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A B S T R A C T

Despite being intuitive, cognitive effort has proven difficult to define quantitatively. Here, we proposed to study
cognitive effort by investigating the degree to which the brain deviates from its default state, where brain activity
is scale-invariant. Specifically, we measured such deviations by examining changes in scale-invariance of brain
activity as a function of task difficulty and posited suppression of scale-invariance as a proxy for exertion of
cognitive effort. While there is some fMRI evidence supporting this proposition, EEG investigations on the matter
are scant, despite the EEG signal being more suitable for analysis of scale invariance (i.e., having a much broader
frequency range). In the current study we validated the correspondence between scale-invariance (H) of cortical
activity recorded by EEG and task load during two working memory (WM) experiments with varying set sizes.
Then, we used this neural signature to disentangle cognitive effort from the number of items stored in WM within
participants. Our results showed monotonic decreases in H with increased set size, even after set size exceeded
WM capacity. This behavior of H contrasted with behavioral performance and an oscillatory indicator of WM load
(i.e., alpha-band desynchronization), both of which showed a plateau at difficulty levels surpassing WM capacity.
This is the first reported evidence for the suppression of scale-invariance in EEG due to task difficulty, and our
work suggests that H suppression may be used to quantify changes in cognitive effort even when working memory
load is at maximum capacity.
1. Introduction

Cognitive effort is a seemingly intuitive aspect of cognition, yet has
proven difficult to quantify because of gaps in both its operationalization
and theory. Regarding operationalization, researchers lack consensus on
a neural signature of mental effort. As a result, different measurements
such as response time, brain activity in regions including dorsal anterior
cingulate cortex, or pupil diameter have been used as indicators of effort
(see Westbrook and Braver, 2015 for a review).

From a theoretical perspective, some researchers, at least implicitly,
equate mental effort with working memory load (Garbarino and Edell,
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1997; Kitzbichler et al., 2011), whereas others see working memory load
and effort as confounded measures that could, in theory, be separable
(Vogel and Machizawa, 2004). For example, the decision making liter-
ature commonly defines effort as the set of processes that determine the
level of performance that will be realized based on the characteristics of a
given task and the individual’s available information processing capacity
(e.g., workingmemory capacity) (Bonner and Sprinkle, 2002; Kahneman,
1973; Shenhav et al., 2017). The utility of effort, therefore, is to optimize
the allocation of limited (or unlimited but shared) cognitive resources
between different tasks based on the expected cost and value of exerting
cognitive control. From this definition, it logically follows that if an
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1 Aspects of experiment 1 and 2 were previously published in (Mance, 2015)
and (Adam et al., 2018), respectively.
2 For experiment 2, N ¼ 1, 3, and 6.
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individual is performing at their maximum ability level (e.g., at their
working memory capacity limit), no more effort will be exerted for that
specific task, because it is not judicious. To test whether individuals can
exert seemingly “fruitless” cognitive effort—that is, whether it is possible
to exert cognitive effort in the absence of behavioral performance gains—
we propose a different view on cognitive effort and then apply it in
conjunction with research on working memory capacity.

1.1. Effort as suppression of scale-free brain activity

In the current study we use a theoretical framework that operation-
alizes the amount of cognitive effort as the degree of deviations in current
brain states from thosemore proximal to the default-mode brain states. In
this framework, we assume the brain at rest is organized at a critical state
(de Arcangelis et al., 2006; Kitzbichler et al., 2009), because such a state
provides maximum dynamic range for a network (Gautam et al., 2015;
Kinouchi and Copelli, 2006), and optimizes active information storage
and transfer (Boedecker et al., 2012; Shriki et al., 2013; Shriki and Yellin,
2016). However, as a task requires increasingly disproportionate allo-
cation of resources due to its higher demands, the brain moves further
away from criticality (i.e., departing further from the default state) as a
trade-off for gaining specificity for the task at hand (Gollo, 2017). In
order to measure these changes in brain state, we utilize the Hurst
exponent (H), which is a common way of measuring large-scale critical
dynamics in the brain and estimates the scale-invariance of brain activity
signals. Scale-invariance in biological signals refers to a property of sig-
nals where all measured time scales contribute to a signal of interest, with
no particular timescale having a dominant contribution. In summary, we
propose that suppression of scale-invariance in brain activity (i.e., de-
creases inH) signals degree of departure from default brain states and can
be used as a measure of cognitive effort.

Some supporting evidence for our hypothesis comes from fMRI
research on scale-free dynamics of fMRI timeseries, which have demon-
strated that global Blood Oxygenation Level Dependent (BOLD) activity
of the brain becomes less scale-free (lowerH) in the presence of cognitive
tasks and other modulators of cognitive effort (Barnes et al., 2009;
Churchill et al., 2016; He, 2011). Specifically, fMRI timeseries have lower
H when individuals are: 1) performing hard vs. easy perceptual decision
tasks, (Churchill et al., 2016), 2) performing a visual detection task vs.
open-eyes rest (He, 2011), 3) performing an n-back task versus rest
(Barnes et al., 2009), 4) performing novel tasks vs. more familiar tasks
(Churchill et al., 2016), and 5) when participants were under physical
and mental burden (Churchill et al., 2015). These findings suggest that
suppression of H may be a generalizable neuroimaging marker of
increased cognitive effort.

