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The Hurst exponent (H) isolated in fractal analyses of neuroimaging time-

series is implicated broadly in cognition. The connection between H and the

mathematics of criticality makes it a candidate measure of individual differ-

ences in cognitive resource allocation. Relationships between H and mul-

tiple mental disorders have been detected, suggesting that H is transdiag-

nostically associated with psychopathology. Here, we demonstrate a gradi-

ent of decreased H with increased general psychopathology and attention-

deficit/hyperactivity extracted factor scores during a working memory task

which predicts concurrent and future working memory performance in 1,839

children. This gradient defines psychological and functional axes which in-
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dicate that psychopathology is associated with an imbalance in resource allo-

cation between fronto-parietal and sensory-motor regions, driven by reduced

resource allocation to fonto-parietal regions. This suggests the hypothesis that

impaired cognitive function associated with psychopathology follows from a

reduced cognitive resource pool and a reduction in resources allocated to the

task at hand.

Introduction

Fractals are found everywhere in the natural world. These patterns are pervasive and include the

growth of Romanesco broccoli, the shape of coastlines (1), and even the time-series of human

neuroimaging data (2–5). The defining characteristic of fractals is scale-invariance which refers

to the fact that fractals looks the same across levels of magnification. In other words, small

pieces of fractals are similar to larger pieces, i.e., fractals display self-similarity. In the context

of human neuroimaging data, fractalness is commonly estimated by the Hurst exponent (6),

H , and refers to the degree to which the collected time-series (e.g., from blood oxygen level

dependent functional magnetic resonance imaging, BOLD fMRI, or electroencephalography,

EEG) are scale-free, or self-similar, in time.

Interestingly,H measured from human neuroimaging data is associated with diverse aspects

of cognition including learning, task difficulty, and typical adult aging. For example, H has

been shown to distinguish individuals who benefit from practicing a task vs. those who do

not benefit from practice (7), to distinguish individuals with and without clinical diagnoses

of depression (8), to correlate with age, task difficulty, and task novelty (4), to track working

memory effort beyond working memory capacity (5), to track facial-encoding task performance

(2), and has been found to discriminate highly impulsive from less impulsive persons during

performance of an inhibition task (9). A convergent lesson from these studies is that across the
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varied aspects of cognition they explore, they all suggest the heuristic that lowerH is associated

with more cognitive effort.

One hypothesis to explain this convergence of findings is that H serves as a real-time in-

dex of how close the brain is to a critical state (10) 1, which serves as a proxy for the overall

optimality of human neural networks (i.e., how well they maximize energy use for neural activ-

ity) (12). The concept of critical states is an idea borrowed from the physics of complex systems

and statistical mechanics that describes systems at points of transition. For example, water at

374 Celsius and 3,200 psi readily moves between a liquid, a gas, and a solid state. For complex

networks, like the brain, critical states provide maximum dynamic range (13,14) and optimized

information storage and transfer (15–17). Brain states closer to a critical state have values of

H close to 1 and have smooth looking temporal fluctuations; brain states farther from a critical

state have values of H closer to 0.5 and have temporal fluctuations that look like random noise

(Figure 1) (4)2. One consequence of these properties of complex systems near critical states

is that transitions from critical states into task-relevant states are likely easier and may lead to

superior task performance. In support of this idea, H has been proposed to quantify how hard it

is to transition into a brain state and to quantify the cognitive resources available to make those

transitions (2–5).

Since decreased cognitive resources (18) and variations in the allocation of cognitive re-

sources among different cognitive systems have been linked to the mental disorder of depres-

sion (19, 20), individual differences in H are of great interest to research on psychopathology.

In addition, impulsivity and poor performance on cognitive tasks (which have also been associ-

ated with decreased H (2,9)) have been linked to risk for essentially all forms of psychopathol-

ogy (21).
1See see (11), however, for a discussion of systems with high H in the absence of criticality
2Values of H below 0.5 are possible for time series with negative autocorrelation. Likewise values of H above

1 are possible for multi-fractal and non-stationary timeseries. However, these values are rarely observed in fMRI
data.
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Figure 1: Time-series with H close to 1 have smooth looking temporal fluctuations (top). Such
time-series can also be described as scale-free or fractal in time. In contrast, time-series with
more random temporal fluctuations have H closer to 0.5 (bottom). We hypothesized that higher
H would be associated with lower extracted factor scores for a general factor of psychopathol-
ogy, p. Though we characterize individuals as having lower H or higher H , there is still vari-
ability in H across brain regions.

Consistent with these findings, H calculated from resting state fMRI (22) and electroen-

cephalograpic (EEG) data (23) have been associated with depression (8), cocaine dependence (24),

attention-deficit/hyperactivity disorder (ADHD) (25), schizophrenia (26), and autism (27). While

these studies focused on specific mental disorders, together, these findings suggest that H is a

non-specific correlate of psychopathology in general. Here, we tested this hypothesis by mod-

eling psychopathology with a bifactor model (28–31).

This model asserts that essentially every dimension of psychopathology is positively cor-

related because they all share causes and psychobiological mechanisms to a considerable de-

gree (30). Rather than studying the correlates of every form of psychopathology separately, the

bifactor model (21, 32) specifies a general factor (also referred to as the a p-factor (28)) that

reflects transdiagnostic processes contributing to the development of mental disorders in gen-

eral. This model also specifies orthogonal specific factors that reflect processes that uniquely
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contribute to subsets of psychiatric disorders. These model specifications match our hypothesis

that individual differences in H are associated transdiagnostically with psychopathology, thus

motivating our use of a bifactor model to characterize psychopathology.

In addition, studies associating H with specific aspects psychopathology have not clarified

a mechanism which explains these associations. To remedy this, we build on previous literature

that has demonstrated 1) decreased H under conditions of reduced cognitive resources (e.g.,

during tasks (3, 4), with typical aging in adults (4), and in psychopathology (8, 24–27)), and,

2) regional variation in the degree to which H is reduced during task performance (compared

to rest) that may be dependent on the specific demands of the task (3). These observations

suggest that changes in H may originate endogenously (e.g. with age or psychopathology) or

exogenously (e.g. via engagement in a task). Importantly, the significance of such changes inH

vary depending on their source. For example, lower H in older individuals has been associated

with decreased cognitive performance related to normal aging (4). In contrast, in the context of

a cognitive task, higher H (i.e., a failure to suppress H) might indicate a lack of engagement

with the task (2, 5) and poorer performance.

