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Abstract:  Social computing is ubiquitous and intensifying in the 21st Century. Originally used to reference 

computational augmentation of social interaction through collaborative filtering, social media, wikis, and 

crowdsourcing, here I propose to expand the concept to cover the complete dynamic interface between 

social interaction and computation, including computationally enhanced sociality and social science, socially 

enhanced computing and computer science, and their increasingly complex combination for mutual 

enhancement. This recommends that we reimagine Computational Social Science as Social Computing, not 

merely using computational tools to make sense of the contemporary explosion of social data, but also 

recognizing societies as emergent computers of more or less collective intelligence, innovation and flourishing. 

It further proposes we imagine a socially inspired computer science that takes these insights into account as 

we build machines not merely to substitute for human cognition, but radically complement it. This leads to a 

vision of social computing as an extreme form of human computer interaction, whereby machines and 

persons recursively combine to augment one another in generating collective intelligence, enhanced 

knowledge, and other social goods unattainable without each other. Using the example of science and 

technology, I illustrate how progress in each of these areas unleash advances in the others and the beneficial 

relationship between the technology and science of social computing, which reveals limits of sociality and 

computation, and stimulates our imagination about how they can reach past those limits together. 
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Abstract:  The Chicago Array of Things (AoT) project, funded by the US National Science Foundation, 

created an experimental, urban-scale measurement capability to support diverse scientific studies. Initially 

conceived as a traditional sensor network, collaborations with many science communities guided the project 

to design a system that is remotely programmable to implement Artificial Intelligence (AI) within the 

devices—at the “edge” of the network—as a means for measuring urban factors that heretofore had only 

been possible with human observers, such as human behavior including social interaction. The concept of 

“software-defined sensors” emerged from these design discussions, opening new possibilities, such as stronger 

privacy protections and autonomous, adaptive measurements triggered by events or conditions. We provide 

examples of current and planned social and behavioral science investigations uniquely enabled by 

software-defined sensors as part of the SAGE project, an expanded follow-on effort that includes AoT. 
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1 Introduction: A New Approach to
Measuring Cities

In 2012, the City of Chicago announced plans to
replace 300 000 street lights with Light Emitting
Diode (LED) systems, potentially with sensors and a
wireless data network. To computer scientists developing
experimental sensor networks, this seemed to be an
opportunity to explore the potential for an urban-scale
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measurement system. What new science might be
possible with hundreds or even thousands of devices
deployed throughout a major city? What would scientists,
policymakers, community groups, or individual residents
want to measure? Would other capabilities be useful,
such as beacons for precise positioning or to provide
cryptographic tokens that would work with applications
to validate the location of a device at a particular
point in time or perhaps to design entirely new mobile
services and applications? Could we get a sense for the
volume and flow of people in public spaces by counting
Bluetooth devices? How would such a system publish
data in ways that would be useful not only to scientists
but also to students, educators, city managers, residents,
and businesses in the city? With these questions in
mind, we organized a series of workshops[1] including
both interdisciplinary and discipline-specific, asking
a common set of questions. In these workshops and
separate discussions, we engaged scientists as well
as city planners and managers from multiple City of
Chicago agencies and departments (transportation, parks,
building and fleet management, public health, and
information technology) and open data teams. Each
workshop began with a question: “if we could deploy
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some form of electronic device in hundreds of locations
throughout Chicago, what would those devices do to
help you answer the questions you are investigating?”

These and many other engagements identified two
broad classes of measurement: traditional measurements
(for which electronic sensors are available, such as
temperature or light levels) and what we termed
“observations”. For traditional measurements, the
workshops produced a list of several dozen sensors
including air quality (gases, particulate matter),
meteorology (temperature, humidity, and pressure),
vibration, sound, and light. For observations, suggestions
were based on measurements typically done infrequently
by human observers, either systematically, such as
counting vehicle or pedestrian traffic at intersections, or
through ad hoc mechanisms, such as residents reporting
street flooding.

What began as a sensor network project[2], then,
evolved into an intelligent measurement project
emphasizing new measurements that could be supported
with edge computing, in turn requiring Artificial
Intelligence (AI) and Machine Learning (ML) support,
or “AI-at-the-Edge”. In order to engage the broadest
community of developers and experimenters, this meant
using an open computing platform that would support
current and envisioned AI/ML software frameworks used
by those communities. The resulting system combines
traditional sensors with measurements that are defined
by the software interpreting those sensors (e.g., image
processing with a camera). We term this new type of
measurement system a “software-defined ” sensor[3].

We named the project Array of Things[4] (AoT)
combining the underlying technology approach,
leveraging technology trends in embedded computers
and wireless networks—or “Internet of Things (IoT)”—
with the strategy of deploying many identical detectors
aimed at the sky, as with an array telescope[5]. AoT
comprises individual devices, or “nodes”, focused on
the city, which some have also described as a fitness
tracker[6] for the city.