1.2. Working memory load and cognitive effort

Within the context of neuroimaging studies of working memory tasks,
a core challenge for identifying a neural signal of effort involves disen-
tangling effort signals from working memory storage signals. This is
because, until working memory capacity is reached, exerting more effort
often enables meeting larger working memory demands. EEG research on
visual working memory points to a capacity limit (referred to as K)
beyond which the individual cannot maintain any more mental repre-
sentations of the presented items (i.e., working memory load is
maximum). Specifically, recent research in visual working memory
suggests a limit of 3–4 items for K (Adam et al., 2017; Fukuda et al., 2010;
Luck and Vogel, 2013; Rouder et al., 2008; but see Alvarez and Cavanagh
(2004)). Additionally, this research has suggested that the primary role of
alpha band (8–12 Hz) oscillations (α) in the context of visual working
memory is to maintain distinct working memory representations rather
than to suppress irrelevant information (Foster and Awh, 2019). This
indicates that as the number of relevant items in working memory in-
creases, α will systematically decrease until working memory capacity
(K) is reached (Adam et al., 2018; Fukuda et al., 2016; Fukuda et al.,
2

2015) and will asymptote there.
Therefore, translating the fMRI work examining H and cognitive

effort to EEG experiments on oscillatory activity and K can provide us
with the framework needed to investigate the distinction between
cognitive effort and working memory load. Pertinently, previous litera-
ture has shown that BOLD fMRI signal fluctuations are linked to scale-
free fluctuations in EEG measurements of neural activity (Van de Ville,
Britz and Michel, 2010). As such, an effort-related suppression in
scale-invariance, which is inherently a scale invariant measurement,
would also be expected at the electrophysiological timescale. Addition-
ally, studying these broadband effects with EEG will potentially be more
fruitful than with fMRI since this method overcomes the limited range of
timescales that can be examined for H in fMRI due to its slow sampling
rate. To our knowledge, this relationship between suppression of H and
cognitive effort beyond K has not yet been investigated using EEG, where
it would provide a critical validation of the fMRI findings using a more
direct measure of neural activity and a faster time-scale.

1.3. Experiments overview and hypotheses

In the current study, we analyzed two visual working memory EEG
experiments including a ‘Remember N’ task (Experiment 1) and a
Discrete Whole-Report task (Experiment 2).1 In both experiments, a
memory array was presented to participants while they maintained fix-
ation on the center of the screen. Memory load was parametrically varied
(N ¼ 1, 2, 3, or 6 items).2 We hypothesized that scale-invariance (H) of
the EEG signal during the retention interval would decline parametrically
with increasing task load, even beyond K (i.e., beyond 3–4 items). In
contrast, α suppression has been shown to plateau for set sizes beyond K.
As such, we further predicted that the pattern of H across set sizes would
significantly diverge from the pattern of α across set sizes because α
suppression would not continue to decrease beyond K. These predictions
assume that cognitive effort is distinguishable from the amount of in-
formation held in working memory (i.e., working memory load). This
does not mean that we are hypothesizing working memory load and
cognitive effort signals to be independent, just that effort can continue
passed one’s working memory capacity which distinguishes it from
working memory load. In summary, we propose that (1) scale-invariance
of cortical brain activity as recorded by EEG can be used as a metric of
cognitive effort within individuals, and (2) this broad-band signal char-
acteristic can dissociate visual working memory load from effort.

2. Methods

2.1. Experiment 1 methods

2.1.1. Participants
Experiment 1 included 31 participants (18–35 years old; 17 female)

from the University of Oregon and surrounding community (Mance,
2015). A total of 6 were excluded from analyses because of excessive EEG
artifacts (see Artifact Rejection), leaving a final sample of 25 participants.
Participants gave written informed consent, and experimental proced-
ures were approved by the University of Oregon’s Committee for the
Protection of Human Subjects (CPHS) and Institutional Review Board
(IRB). All participants had normal or corrected-to-normal visual acuity
and reported no history of neurological disorders.

2.1.2. Stimuli
Participants were seated ~100 cm from a 17-in. cathode ray tube

monitor. Stimuli were rendered using the Psychophysics toolbox (Brai-
nard, 1997; Pelli, 1997). Participants remembered colored squares
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presented on a medium gray background (RGB ¼ 120 120 120) while
maintaining fixation on a small white dot (0.2�). A pool of eight distinct
colors: red (RGB¼ 255 0 0), green (0 255 0), blue (0 0 255), yellow (255
255 0), magenta (255 0 255), cyan (0 255 255), white (255 255 255),
and black (1 1 1) were used to choose the colors from in each trial. Each
square subtended 1�, and each square was placed at one of 32 locations
on the screen (equally spaced grid of 4 x 8 locations, placed within a
portion of the display subtending 8.1� to the left or right of fixation and
4.7� above or below fixation.

2.1.3. The remember N task
On each trial, participants were first given a cue which indicated how

many items they should encode from the upcoming display (e.g.,
“Remember 3”) and pressed the spacebar to initiate the trial. The cue
presentation was un-speeded but had a minimum duration of 600 ms.
After a blank baseline (1200 ms), participants briefly viewed six colored
squares (150 ms) and remembered all or some of these squares across a
delay (1150 ms). Participants were instructed to try their best to only
remember the cued number of items and to ignore the rest (Fig. 1), but
they were not instructed about which particular items to remember (they
could freely choose). To respond, participants clicked the color in the
response grid corresponding to the color remembered at that location.
During the response, participants only had the option to respond to as
many items as they were cued to remember (for example, if the cue was
“Remember 1”, they could only make one response during the recall
phase). After the participant had made all responses the cue for the next
trial appeared after 500 ms. There were a total of 150 trials per set-size
(30 blocks of 20 trials, ~2.5 h).

