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a b s t r a c t 

Neuroimaging research frequently demonstrates load-dependent activation in prefrontal and parietal cortex dur- 
ing working memory tasks such as the N-back. Most of this work has been conducted in fMRI, but functional 
near-infrared spectroscopy (fNIRS) is gaining traction as a less invasive and more flexible alternative to measur- 
ing cortical hemodynamics. Few fNIRS studies, however, have examined how working memory load-dependent 
changes in brain hemodynamics relate to performance. The current study employs a newly developed and robust 
statistical analysis of task-based fNIRS data in a large sample, and demonstrates the utility of data-driven, multi- 
variate analyses to link brain activation and behavior in this modality. Seventy participants completed a standard 
N-back task with three N-back levels ( N = 1, 2, 3) while fNIRS data were collected from frontal and parietal cortex. 
Overall, participants showed reliably greater fronto-parietal activation for the 2-back versus the 1-back task, sug- 
gesting fronto-parietal fNIRS measurements are sensitive to differences in cognitive load. The results for 3-back 
were much less consistent, potentially due to poor behavioral performance in the 3-back task. To address this, a 
multivariate analysis (behavioral partial least squares, PLS) was conducted to examine the interaction between 
fNIRS activation and performance at each N-back level. Results of the PLS analysis demonstrated differences in 
the relationship between accuracy and change in the deoxyhemoglobin fNIRS signal as a function of N-back level 
in eight mid-frontal channels. Specifically, greater reductions in deoxyhemoglobin (i.e., more activation) were 
positively related to performance on the 3-back task, unrelated to accuracy in the 2-back task, and negatively as- 
sociated with accuracy in the 1-back task. This pattern of results suggests that the metabolic demands correlated 
with neural activity required for high levels of accuracy vary as a consequence of task difficulty/cognitive load, 
whereby more automaticity during the 1-back task (less mid-frontal activity) predicted superior performance on 
this relatively easy task, and successful engagement of this mid-frontal region was required for high accuracy 
on a more difficult and cognitively demanding 3-back task. In summary, we show that fNIRS activity can track 
working memory load and can uncover significant associations between brain activity and performance, thus 
opening the door for this modality to be used in more wide-spread applications. 

1

 

m  

s  

e  

i  

t  

r  

2  

w  

m  

b  

r  

d  

l  

g  

h
 

s  

h
R
A
1
(

. Introduction 

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging
odality that has gained traction in recent years due to its versatility to

tudying brain activity in realistic natural environments. Compared to
lectroencephalography (EEG) and functional magnetic resonance imag-
ng (fMRI), fNIRS is more robust to motion artifacts and environmen-
al noise, making it an increasingly popular method for studying neu-
al activity outside of standard laboratory experimentation ( Pinti et al.,
018 ; Yücel et al., 2017 ). fNIRS uses light spectroscopy at near-infrared
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avelengths to measure the same cerebral metabolic changes that are
easured using functional MRI ( Buxton, 2010 ; Huppert et al., 2006 ). In

oth methods, the measurements taken are metabolic proxies for neu-
onal activity. When neural activity increases, so does the metabolic
emand, leading to increased blood flow in the surrounding vascu-
ature. This blood flow causes an increase in concentrations of oxy-
enated hemoglobin and a decrease in concentrations of deoxygenated
emoglobin ( Buxton, 2013 ; Huppert et al., 2006 ). 

Historically, many of the typical fNIRS study paradigms and analy-
is techniques mirrored those of task-based fMRI. The vast majority of
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xisting fNIRS studies involved initial data preprocessing (i.e., down-
ampling, bandpass or wavelet filtering, motion correction), before be-
ng converted into oxyhemoglobin (HbO) and deoxyhemoglobin (HbR)
oncentrations ( Huppert et al., 2009 ; Scholkmann et al., 2014 ). A gen-
ral linear model was then applied to create contrasts in HbX changes
etween task conditions or between task and rest ( Cooper et al., 2012 ;
inti et al., 2018 ; Scholkmann et al., 2014 ). However, it was recently
emonstrated that these typical approaches overall fail to account for
pecific statistical properties of the fNIRS signal, and in doing so, in-
ate the false positive rate of reported results ( Barker et al., 2013 ;
uppert, 2016 ). 

Due to these issues, new analysis methods have been developed to
ccount for these specific statistical properties of fNIRS. By applying
re-whitening to the linear model to reduce noise correlations and using
obust regression to down-weight statistical outliers, these methods per-
orm better on sensitivity-specificity analyses and show better control of
ype-I errors ( Barker et al., 2013 ; Huppert, 2016 ; Santosa et al., 2018 ).

ith proper statistical analysis to account for these unique noise proper-
ies, fNIRS provides an increasingly rigorous method of neuroimaging.
urthermore, the cost-effectiveness of fNIRS allows for larger sample
izes than in fMRI, lessening the risk of failures in replicability due to
mall samples ( Turner et al., 2018 ). 