Consequently, we propose that: 1) if decreasedH is associated transdiagnostically with psy-

chopathology, it is indicative of reduced global cognitive resources (Figure 1) and 2) relative to

an individual’s whole brain pattern of H , higher H within cognitive brain networks is indica-

tive of relatively fewer cognitive resources allocated toward those cognitive systems, and should

also be associated with poorer performance, and vice versa (Figure 2). To help fill these gaps

in the literature, we investigated the relationship between H during the emotional n-back task

(EN-Back, see Methods for details) and psychopathology in a diverse sample of 1,839 children

aged 9-10 years old.
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Figure 2: While some individuals differ in overall, whole brain patterns of H (see Figure 1), we
expect relatively higher H in cognitive brain networks to be indicative of fewer resources di-
rected towards the task at hand and poorer task performance, and vice versa. Here we represent
this hypothesis by showing the distribution of H throughout the brain for individuals with both
high H and low H performing a task which requires recruiting frontal regions. Relative to the
whole brain tendency of high or low H , we hypothesize that individuals who perform poorly
would have higher H in frontal regions. This indicates a failure to properly engage and direct
cognitive resources to those regions. In contrast, we hypothesize that individuals who perform
well, would have lower H in frontal regions. This indicates that those individuals engage those
regions and direct cognitive resources towards them, resulting in good performance on the task.
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Results

To establish a relationship between H and a general factor of childhood psychopathology we

used fMRI time-series from the EN-Back task and scores on the parent-rated Child Behavior

Checklist (CBCL) from the baseline year of the Adolescent Brain Cognitive DevelopmentSM

Study (ABCD) dataset (Release 2.0.1) (33). CBCL scores were fit to a bifactor model via

confirmatory factor analysis (21) (see Methods). Psychopathology was assessed via extracted

factors scores from the bifactor model for each subject on the general factor and three specific

factors: externalizing, internalizing, and ADHD. After preprocessing, visual quality control,

and exclusion for high head motion, the fMRI data from 1,839 children were parcellated into

392 previously defined cortical and subcortical parcels (34). H for each parcel was then com-

puted (see Methods).

We calculated H from each subject’s fMRI BOLD time-series during runs of the EN-Back

task, which measures recognition memory in the presence of varying emotional distractors and

has been described in detail elsewhere (33, 35). Briefly, participants saw a series of images

during each block of the EN-Back task and were asked to indicate whether the current image

matches the nth previous image. For example, 2-back blocks require remembering images that

appeared 2 images before the current image, while 0-back blocks serve as a target detection

task in which participants were shown a target image at the beginning of the block and were

instructed to respond when the presented image matched the target (35). Images consisted of

either physical places or faces expressing happy, fearful, or neutral emotions. This task simulta-

neously probes emotional regulation and working memory, both of which have been implicated

transdiagnostically in childhood psychopathology (36–41). Consequently, we expected to find

lower H to be associated with higher extracted bifactor scores (2, 4)).
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A Task-Induced Hurst-Psychopathology Gradient

We related H to extracted bifactor scores using partial least squares analysis (PLS). PLS is a

multivariate technique which extracts maximally co-varying latent variables from two sets of

data (42, 43) (Figure 3a); in this case H in each brain parcel (set 1) with extracted bifactor

psychopathology scores (set 2). These latent variables (LVs) consist of loadings on to each of

the two sets of data which specify the contribution of data variables (e.g., H in occipital cortex)

to the LV. Statistically, the LV as a whole is assessed for significance with permutation testing,

and the influence of individual variables (e.g., extracted general factor scores or H in occipital

cortex) is assessed via bootstrap resampling. Importantly, this analysis allows for a direct, mul-

tivariate, association between the temporal dynamics of the BOLD signal and psychopathology.

This analysis revealed a single statistically significant latent variable relating H with child-

hood psychopathology (p = 0.0007, 10,000 permutations) that captures 49% of the covariance

betweenH and extracted bifactor scores. This latent variable has stable positive loadings on the

general and ADHD factors and stable negative loadings ontoH in the brain, where stability was

assessed with bootstrap ratios (Figure 3b, see methods). Only brain areas with negative load-

ings were stable (absolute value bootstrap ratios > 3, see Supplementary Table 7). This pattern

of psychopathology loadings and brain loadings represents a Hurst-Psychopathology gradient

(H-P gradient) associating higher extracted bifactor scores (notably the general factor of psy-

chopathology and ADHD) with lower H . In addition, this fits the heuristic supported by past

research of lower H being associated with more effort, where psychopathology is understood

to be a more effortful state (in the colloquial sense).

To increase our certainty that these associations would replicate beyond the characteris-

tics (e.g. socio-demographic factors or scanner manufacturer) of the ABCD Study R© sample

(44, 45), we ran a number of sensitivity tests (see Methods). These tests demonstrated that

the H-P gradient was robust to exclusion of multiple family members (randomly retaining only
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one participant per family), to conditioning on acquisition site and scanner, to the application

of post-stratification (to account for differences between the full ABCD sample and nation-

ally representative socio-demographics) and non-participation weights (to account for which

children were able to complete the EN-Back task with low head motion), and to the use of

CBCL syndrome scales in place of extracted bifactor scores; see Methods, Supplementary Ta-

ble 1, Supplementary Figures 1 and 2. Consequently, subsequent analyses make use of the

un-adjusted H-P gradient.

Relationship with Task Performance

Next, we asked whether the H-P gradient was associated with working memory performance.

In order to do so we averaged H over a globally distributed (see Figure 3b) network of brain

regions composed of parcels with stable brain loadings (absolute value bootstrap ratios > 3).