With systems deployed in over 130 locations
throughout Chicago (Fig. 1) and smaller pilot
deployments in other cities, AoT[7] and the underlying
platform, called Waggle[8], have catalyzed partnerships
between computer scientists (in particular, AI/ML
and computer vision experts) and researchers and
practitioners in fields ranging from transportation to
social and behavioral sciences to civil and environmental
engineering.

Fig. 1 Since 2016 over 250 AoT nodes have been installed,
including upgrades to existing locations. Shown here are 130
nodes in Chicago as of 2020. Map created with Google Maps.

In this paper, we discuss early, emerging, and
envisioned use of software-defined sensors providing
measurements for social and behavioral science
questions that were heretofore only possible with human
observers. Moreover, by removing the limitations of
human observation—chief among them is the need
to sample rather than continuously measure—an even
broader set of measurement opportunities can be
envisioned, including measurements across much larger
spatial and temporal scales. Indeed the advantage of
software-defined sensors is that one need not define all
possible measurements prior to building and installing
devices. Section 2 discusses AoT in context of deploying
an urban-scale intelligent measurement system, privacy
and ethics considerations, and how these along with
practical matters, such as installation, were coordinated.
Section 3 introduces the concept of software-defined
sensors, focusing on the application of software-defined
sensors to understand urban activity patterns and support
social and behavioral science investigations. Section 4
provides a brief overview of the underlying technology
platform and the associated software and hardware
architecture necessary to move from bespoke systems
like AoT to a more general-purpose user-programmable
experimental infrastructure. Finally, in Section 5, we
conclude with directions of future work, including the
current follow-on and expansion of the AoT project,
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SAGE: A Software-Defined Sensor Network[9], with
examples of the potential for increased autonomy in
software-defined sensors and for understanding, and
ultimately improving urban life.

2 Array of Things: A Research Instrument
in Public Way

Common sensor networks are relatively straightforward
to build and scale, but the AoT user community needed
both traditional sensor measurements and new types
of measurements—observations—that would require
edge computing capabilities. Sending images or video
streams to a central server for analysis would have
been cost-prohibitive for hundreds of locations, thus
it was necessary to process images within the devices.
Even if free network access was available, some
scientists requested programmable devices that could
process data and act on that data in some fashion—
in near-real time. For instance, experiments with
intelligent traffic controls coordinating with vehicles to
make instantaneous decisions. These factors—cost and
latency—ruled out doing all data processing on central
servers.

With each science workshop, the number of traditional
sensors accumulated, and atmospheric scientists (the
first workshop we held) emphasized that a multi-sensor
approach is essential given the need for the context
of each measurement. For instance, interpreting a
temperature reading requires knowing not just the sensor
characteristics but how and where that measurement
was taken. Was it under the shade of a building or
an oak tree? In the middle of a concrete parking lot?
Near a large body of water? Similarly, does an air
pollutant measurement come from a sensor in a park? At
a congested intersection? Near a factory? The need for
context to each requested measurement was reinforced
throughout our interactions with science communities,
leading to a device design with several dozen sensors
(Fig. 2).

2.1 Capability and scale

What scale would make sense for such an urban
measurement system? Tens of devices? Hundreds?
Thousands? Many traditional measurements, for
instance air quality, were at the time primarily done
regionally. In the area within roughly 50 miles of
downtown Chicago, there are only two dozen regulatory
air quality monitors, providing hourly readings for
criteria air pollutants[10]. Yet we know that air

Fig. 2 An AoT node. Computers, camera, and light
(Ultraviolet (UV), Infrared (IR), and visible) sensors are in
the blue enclosure; a cellular modem, camera, environmental
(vibration, sound, magnetic field, temperature, relative
humidity, and barometric pressure), and air quality (CO,
NO2, SO2, PM2.5, and O3) sensors are in the white enclosure.

pollution is highly variable over geography and time
in urban areas[11], with significant impact to human
health and behavior even on short timescales[12–14].
Hourly measurements representing hundreds of square
kilometers, while valuable for many studies, do not
offer the spatial or temporal resolution necessary to
understand factors such as the impact of traffic on air
quality in individual communities. Noise is another
environmental factor that impacts human health and
well being[15, 16], yet few cities have measurement
systems providing noise levels at all, much less
on a neighborhood scale. A notable exception is
New York University (NYU)’s Sounds of New York
City (SONYC[17]), which involves over 100 sound
sensors in selected neighborhoods. Many cities, Chicago
included, also have microphone-based systems that
detect gunshots and use trilateration to locate the source
of the sound, but these are special-purpose, closed
systems that do not measure other sounds.