One of the more well-studied effects in fMRI and fNIRS is that
f cognitive load-dependent changes in frontal and parietal cortical
egions ( Cui et al., 2011 ; Fishburn et al., 2014 ; Herff et al., 2014 ;
encarelli et al., 2019 ; Owen et al., 2005 ). That is, neural activity

n these regions increases with more cognitively taxing and difficult
asks. Typically, this is achieved by increasing the number of items
eeded to be stored in working memory in a task requiring sustained
ttention, as in the N-back task ( Conway et al., 2005 ; Kirchner, 1958 ;
wen et al., 2005 ). In an N-back task, participants are required to com-
are a current stimulus to a stimulus presented N items back during
ontinuous presentation. This N may be manipulated (typical values in-
lude N = 0, 1, 2, or 3), thus indicating the number of items in work-
ng memory. While some previous fNIRS studies have shown linear in-
reases in frontal activation based on N-back level ( Ayaz et al., 2012 ;
ishburn et al., 2014 ; Kuruvilla et al., 2013 ), several others have found
on-linear effects (i.e., activation that does not follow the pattern of 3-
ack > 2-back > 1-back > 0-back; Aghajani et al., 2017 ; Mandrick et al.,
016 ). In cases of non-linear increases in activation with greater task
emands, researchers have proposed that participants may simply dis-
ngage from tasks that are too difficult ( Causse et al., 2017 ). It has also
een posited that once participants reach a maximum level of cortical
ctivation during a demanding (but achievable) task, no additional neu-
al “output ” can be tapped into to perform well on an even more difficult
ask ( Mandrick et al., 2013 ). 

While these discrepancies are attributed to performance-based limi-
ations on very demanding tasks, not all studies have attempted to ex-
licitly link the load-dependent activation results to task accuracy, and
hose which did have yielded mixed results. For example, in a study by
ausse et al. (2017) , correlations were conducted between fNIRS activity
HbO concentration change) and performance at different levels of task
ifficulty in three tasks: a spatial working memory task, an executive
unction task, and a flight simulator. To simplify the analyses, the re-
earchers created average activation across experimenter-specified ROIs
nd collapsed across multiple levels of difficulty in the 3 tasks in order
o decrease the number of potential correlations to 18. In that study,
hey only found one significant correlation between performance and
NIRS activity under high levels of difficulty on the executive function
ask. A study by Matsuda & Hiraki (2006) examined fNIRS activity in
he dorsal PFC while older children and adolescents (7–14 years) played
ither a puzzle or fighting video game. They also failed to find a corre-
ation between video game performance and HbO concentration change
cross any of the ROIs created by averaging nearby channels. 

In the case of both the Causse et al. (2017) and Matsuda & Hi-
aki (2006) studies, the lack of significant correlations may have been
2 
eflective of an actual absence of link between task difficulty and cortical
ctivity. However, this failure to find an association could also have re-
ulted from methodological/analytic choices by the researchers such as
he choice to employ univariate analyses, which have limitations. Mul-
ivariate approaches consider the covariance between dependent vari-
bles, in this case channel activity, which differs from univariate analy-
es that treat each channel as being independent. This has several advan-
ages. First, there can be interesting structure in modeling/examining
he covariance between channels in addition to their mean effects. Sec-
nd, performing mass univariate statistics requires multiple compari-
on correction, and thus researchers employ various techniques to limit
he total number of statistical tests conducted. For these papers, the
esearchers averaged activity across channels and/or collapsed activ-
ty across difficulty conditions. While these are reasonable steps, the
nd result is that the potential results are constrained by the researcher
hoices. However, in a multivariate partial least squares (PLS) analysis
 McIntosh and Lobaugh, 2004 ), only one test is conducted to test the
ignificance of the multivariate pattern against a null distribution, so no
ultiple comparison correction or data averaging is required. A third ad-

antage of a PLS approach is that it is a data-driven method that is less
ncumbered by particular researcher decisions. In summary, by adopt-
ng a multivariate analysis rather than running multiple bi-variate cor-
elations (i.e., fNIRS activity in each condition with performance in each
ondition), this approach is able to identify whole-brain brain-behavior
orrelations that vary systematically by task type or difficulty. 

Additionally, other work has identified negative relationships be-
ween task performance and cortical activation when participants un-
ergo working memory training, resulting in increased neural efficiency
 McKendrick et al., 2014 ). Results of one fNIRS study examining the
ole of expertise on prefrontal activity and task difficulty suggested that
his relationship is a complex one but did not directly link activation to
ehavior ( Bunce et al., 2011 ). Thus, while there is evidence that perfor-
ance influences task-evoked fNIRS activity, how exactly this relation-

hip is affected by task demands remains an open question. However, by
dopting a data-driven, multivariate approach such as behavioral partial
east squares, these relationships can be more robustly investigated. 

The primary goal of the current study was to conduct a well-powered
alidation of the load-dependent fNIRS responses demonstrated in prior
ork using a traditional verbal N-back task, large sample, and utilizing

ecently developed robust statistical analytical procedures. It was hy-
othesized that during the N-back task, prefrontal and parietal cortical
ctivity would be largest for the 3-back task (highest cognitive load),
essened for the 2-back task (medium cognitive load), and smallest for
he 1-back task (lowest cognitive load). 