Task performance was assessed in-scanner by sensitivity, d’, and accuracy both during the 2-

back blocks of the EN-Back task, and out-of-scanner by un-adjusted, standardized scores on

the List Sorting working memory task from the NIH cognitive toolbox (46). We note that while

2-back accuracy and d’ are highly correlated (rs = 0.87, p = 0.0), accuracy in this context

is strongly influenced by true negatives (correct rejections) while d’ better captures the balance

between hits (true positives) and false alarms (false positives). MeanH in this distributed stable

network was significantly correlated to in-scanner performance (for d’, rs = 0.20, p = 2e− 17;

for acc, rs = 0.25, p = 2e − 25) and out-of-scanner performance (rs = 0.15, p = 4e − 10),

Figure 3c, indicating that higher H is related to better performance both in scanner and out of

scanner. Mean H in this network was also significantly related to out-of-scanner performance

when controlling for in-scanner performance (Supplementary Table 2), suggesting that the H-P

gradient is related to working memory ability in a trait-like manner. These results are in line

with our hypothesis that decreased H associated transdiagnostically with psychopathology is
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Figure 3: A Task-induced gradient relating scale-free brain activity as measured by H to child-
hood psychopathology. a) We computed the covariance matrix between a subjects’ H during
the EN-back task and their extracted factor scores as defined in the bifactor model. This covari-
ance matrix was decomposed with partial least squares analysis to find maximally co-varying
latent-variables. b) A single latent-variable, which explained 49% of the crossblock covariance
was significant. This LV describes a Hurst-Psychopathology gradient in which lower H is asso-
ciated with both higher General and ADHD extracted factor scores. Significance was assessed
via 10,000 random permutations. Stability was assessed with bootstrap ratios calculated as the
empirical loading divided by the bootstrap variance and is distributed normally under the null
(akin to a z-score); 10,000 bootstrap re-samples were used. Results were similar when control-
ling for family membership (randomly keeping one family member) and when controlling for
non-participation (which individuals could complete the task or had minimal head movement)
and post-stratification (correcting to nationally representative demographics); see Figure S1. c)
Mean H for brain regions with absolute value bootstrap ratios > 3 are positively correlated
with both in-scanner (left) and out-of-scanner (middle) and future-in-scanner (right) working
memory performance. This indicates that individuals with lower H tend to have higher ex-
tracted general and ADHD bifactor scores and also worse working memory performance, and
that these deficits persist over time (years) and across tasks (the in scanner and out of scanner
memory tasks were different, i.e., EN-back task vs. the List Sorting working memory task).
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indicative of reduced global cognitive resources (Figure 1).

Additionally, a mediation analysis (see Methods) indicated that meanH in this H-P gradient

network partially mediates the relationship between extracted bifactor scores and in-scanner

working memory performance (Supplementary Table 5). When extracted bifactor scores are

treated as the mediator instead of H (Supplementary Table ), the significant paths remain the

same, however, there is no longer a strong relationship between extracted bifactor scores and

2-back accuracy. Thus, while there is no statistical preference for H over extracted bifactor

scores as a mediator, we can conclude thatH has a more direct relationship with 2-back working

memory performance than psychopathology.

Next, we assessed the relationship between H in this H-P gradient brain network and fu-

ture in-scanner 2-back d’ and accuracy during the 2-year follow-up session. Specifically, we

correlated the same baseline H-P gradient measure for each participant with in-scanner 2-back

accuracy and d’ during the 2-year follow-up session for participants that had data for both ses-

sions (N=888, approximately half of the full sample had 2-year follow-up data available in

ABCD Release 3.0). Since the sample of individuals who had available data for ABCD Release

3.0 is non-random (see Supplementary Table 3), we additionally computed weighted correla-

tions to correct for non-participation (see Methods). Only future d’ was significantly correlated

with the H-P gradient measure after correction for non-participation (rs = 0.19, p = 3e − 8;

rcorrecteds = 0.089, pcorrected = 0.008, Figure 3c). Before correction 2-back accuracy was sim-

ilarly correlated with the H-P gradient measure (rs = 0.20, p = 8e − 11), but this was not

significant after correction (rcorrecteds = −0.002, pcorrected = 0.95). In addition, though base-

line in-scanner 2-back d’ and 2-year follow-up in-scanner 2-back d’ are significantly correlated

(rs = 0.51, p = 4e − 57), mean H in the H-P gradient network was significantly related to

future d’ when controlling for baseline d’ (Supplementary Table 4).

In summary, these results indicate that the Hurst-Psychopathology gradient is associated
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with trait-like deficits in working memory that persist over long time periods (i.e., years) and

are seen in a variety of working memory tasks.

The H-P Gradient Defines a Functional Activation Axis

We next sought to better understand the meaning of the H-P gradient and to understand its con-

text in the larger body of literature investigating functional activations, task performance, and

psychopathology. To do so we determined whether there were patterns of functional activation

within large scale cognitive systems associated with the H-P gradient.

We examined the relationship between individual subjects’ H-P associations and their own

simultaneous functional activations (i.e., BOLD signal contrast during the same run). Specifi-

cally, we asked how each subject’s pattern of activations during the EN-Back task was related

to the degree to which they exemplify the H-P gradient. To do so we generated a gradient

score for each subject by correlating their Hurst map with the H-P gradient map. Higher gradi-

ent scores are statistically indicative of higher levels of psychopathology, lower H , and poorer

task/cognitive performance. Next, activations were defined as the contrast between 2-back and

0-back blocks in 148 cortical regions (see Figure 4a, Methods (33), we additionally examined

the contrast between emotional and neutral faces, positive and neutral faces, and negative and

neutral faces, but there were no significant associations for these contrasts with the H-P gradi-

ent after multiple comparison correction; Supplementary Figures 3-5). Finally, we correlated

the activation values and subject gradient scores in each of the 148 cortical regions. A posi-

tive correlation implies that increased activation (2-back vs 0-back contrast) is associated with

higher extracted bifactor scores, and a negative correlation implies that decreased activation is

associated with higher extracted bifactor scores.