2.1.4. Data acquisition and analysis
Data were acquired with an SA Instrumentation amplifier with a

band-pass of .01–80 Hz and digitized at 250 Hz in LabView 6.1. We
measured EEG from 20 tin electrodes mounted in an elastic cap (Elec-
trocap International, Eaton, OH) at International 10/20 sites F3, Fz, F4,
T3, C3, Cz, C4, T4, P3, Pz, P4, T5, O1, and O2 and five nonstandard sites:
OL midway between T5 and O1, OR midway between T6 and O2, PO3
midway between P3 and OL, PO4 midway between P4 and OR, and POz
midway between PO3 and PO4 (Fig. S1). All sites were recorded using a
left-mastoid reference and re-referenced offline to the algebraic average
of the left and right mastoids. The vertical electrooculogram (EOG) was
recorded from an electrode placed ~1 cm below the right eye. The
horizontal EOGwas recorded from electrodes placed ~1 cm lateral to the
external canthus of each eye. Electrode impedances were kept below 3
kΩ. Participants were instructed not to move their eyes or blink during
the trial until the test array appeared on the screen. Trials including
horizontal eye movements, blinks, blocking (amplifier saturation after
drift), or excessive noise were excluded from analysis (mean ¼ 16.8% of
trials).
Fig. 1. Experiment 1: “Remember N00 task procedures. At the beginning of every trial
memory array. Memory arrays always contained six items shown in random locati
to remember.

3

2.1.5. Artifact rejection
For horizontal eye movement rejection, we used a split-half sliding

window approach (window size ¼ 150 ms, step size ¼ 10 ms, threshold
¼ 20 μV) on the HEOG signal, where a 150 ms time window was slid in
steps of 10 ms from the beginning to the end of the trial. If the change in
voltage from the first half to the second half of the window was greater
than 20 μV, it was marked as an eye movement and rejected. We also
used a sliding window step function to check for blinks in the VEOG
(window size ¼ 100 ms, step size ¼ 10 ms, threshold ¼ 40 μV). For
blocking rejection, we slid a 200 ms time window in steps of 50 ms and
excluded trials for blocking if any EEG electrode had at least 20
consecutive time-points (i.e. 80 ms) that were within 1 μV of each other.
We excluded trials for excessive noise if any electrode had peak-to-peak
amplitude greater than 200 μV within a 15 ms time window. Data were
visually inspected to confirm that rejection criteria were working as ex-
pected; some additional trials were manually rejected. Six participants
were excluded for excessive artifacts (fewer than 70 good trials per
condition on average, remaining n ¼ 25). After rejection, included par-
ticipants had an average of 110 trials per condition (SD ¼ 22.5).

2.1.6. Estimation of α power
To estimate alpha power (8–12 Hz), we first band-pass filtered the

raw EEG signal for each trial and electrode using a two-way least-squares
FIR filter, ‘eegfilt.m’, (Delorme and Makeig, 2004). We calculated
instantaneous power with the MATLAB Hilbert transform (‘hilbert.m’).
Because we were interested in event-related changes to alpha power as a
function of memory load, we analyzed percent change in alpha power
from þ300 ms to þ1150 ms interval in Experiment 1 and from þ400 ms
to þ1300 ms in Experiment 2 (all with respect to onset of the memory
array) compared to the baseline period (500 ms–100 ms before the
memory array onset). This means that the delay period included in the
analysis for both experiments start 150 ms after the memory array is
removed from the screen and end with the end of the retention interval.
For each participant and electrode, we first averaged single-trial power
across each load condition, then calculated the percent change in alpha
power for each condition relative to a baseline period (500 ms–100 ms
before the memory array).

2.1.7. Estimation of scale-invariance (H)
Scaling analyses of temporal signals seek to determine whether all

measured frequencies (or timescales) contribute to the signal of interest.
Scale-invariance occurs when no particular frequency (or timescale) has
a dominant contribution to the signal, implying that the signals have
long-range temporal dependency. This dependency is indexed via the
Hurst exponent H, where H � 0.5 indicates short-range dependency, H ¼
0.5 denotes an uncorrelated process, and H � 0.5 indicates long-range
dependency. The typical H values reported for fMRI rest and task data
with very low frequency components (i. e., [0.01–0.1] Hz) are in the
, participants were cued about how many items to remember from the upcoming
ons. At response, participants only recalled as many items as they were asked
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range of [0.7–1] (Churchill et al., 2015, 2016; He, 2011). H is directly
related to the β exponent in Pðf Þ∝f�β , where P is the power of the signal
as a function of frequency (f), such thatH¼ (1þβ)/2. The typical β values
reported for EEG in healthy individuals are in the range of 1–2.5, which
corresponds to H~ 1–1.75 (Dehghani et al., 2010; Freeman et al., 2003).

While there exist many different methods to estimate H, the wavelet
leader multifractal (WLMF) formalism has emerged as a powerful tech-
nique that is highly efficient and robust to signal non-stationarity (Jaffard
et al., 2007). We applied the WLMF method on the EEG signal during
retention interval (after memory array and before response) to quantify
the scale-invariance of the EEG signal during maintenance. The wavelet
transform uses translated and dilated versions of a basis function
Ψð½t�k� =aÞ to analyze the signal of interest at different delays and time
scales. The wavelet coefficient dxða; kÞ measures signal energy present at
delay k and time scale a by calculating the integral:
Fig. 2. The primary latent variables of the CCA analysis for the Remember N task in
EEG electrodes during the retention period (pink) with the number of items to reme
between the bottom set (electrodes) and the top set (task loads). The vertical axis in e
(top) to the latent variable as indicated by the size of its normalized CCA weight. The
weights. The asterisks show statistical significance in the difference between weights
items to 6 items), *p < 0.05 and **p < 0.01. (B) Topographic demonstration of th
desynchronization of α band power from baseline during the retention period (blue)
difference in CCA weight for set size 6 in the relationship between task load and H
weights on alpha power.
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dxða; kÞ¼ 1
a
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xðtÞΨ t � k

a
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At a range of dyadic scales, i.e., a ¼ 2j for integer j. Wavelet leaders
Lxða; kÞ are subsequently calculated as the largest coefficient value
jdxða’; k’Þj within a narrow temporal neighbourhood of k, for any scale
a’ � a. Multifractal scaling is then defined by the function:

1
K

X
k

��Lx

�
2j; k

���q ¼Cq2jςðqÞ

Which describes wavelet power as a function of time scale, for a range of
different scaling exponents q, in terms of a characteristic function ςðqÞ.
Typically parameterized as a polynomial expansion ςðqÞ ¼ P

p
cpðqp =p!Þ,

the log-cumulants cp define the scaling behavior of the signal xðtÞ.
Experiment 1. (A) The primary relationship between scale-invariance (H) of the
mber (orange). The double-headed arrows show the strength of the correlation
ach panel shows the contribution of an electrode (bottom) or a specific task load
error bars show bootstrapped 95% confidence intervals around the means for the
of adjacent levels of task load (i.e., 1 item to 2 items, 2 items to 3 items, and 3
e CCA weights on the H exponent. (C) The primary relationship between the
with the number of items to remember (orange). One-sided arrows demonstrate
versus task load and alpha power. (D) Topographic demonstration of the CCA
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did 300 resamples to cut down processing time in each loop of the simulation.

O. Kardan et al. NeuroImage 211 (2020) 116622
The raw EEG signal was first band-pass filtered to 4–30 Hz and then
WLMF was applied to the delay interval (same as alpha power analysis;
starting 150ms after thememory array is removed from the screen and end
with the end of the retention interval). In this study, we focused on first-
order cumulant c1, which is closely linked to the monofractal scaling
parameter H (Wendt et al., 2007). An exploratory analysis of the
higher-order cumulants (c2 and c3) did not show a relationship between
them and thememory load in our two experiments. The band-pass filtering
was done because 1) EEG components above 30 Hz could be contaminated
with EMG signals, which could be driven by facial muscular signals of
exerting effort and 2) components slower than 4 Hz are not well charac-
terized in the signal due to the short length of the delay interval.

2.1.8. Canonical correlation analysis
In a canonical correlation analysis (CCA), two sets of variables are

related together (as opposed to many variables to a single dependent
variable) and the degree of relationship between the two sets of variables
is assessed (Hotelling, 1936). An advantage of multivariate methods such
as CCA over univariate methods is that they reveal the linear relationship
between all spatial (every electrode) and task-related (every task load
level) contrasts simultaneously without introducing multiple compari-
sons problem or requiring a-priori contrasts.

For two datasets X and Y, CCA identifies pairs of canonical weighting
vectors wx and wy which produce corresponding linear latent variables lx
¼ Xwx and ly ¼ Ywy, such that correlation ρXY ¼ corr(lx, ly) is maximized
and orthogonal to any other latent variable pairs. We used CCA to find
latent variables that relate either scale-invariance (H) of the 20 electrodes
(bottom set of variables in Fig. 2A) to the task loads (top set of variables
in Fig. 2A) or the alpha desynchronization of the 20 EEG electrodes
(bottom set of variables in Fig. 2B) to the task loads (top set of variables
in Fig. 2B). Each task load (i.e., set size) was dummy coded as a binary
variable, so the number of total latent variables possible was N-1 (i.e., the
rank of the smaller set of variables), where N is the number of levels of
load in each experiment (N ¼ 4 in experiment 1; N ¼ 3 in experiment 2).
Only the primary latent variables in the experiments are shown in the
results because no secondary (or tertiary for Exp. 1) latent variables were
large enough (ρXY > 0.25) in either experiment to be considered mean-
ingful. Small effects, conventionally in the range of r¼ [0.15 0.25] (Kirk,
2012), are not of interest here because a biomarker with smaller than
medium effect size (i. e., r ¼ 0.25) (Kirk, 2012) will likely not have
practical utility due to lack of sufficient sensitivity. Each electrode’s or
task load’s contribution to the latent variable is represented by the ca-
nonical weight of the observed variable which is the Pearson correlation
coefficient of that variable with the latent variable. The stability of the
latent variables is evaluated by the error bars of the canonical weights on
both left and right sets, which are the 95% confidence intervals calcu-
lated by bootstrapping the data (3000 samples with replacement) to
create distributions for the canonical weights similar to Kardan et al.
(2017). The strength of the association between the two sets in a latent
variable is represented by the correlation between the two sides (double
sided arrows in Fig. 2). As such, the relationship represented in a latent
variable is considered strong and stable if the correlation is large (ρXY >

0.4) and there is at least one variable in each side (i.e., at least one
electrode and one task load) whose weight reliably differs from zero
across the bootstrapped samples (i. e., omnibus non-parametric p <

0.05).
Both α power and H values were z-scored across all trials within each

participant to remove baseline differences not related to task conditions
in the CCA. Supplementary to the CCA, Tables S1 and S2 show global H
values (i. e., average over all electrodes) in each condition before z-
scoring for both experiments and provide all univariate pairwise com-
parisons for conditions using paired t-tests.