A second, exploratory goal was to examine how individual differ-
nces in participant accuracy could affect load-dependent fNIRS ac-
ivity. This work sought to examine whether the relationship between
NIRS activity and performance differed based on task difficulty, specif-
cally by using a data-driven, multivariate partial least squares (PLS)
nalysis to evaluate this relationship. Behavioral PLS ( McIntosh and
obaugh, 2004 ) has been used in other neuroimaging modalities (such
s fMRI, EEG, and magnetoencephalography (MEG)) as a data-driven
pproach to extract relationships between neural activity and behaviors
f interest ( Bialystok et al., 2005 ; Chang et al., 2017 ; Krishnan et al.,
011 ; Lobaugh et al., 2001 ; McIntosh et al., 2008 ), but has not yet been
mplemented in fNIRS research. In the present work, PLS offers a distinct
dvantage for investigating the complex links between performance and
eural activation over the more standard approach of contrasting high
nd low performance participants. Specifically, as we are interested in
erformance and activity at multiple levels of difficulty and not all par-
icipants showed a linear load effect on performance (i.e., some partici-
ants specifically did poorly on the 3-back but similarly on 1-back and
-back, others performed similarly on 2-back and 3-back, etc.), the des-
gnation of “high ” and “low ” performers would be somewhat arbitrary.
n contrast, the data-driven approach in PLS allows for these associa-
ions to be examined without imposing experimenter-specified group-
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ng. As such, the current study also tested the utility of a multivariate
LS approach in fNIRS research to shed light on how the link between
erformance and neural activation may be affected by task demands. 

In summary, the current study was designed to replicate the effect
f load-dependent activation in frontal and parietal cortex in fNIRS us-
ng more robust statistical analyses. As with several previous studies, we
ound non-linear activation effects, which are likely attributable to poor
erformance on the 3-back task. To better elucidate the impact of per-
ormance on activation as a function by N-back level, a behavioral PLS
nalysis was conducted, and provided insight into how the relationship
etween accuracy and prefrontal activation differs based on task diffi-
ulty. 

. Method 

.1. Participants 

Seventy adults participated in this study. All participants had nor-
al or corrected-to-normal visual acuity. Participants gave written in-

ormed consent before participation and experimental procedures were
pproved by the University of Chicago’s Institutional Review Board
IRB). Participants were compensated $26 or 2 units of course credit,
lus a performance-based bonus of up to $10. The full procedure in-
luded additional study elements related to a video intervention that
ere separate from the current work and lasted approximately 15 min.
he total duration of the study was between 75 and 90 min. 

Two participants were excluded from all data analysis due to par-
icipant non-compliance with the study procedures. Six additional par-
icipants were excluded from fNIRS analysis due to technical issues (2
articipants) or low quality fNIRS data (4 participants), leaving a fi-
al sample of 62 participants. Of the 62 participants with usable fNIRS
ata, 28 were male and 34 were female, and the mean age was 23.6
ears ( SD = 6.3 years). 

.2. fNIRS data acquisition 

fNIRS data were collected from a continuous-wave NIRSport2 device
NIRx Medical Technologies, LLC). The wavelengths of emitted light
LED sources) in this system were 760 nm and 850 nm. The data were
ollected at a sampling rate of 4.5 Hz using the NIRx acquisition soft-
are, Aurora fNIRS. The fNIRS cap contained a total of 16 sources and
6 detectors creating 43 total channels covering bilateral frontal cortex
33 channels) and right parietal cortex (10 channels). 

.3. fNIRS optode locations (Montage) 

The montage was created using fOLD (fNIRS Optodes’ Location De-
ider; Morais et al., 2018 ), which allows placement of optodes in the
nternational 10–10 system to maximally cover anatomical regions of
nterest, as specified by one of 5 parcellation atlases. The AAL2 (Auto-
ated Anatomical Labeling, Rolls et al., 2015 ) parcellation was used to

enerate the montage, which was designed to provide as much cover-
ge of the prefrontal cortex (PFC) as possible, covering bilateral supe-
ior and inferior frontal gyri. This emphasis on frontal cortical areas was
ecided based on evidence from other N-back studies using fMRI (see
wen et al., 2005 for a meta-analysis) and fNIRS, which have demon-

trated that load-dependent changes in HbO and HbR are found across
reas of the PFC ( Ayaz et al., 2012 ; Fishburn et al., 2014 ; Herff et al.,
014 ; Sato et al., 2013 ). 

The right parietal region was selected as an additional ROI for this
ask due to evidence that parietal cortical regions are engaged during
ttention-demanding tasks in fNIRS ( Hosseini et al., 2017 ; Murata et al.,
015 ). As parietal data quality is usually less consistent than channels
nobstructed by hair (such as the forehead), the majority of optodes
12 sources and 12 detectors) were focused on prefrontal regions, leav-
ng only 4 sources and 4 detectors to cover parietal areas. Rather than
3 
parsely covering bilateral parietal cortex, better coverage of right pari-
tal cortex was examined in the current study. Right parietal was cho-
en as participants would be required to use their right hand to respond
hence activating left motor/sensorimotor areas) during the task and
ur parietal montage overlapped somewhat with the standard sensori-
otor fNIRS montage. As we did not want to have the more anterior

hannels in our parietal montage to be affected by differences in con-
ralateral sensory or motor-evoked activity (i.e. due to less or more re-
ponding based on task difficulty), we opted to focus on right parietal
overage. While verbal working memory storage and rehearsal are more
ssociated with left-lateralized regions of parietal cortex ( Awh et al.,
996 ; Ravizza et al., 2004 ), some meta-analytic data demonstrate bi-
ateral parietal activation across verbal and non-verbal N-back tasks
 Mencarelli et al., 2019 ; Owen et al., 2005 ). [Fig. 2] 

Gross ROIs from the montage (used in subsequent figures) were
efined based on the Brain AnalyzIR Toolbox’s depth map function
 Santosa et al., 2018 ). Depth maps show the distance from each fNIRS
ptode to the superficial cortex of several talairach daemon labeled re-
ions of the Colin27 atlas ( Lancaster et al., 2000 ), which can be used to
etermine coverage of an ROI based on the montage used. As a topo-
ogical fNIRS layout cannot access depths greater than approximately
0 mm, the channels (lines) projected over yellow or orange regions
n Fig. 3 (representing depths > 30 mm) are ones that do not reach the
pecified ROI, whereas channels covering green or blue areas are within
ange of the nearest cortical point within the ROI. 