Equally important to the overall system architecture
was the continuous improvement of low-cost
components including sensors, processors, storage,
and communications. We thus targeted a roughly
2-year life span for the systems, expecting to replace
them with upgraded systems. Consequently, while the
selection of particular sensors and other components
was important, the more central objective was to develop
the underlying software, protocols, management tools,
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data management and access capabilities, and device
deployment partnerships and strategies, that could
support multiple generations of devices[4].

2.2 Creating an urban-scale “laboratory”

Although AoT was primarily a technology prototyping
effort to explore the feasibility of an urban-scale
measurement instrument, embedding such a system
in the public way required partnerships with local
government and the residents of the city. We worked
with Mayor Rahm Emanuel’s office to include the
concept of such an instrument in the city’s 2013
Strategic Technology Plan[18, 19]. In addition to science
and stakeholder partnerships, policies and governance
structures were needed along with a feasible and
affordable plan to install and communicate with
hundreds of devices in the city. Devices had to be
prototyped, stress-tested for outdoor harsh conditions,
packaged, and mass-produced. The architecture had
to be reasonably secure with respect to cyber (e.g.,
Internet-based) or physical threats. Mechanisms were
also required to provide data to a diverse audience
of scientists, policymakers, and residents. We briefly
describe these topics below, and they are covered in
much greater detail in Refs. [4, 8].

Placing scientific instruments—particularly those with
cameras and microphones—in the public way required
taking initiative to engage residents and community
groups on issues such as privacy and governance. At
the same time, a shared objective between the project
team, the National Science Foundation (NSF) and the
City of Chicago was to stimulate interest in science
and technology among Chicago’s youth. This suggested
that the devices should be visually conspicuous, inviting
curiosity or even engagement. To this end, the physical
form and appearance of the nodes were explored with
artists, designers, and behavioral and social scientists.
Although some behavioral science research suggested
that the appearance of the devices would have an impact
on behavior[20], this was not an objective for the project.
The goal of the bright and inviting design was to draw
attention and ideally foster a sense of ownership by using
the blue and red colors similar to Chicago’s city flag[21].
To explore the design options, faculty members from
the School of the Art Institute of Chicago created a
special course for masters of fine arts students in fall
2013. Students developed multiple prototypes in and
around the University of Chicago, leading to the design
shown in Fig. 2[22].

To engage residents and community groups, we
partnered with the Smart Chicago Collaborative[23], now
part of the CityTech Collaborative[24]. Smart Chicago’s
mission is to engage residents, especially youth, to
leverage technology to improve lives in Chicago. The
Collaborative worked with our team and Chicago’s
Department of Innovation and Technology to organize a
series of open public town halls in different Chicago
neighborhoods where residents were briefed on the
project and its objectives, with open discussion regarding
their interests and concerns.

2.3 Ethics, privacy, and policy

Many private entities, such as businesses and even
universities, have live cameras in and around their
property, including those trained on public spaces (e.g.,
sidewalks in front of a café). Because AoT involved
partnership with local government and installation
of devices with cameras on public infrastructure,
residents would understandably have concerns about
potential government surveillance. Anticipating this, we
begin the public dialog well in advance of deploying
systems, presenting the concept to Chicago’s civic
data community at the weekly ChiHackNight[19, 25].
These weekly gatherings draw hundreds of people
who are active in civic data analytics in support of
open data and transparent government. The ensuing
discussions, including both skeptical and supportive
media coverage, helped to guide subsequent and ongoing
public engagement activities.

At the time (2014), we found no examples of
published privacy policies regarding public cameras.
The prevailing view from ethics and privacy law experts,
as well as the University of Chicago’s Institutional
Review Board (IRB) confirmed that there were no
ethical or legal restrictions on capturing images in
the public way given there is “no expectation of
privacy”. However, a central goal of the AoT project
was to provide open data about the city for use by
students, scientists, businesses, the city, and the general
public. Thus we collaborated with Trusted CI, the
NSF Cybersecurity Center of Excellence[26] to develop
privacy and governance policies. With drafts in hand,
we convened experts from academia, industry and
government privacy law, and privacy advocacy groups
including the Electronic Frontier Foundation (EFF) and
American Civil Liberties Union (ACLU) to review and
improve the policies. A subsequent series of public
town halls, along with online feedback and discussion
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forums, were used to improve and finalize the AoT
privacy policies and governing principles[27]. After a
six-month public comment period, the policies as well
as all questions and concerns with responses from the
team, were published in early 2016, prior to the first
installations.