The resulting map (Figure 4b) indicates that higher gradient scores, (i.e., higher general

and ADHD extracted bifactor scores and lower H), and poorer working memory performance
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Figure 4: The Hurst-Psychopathology gradient defines functional-activation axis associated
with task performance and psychopathology. a) To understand the relationship between the
H-P gradient and functional activation we first computed a gradient score for each subject by
correlating their spatial patterns of H to the H-P gradient. Next, we correlated these gradient
scores across subjects to functional activation in each brain parcel. b) Higher general factor of
psychopathology and ADHD extracted factor scores and lower H are associated with decreased
fronto-parietal activation and increased occipital, medial-temporal, and sensory-motor activa-
tion on 2-back vs. 0-back blocks. Areas where gradient scores are significantly correlated with
functional activations after multiple comparison correction are outlined in black.

are associated with decreased fronto-parietal activation and increased sensory-motor activation

in the same task. This is in line with previous work in this sample (35) which found that

lower performance was associated with decreased functional activation (2-back vs. 0-back)

in fronto-parietal areas commonly associated with cognitive processes related to this working

memory and emotional regulation task. This convergence of findings suggests overlap among

the mechanisms driving poorer task performance generally, and the mechanisms driving psy-

chopathology specifically. In other words, this pattern of functional activations– which repre-

sents a fronto-parietal/sensory-motor axis of resource use – is not specific to psychopathology.

However, its association with psychopathology and H here suggests that the general factor of

psychopathology and the ADHD specific factor are associated with a relative redistribution of

cognitive resources away from task-relevant brain networks and into sensory motor processing.
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The H-P Gradient Defines a Psychological Axis

Next, we sought to understand the significance of spatial variation in the strength of the H-P

gradient (i.e., the relationship between Hurst exponents and psychopathology) across different

brain regions. For example, this relationship is stronger in some parts of insular cortex and in

middle frontal gyrus (two areas associated with emotional regulation and working memory, re-

spectively) but weaker in some parts of occipital cortex and anterior frontal cortex (Supplemen-

tary Table 7). Consequently, we sought to better understand the psychological and cognitive

significance of these spatial variations within the H-P gradient. In other words, we sought to

characterize the data-derived H-P gradient in reference to the broader neuroimaging literature

independent of the operationalizations of the present study to increase interpretability.

For this analysis, we first examined similarities between the H-P gradient and probabilistic

meta-analysis maps from Neurosynth (47) which describe how frequently journal articles con-

tain specific terms alongside voxel coordinates related to functional activation. We expected this

analysis to reveal a psychological axis defined by the H-P gradient that contrasts psychological

terms which are similar and dis-similar to the H-P gradient.

We used a previously defined subset of 125 terms (48) which included, for example, ”cogni-

tive control”, ”language comprehension”, ”memory”, ”psychosis”, and ”social cognition”. This

term set was restricted to the overlap between Neurosynth terms and Cognitive Atlas (49) terms

and can thus be thought of as belonging to a proposed classification of psychological concepts

and tasks. Each term’s associated activation map was correlated with the H-P gradient and sig-

nificance was assessed via a spatial null model (see Methods, Figure 5a). Importantly, these

Neurosynth maps only indicate which regions are commonly reported alongside a given term

and do not address the sign of the association (i.e., whether the psychological term is associated

with functional activation or deactivation).

After correction for multiple comparisons, 15 terms remained (Figure 5b&c). The set of
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Figure 5: The Hurst-Psychopathology gradient defines a psychological axis associated with task
performance and psychopathology. a) We used Neurosynth term association maps showing the
probability of activation with multiple psychological terms. The term set was restricted to the
intersection of terms used in (48,50) and terms that had available association maps on the Neu-
rosynth website, yielding 116 terms. Each map was correlated with the H-P gradient to identify
which terms had spatial patterns of activation most similar to the gradient. b) Grey indicates
non-significance based on 1,000 parametric spatial permutation tests (Benjamini-Hochberg cor-
rection, α = .01). Terms are ranked by magnitudes of correlations. c) Terms that are positively
correlated with the H-P gradient are the positive term set and terms that are negatively corre-
lated with the H-P gradient are the negative term set. d) The positively correlated terms include
task-relevant cognitive processes. The negatively correlated terms included processes involved
in planning and executing responses to task cues. Surface maps of these two axes were created
by taking the maximum value across term maps included in each axis.
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terms positively correlated to the H-P gradient define a Task-Cognition category which in-

cludes terms related to the cognitive processes engaged by the EN-Back task (35): emotional-

regulation and working-memory (Figure 5c&d, top). The set of terms negatively correlated

to the H-P gradient define a Cue-Response category which includes terms related to processes

involved in planning and executing responses to the task cues (5c&d, bottom). These results de-

scribe a Task-Cognition/Cue-Response axis of cognitive function which is relevant to childhood

psychopathology.

Finally, we sought to confirm our hypothesis that this Task-Cognition/Cue-Response axis

indicates that while individuals with higher general factor and specific ADHD extracted bifac-

tor scores tend to have lower H across the whole brain, they also tend to have higher H in

Task-Cognition areas and lower H in Cue-Response areas, relative to their own whole brain

pattern of H . To do so, we took the union across term maps in the Task-Cognition and Cue-

Response sets by choosing the maximum z-score in each brain region. Next, we kept regions

above a z-score threshold and calculated the difference between the meanH for Task-Cognition

and Cue-Response. Finally, we correlated this difference across subjects to gradient scores (i.e.,

the degree to which each subject exemplifies the H-P gradient during the EN-back task). This

resulted in a significant positive correlation across all choices of Z-score threshold (Supplemen-

tary Figure 6). Since higher gradient scores are statistically indicative of higher psychopathol-

ogy and poorer working memory performance, this result indicates that psychopathology is

associated with increases in H in Task-Cognition areas and decreases in H in Cue-Response

areas, relative to individuals’ own whole brain H .

Further, this relative difference inH between Task-Cognition and Cue-Response areas tends

to be exacerbated in individuals with higher general and ADHD extracted bifactor scores, as

demonstrated by positive correlations in Supplementary Figure 6. This parallels the func-

tional fronto-parietal/sensory-motor axis which indicated that psychopathology is associated
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with reduced functional activation in fronto-parietal areas and increased functional activation in

sensory-motor areas.