.4. Procedure 

After providing informed consent, experimenters measured the par-
icipants’ head to determine cap size and placement, then began to set
p the cap while participants were taken through task instructions and
iven an opportunity to practice the N-back task. After the first round
f practice, the cap was placed on the participant’s head, moving hair
s needed to provide clear access to the scalp for the sources and de-
ectors. Cap alignment was verified based on the international 10–20
ocation of Cz ( Klem et al., 1999 ). fNIRS data were then calibrated
nd checked for quality before proceeding. If any channels were not
isplaying sufficiently high-quality data, placement and hair-clearing
ere performed again before continuing. Next, participants completed
 short round of additional practice (single block of each 1-back, 2-
ack, and 3-back without trial-by-trial feedback), before continuing to
he main round of the N-back task. After completing the experiment,
he cap was removed, and participants completed a demographics ques-
ionnaire. All experimental procedures were coded and presented using
sychoPy ( Peirce et al., 2019 ). 

.5. N-back task 

The experimenter took participants through step-by-step instructions
f the N-back task before participants began practice. Participants were
old that they would see a sequence of short words that are separated
y brief fixations, and that every 2 seconds a word would be presented
hat should be compared to the word “N ” trials back. In the current
tudy, N was 1, 2, or 3. Participants were instructed to press the “m ”
ey every time the current word matched the word N trials back, and to
ress the “n ” key every time the current word did not match the word
 trials back [ Fig. 1 ]. Each block began by displaying the N-back level
nd a fixation cross (5 s). Each task block contained a 15-length pseu-
orandom sequence of two words, presented for 2 s each for a total of
0 s, followed by 20 s of rest. Therefore, the length of each block was
5 s. To suppress sequence memory formation, the two words used in
ach block were randomly selected from the eight-word pool (‘WHAT’,
HOW’, ’WHEN’, ’WHY’, ’WHERE’, ’WHO’, ’THAT’, ’BUT’), except dur-
ng the first practice, in which the words “AXE ” and “BOX ” were used.
n addition, the sequence of two words was determined using an m-
equence (base = 2, power = 4; thus one word appeared eight times,
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Fig. 1. N-back Task. Example of 1-back task (Top) and 3-back 
(Bottom). 2-back task not shown. 
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nd the other word appeared seven times ( Buracas and Boynton, 2002 ;
hoe et al., 2014 ; Choe et al., 2016 ) to suppress its autocorrelation. In
ll cases, words were presented in white text on a black background. 

It is worth noting that in the current N-back task design, only two
timuli were used in each block, as this would require a button press for
ach trial. By counter-balancing the correct response using m-sequence
o that the number of hits and correct rejections was roughly equal, this
esign controls for motor-related and/or event-related global hemody-
amic responses. That is, it minimizes the effects of brain activity due
o slow ‘odd’ events such as pressing the key that corresponds to a hit
hen, for example, only 20% of trials include hits ( Choe et al., 2014 ;

ack et al., 2006 ; Sirotin et al., 2012 ) and thus could confound the sig-
als of interest (i.e., the amplitude of n-back block signal). Additionally,
his task design using m-sequence counter-balancing of two-stimuli is
ess prone to two well-known characteristics of the N-back task that
omplicate the reporting and interpretation of its results, including dis-
ociable effects of different types of errors (i.e., false alarms and misses;
eule, 2017 ; Oberauer, 2005 ) and the lure effect (i.e., lures eliciting
ore errors; Kane et al., 2007 ; Moore and Ross, 1963 ; Oberauer, 2005 ).
n m-sequence of length of 15 (2ˆ4 - 1) contains all permutations of

ength 4 by design ( Buracas and Boynton, 2002 ), so it can automatically
liminate lures and the need for dissociating false alarms and misses. 

After the experimenter took participants through the N-back instruc-
ions participants performed the first round of N-back practice, consist-
ng of 9 blocks. In this first practice, accuracy feedback was provided
n a trial-by-trial level as well as at the end of each block. Participants
ompleted 3 blocks of 1-back, then 3 blocks of 2-back, and then 3 blocks
f 3-back. After the fNIRS cap was set up, participants began the second
ound of practice designed to mimic the conditions of the real task more
losely. In this practice, participants performed a single block of 1-back,
hen 2-back, then 3-back, without trial-by-trial feedback. The main N-
ack task involved 18 blocks, with 6 blocks of each N-back level, pseu-
orandomly presented. 
c

4 
Participants received a performance-based bonus during this round
f N-back task, wherein performance > 90% on a block earned an ad-
itional 40 cents per block, > 80% earned an additional 30 cents per
lock, and > 60% earned an additional 20 cents per block. Performance
nder 60% did not yield a cash bonus in this study. Participants were
nformed of their performance on each block and total bonus directly
ollowing the 30 s of task. 