2.1.9. Statistical power
Following our hypothesis regarding relationships between electrode

data and set sizes, we simulated the CCA analysis to estimate statistical
5

power for detecting a true correlation between electrodes’ data and a
contrast delineating a set size from the other set sizes (e.g., contrast C ¼
[-1 -1 þ1 -1] delineates set size 3 in Experiment 1). This was done in 5
steps. First, we generated a random Gaussian variable Norm(0,1) for N
levels of set size and 20 electrodes for n participants. Second, to create a
true correlation between the generated electrodes data and a set size
contrast, we introduced a bias (i. e., a uniformly distributed random
variable with an expected value above zero) in the generated electrode
data for one set size (chosen randomly). We did this by adding a βbias *
Unif(0,1) to the generated data for that set size and subtracting βbias *
Unif(0,1) from the other set sizes. This produces a difference of βbias in
the expected values of the electrode data for the biased set size compared
to electrode data of other set sizes. Third, through trial and error itera-
tions, we found that βbias ¼ 0.62 induced correlations that closely
resembled the minimum effect size of interest (r ¼ 0.25, see CCA anal-
ysis). This value of βbias resulted in true correlations in the range of r ¼
[0.24 0.26] between the set size contrast (i. e., dummy variables coding 1
for the biased set size and �1 for the other set sizes) and the generated
electrodes data for Experiment 1. Fourth, we then applied the CCA pro-
cedure explained in the previous section3 to the generated data to
determine whether the CCA weight for the biased set size in the primary
latent variable was found to be significant at α ¼ 0.05. Finally, we
repeated step (4) 500 times, with N ¼ 4 and n ¼ 25 to simulate the final
sample size for Experiment 1. Statistical power was estimated to be 0.78
by calculating the proportion of times in the 500 runs where the induced
correlation was found to be significant in the simulated CCAs.

2.2. Experiment 1 results

The average number of correctly reported items was 0.96 (SD¼ 0.03)
items, 1.84 (SD ¼ 0.13) items, 2.35 (SD ¼ 0.35) items, and 2.29 (SD ¼
0.44) items for set sizes 1, 2, 3, and 6, respectively. This pattern of per-
formance is consistent with our assumption that working memory ca-
pacity in this task would be limited to around 3 items; when the set size
increased from 3 to 6 items, the number of correctly reported items did
not increase (t ¼ �0.545, p ¼ 0.588, N.S.).

2.2.1. CCA results for scale-invariance
In the Remember N task, the primary latent variable from the CCA

showed a strong (R2 ¼ 0.254, p < 0.001) and stable relationship (see
Fig. 2A bottom panel) between the number of to-be-remembered items
and the scale-invariance of the EEG signal during retention, where a
global decrease in H (especially in occipital and parietal regions, see
Fig. 2B) tracked increases in task load. Importantly, the decrease in scale-
invariance corresponded monotonically to task load, where each load
level had a significantly larger canonical weight than the previous one
(except for when going from load 1 to 2, perhaps due to both loads being
relatively easy). The canonical weights were r1 ¼ �0.63, r2 ¼ �0.39, r3
¼ 0.24, and r6 ¼ 0.78 for each set size, respectively. The significant
increment from load 3 to 6 (one-sided arrow in Fig. 2A top) follows our
hypothesis that H is sensitive to the exerted cognitive effort rather than
the capacity limits of visual working memory.

2.2.2. CCA results for α desynchronization
As shown in Fig. 2C, the primary CCA latent variable relating change

in α power during the retention period and task load showed a strong and
stable relationship (R2 ¼ 0.239, p < 0.001) between the two sets of
variables. As expected, lower α power in the posterior electrodes (oc-
cipital and parietal, see Fig. 2D) corresponded to higher task load. The
canonical weights were r1 ¼ �0.83, r2 ¼ �0.09, r3 ¼ 0.66, and r6 ¼ 0.25
for each set size, respectively. Importantly, the correspondence was not
monotonic as indicated by the canonical weight for load 6 not being



Fig. 3. Experiment 2 “Whole-Report” task procedures. At the beginning of every trial participants were given a cue indicating which side of the screen to remember
from the upcoming memory array. Memory arrays could contain 1, 3, or 6 items shown in random locations on each side; at response participants only recalled items
from the cued side.

4 Analysis where we only calculated alpha desynchronization for trials ipsi-
lateral to lateralized electrodes yielded very similar results.
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larger than canonical weight for load 3 (in fact it was marginally smaller;
non-parametric p ¼ 0.057). Thus, the relationship between alpha power
and task load diverged from the monotonic correspondence between H
and task load that we reported above. This bifurcation (see one-sided
arrows in Fig. 2A and C top panels) in the relationship between task
load and H versus alpha was statistically significant (Fischer’s Z¼ 2.66, p
¼ 0.008), supporting our hypothesis that posterior α desynchronization is
sensitive to working memory load rather than cognitive effort. Together,
the results from the first experiment suggest that working memory load
and cognitive effort are distinguishable and can be tracked by alpha band
desynchronization versus broad-band characteristics of the EEG signal
(H).

2.3. Experiment 2 methods

2.3.1. Participants
A group of 31 participants (ages between 18 and 35, 12 women) were

recruited from the University of Oregon and surrounding community
(Adam et al., 2018). All participants had self-reported normal or
corrected-to-normal visual acuity and normal color vision. All partici-
pants gave informed consent and completed the 3-hr session for $30 in
compensation. Four participants were excluded from analyses for having
fewer than 70 trials per condition on average after artifact rejection
(remaining n¼ 27). After rejection, included participants had an average
of 148 trials per condition (SD ¼ 39.5).

2.3.2. Stimuli
Stimuli and procedures were similar to Experiment 1. The key dif-

ference was that for this lateralized whole-report task, participants were
cued to attend either the left- or right-half of the display before the onset
of the memory array. They were asked to remember all items presented in
the cued hemifield. The cue was a small pink and green diamond,
approximately 0.2� tall by 0.4� wide and was presented 0.4� above the
fixation cross. Participants remembered colored squares presented on a
medium gray background (RGB ¼ 127.5 127.5 127.5) while maintaining
fixation on a small black dot (0.12�). A pool of nine distinct colors: red
(RGB ¼ 255 0 0), green (0 255 0), blue (0 0 255), yellow (255 255 0),
magenta (255 0 255), cyan (0 255 255), orange (255 128 0), white (255
255 255), and black (1 1 1) were used to choose the colors from in each
trial. Each square subtended 1.2� and they could appear anywhere within
a portion of the display subtending 7.0� to the left or right of fixation and
5.2� above or below fixation as long as there was a minimum distance of
at least 1.5 squares between the centroids of any two squares.