More specifically, the fronto-parietal/sensory-motor functional axis defined by the H-P gra-

dient identifies two networks of brain areas in which reduced/increased functional activation

is associated with psychopathology. These areas (Figure 4) broadly fit into two groups which

are associated with task-related and sensory-motor processes, respectively. Similarly, the Task-

Cognition/Cue-Response psychological axis defined by the H-P gradient identifies two sets of

psychological terms (Figure 5) which are associated with similar sets of brain areas as are iden-

tified by the functional axis.

Taken together, these two parallel psychological and functional axes suggest that psychopathol-

ogy is associated with a reduction in resource allocation to Task-Cognition areas, relative to

Cue-Response areas. In other words, individuals with higher levels of psychopathology tend en-

gage relatively fewer fronto-parietal resources relevant for the emotional regulation and working

memory demands of the EN-Back task and also tend to engage relatively more sensory-motor

resources relevant for the rote sensory and motor demands of the task.

Associations of the H-P gradient with block level Hurst exponents

The previous analyses implicitly contrasted Task-Cognition/fronto-parietal (TC/fp) and Cue-

Response/sensory-motor (CR/sm) areas. As a result, those analyses established that psychopathol-

ogy is associated with a redistribution of resources away from TC/fp regions, relative to CR/sm

regions. However, those analyses did not establish whether TC/fp regions or CR/sm regions

drive this redistribution of resources associated with psychopathology. Thus, we sought to de-

termine whether a net decrease in resources allocated towards TC/fp regions, a net increase in

resources allocated towards CR/sm regions, or a combination of both, was responsible for this

effect. In other words, we sought to better understand which brain regions drive the relative
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redistribution of resources away from TC/fp regions seen in the previous analyses.

To this end, we calculated H for 2-back and 0-back blocks of the EN-Back task separately

and then averaged H across all blocks of the same type for each subject (see Methods, (51)).

We averaged H within the TC/fp and CR/sm regions at various Z-score thresholds on the Neu-

rosynth maps and subtracted 0-back average TC/fp and CR/sm H from 2-back average TC/fp

and CR/sm H , respectively. This created a contrast between 2-back and 0-back blocks within

TC/fp and CR/sm areas which would indicate the degree to which H was suppressed (4) dur-

ing 2-back blocks, relative to 0-back blocks. Finally, we correlated this contrast with 2-back

accuracy (acc), sensitivity (d’), and participant H-P gradient scores.

As expected, irrespective of psychopathology, suppression of H during 2-back in TC/fp and

CR/sm areas (i.e., lower Hurst during 2-back compared to 0-back) was significantly associated

with superior performance as measured by d’ (Supplementary Figure 8; for CR/sm regions p

< .05 for Neurosynth Z-score threshold, Z, < 3.44; for TC/fp regions p < .05 for Z < 1.85).

This effect was driven by hit rate (the percent of responses that are correct) rather than the

false alarm rate (Supplementary Figure 9). However, only decreased H during 2-back in the

TC/fp regions were significantly associated with 2-back accuracy (Supplementary Figure 10,

for TC/fp regions p < .05 for Z < 1.61). These observations further support our hypothesis

that relative to individuals’ own whole brain patterns of H , higher H within cognitive brain

networks are indicative of fewer cognitive resources allocated toward those cognitive systems,

and vice versa.

In contrast, psychopathology, assessed via higher H-P gradient scores, was significantly

associated with less suppression of H during 2-back (i.e., less decrease in H during 2-back

relative to 0-back) in TC/fp areas, but not in CR/sm areas (Figure 6; for TC/fp regions p <

.05 for Z < 3.76). This indicates that psychopathology is related to less engagement of TC/fp

regions. Thus, while better task performance generally was associated with suppression of H

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2021. ; https://doi.org/10.1101/2021.08.24.457554doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.24.457554
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: Correlations (blue) were computed across all choices of Z-score threshold used to
define the task-cognition and cue-response ROIs from Neurosynth meta-analysis probabilistic
activation maps. Significance of the correlations were assessed at all choices of threshold (gray).
The p=0.05 level is show as the gray horizontal line. We found evidence of a correlation between
higher H and higher H-P gradient scores only for task-cognition areas. Insets show correlations
between block level 2- vs. 0-back H contrast and H-P gradient scores for all choices of Z-
score threshold. The bar plot shows the correlation for the choice of Z=2. Error bars represent
standard deviations from 1000 bootstrap resamples.
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in both TC/fp and CR/sm regions, we only found evidence that psychopathology and associated

poorer task performance was associated with higher H in TC/fp regions (i.e., less suppression

of H , see Figure 2). This combination of results suggests that decreased resource allocation

towards Task-Cognition/fronto-parietal (TC/fp) regions alone drives the relative redistribution

of resources away from TC/fp regions associated with psychopathology.

Discussion

We found a multivariate pattern (gradient) associating decreased H with increased extracted

bifactor scores for the general factor of psychopathology and specific ADHD factor, thereby

demonstrating for the first time, a general, non-specific association betweenH and psychopathol-

ogy. Previous research has demonstrated associations between the H and specific mental dis-

orders primarily in small populations (8, 24–27, 52, 53), but did not clarify whether the Hurst

exponent was also associated transdiagnostically with psychopathology in large diverse sam-

ples.

While the overall pattern observed was that of decreased H in individuals with higher ex-

tracted general factor and ADHD bifactor scores, there was spatial variation in the strength of

this pattern across the brain. To better understand the cognitive and psychological relevance of

these spatial variations, we compared this gradient to simultaneous functional activations in the

same individuals (33) and to meta-analysis-derived activation maps associated with psycholog-

ical and cognitive terms (47, 48, 50).

These analyses revealed that the gradient associatingH and psychopathology defines a Cue-

Response/Task-Cognition psychological axis and a parallel sensory-motor/fronto-parietal acti-

vation axis. These axes suggest that individuals with higher extracted bifactor scores tend to al-

locate fewer resources to Task-Cognition/fronto-parietal areas, measured via reduced functional

activation (i.e., BOLD contrast) and relatively higher H . In addition, block level analyses sug-
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gested that this effect was driven solely by a reduction in resources (measured via higher Hurst

exponents) to Task-Cognition/fronto-parietal areas. Together, these results suggest a mechanis-

tic account of reduced task performance associated with psychopathology. Specifically, psy-

chopathology, in general, is associated with an overall reduction in cognitive resources, fewer

resources directed towards task-specific cognition, and subsequent poorer task performance. In-

terestingly, these results also suggest that Cue-Response/sensory-motor areas may have priority

when it comes to resource allocation.