Here, edge computing and software-defined sensing
also provide a means for stronger privacy protections
than traditional camera networks, which transmit
and store all images, because all of the images are
analyzed within the node and then deleted, in contrast
to being sent to central servers for processing (and
saving). Moreover, a list of all image and sound
processing functions and associated research objectives
are maintained at the AoT website, thus publishing the
exhaustive list of what is done with images, rather than
a list of prohibited uses (implying an infinite number
of other potential uses). AoT nodes only save sample
images—typically one every fifteen minutes—which
are kept in a protected repository for research use only.
Access to this library of images, necessary for training
AI/ML algorithms, is provided to academic researchers
under a data use agreement that defines the specific
intended use and prohibits, for instance, publishing
any images with visible identification, such as faces or
license plates.

All of these training images are owned by the
University of Chicago, and the nodes are managed and
operated by the University of Chicago and Argonne
National Laboratory. The City of Chicago provides
power and installation services, but the city has no
special access to the limited volume of training images,
which are only available for scientific research within
the data use agreement.

2.4 Practical matters

A common question early in the AoT project was
“how will you decide where to place AoT nodes, with
only a few hundred nodes and a city of nearly 600
square kilometers?” Through the policy discussions
noted above, a rubric was developed for node placement,
requiring three factors. Firstly, it is essential that
residents are interested in an issue for which AoT devices
can provide relevant data, such as air quality, traffic
safety, or noise. Secondly, one or more scientists must
be interested in using AoT data to study that issue.
Thirdly, a representative from local government, such
as a commissioner or department head, must share
the interest in understanding and potentially acting on

the insight from scientific analysis of AoT data. In
some cases, the locations were suggested by scientists
as illustrated by the line of nodes along the 18-mile
shoreline of Lake Michigan in Fig. 1, which is intended
to support the study of lake-effect on air quality and
weather. In other cases, locations were requested by city
officials. For example, Chicago’s Vision Zero safety
program[28] requested nodes in the forty intersections
and corridors with the greatest number of traffic-related
fatalities. In at least a half dozen instances, the requests
came from residents or community groups (for example,
a school crossing guard concerned about illegal heavy
truck traffic).

Most nodes were installed by the Chicago Department
Of Transportation (CDOT), and discussions regarding
electrical safety and ease-of-installation began with
CDOT electricians two years before the first installation.
In addition to electrical safety reviews, this collaboration
led to design changes to streamline installation in order
to enable crews to swap (i.e., upgrade) units in under
15 min—roughly the time it takes to change holiday
decorations.

The most common AoT installation is on a traffic
signal light pole, roughly 8 m above the sidewalk,
with the unit (and thus the downward-facing camera)
facing the center of the intersection (see Fig. 3). In
most cases, this provides a field of view covering the
entire intersection including sidewalks and crosswalks.
Additional partners also installed nodes, including
Crown Castle Communications and ComEd/Exelon.
AoT nodes have dedicated electrical circuits to reduce
the possibility of being confused with operational traffic
signal systems during routine city maintenance work.
Though not legally required, AoT nodes were also tested
for susceptibility to power surges and for radio frequency
emissions to provide evidence (if requested) that the

Fig. 3 A typical view from an AoT camera showing object
recognition results from edge software.
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devices would not interfere with other services.
Corporate partners also participated in the project.

Intel designed, developed, and prototyped the air
quality sensor board; Cisco and Schneider Electric
brought engineering insight into packaging electronics
for outdoor installation; AT&T provided initial cellular
data service; and Microsoft prototyped an education
portal for students to analyze AoT data.

3 Software-Defined Sensors for Urban
Social Sciences

AoT introduced new capabilities for measuring the
urban environment, with rudimentary software-defined
measurements, such as river water levels, cloud
cover, or pedestrian and vehicle flows (e.g., Fig. 4).
The AoT devices—still used today to develop such
measurements—nonetheless have very limited edge
compute capacity relative to what is available now, four
years after the first units were built. AoT is now one
of several measurement instruments, or observatories,
participating in the NSF-funded SAGE: A Software-
Defined Sensor Network project[29]. Below we discuss

Fig. 4 Software-defined sensor to measure crosswalk usage.
Images courtesy P. Bharti, D. Koop, and M. E. Papka,
Northern Illinois University.

the SAGE project, the basics of software defined sensing,
and applications in social and behavioral sciences.

Fundamentally, AoT is a distributed system of
independent computing and sensing devices with a
central service (as detailed in Section 2) to publish
measurements. Such a system allows for software-
defined sensors—measurements defined by software
running within the nodes based on analysis of data from
the node’s sensors, including cameras, microphones, etc.
SAGE builds on lessons learned from AoT[7] to extend
the Waggle platform in several directions. The first is
a modular design to support independently developed
(or purchased) sensor packages, commercially-packaged
cameras, and edge processing functions. Thus, different
projects can develop or purchase commercial sensor
packages necessary for their investigations. The second
involves extensions to the software infrastructure to
enable scientists to develop, test, and deploy edge
functions as discrete modules, similar to the virtual
machines that can be developed, managed, and operated
as units in cloud services, such as Amazon Web Services.