2.3.3. Discrete Whole-Report task
Each trial began with a blank inter-trial interval (500 ms) followed by

the spatial cue (1100 ms) which indicated to which side of the screen to
attend. After the cue period ended, a memory array containing an equal
number of items on both sides of the screen (cued and uncued) was
6

presented for 250 ms. The colors of squares in the memory array were
chosen without replacement within each side (i.e., all cued colors were
unique but might be repeated on the uncued side of the display). After
encoding, participants remembered the items across a blank delay of
1300 ms. At test, a 3� 3 matrix of the nine possible colors was presented
at the location of each item on both the attended and unattended side.
Similar to the Remember N task in Experiment 1, participants were
instructed to click the color in each matrix corresponding to the color
presented at the location (see Fig. 3). The response period ended after
participants made a response for all items on the attended side. Partici-
pants clicked the mouse to initiate the beginning of the next trial.

2.3.4. Data analysis and statistical methods
Artifact rejection, alpha power analysis, wavelet analysis for H, and

the CCA analysis were the same as described in Experiment1.4 For sta-
tistical power, the parameters of the simulation were set at N¼ 3, n¼ 27,
and βbias ¼ 0.60 for Experiment 2, which determined a statistical power
of 0.72 for the analysis. The simulation showed that Experiment 2 would
have sufficient power (conventionally 0.8) to detect effects only if they
are equal to or larger than r ¼ 0.29.
2.4. Experiment 2 results

The average number of correctly reported items was 0.95 (SD¼ 0.04)
for set size 1, 2.41 (SD ¼ 0.33) for set size 3, and 2.53 (SD ¼ 0.53) for set
size 6. This, again, indicates that average Kwas still less than 3 even for 6
items, and was not significantly different from average K for set size 3 (t
¼ 1.129, p ¼ 0.264, N.S.).

2.4.1. CCA results for scale-invariance
Replicating the Remember N task, the primary latent variable from

the CCA in the lateralized Whole-Report task showed a very strong (R2 ¼
0.416, p < 0.001) and stable relationship between the number of pre-
sented items to be remembered in the task and the scale-invariance of the
EEG signal during retention (Fig. 4A). Again, a global decrease in H
tracked increases in the task load. The canonical weights for each set size
in this latent variable were r1 ¼ �0.78, r3 ¼ �0.13, and r6 ¼ 0.91,
respectively. Importantly, the decrease in scale-invariance changed
monotonically with task load, where the canonical weight for each load
level was significantly larger than the previous one including from load 3
to 6. This follows our hypothesis that H is sensitive to the exerted
cognitive effort in visual working memory tasks.

2.4.2. CCA results for α desynchronization
The primary CCA latent variable relating change in α power and task



Fig. 4. The primary latent variables of the CCA analysis for the Whole-Report task in Experiment 2. (A) The primary relationship between the scale-invariance (H) of
the EEG electrodes during retention period (pink) with the number of items to remember (orange). The double-headed arrows show the strength of the correlation
between the bottom set (electrodes) and the top set (task loads). The vertical axis in each panel shows the contribution of an electrode (bottom) or a specific task load
(top) to the latent variable as indicated by the size of its normalized CCA weight. The error bars show bootstrapped 95% confidence intervals around the means for the
weights. The asterisks indicate statistical significance in the difference between weights of adjacent levels of task load (i.e., 1 item to 2 items, 2 items to 3 items, and 3
items to 6 items), where *p < 0.05 and **p < 0.01. (B) Topographic demonstration of the CCA weights on the H exponent. (C) The primary relationship between the
desynchronization of α band power from baseline during retention period (blue) with the number of items to remember (orange). (D) Topographic demonstration of
the CCA weights on alpha power.
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load was not stable, as the 95% confidence intervals for all of the elec-
trodes contained zero (Fig. 4C bottom). The task load levels were not
significantly different from one another (Fig. 4C top), although there was
a numerical trend of suppression of α power for 6 items compared to 1
item. Thus, the relationship between task load and alpha power did not
follow the pattern we observed in Experiment 1. However, since the
latent variable was not stable, the canonical correspondence for α sup-
pression in this experiment was not conclusive with regards to our hy-
pothesis about distinguishing working memory load from cognitive
effort.

3. Discussion

In this study we proposed a model for measuring cognitive effort via
scale-invariance of brain activity. We conceptualized effort as the process
of overcoming the cost of departure from automaticity or rest (Shenhav
7

et al., 2017), and operationalized such departure as the degree of H
suppression in EEG. H is a useful candidate for investigating effortful
states because scale-free activity patterns are an emergent property of a
network at a critical state. Therefore, we hypothesized that the degree of
suppression of H signified the degree of departure from default-state
criticality of the brain as the brain tunes to a specific (non-automatic)
task. When H is not suppressed, small perturbations can lead to large
changes in brain state (Chialvo, 2004), thereby enabling rapid adapt-
ability to heterogeneous external demands (Gisiger, 2001). But when
disproportionate allocation of resources to a specific cognitive task is
required, this susceptibility is sacrificed as brain networks move further
away from this critical state. In other words, a departure from criticality
represents a change from a more flexible to a more engaged brain state.
Our results supported this hypothesis, as we found a monotonic corre-
spondence between H suppression and task load across two experiments.
This is the first reported evidence for changes in scale-invariance due to
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task difficulty as measured with EEG (a relatively high frequency signal),
complementing previous research relating H suppression of BOLD ac-
tivity (a very low frequency signal) to task difficulty (Churchill et al.,
2016).