.6. Analysis 

.6.1. Behavioral analysis 

Accuracy on the N-back task was calculated by taking the average
ccuracy over the 6 blocks of each N-back level. This accuracy measure
as based on the number of correct responses out of the total number
f trials which required a response (i.e., 14 trials required responses on
-back, 13 trials on 2-back, etc.), and therefore, incorrect responses in-
luded misses and wrong key presses. Overall, rates of non-responses
ere relatively low. Across the 6 blocks of each n-back level, partici-
ants failed to make a response on an average of 2.29 trials ( SD = 1.56)
ut of 84 total for the 1-back task, an average of 2.6 trials ( SD = 1.92) out
f 78 total for the 2-back task, and an average of 2.6 trials ( SD = 1.82)
ut of 72 total for the 3-back task. Normalized across total trials per con-
ition, on average participants failed to respond in 2.7% of 1-back tri-
ls, 3.3% of 2-back trials, and 3.6% of 3-back trials. Reaction time (RT)
as examined both across all responses and for correct responses only,
nd average RT for each N-back level was also calculated by averaging
cross the 6 blocks. Statistical analysis was conducted using R version
.5.1 ( R Core Team, 2018 ). Accuracy- and RT-level differences between
evels of the main N-back task, were analyzed with a repeated measures
NOVA using function ‘ezANOVA’ in the ‘ez’ package ( Lawrence, 2016 ),
ffect size was calculated using the function ‘eta_sq’ in the ‘sjstats’ pack-
ge ( Lüdecke, 2020 ), and Bonferroni corrected post-hoc contrasts were
onducted using paired t-tests in the R ‘stats’ package. 
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Fig. 2. fNIRS Montage in international 10–10 coordinate space. Montage with 16 × 16 frontal source-detector pairs and 4 × 4 right parietal source-detector pairs. 
Sources are indicated in red, detectors are indicated in gray, and channels are indicated by purple lines. Cz highlighted in green. 
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.6.2. fNIRS data analysis: quality check 

fNIRS data were first loaded into the HOMER2 software package
 Huppert et al., 2009 ) for visual inspection and segmentation of the
ain N-back trials from practice trials. Visual inspection was done to

xamine overall data quality (at the level of the participant) and to as-
ess the quality of the parietal data, which was much noisier and variable
han the frontal data. Visual inspection was performed by examining the
ower spectral density plots for all channels to identify the presence of
 cardiac oscillation, which is typically around 1 Hz ( Tong et al., 2011 ).
he presence of this cardiac signal is a good indicator that the optical
ensity signals are successfully coupled with a physiological hemody-
amic response ( Hocke et al., 2018 ). This method was used to do a first
ass evaluation. Based on this visual inspection, 4 participants with un-
sable data (defined as 5 or fewer clean channels) were identified and
xcluded from further analyses. Parietal data quality was also examined
nd logged to determine whether analysis of this region would be fruit-
ul. Of the 62 participants that were kept, 17 had fully usable parietal
ata, 20 had mostly usable parietal data (at least half of channels show-
 v  

5 
ng good physiological coupling), and 25 had unusable parietal data
only a few usable channels or none). It should be noted that, as the
tatistical analysis downweights noisy channels in the linear model (see
ext section), including these channels will not increase the likelihood
f a false positive effect, but the power to detect an effect in this area is
educed. 

.6.3. fNIRS data analysis: pre-processing pipeline and task-based 

ctivation 

fNIRS data were then analyzed using the NIRS Brain AnalyzIR Tool-
ox ( Santosa et al., 2018 ). Using this toolbox, the .nirs data (raw
ight intensity) were loaded into the program, converted into opti-
al density, then converted to oxygenated (HbO) and deoxygenated
HbR) hemoglobin concentrations using the modified Beer-Lambert law
 Strangman et al., 2003 ). 

Once the data were in the form of HbO and HbR concentrations,
rst level (subject-level) statistics were calculated. As alluded to pre-
iously, fNIRS data have unique statistical properties that are not ac-
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Fig. 3. Gross ROI depth maps with superimposed montage. fNIRS montage (registered to Colin27 atlas) and depth map for 6 ROIs taken from the talairach daemon 
parcellation: Left and Right Inferior Frontal Gyrus, Medial Superior Frontal Gyrus, Medial Orbitofrontal Cortex, Right Superior Parietal Gyrus, Right Inferior Parietal 
Gyrus. 
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ounted for by typical fMRI-based analysis and can inflate the type-I er-
or rate ( Huppert, 2016 ). In particular, unlike fMRI, fNIRS suffers from
erially correlated errors (due to a higher sampling rate than the phys-
ological signal of interest) and heavy-tailed noise distributions (due
o motion-related artifacts and often, large differences in SNR between
hannels and between participants; Huppert, 2016 ). To correct for these
ssues, the first level general linear model run on individual participants’
ata uses an autoregressive, iteratively reweighted least-squares model
AR-IRLS). The AR-IRLS model employs an auto-regressive filter (pre-
hitening) to deal with the serially correlated errors and uses robust
eighted regression to iteratively down-weight outliers due to motion
rtifacts ( Barker et al., 2013 ). This model saves both the subject level
egression coefficients and their error-covariance matrices to be used in
tatistical tests and contrasts for each subject, and eventually, for use in
econd level (group-level) analyses. 

Based on research investigating the sensitivity and specificity of
asis sets in fNIRS as a function of signal quality and task period
 Santosa et al., 2019 ), a canonical HRF basis set was selected for this
nalysis. Work by Santosa et al. (2019) found that for tasks of suffi-
iently long durations ( > 10 s, as in the current study), the canonical HRF
erforms best in a sensitivity-specificity (ROC) analysis. The canonical
odel has lower degrees of freedom than a full deconvolution of the raw
emodynamic response (finite impulse response, or FIR model), which
mproves performance on ROC analysis. This is true at durations of more
han 10 s, even though there may be a mismatch between the shape of
he canonical HRF and the actual hemodynamic response ( Santosa et al.,
019 ). 