3.1 SAGE: Cyberinfrastructure for software-
defined sensing

With today’s edge computing power, scientists can
design software-defined sensors ranging from image
processing (e.g., count the number of people wearing
face masks) to fully autonomous behaviors, such as
to learn what are “typical” values for measurements
and increase the sampling rate when atypical events
or conditions are detected. For example, if the typical
pedestrian count at 3 am is fewer than 5 people but 50 are
detected, an autonomous software defined sensor could
begin to analyze the aggregate movements of the crowd
to determine the nature of the gathering.

For AoT, the significantly increased edge computing
power of SAGE nodes will enable more nuanced
measurements heretofore requiring trained human
observers. These will in turn catalyze new research into
human interactions in public spaces, such as not only the
trajectories of people moving through a public square,
but how those movements are influenced by other people
and groups. Combining these visual analyses with
sound analysis capabilities[30], researchers can begin
to explore whether it is possible to determine stress,
depression[31], fear, or social cohesion[32] from ambient
measurements of human movement. For example, speed
or gait measurements—extrapolating from nonhuman
animal research[33–35] and also from research on the pace
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of life and movement in cities[36, 37]—could be used to
measure individual and group level factors (e.g., mood,
stress, and neighborhood cohesion). Auditory data,
such as the volume and pace of speech[38, 39], as well
as physical activity, exposure to human voice, ambient
audio amplitude, phone usage, and location data[40],
could also be used to further elucidate specific features of
people in these spaces to predict their internal emotional
states.

The central objective of the AoT and SAGE software-
defined sensor work is to provide a platform with
which scientists can define these and other new
types of measurements about the urban or natural
environment. For instance, new protocols, such as the
Gehl Institute’s Public Life Protocol[41] for measuring
the use of public spaces, are ideal for implementing
via software-defined sensors. The work of a computer
science team at Northern Illinois University (NIU)
shown in Fig. 4 demonstrates exactly the kind of
software-defined measurements necessary for the Gehl
Public Life Protocol. Similarly, these types of new
measurements are needed in order to explore the impact
that different urban and natural environments have
on cognitive performance[42, 43] or more generally how
urban morphology affects human decision-making[44].

3.2 Observation with computer vision

Computer Vision (CV) systems seek to obtain high-
level information from digital images or video. A
computer vision technique may produce numerical
or symbolic information, e.g., there are 6 cars, or,
this is a coyote, not a dog. CV has been an active
area for computer scientists since the 1960s, and

includes tasks, such as object detection and recognition,
event detection and recognition, motion tracking, and
3D scene reconstruction. Many techniques have been
developed using geometry, physics, statistics, and
signal processing (electrical engineering), but recent
CV systems often rely heavily on ML. These ML-
based approaches have outperformed earlier methods
for many tasks, especially object/event detection and
recognition. Object recognition or object classification is
the task of identifying that the image contains a specific
object (from a set of possible objects). Similarly, event
recognition is applied to video to classify the video into
one of a set of pre-specified activities (e.g., person is
playing guitar, brushing teeth, etc.). Tracking involves
locating the same object in a sequence of images (or
video). While object recognition could be applied in
every image of the sequence, more effort is involved to
“connect” the object across images. For example, if two
people cross by each other, simply recognizing that there
are two people is not sufficient. Tracking algorithms
typically also use various techniques to measure the
similarity between objects across images in the sequence
and assign unique IDs to objects, as is illustrated in
Figs. 3 and 4, which shows the output of a tracking
approach to record movements of pedestrians.

Computer vision techniques can thus be developed
to address a large variety of applications. For example,
object recognition could be used to recognize animals
and measure occurrences of urban wildlife. AI-based
methods in CV can also classify images along axes, such
as natural-vs-built or ordered-vs-disordered (Fig. 5). CV
might improve traffic control by adjusting traffic signal
timing to improve flow. Likewise, CV methods could

Fig. 5 Use of AI to extract straight edges (magenta) and curved edges (green) from scenes for characterization of different
features of the scene (e.g., more ordered vs. more disordered[45–48] as well as providing privacy protection). Figures adapted
from Ref. [49].
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make it straightforward to understand, for instance, the
impact of at-grade rail crossings on different types of
roadway traffic. By recognizing and counting the number
of types of vehicles (public transit, private, emergency,
etc.) affected by an at-grade rail crossing, decisions can
be made as to which crossing should be prioritized for
replacement with under- or over-passes.

