting this idea further, 

supplementary PLS analyses excluding participants with worse than 80% accuracy on the 3-

back task did show the expected load effect in H extracted from HbR and to a lesser extent, in H 

from HbO. However, future work is needed to evaluate the extent to which H extracted from 

fNIRS is affected by individual differences in effort and task disengagement relative to explicitly 

manipulated cognitive load.  

 

Data preprocessing pipeline for H analysis with fNIRS 

The present work involved developing a basic pipeline for data preprocessing and H 

analysis with fNIRS. (All analysis scripts can be accessed at: https://osf.io/kt5cx/) To check the 

quality of our data, we used the SNI (Structured Noise Index) to measure the systematic noise 

across channels. We subsequently excluded participants who had a high number of low SNI 

channels and regressed out SNI from the Hurst exponent. Both steps were supported by 
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visualizations as effective in detecting poor data quality, finding 'outliers', and removing 

systematic noise. These steps were adopted for two primary reasons. First, superficial 

physiological noise is structured in fNIRS and can differ by person according to how their hair 

may obstruct signals [51,64]. Second, scale invariance is generally a whole brain index that, 

when examined across channels, could be biased by channel-level differences in superficial 

noise. To further rule out the influence of motion-related artifacts, we used an innovations model 

to calculate the statistical outliers of the time series (i.e., the signal variations which are larger 

than what is expected due to underlying physiological changes) and found that the motion-

related artifacts did not explain H effects. 

 

 Implications of the current study 

This study sheds light on the reliability of scale invariance across neuroimaging modalities 

and on the promising future of adopting fNIRS in examining cognitive load in real life scenarios. 

Relative to EEG and fMRI, fNIRS is more flexible, less affected by environmental noise, and 

more robust to motion artifacts. fNIRS is already used to study cognitive processes in more 

ecological valid scenarios [37,65]. The results of this study demonstrate the effectiveness of H 

in measuring cognitive load with fNIRS and further strengthens its capability in real-world 

settings, such as monitoring cognitive load during driving, social interactions, or even to 

examine cognitive restoration during real interaction with natural versus urban environments 

[66].   

 

 Limitations and Future directions 

As this study is the first to demonstrate the effectiveness of H with fNIRS in measuring 

cognitive load, there are several limitations which require further investigation. First, applying 

scale invariance analysis in various datasets and experiment settings (especially in real-world 

scenarios) would be necessary in the future to further validate the effectiveness and robustness 
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of this measure of cognitive load with fNIRS. Secondly, since this analysis measures scale 

invariance on a temporal scale, the time window of analysis might impact the results. In this 

study, we adopted 20s as the time window to match the full length of the rest session. As fNIRS 

has a relatively high sampling rate, 20 seconds x 4.5 Hz provided a sufficiently high number of 

samples for the DFA to be reliable. Additionally, due to the high correspondence between fNIRS 

and fMRI, we adopted the DFA algorithm from fMRI Hurst exponent analysis [19] and showed 

its effectiveness with the current fNIRS pre-processing pipeline. However, future work should 

explore other non-stationary algorithms to calculate H and examine whether and how different 

time window lengths might impact its effectiveness.  

We found that H calculated from deoxyhemoglobin (HbR) showed more reliable effects 

than did H from oxyhemoglobin (HbO). This may be due to the fact that HbR is more tightly 

coupled with the BOLD response in fMRI [1]. However, as this is the first study to look at H in 

fNIRS, it is unclear whether this is a reliable pattern or is related to the current task design. 

Understanding why H extracted from HbR shows a stronger effect would be an important and 

exciting future direction for this work. Ideally, future investigations could employ different tasks, 

contexts, and time windows to better illuminate these possibilities.   

While the current dataset was well-suited to conduct an initial validation of H from fNIRS 

as a measure of cognitive load as it involved a large sample and a standardized working 

memory task, it is worth noting that sequential analysis of the same dataset has the potential to 

increase the Type-I error rate [67]. Thus, while reanalyzing this existing dataset provides a 

useful first step, future research is needed to more thoroughly validate the robustness of these 

results in other data sources. Lastly, as the sample examined in the current study was primarily 

young adults (~24.5 years old on average), we were not able to examine the effects of age on 

H. Research in fMRI has identified that younger adults tend to have higher H than older adults, 

and whether this age-effect can be replicated in fNIRS remains an open question.  
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Conclusion 

This study validated the Hurst exponent as an effective measure of cognitive load with 

fNIRS, opening the door for a wide variety of applications for monitoring cognitive load and 

fatigue in ecologically valid settings. This work demonstrated a basic and robust pipeline for 

calculating scale-invariance analysis in fNIRS and lays the foundation for future theoretical and 

practical research using this method. Future work could further test its theoretical validity and 

explore its implications with fNIRS in the real world. 
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