Based on the output of the first level statistical models, 3 subjects
ith undue leverage for the group analyses were calculated (those which

ontribute significant leverage towards the group results, defined by
ubject-level leverage of p < 0.05) and were removed from group-level
nalyses. Next, second-level statistical models were calculated, which
se the full covariance from the first-level models to perform a weighted
east-squares regression ( Santosa et al., 2018 ). Robust regression was
6 
lso applied to the second-level model to down-weight outliers at the
roup-level. The results of this analysis were used for group-level con-
rasts between N-back levels at each channel. 

Group activation results are reported as statistical maps using
enjamini-Hochberg false-discovery rate-corrected p -values (e.g., q -
alues; Benjamini and Hochberg, 1995 ). This FDR correction was ap-
lied to all the data in the second-level analysis, including 43 channels,
xy- and deoxy-hemoglobin, and 3 conditions, making the correction
ery conservative over all tests. 

.6.4. fNIRS data: behavioral PLS analyses 

Behavioral PLS analysis ( Berman et al., 2014 ; McIntosh and
obaugh, 2004 ; Krishnan et al., 2011 ; https://www.rotman-
aycrest.on.ca ) was conducted to identify significant relationships
etween fNIRS activity and task performance as a function of N-back
evel. PLS (partial least squares) analysis is a multivariate, data-
riven approach often used to examine brain-behavior associations
n neuroimaging research by relating two sets of data to one another
 Krishnan et al., 2011 ), in our data these two sets were channel activity
nd N-back level/condition. Because this was a behavioral PLS and
ot a task PLS, we were interested in how the correlation between
erformance and channel activity varied by n-back level. In this study,
he fNIRS brain data consisted of the regression coefficients ( 𝛽) from the
rst-level statistical model (AR-IRLS), corresponding to changes in HbO
r HbR for each N-back level relative to baseline for each participant.
he behavioral data consisted of average accuracy for each N-back level
cross blocks of the main N-back task for each participant. Thus, for
ach behavioral-PLS (HbO or HbR) analysis, each participant had 129
rain activity values (activation betas for each of three N-back levels
or 43 channels) and three behavioral values i.e., average accuracy for
ach of three N-back levels. 

Like other forms of PLS, behavioral PLS relies on the singular value
ecomposition (SVD) of a covariance matrix. For matrix X of brain ac-
ivity (i.e., fNIRS activation betas) and Y of behavioral data (accuracy),

https://www.rotman-baycrest.on.ca
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 and Y were first independently mean centered and normalized within
-back condition. The brain data were 62 × 43, i.e., 62 subjects x 43
hannels, and there were 3 of these matrices (one for each load). The
ehavioral matrix Y was a 62 × 1 vector of average accuracy for that load
evel and there were 3 of these vectors (one for each load level). Then,
he product between vector Y and matrix X was calculated, i.e., Y’ ∗ X,
hich yields a vector of correlations between X and Y of size 1 × 43.
here are 3 such vectors, one for each n-back level. These vectors are
hen stacked on top of each other, yielding a 3 × 43 cross-product matrix
. This cross-product matrix R is the input for the SVD, which decom-
oses R into three matrices: R = U ΔV 

T , where the singular vector U
epresents the decomposition of R in behavioral/condition space, the
ingular vector V represents the decomposition of R in neural activity
pace, and Δ is the diagonal matrix of singular values, that quantifies
he weighting of each of the singular vectors. As such, the behavioral
aliences (U) represent the N-back level-dependent differences in the
rain-behavior correlation between accuracy and channel activity, and
he brain saliences (V) represent the fNIRS channel-dependent differ-
nces in this brain-behavior correlation by n-back level. 

The goal of this analysis was to find the linear combination of
onditions and brain activity that maximized their covariance. These
eighted patterns are calculated from the saliences U and V and are

eferred to as latent variables (LVs). The LVs maximize the covariance
etween brain activity and accuracy as a function of N-back level. Ten
housand permutation tests were performed to obtain p -values for each
atent variable (LV) and 10,000 bootstrapped samples with replacement
ere created to generate the 95% confidence intervals for the mean cor-

elation between fNIRS activity and performance by condition for each
hannel. The bootstrap ratios (salience[weights]/SE[reliability]) mea-
ure the reliability of the brain-behavior relationship at each channel,
nd a larger bootstrap ratio indicates a stronger and/or more consis-
ent contribution to the LV. In this study, channels with bootstrap ratios
arger than + 2 or smaller than − 2 were determined to be statistically
ignificant as these bootstrap ratios can be interpreted as z-scores. 

Before running the PLS analysis, histograms of the fNIRS beta val-
es were plotted to examine whether the brain data contained any ex-
reme outliers that may bias the PLS analysis and would ordinarily be
emoved in the AnalyzIR Toolbox’s robust regression ( Huppert, 2016 ).
ne participant contained extreme outliers at channel 29 (i.e., beta val-
es < − 100 and > 100), and was therefore excluded from PLS analysis.
owever, the direction and significance of results did not change if this
articipant was included. 

.7. Data & code availability 

Data, analysis code, results, and experiment code are publicly avail-
ble at: https://osf.io/sh2bf/ . 