Pedestrians interact in a variety of ways that can be
observed even from a distance. Observing pedestrians,
isolating individual bodies in motion, and tracking this
motion in space as just described can yield information
about body velocity and acceleration, distribution of
spatial distance among bodies, and collisions. These
basic measures could be used, with an appropriate
ground-truth database of motion-related to behavior, to
infer social relationships among the bodies. For example,
a group of bodies sharing velocity with a defined
spatial distribution would constitute a group. Vectors
for different groups that come together or have different
trajectories could form an observational basis for
inferring social relationships among groups. Similarly,
two vectors for individuals coming together and stopping
before collision could serve to make inferences about
a social interaction between individuals. To the extent
that the major axis of a body can be observed, some
aspects of posture or body inclination can be classified
and possibly serve as the basis for inferring more
about the nature of the social interaction (see Fig. 6).
Similarly, sound recording, if sufficient to capture speech
envelope information of proximal pedestrians, could
be used to model the prosodic aspects of pedestrian
speech. Combined with spatial vector modeling of
motion and body inclination, these observations could
provide the first naturalistic measurements of real-life
social interaction including the affective tone of the
communication.

In principle, this information could be used as the
basis for classifying the nature of the social interaction.
Are groups or individuals that come together interacting
in a positive or negative way? How does the frequency of
such interactions vary with environmental, sociological,
and cultural factors? Is it possible to predict an adverse
or threatening interaction from the trajectory of motion
of a group or person prior to the interaction? Does the
prediction based on particular motion parameters change
based on heat index, air quality, proximity of green
space, Social-Economic Status (SES), neighborhood
crime statistics, or population diversity? By observing
pedestrian movement at street level, measuring sound

Fig. 6 Use of edge computing in Ref. [53] to detect a
pedestrian crossing during a red-light (top) and analyze body
language (bottom). Images courtesy of Potdar and Torrens,
used with permission.

properties and spatializing those to particular pedestrians,
and combining these visual observations with acoustic
measurements, it is possible to address a large number
of questions about social interaction including physical-
social interaction within and between different social
groups, such as race or SES, or amongst friends
and strangers. Although previous research has used
certain physical observations of individuals, such as gait,
proximity, and speech envelope, as markers of social
interaction, most of the prior work has taken place in
laboratory settings. While individuals in these studies
have been characterized by group membership (race,
SES, age, etc.) or relationships among group constituents
have been characterized (friends or strangers, same or
different races, same or difference SES, etc.), SAGE
software-defined sensing capabilities offer the possibility
to make these observations in the wild, in natural
environments, and at unprecedented scales, thereby
increasing the power of data to address fundamental
questions about behavior, mind, and society.

Observation of human location distributions has also
been used as the basis for inferences about behavior,
particularly in combination with other sources of data.
For example, predictive policing[50] has used statistical
distributions of crime locations and event data to predict
crime hotspots. In other words, criminal behavior is
predictable from past behavior-history data. But of
course this only predicts behavior probability and
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collecting such statistics is coarsely limited to the grain
of reporting. Using geotagged Twitter data can provide
more specific location and movement information[51],
but activities that are not fully Twitter-reportable (e.g.,
crime or just a chance social interaction) will not be
observed. Direct street-level physical movement can
augment such information and potentially provide, on
the basis of observed movement trajectories information
about the nature of the social interaction. Meng et al.[52]

used ego-motion from body mounted cameras to show
that physical body movements of different kinds have
different spectra. Although the egocentric motions
of looking and turning may not be easily detectable
from a third-person camera observation, small steps,
walking, and running have discernible spectra. This is
clear evidence that SAGE should support recognition
of aspects of motion trajectory and characteristics of
movement from an analysis of the visual record. Further,
Potdar and Torrens[53] showed that it is possible from
a street-level third-person camera to determine aspects
of pedestrian behavior, such as crossing a street at a
red light (Fig. 6). While the kind of modeling of limbs
that can be carried out shown in Fig. 6 from a street-
level view is not possible from a bird’s eye perspective
above the street, other inferences can be made. Hands
moving in front of the body, body changing orientation,
and bending will be observable. From these images, it is
possible to infer aspects of face-to-face social interaction
when taken together with changes in movement allowing
the possibility of classification as confrontation, greeting,
or conversation.

4 Underlying Technology: Waggle Platform

Ultimately, all of these software-defined sensor
applications require a robust, programmable platform
installed outdoors. Here we describe the Waggle
platform. Designing a device to support edge
computation and associated challenges, such as
packaging for severe weather conditions, increases
device complexity and requirements for security and
resilience. The edge computers must be well-secured
and require a high level of resilience, with the ability to
recover from common types of hardware and software
failures without physical intervention as they are
typically located beyond convenient reach on city poles
and buildings. When the AoT project was conceived, no
commercial devices provided the functionality defined
by scientific input from an expanding science and

education community[54]. A hardware/software platform
was necessary to support edge computation, reliable
data transmission, and protocols for keeping track of
continual streams of sensor readings from hundreds of
nodes. The Waggle platform that the team had begun
to develop at Argonne National Laboratory provided a
starting point.