In addition, the results presented here are in line with the recent evidence that H is a quanti-

tative measure of available cognitive resources and/or mental effort (2–5). Under this proposal,

deviations from a theoretical state of “perfect” rest, which is assumed to be organized near a

critical state and to have a Hurst exponent of 1 (54, 55), are indicative of decreased cognitive

resources and/or increased mental effort. As the demand for additional cognitive resources in-

creases due to task-demands, fatigue, or psychopathology, the brain moves further away from

the critical state, reducing the available supply of flexible information processing resources in

exchange for more context relevant processing (10).

Previous research has suggested that lower H is characteristic of harder tasks (4) and more

difficult versions of the same task (5), but has not clarified how Hurst exponents are related

to perceived mental effort when exogenous task demands remain constant. If the results pre-

sented here were indicative of transient increases in mental effort, we would not expect gen-

eralization to different tasks or across time (i.e., to the same task being performed two years

after brain activity was measured). However, we found that the Hurst-Psychopathology gradi-

ent is predictive of out-of-scanner (a different task) and future (the same task two years later)

working memory performance even when controlling for in-scanner and baseline performance,

respectively. Thus, the association between the described Hurst-Psychopathology gradient and

working memory performance is relatively stable across time and across at least two working
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memory tasks as scale-free neural signature of psychopathology. However, these results do not,

on the whole, clarify whether deficits in cognitive resources precede or follow psychopathology

or clarify the time periods over which decreases in available cognitive resources persist. Fu-

ture work, possibly with the forthcoming longitudinal waves of the ABCD study dataset, might

better be able to answer both questions.

Overall, these findings support the hypothesis that H provides a quantitative description of

suboptimal brain states that are non-specifically associated with all forms of psychopathology.

While these findings specifically identified disruptions in resource allocation among cognitive

networks relevant to the task at hand, they also suggest a specific, unifying hypothesis. In

particular, these findings suggest that global decreases in H can quantify reductions in avail-

able cognitive resources, while more local, relative fluctuations in H quantify the allocation of

available cognitive resources to different cognitive systems. This may provide the basis for a

mechanistic account of cognitive performance and the consequences of individual differences

in cognitive resources.

The analysis of temporal fractals found in human neuroimaging data promises a systematic

framework for understanding human cognition. Quantification of these temporal fractals via

the Hurst exponent provides an ingress to the well-developed literature of models and mathe-

matics, rooted in criticality, which may help build concrete, mechanistic models of cognition

and allow for systematic characterizations of brain states. The need for such models (56, 57)

and mechanistic accounts of cognition has been an increasingly important goal in the cognitive

sciences. We see the theoretical framework of criticality, and measurements of H , as adjacent

to other contemporary frameworks that together may provide a comprehensive framework for

understanding cognition. As such, explorations of the associations between H and cognition

may help to elucidate what optimal brain states represent and how deviations from those brain

states arise due to psychopathology.
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Online Methods

Adolescent Brain and Cognitive Development Data
Data & Preprocessing

We performed functional MRI preprocessing on ABCD Study baseline year emotional N-Back

data, which included 10,240 participants. Participants who were scanned on Phillips brand

scanners were excluded because of a known error in the phase encoding direction while con-

verting from DICOM to NIFTI format. We downloaded minimally processed structural and

function MRI scans from the ABCD data portal (https://nda.nih.gov/abcd). Minimal prepro-

cessing included motion correction, B0 distortion correction, gradient warping correction and

resampling to an isotropic space (33). Minimally processed data were preprocessed with a

custom version of FMRIPREP (58), a Nipype (59) based tool. Each participant’s structural

T1w scan was first defaced with pydeface (60). Each T1w (T1-weighted) volume was then

corrected for INU (intensity non-uniformity) using N4BiasFieldCorrection v2.1.0 (61) and had

been previously skull-stripped. Spatial normalization to the MNI152 non-linear 6th generation

template, the standard MNI template included with FSL, was performed through nonlinear reg-

istration with the antsRegistration tool of ANTs v2.1.0 (62), using brain-extracted versions of

both T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-

matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL

v5.0.9 (63)). Functional data co-registered to the corresponding T1w anatomical image using

boundary-based registration (64) with six degrees of freedom, using flirt (FSL). Motion cor-

recting transformations (based on motion parameters obtained from the minimally processed

data), BOLD-to-T1w transformation and T1w-to-template (MNI) warp were concatenated and

applied in a single step using antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation.

Physiological noise regressors were extracted and applied from tissue masks, and frame-wise
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displacement (65) was calculated for each functional run using the implementation of Nipype.

For more details of the pipeline see https://fmriprep.readthedocs.io.

Following (66, 67) we performed a 36 parameter confound regression that included: the

time courses of mean CSF signal, mean global signal, mean WM signal, the 6 standard affine

motion parameters (x, y, z, pitch, roll and yaw), their squares, their derivatives, and the squared

derivatives of these signals. We also simultaneously regressed out linear and quadratic trends

to remove drift related signals. This was followed by the application of a bandpass filter with

a highpass cutoff of .008 Hz and a lowpass cutoff of .12 Hz via the 3dBandpass command

in AFNI (68). The cleaned volumetric BOLD images were spatially averaged into the 392

parcel Craddock atlas (34). Finally, for Siemens scanners, the first eight volumes were removed

because they were used as the multiband reference. For GE scanners running DV25 software,

five volumes were removed because the first 12 volumes were used as the multiband reference

and then combined into a single volume and saved as the initial TR (leaving a total of five frames

to be discarded). For GE scanners running DV26 software, 16 volumes were removed (35).

Runs included 362 whole-brain volumes after these discarded acquisitions.

Finally, all structural and functional scans were visually inspected to screen for scanner ab-

normalities, and to assess the accuracy of the registration and tissue segmentation processes.

Only subjects with passing structural scans and at least one passing functional scan were in-

cluded for further analyses.

Cognitive Task Procedures

The emotional n-back task engages processes related to memory and emotion regulation (35).