. Results 

.1. Behavioral results: N-back performance 

Results of the repeated measures ANOVA examining accuracy as a
unction of N-back level in the main task yielded a significant effect of
-back level on accuracy, F (2,122) = 85.1, p < 0.001, 𝜂p 

2 = 0.58, 95%
I [0.47, 0.66]. As expected, accuracy for the 1-back task ( M = 0.90,
D = 0.11, 95% CI [0.88, 0.93]) was significantly better than accuracy
or the 2-back task ( M = 0.78, SD = 0.17, 95% CI [0.74, 0.82], p < 0.001)
nd for the 3-back task ( M = 0.72, SD = 0.16, 95% CI [0.68, 0.76],
 < 0.001). Accuracy for the 2-back task was also significantly higher
han for the 3-back task ( p < 0.001). [ Fig. 4 ] 

Results for the repeated measures ANOVA examining reaction time
RT) across all responses by N-back level yielded a significant effect of
-back level on reaction time, F (2,122) = 50.1, p < 0.001, 𝜂p 

2 = 0.45,
5% CI [0.32, 0.55]. Pairwise comparisons demonstrated that RT for the
-back task ( M = 0.69, SD = 0.17, 95% CI [0.65, 0.74]) was significantly
7 
aster than RT for the 2-back task ( M = 0.81, SD = 0.19, 95% CI [0.76,
.86], p < 0.001) and the 3-back task ( M = 0.81, SD = 0.19, 95% CI
0.76, 0.85], p < 0.001). However, reaction times for the 2-back and 3-
ack task were not significantly different ( p = 1) [Fig. 4] . When analyses
ere conducted on RTs for correct responses only, the results were the

ame (overall effect of N-back level ( p < 0.001) driven by faster RTs on
-back relative to 2-back ( p < 0.001) or 3-back ( p < 0.001) with nearly
dentical RT on 2-back and 3-back ( p = 1)). 

.2. fNIRS activation results 

.2.1. Activation vs. baseline in main N-back task 

In the GLM, baseline is defined by everything that is not a task event
i.e., is a test against the DC regressor in the model). Relative to baseline,
ignificant increases in oxygenated hemoglobin (HbO) were found for
 channel (medial superior frontal gyrus) for the 1-back task and for 5
rontal channels and 1 parietal channel for the 2-back task. No channels
howed significant increases in HbO concentrations for the 3-back task.
 Table 1 ] No channels showed significant changes in HbR for any N-
ack level. Group-level activation as the HRF time series for each of the
-back levels across 5 ROIs is plotted in Fig. 5 . 

.2.2. fNIRS contrasts: 2-back vs. 1-back 

For HbO, 18 channels in the bilateral frontal and right parietal cortex
howed significantly larger ( q < 0.05) increases during the 2-back task
elative to the 1-back task. No channels yielded larger HbO increases for
he 1-back task relative to 2-back. 

For HbR, 7 channels, primarily in bilateral inferior frontal gyrus
IFG), displayed larger decreases for 2-back over 1-back. Additionally,
 channels, primarily in the right middle occipital gyrus, yielded larger
ecreases in HbR for 1-back relative to 2-back. [ Fig. 6 , Top Panel] 

.2.3. fNIRS contrasts: 3-back vs. 1-back 

For HbO, 8 channels, primarily in left and right IFG, yielded signif-
cantly larger increases for 3-back relative to 1-back. Larger HbO in-
reases for 1-back over 3-back were found in 7 channels, primarily lo-
ated in the right inferior parietal cortex and left superior frontal gyrus
SFG). 

For HbR, 5 channels (4 prefrontal, 1 inferior parietal), demonstrated
arger deactivation in the 3-back task compared to 1-back. Eight chan-
els (4 frontal and 4 occipito-parietal) showed the opposite pattern.
 Fig. 6 , Middle Panel] 

.2.4. fNIRS contrasts: 3-back vs. 2-back 

For HbO, 22 channels showed significantly larger increases during
he 2-back task compared to the 3-back task. These channels covered
ilateral frontal and right parietal areas. Only one frontal channel was
reater for the 3-back relative to the 2-back task. 

For HbR, 9 channels distributed across bilateral frontal and right
arietal cortex showed larger decreases for the 2-back task relative to
he 3-back, and 4 channels (2 in medial SFG and 2 in inferior parietal
ortex) showed the inverse pattern. [ Fig. 6 , Bottom Panel] 

.2.5. fNIRS contrasts summary 

Group level activation maps and contrasts between N-back condi-
ions showed the most consistent results in the 2-back task relative to
aseline and comparing activity during the 2-back task relative to the
-back task. The consistently higher HbO and lower HbR concentration
hanges during the 2-back task, but not 3-back task, suggest that a min-
mum level of accuracy may be needed to elicit reliable activation in
he fronto-parietal cortical regions examined. By minimum accuracy,
e mean that if participants are not performing with a high enough
ccuracy they may not actually be engaged in the task because it has
ecome too difficult. Participants overall performed more poorly on the
ain 3-back task. For the 59 participants used in group-level analysis of

https://osf.io/sh2bf/
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Fig. 4. Boxplots of Average Accuracy & RT by 
N-back Level for all participants. 
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he main N-back task, 1 the average accuracy was 73.6% for the 3-back
ask. In comparison, average accuracy for these 59 participants was 80%
or the 2-back task and 92.3% for the 1-back task. 