We have elsewhere described the architecture and
details of the Waggle platform[8], which employs special-
purpose resilience and recovery hardware and software,
foundational architecture features to minimize security
vulnerabilities, and open protocols for communication,
management, and data publication. Designed to support
remote sensing, Waggle borrows its name from the
elaborate dance that honeybees perform to communicate
with the hive regarding the location of food sources[55].
Naturally then, the central servers that support AoT and
SAGE nodes are collectively called Beehive.

4.1 Platform at the edge: What is a node

AoT nodes comprise both computing and sensing
hardware, and are programmed to report all sensor
values at specific intervals (typically 30 s), transmitting
these to a central database (discussed below). Each
node has sensor packages (see Fig. 2), communications
(typically a cellular modem, though WiFi and other
options have been used in other Waggle projects), and
two fully programmable Linux computers. Because
they are typically installed high on utility poles or in
remote locations that make physical access impractical,
Waggle nodes include multiple hardware and software
components to enable recovery from common faults
(e.g., a power or network outage) without human
intervention.

One of the Linux computers functions as the “node
controller”, which performs system functions, such
as data integrity checking, reading simple sensors,
reporting data, and managing security and reliability.
The node controller is only accessed by system support
staff. The second Linux computer is used as an “edge
processor”, which runs user-provided software for
analysis of images, sound, and other sensor data.
Software running on the edge processor is reviewed to
ensure its functionality aligns with its description and
that it complies with privacy policies. This includes a
specification of what data will be recorded and reported
with other sensor data. User software running on the
edge processor has no way to transmit data—it places
data into a common data cache for the node controller to
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validate and transmit to the central database.

4.2 Waggle Beehive: Data and management

All AoT nodes (and Waggle nodes in other projects)
regularly transmit sensor readings, data from software-
defined sensors (e.g., the number of vehicles seen in
the past reporting interval), and internal management
data for system administration and troubleshooting.
Three central services are collectively called “Beehive”.
A registration service manages node registration,
secure credentials, and a database with node manifests
(node-specific data, such as location, street address, and
sensor hardware configuration). A management server
maintains encrypted (node-initiated) connections to
nodes along with information and tools for maintaining
software updates and configuration data. The third
service is a parallel database scalable to support
thousands of concurrent node connections for reporting
data. At each reporting interval, each node sends a set
of sensor readings. After injection into appropriate
databases, the sensor data are decoded, processed, and
exported as comma-delimited text. Each line includes
a node identifier, date and timestamp, metadata (such
as the sensor board, firmware version, and exact part
number of the sensor), and the raw data read from
the sensor (typically a voltage or current level). Each
line also includes the converted value of the raw
reading in appropriate units, such as temperature, light
levels, or sound pressure. With some sensors, this
conversion is a simple mapping while others involve
sensor-specific calculations, in some cases including
data from other sensors. For instance, some gas sensors
are temperature-sensitive or cross-sensitive to multiple
gases, thus conversion requires temperature data and
data from other sensors. For software-defined sensors,
the metadata include information to enable data users to
examine the software used to create the measurement.

The Beehive database does not provide access directly
to external users, but rather uses a periodic data push to
provide data through two public-facing services. First
is a data download service. Every 24 h all data are
exported to a bulk download server, where users can
download bundles ranging from a single day to all
data from the first installations in 2016. Downloads
include instructions and additional information, such
as where to find sensor data sheets and how to map
a node identifier to a geographic location. Waggle
supports multiple “projects” so that, for instance, the
Chicago AoT nodes and associated data services are

distinct from those associated with deployments in other
cities or deployments by other scientific teams, such
as environmental sensing projects. Secondly, Beehive
supports the AoT Application Programming Interface
(API)[56] by exporting data to a process that caches data
and handles API calls in Amazon Web Services. With
a latency of 3–5 min from measurement to availability
(not real-time, yet relevant for questions about what is
happening “at the moment”), the API supports mobile
applications and integrating AoT data into other data
systems.

4.3 Security

Primary node security risks identified through numerous
security reviews are (1) service disruption and (2) the
introduction of unauthorized functions, such as the
use of the cameras and microphones for surveillance.
These threats typically involve unauthorized access. To
reduce the potential for unauthorized access, Waggle
nodes have no software enabled to “listen” for, and
thus respond to, any network connection requests (even
from system administrators). This requires that the nodes
operate autonomously, initiating an encrypted Internet
connection back to the central servers to enable remote
access for management functions discussed above.