To determine whether there is more to cognitive effort than working
memory load (Heitz et al., 2008), we compared the relationship betweenH
and task load to the relationshipbetweenα suppressionand task loadwithin
individuals. We found that, whereas the number of recalled items and the
degreeofα suppression (indicatingworkingmemory load)hardly increased
after intermediate task difficulty levels (in other words, both nearly pla-
teaued after K), H continued to increase with task load beyond working
memory capacity. This suggests thatH is more sensitive to neural processes
associated with task difficulty than with overt performance. Consequently,
by showing a neurobiological dissociation between cognitive effort and the
amount of information available for manipulation in workingmemory, our
results support the theoretical account of cognitive effort that distinguishes
it from information inworkingmemory. Inotherwords, there is adifference
between effort and working memory load and individuals can exert seem-
ingly “fruitless” cognitive effort.

Unlike α suppression, the differences in the task design of the two
experiments did not change the behavior of H with regards to task load.
Specifically, the differences in the experimental designs could test if
certain aspects of the tasks such as: (1) the inhibition of the distracting
information, (2) the number of internal representations, or (3) the
perception of items or their iconic memory traces is responsible for the
suppression of scale-invariance. In the Remember N experiment when
participants were cued to only remember one item, the other five items
on the screen were essentially distractors. If scale-invariance was pri-
marily driven by inhibition of irrelevant information, the relationship
between set size and H should have been in the opposite direction be-
tween the two experiments, since the greatest amount of suppression of
irrelevant information is required in set-size 1 trials in Experiment 1 (five
distractors) and set-size 6 in Experiment 2 (six distractors). If H was
modulated by the number of internal representations, its behavior would
be similar to α power (Foster and Awh, 2019), i.e., it would plateau
beyond ~3 items. Finally, if H was modulated by the visual display
imbalance between the different set sizes (or a form of iconic memory
trace), then we should have only seen a correspondence between
scale-invariance and set size in the whole-report task (Experiment 2) and
not in Experiment 1 since the number of items on the screen was constant
in Experiment 1 (6 items were always shown).

Importantly, the scale-invariance of EEG signals in our experiments is
a broad-band characteristic of the signal that is directly related to the
proximity of the brain to a critical state and was not driven by changes in
any particular narrow-band signal. Even though H is (anti)correlated
with narrow-band oscillations such as theta, alpha, and beta band power
of the EEG signal (see Supplementary Fig. S2), its relationship with task
difficulty was not driven by any of these specific narrow-band oscillation
correlates (regarding cognitive tasks modulating beta and theta oscilla-
tions see Engel and Fries, 2010; Sederberg et al., 2003). We demonstrated
this by applying CCA to investigate the correspondence between theta
(4–7 Hz) as well as beta (13–30 Hz) band powers of the electrodes with
the set sizes in both experiments similar to the analyses done for α and H.
Neither theta nor beta band powers mimicked H suppression’s relation-
ship with set size (see supplementary results: CCA for theta and beta
bands). Even though it is the case that one needs to examine the
broad-band signal to get the effects in the CCA analyses presented in this
study, it is important to make clear that we are not claiming that there are
no narrow-band analyses that can track task load levels; we are only
arguing that our H results here are not driven by a specific narrow band.
We think it is important to show that because our theoretical framework
is based on shifts in scale-invariance of brain activity and estimating
changes in brain state, and not on theories related to particular oscilla-
tory components.

While H is systematically reduced with task complexity, without a
measure of subjective effort, it is not clear that H suppression reflects
8

volitional effort. However, before moving on to discussion of alternative
accounts and counter arguments for them, it should be noted that part of
this work’s motivation is to argue for a different perspective on how we
could conceptualize cognitive effort based on deviations from default
scale-free brain states. In this view, we do not argue for loss of brain
criticality (H suppression) as a way of approximating subjective effort
ratings, rather we see H suppression and subjective effort rating as
complementary ways of observing an effortful state. As such, we think
that in the same way that physical effort or stress could be measured with
self-reported ratings or by more objective estimates (e. g. muscle and
cardiovascular load, and cortisol levels), cognitive effort as a latent
variable could also be evaluated through complementary but not
redundant measures including self-reported ratings of subjective effort
and/or measures of criticality in brain networks as quantified with H.
Nevertheless, it is highly important for future studies to examine the
strength of relationship between subjective cognitive effort and H sup-
pression of brain activity. For instance, previous studies have shown only
modest correlations between subjective and objective estimates of
physical exertion (Jakobsen et al., 2014), or stress (Van Eck and Nicolson,
1994).

There are some limitations and caveats in our study that should be
discussed. At the core of all of the limitations mentioned in the next three
paragraphs is the fact that we interpreted task complexity as being
directly related to cognitive effort in this dataset. While a more difficult
task does not necessarily guarantee the exertion of more cognitive effort
from participants, below we argue that it was likely the case in these
studies that participants exerted more effort with increasing task load.
However, future work, which includes subjective measures of effort will
obviate the need for post-hoc arguments.