Each session consists of two approximately 5-minute fMRI runs in which participants complete

four 0-back (low working memory load) and four 2-back (high working memory load) task

blocks. Each task block consists of four types of stimuli: happy, fearful, and neutral face
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photographs, and place photographs (35). Performance was quantified as percent accuracy and

sensitivity, d’, on 2-back blocks (35, 51). Sensitivity, d’, was computed as

−
√

2 ∗ erfc−1(2 ∗ hit) +
√

2 ∗ erfc−1(2 ∗ fa) (1)

where erfc is the complementary error function, hit is the hit rate in 2-back blocks, and fa is

the false alarm rate in 2-back blocks.

Exclusion of Data

After preprocessing, all fMRI BOLD time courses were spatially averaged within 392 previ-

ously defined functional regions (34). Individual runs with greater than .2mm mean and 2mm

max framewise displacement were excluded, which when combined with visual quality inspec-

tions resulted in the retention of 1,839 subjects. For each subject if more than one run was

retained, the parcellated time series were averaged over the two runs.

Estimation of Hurst Exponents

We measured H of the mean BOLD time series of each of the 392 previously defined regions

using detrended fluctuation analysis (DFA). This is a computationally efficient estimator of

the Hurst exponent that is a more robust alternative to power-spectral-density-based methods

and has been shown to exhibit convergence with more sophisticated estimators of H in fMRI

data (4). Briefly, DFA involves transforming a detrended time-series, x(t), into an unbounded

random walk, X(t) =
∑

(x(i) − x̄), and then calculating local linear fits to this random walk,

Y (t), for various window sizes n. The root mean square fluctuations from the local linear trend

is then calculated for each window size as F (n) =
√∑

(X(t)− Y (t))2/N , where N is the

number of windows of size n. Finally, H is calculated as the slope of a linear fit of log(n) vs.

log(F (n)) (6, 69).
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For ”mono-fractal” processes, a single exponent H fully describes the scaling relationship

between local fluctuations and window size. However, in real data, H may change as a function

of the window size due to the presence of different scaling regimes, or trends in the data that

are not controlled by the detrending step of DFA. Thus, it is critical to examine the goodness

of fit for the DFA regression line to determine whether such confounds are present (69). We

examined the goodness of fit using the coefficient of determination, R2 (Supplementary Figure

7).

We chose to use window sizes, n, which exclude possible low-frequency confounds below

0.01 Hz and high frequency confounds above 0.1 Hz. We sampled the number of windows, N ,

approximately uniformly given this frequency constraint. For each number of windows, N , we

chose the maximum window size n such that n · N was less than or equal to the number of

timepoints in the data.

Psychopathology measures
CBCL Scales

CBCL scales were retrieved from ABCD Release2.0.1 tabulated data available on the NIMH

Data Archive (https://nda.nih.gov/abcd). Calculated t-scores for each scale (70) were retrieved

from the abcd cbcls01.txt file. Definitions of the variable names in this file are available in the

abcd cbcls01 definitions.csv file.

Bifactor Scores

The bifactor model was fit using confirmatory factor analyses as in (21) and is described there in

detail. Briefly, exploratory analyses were conducted on half of the baseline sample to determine

which of the 119 CBCL items were most strongly associated with psychopathology. From these

reduced set, we extracted four interpretable factors and all CBCL items with a loading ≥ 0.40

on at least one factor were retained. Next, the a confirmatory bifactor model in the second
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half of the sample was specified based on these results. As required for bifactor models, each

retained CBCL item loaded on the general factor and only one specific factor. All other loadings

were fixed to zero, and all factors were specified to be orthogonal. Factor models were fit in

Mplus 8.3 using the mean- and variance-adjusted weighted least squares (WSLMV) estimator.

All factor models accounted for the stratification of the sample in data collection sites, used

post-stratification weights, and accounted for clustering within families. Analyses made use of

factor score estimates that were extracted from the confirmatory model (71).

Partial Least Squares

Partial least squares (PLS) analysis was used to find a latent variable that represents a Hurst-

Psychopathology gradient. PLS is a multivariate data analysis technique that decomposes the

covariance matrix between two mean-centered datasets. Here these datasets were the 1,839 by

392, subject by parcel matrix of H X and the 1,839 by 4, subject by factor matrix of extracted

bifactor scores Y. Since these matrices are mean-centered, the covariance matrix X′Y can be

decomposed via singular value decomposition so that

X′Y = USV′ (2)

where U is the 392 by 4 matrix of left singular vectors (brain loadings), V is the 4 by 4 matrix of

right singular vectors (bifactor loadings), and S is the 4 by 4 diagonal matrix of singular values

(43). The ith column of U and V represent the loadings of the ith latent variable. The ratio

of the squared ith singular value to the sum of all squared singular values gives the crossblock

covariance explained by the ith latent variable and is used as a measure of effect size.

Statistical significance of the PLS models was assessed by 10,000 permutations of the rows

of the Hurst matrix X and comparing the observed crossblock covariance to permuted cross-

block covariances. Stability of the left and right singular vectors (brain and bifactor loadings,

respectively) is assessed by 10,000 bootstrap resamplings of both data matrices, X and Y.
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Bootstrap ratios are calculated as the empirical loading divided by the bootstrap variance and

are distributed normally under the null (akin to a z-score).