5 Conclusion and Future Work

In discussions with social scientists seeking to
understand cities, two challenges seem to recur. The
first is that experiments in laboratory settings are very
difficult to conduct “in the wild”, that is, in natural
urban settings. For instance, multiple studies show
that people tend to sit near others who look like
them[57], yet does this hold true with the movement of
people in public spaces? Are such principles limited
to seating in some contexts (e.g., a classroom) but not
others (e.g., on public transit)? Physical distance and
interpersonal movement have been used in relatively
restricted settings as measures of social interaction and
attitudes. Instrumenting public spaces with software-
defined sensors opens the potential for testing these
hypotheses in the real world, in natural human movement
and interaction, and provides an important basic test
of the interpretations of these findings. A second
challenge identified is a paucity of opportunities for
repeatable experiments, for instance to examine social
interaction theories in similar public venues across cities
of different populations and densities, cultures, climates,
or topology.



24 Journal of Social Computing, September 2020, 1(1): 14–27

To address the first of these challenges, a SAGE
laboratory is being deployed at the University of Chicago
in collaboration with its Environmental Neuroscience
Laboratory[58]. In order to interpret pedestrian motion
vectors, spatial distribution, postural inclination, and
acoustic properties of vocal behavior including speech,
it will be necessary to develop a database of defined
measurements. Firstly, from large scale data collection
with SAGE software-defined sensors, over a broad
range of pedestrian behaviors and interactions at street
level, after computing motion, spatial distribution, and
acoustic properties, multivariate statistical classification
of observations will yield sets of categories that can
be reviewed by human researchers. Taking examples
from each category, researchers can review and code
these examples for inferred social behavior (commercial
transaction, friendly greeting, threat, social affiliates
walking together, etc.). The reliability of this coding,
given software-defined observations, can be assessed
over the database. It will be important to have raters
come from diverse backgrounds and experiences to
reduce bias in the labeling. In fact, similar assessments
will need to be made on the initial training data to
ensure that we obtain a representative sample of social
interactions to avoid bias. Secondly, for a subset of
locations with SAGE nodes installed, higher resolution
instrumentation at ground level can produce a “ground-
truth” database that can be used to validate the coding
of the social interaction categories. The coding of the
high resolution audio-video recordings at ground level
can be registered against the coding of the software-
defined observation data, making it possible to test the
validity of the classifications against the ground-level
data. This strategy is being used in an installation at
Argonne National Laboratory to improve vehicle type
recognition. Traditional training images for vehicle
type are taken from ground-level rather than from 8 m

above, thus images from both vantage points are used to
improve the accuracy of vehicle recognition from such
angles.

For the second challenge—repeatable experiments—
the SAGE team is exploring the potential for a
collaborative, multi-city instrument—a set of software-
defined sensor deployments in common venues (e.g.,
a marketplace, public park, or rail station) across a
diverse set of cities in order to support these types of
investigations (Fig. 7).

Ultimately, software-defined sensing infrastructure,
which SAGE is developing, allows for the creation of a
new kind of social science laboratory. At any location,
in any city, where SAGE nodes are installed, it will be
possible to “stage” specific kinds of social interactions
(with or without ground-level recording). Confederates,
such as actors, can meet, travel in groups, or interact in
various “staged” ways as another means of producing
“ground-truth” data. These interactions, recorded in
high-resolution and through SAGE nodes, can be
coded as prototypes for categories of social interaction.
Similarly, such a laboratory would allow researchers
to set up experimental situations using human subjects
who are not confederates, that is, participants who
are not explicitly instructed to behave in particular
ways, but who are participants in studies designed
to elicit different kinds of behavior, such as helping,
challenging, greeting, ignoring, etc. These participants
would not know the purpose of their behavior when
acting, but would be primed to act in a specific way
by virtue of context or expectations. In this way, it
will be possible to elicit more natural social interaction
behavior than explicit instruction to actor-confederates
to further validate the classification of social interactions.
We have described the origins and development of
software-defined measurement systems to support new,
diverse scientific questions, focusing here on social and

Fig. 7 SAGE social and urban science partners are exploring a network of software-defined sensor deployments at common
venues in diverse cities (for example, public parks in (left-to-right) New York City, Chicago, San Francisco). Images from
Wikimedia Commons, used without modification[59].
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behavioral sciences.
Fueled with significant advances in AI/ML hardware

and software capabilities, the underlying objective of
this work is to empower domain scientists to “define”
the measurements they require. To this end, the SAGE
project is focused on supporting teams of AI/ML
and domain scientists developing their own software-
defined functions, and on providing a general-purpose
platform, Waggle, that allows such teams to focus on
measurements required for scientific insights without
first having to design and build bespoke instrumentation.
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