First, the current studies were not designed to ensure that participants
were motivated to modulate their effort exertion as a function of task
load (e.g., through monetary incentives). In particular, one could argue
that participants did not behave differently between set size 3 and 6 trials
as reflected by equivalent performance levels between the two condi-
tions. To investigate this, we calculated the Hurst exponent from the
‘remember-3’ trials of the remember-N task in which participants were
able to remember 3 items (i.e., participants had to remember 3 out of the
6 presented items and they successfully did so; we refer to these as 3/3
trials), and compared these with the Hurst exponent from ‘remember-6’
trials in which participants were able to remember 3 items (i.e., partic-
ipants had to remember 6 out of the 6 presented items and they only
succeeded in remembering 3; we refer to these as 3/6 trials). This anal-
ysis was performed to directly assess that participants were, at the very
least, doing something different between remember 6 vs. remember 3
trials even when the amount of successfully maintained information was
exactly equal within the same individual with equated visual stimulation
(the number of presented items on screen is always 6 in this task). We
found a significant global (averaged over all electrodes) decrease in H in
the 3/6 trials (Mean ¼ 1.00, SD ¼ 0.151) compared to the 3/3 trials
(Mean ¼ 1.04, SD ¼ 0.136) within participants (paired t-test, t(24) ¼
�3.61, p < 0.01), suggesting that trials with extra to-be-remembered
items were treated differently by the participants in a manner that is
detectable with H suppression. We interpret this difference in H as a
cognitive effort signal, where participants were exerting more effort in
the 3/6 trials compared to the 3/3 trials because they were trying to
remember more items (i.e., they are supposed to remember all 6), but
they were unable to. It is important to reiterate that in both cases par-
ticipants stored the same amount of information, i.e., 3 items, and had
the same amount of visual information on the screen, i.e., 6 items.

Second, H suppression could be explained by other factors that scale
with task complexity but are not directly related to cognitive effort (i.e.
only indirectly related to cognitive effort). These factors could include
fear of failure or stress/anxiety (Cohen, 2011; Eysenck, 1985). First, since
success in the whole-report and the remember-N tasks is not binary, fear
of failure is less likely to be applicable to these tasks. For example,
achieving a performance of 3 is still partial success in a remember-6 trial.
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In that sense, there are very few complete failures in the task (i.e., par-
ticipants rarely get 0 correct). Second, we would argue that participants
were likely neither underperforming due to stress nor giving up due to
the extra task demands, since performance did not drop for the
“remember 6” condition compared to the “remember 3” condition in
either experiment (in both cases, people successfully recalled around 2.5
items). A potential caveat, however, is that there may be a cost-free form
of stress such that the increased stress is not detrimental to performance
but causes H suppression, hence H could be not scaling with effort but
with a cost-free form of stress.

One final piece of evidence to support our argument that H sup-
pression is related to cognitive effort as opposed to task difficulty or a
benign form of stress comes from its relationship with performance when
external task difficulty is held constant. We analyzed data from (Adam
et al., 2018) in which participants performed the whole-report task (same
as in Experiment 2) with the set size held constant at 6 items (see sup-
plementary section Repeated set-size 6 whole-report task for details). This
provided us with a larger sample size and enough trials to compare the
Hurst exponent in ‘lower’ performance trials (fewer than 3 items
remembered) with H in ‘higher’ performance trials (more than 3 items
remembered) within the same task difficulty level (i.e., all load 6). We
found that global H during the maintenance interval was lower for high
performance trials (Mean ¼ 1.02, SD ¼ 0.158) compared to low perfor-
mance trials (Mean¼ 1.16, SD¼ 0.185) within participants (paired t-test,
t(33) ¼ �5.27, p < 0.01). This relationship between H suppression and
performance within the same level of task difficulty suggests that
decreased H is likely related to exerting beneficial cognitive effort rather
than being a detrimental stress signal that we would hypothesize would
either hurt performance or not affect it at all.

Because of the limitations discussed above, future work will be
necessary to further delineate the relationship between subjective
cognitive effort, external factors like stress and motivation, and cognitive
load. Important future directions include: 1) having more levels of dif-
ficulty, 2) having other types of cognitive tasks, 3) recording self-report
measures of subjective effort, and 4) manipulating levels of reward to
alter motivation levels. Factors such as motivation, fatigue, stress, and
arousal could interact with both subjective effort and successful task
performance (Esterman and Rothlein, 2019), and it will be important in
future work to independently manipulate the contribution of each factor
to task performance and subjective cognitive effort. For example, higher
levels of motivation and/or lower levels of fatigue could increase the
participants’ tolerance for expending cognitive effort without greatly
affecting working memory capacity (see Bonner and Sprinkle, 2002;
Botvinick and Braver, 2015). Along these lines, previous research has
shown that self-reported fatigue due to physical burdens, such as
chemotherapy treatment and chemotherapy recovery, could disrupt
brain function in amanner that is unrelated to objective workingmemory
performance (Kardan et al., 2019). Moreover, such physical burdens in
this cohort have been shown to alter the scaling properties (i.e., H) of
fMRI timeseries (Churchill et al., 2015). To shed light on these issues, an
experimental design with multiple levels of task loads both below and
above working memory capacity could be fully crossed with low vs. high
reward conditions. In such an experiment, participant’s subjective effort
and motivation in some trials could be collected via infrequent experi-
ence sampling to be used in conjunction with the neural measures used
here. With this experiment one could test ifH suppression is 1) correlated
with subjective effort and 2) tracks more levels of task load beyond ca-
pacity for the high reward condition compared to the low reward con-
dition. In other words, if H suppression plateaus or decreases for high
task loads when motivation is low but increases (i.e., more H suppres-
sion) with high task loads when motivation is high, that would mean that
the H suppression model of effort is a robust indicator of effortful states
and that the maximum tolerance for H suppression is dictated by moti-
vation (unlike the maximum capacity of working memory).

In conclusion, we used the time scale-invariance characteristic of the
EEG signal (H) to dissociate visual working memory load from the
9

cognitive effort exerted for the task at hand. Our work further demon-
strates the utility of H as a neuromarker of cognitive effort. These results
have theoretical implications for research on motivation and cognitive
fatigue, as they support our theoretical framework of modeling an
effortful state as departures from the brain’s self-organized criticality at
rest. Additionally, we ruled out interpretations of cognitive effort that
equate it with the information in working memory by providing evidence
that scale-invariant brain activity can be suppressed further than in-
dicators of working memory load.
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