Non-Participation, Post-Stratification Weights, and adjustment for Family
Membership

Sensitivity analyses were conducted using post-stratification and non-participation weights in

an attempt to calibrate ABCD Study sample distributions to nationally representative distribu-

tions as measured in the American Community Survey (ACS), and to correct for any biases

due to not being included in the analysis relative to the demographic characteristics of the

overall ABCD Study sample, respectively. Procedures used to calculate the post-stratification

scores (variable abcd acs raked propensity in file acspsw03.txt of Curated Release 2.0.1) are

described in detail elsewhere (44, 45). Briefly, a multiple logistic regression model was fit us-

ing concatenated ACS and ABCD data to predict study membership using participant variables

age, sex, race/ethnicity, family income, family type, household size, parents’ work force status

and Census Region. Weights were then raked to exact ACS population counts for age, sex, and

race/ethnicity categories. Non-participation weights were derived using an elastic net regular-

ized binary logistic regression model using glmnet in R previously used in child psychopathol-

ogy studies (72). A binary variable indicating inclusion/exclusion in the analysis sample was

the dependent variable, while age (in months), sex (male as reference category), race/ethnicity

(non-Hispanic white as reference category), household size, years of maternal education, and

square-root-transformed mean CBCL score were the independent variables. This elastic net

model in glmnet was selected to derive the non-participation weights as it produces estimates

with lower predictive errors than the full model, while accounting for redundant and highly

correlated potential predictors (73,74). The logistic regression model picked the optimal tuning

parameter lambda with the least cross-validation deviance in model selection. Having selected
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the optimal model, probabilities p̂ of response, conditional on being sampled, were calculated

using the following equation:

p̂ = exp(XB̂)/(1 + exp(XB̂) (3)

where X is the model matrix and B̂ is the vector of estimated parameters from the best model

after cross-validation. Non-participation weights are thus the inverses of the probabilities p̂.

In order to compute corrected correlations between H in the H-P gradient and future working

memory performance, non-participation weights capturing which individuals had available 2-

year follow-up data at the time of this study were also calculated. For the corrected correlations,

post-stratification weights, non-participation weights from the full ABCD study sample to this

sample of 1,839 children, and non-participation weights from the baseline study sample to the

future Release3.0 sample (N=888) were multiplied together.

The non-participation and post-stratification weights were multiplied prior to use in the PLS

model. Next the weighted mean, weighted variance, and weighted covariance were computed

as (75)

Weighted Mean : µW (X) =

∑
wixi∑
wi

(4)

Weighted V ariance : σ2
W (X) =

∑
wi(xi − µW )2∑

wi

(5)

Weighted Covariance : covW (X, Y ) =

∑
wi(xi − µW (X))(yi − µW (Y ))∑

wi

(6)

with the resulting weighted covariance matrix then decomposed with singular value decompo-

sition. The corrected correlation between H in the H-P gradient and future working memory

performance was calculated as:

rcorrected =
covW (X, Y )√
σ2
W (X)

√
σ2
W (Y )

(7)

Statistical significance was assessed by computing the weighted mean and variance for the

permuted brain matrix and non-permuted bifactor matrix. Next the weighted covariance matrix
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was calculated as

Weighted Covariance : σW (X, Y ) =

∑√
wp

i (xi − µW (X))
√
wi(yi − µW (Y ))∑

wi

(8)

wherewp
i is the weight obtained by permuting the weights alongside the rows of the brain matrix

X. Finally the resulting permuted covariance matrix was subject to SVD and the permuted

crossblock covariance was compared to the observed, non-permuted value.

First, we repeated the PLS analysis after randomly dropping all but one subject from each

family, leaving 1,722 subjects. This yielded a single statistically significant latent variable (p =

.0017, covariance=48%) with stable loadings on the general and ADHD factors (Supplementary

Figure 1a) and brain loadings significantly correlated with the un-adjusted model (rs = .98,

Supplementary Figure 2).

With these sampling weights (76), PLS revealed a single statistically significant latent vari-

able (p = .04, covariance=38%) with stable loadings on the general, ADHD, and internal-

izing factors (Supplementary Figure 1b) and brain loadings significantly correlated with the

un-adjusted model (rs = .87, Supplementary Figure 2).

Finally, we sought to confirm that the observed Hurst-Psychopathology gradient is not spe-

cific to the bifactor model’s characterization of psychopathology. Thus, we repeated the PLS

analysis with t-scores derived from the 11 CBCL syndrome scale scores (Anxiety/Depression,

Withdrawn/Depression, Somatic, Social, Thought, Attention, Rule Breaking, Aggressive, Inter-

nal, External, Total Problems, (77)), 6 CBCL DSM5 scale scores (Depression, Anxiety/Disordered,

Somatic, ADHD, Oppositional, Conduct, (78)), and 3 CBCL 2007 scale scores (Sluggish Cog-

nitive Tempo, Obsessive-Compulsive, Stress) (79). PLS revealed two statistically significant

latent variables, the first of which (p = .017, covariance=66%) had stable positive loadings on

all derived CBCL scores (Supplementary Figure 1c) and brain loadings significantly correlated

with the un-adjusted model (rs = .84, Supplementary Figure 2).
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Spatial Null Model

Spatial auto-correlation-preserving permutation tests were used to assess statistical significance

of correlations between Neurosynth terms and the Hurst-Psychopathology gradient. These tests,

termed “spin tests”, are necessary since standard permutation tests which assume no spatial

auto-correlation significantly inflate false positive rates (80). We used the BrainSMASH python

package (https://brainsmash.readthedocs.io/en/latest/) to generate parametric null brain maps

with preserved spatial auto-correlation (SA) structure (81). In short, BrainSMASH produces

SA-preserving random maps whose variograms approximately match the variogram of an input

brain map. Variograms are functions of spatial distance, d, which quantify the variance between

all pairs of points that are a distance d away from each other. Here we use Euclidean distance

calculated between the centroids of brain parcels.

Functional Activation

Functional activations in the Destrieux 148 parcel cortical atlas (82) were obtained from ABCD

Release2.0.1 tabulated imaging data available on the NIMH data archive (https://nda.nih.gov/abcd).

After preprocessing, beta weights for a linear contrast between 2-back and 0-back blocks were

computed by generalized linear model with motion estimates, derivatives, squared estimates,

and squared derivatives included as nuisance regressors (33). The hemodynamic response func-

tion was modeled as gamma functions with temporal derivatives and convolved with square

waves indicating each block. Average beta coefficients across runs of the 2-back vs. 0-back con-

trast were used to assess functional activation. These data were retrieved from the abcd tfncr1bwdp201.txt

and abcd tfncr1bwdp201.txt files.

To compare the correlation between activations and gradient-scores to the Hurst-Psychopathology

gradient, the activations were resampled via averaging into the 392 parcels of the Craddock atlas

with the nilearn (83) function NiftiLabelsMasker.
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Code Availability

Analysis code is available at https://github.com/enlberman/fractalpsychopyabcd
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