.3. Behavioral PLS analysis: fNIRS activity ~ task performance 

Separate behavioral PLS analyses were run to relate performance
o concentration changes in HbO and HbR by condition (i.e., 1-back, 2-
ack, and 3-back). Though no statistically significant LVs were found for
xyhemoglobin (HbO), the first latent variable from the analysis with
eoxyhemoglobin concentrations (HbR) was significant and explained
1% of the crossblock covariance ( p = 0.025). LVs 2 and 3 in this anal-
sis were not significant (all p > 0.9). For the significant LV 1, eight
uperior frontal gyrus (SFG) channels (#1, #3, #4, #8, #9, #12, #16,
nd #25) showed N-back level dependent changes in the relationship
etween HbR and task accuracy [ Table 2 ]. All of these significant SFG
1 Three of the 62 usable fNIRS participants (#s P42, P67, and P70) were re- 
oved due to undue group-level leverage, see section 2.6.3 . fNIRS Data Analysis: 

re-processing Pipeline and Task-Based Activation. 

t  

u  

p  

d  

2  

8 
hannels had bootstrap ratios > 2, indicating the direction of the brain-
ehavior relationship was the same across all eight channels. In addi-
ion, one channel in the left inferior frontal gyrus had a bootstrap ratio in
he opposite direction (BSR = − 2.4). For the eight superior frontal gyrus
hannels, a larger reduction in HbR (equivalent to increased neural ac-
ivity) was positively correlated with higher performance on the 3-back
ask, unrelated to activity on the 2-back task, and negatively correlated
ith performance on the 1-back task. In summary, this suggests that the
etabolic demands placed on the prefrontal cortex that are necessary to

chieve a high level of accuracy varies as a consequence of how difficult
he task is. [ Fig. 7 ] 

. Discussion 

The initial, confirmatory aim of this study was to further validate
he use of fNIRS for measuring cognitive load with a large sample and
tilizing recently developed robust statistical tools. Though a number of
revious fNIRS studies have examined prefrontal activity using attention
emanding working memory tasks such as the N-back ( Aghajani et al.,
017 ; Ayaz et al., 2012 ; Fishburn et al., 2014 ; Kuruvilla et al., 2013 ;
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Table 1 

Significant Activation by Channel & ROI for each N-back level. 
Significant channels (Source (S) - Detector (D) pairs) identified as FDR-corrected q < 0.05. ROI defined 
by maximal coverage of talairach daemon parcellation ROI. p -value listed is before FDR correction. 
Power listed is the estimated type-II power for that entry (calculated by computing the minimum 

detectable change as detailed in Harcum & Dressing, 2015). 

S D ROI t-stat p q power 

1-back HbO 1 2 L Medial Superior Frontal Gyrus 3.24 0.001 0.041 0.77 

2-back HbO 2 1 R Medial Superior Frontal Gyrus 3.48 0.001 0.032 0.83 

4 2 L Medial Superior Frontal Gyrus 3.28 0.001 0.042 0.78 

4 3 L Medial Superior Frontal Gyrus 3.66 < 0.001 0.023 0.88 

2 10 R Inferior Frontal Gyrus 3.3 0.001 0.042 0.79 

11 10 R Inferior Frontal Gyrus 3.86 < 0.001 0.017 0.91 

15 15 R Inferior Parietal 4.41 < 0.001 0.004 0.97 

3-back HbO - – – – –

Table 2 

Significant Channels for LV 1 
Channel number based on source (S) - detector (D) pair. ROI label defined 
by maximal coverage of talairach daemon ROI. Channels ordered by size of 
bootstrap ratio. Bootstrap ratios > |2| were considered significant. 

Channel # S D ROI Bootstrap Ratio 

25 9 1 R Middle/Superior Frontal Gyrus 4.3 

8 3 2 Medial Superior Frontal Gyrus 3.8 

12 4 2 L Superior Frontal Gyrus 3.5 

4 2 1 R Superior Frontal Gyrus 3.3 

16 5 3 L Middle/Superior Frontal Gyrus 2.6 

1 1 1 Medial Superior Frontal Gyrus 2.3 

3 1 3 Medial Superior Frontal Gyrus 2.3 

9 3 4 Medial Superior Frontal Gyrus 2.2 

22 7 8 L Inferior Frontal Gyrus − 2.4 
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ato et al., 2013 ), recent work has demonstrated that due to the unique
tatistical properties of fNIRS, the standard analysis approach (based
n fMRI) can severely inflate the false positive rate ( Huppert, 2016 ).
n addition, discrepancies between studies that may be related to task
erformance have been demonstrated across several studies. There-
ore, to provide convergent evidence for previous studies examining
oad-dependent changes in PFC and parietal cortex, a standard N-back
ask was employed with a large sample of participants, and using the
ecently developed Brain AnalyzIR Toolbox ( Santosa et al., 2018 ) to
eal with these fNIRS-specific statistical properties. As an exploratory
im, a behavioral PLS analysis was conducted to directly examine how
erformance and activation might be dependent upon cognitive load,
hich may explain non-linear load effects in this study and in previous
ork. 

Overall, the fNIRS results were consistent with the general hypoth-
sis that tasks placing higher demands on attention and working mem-
ry would lead to increased frontal and parietal activation as measured
y HbO and HbR concentration changes. This was most evident by the
idespread frontoparietal activation elicited by the 2-back task relative

o the 1-back task. 
However, activity in the 3-back task did not follow the hypoth-

sized pattern. As mentioned previously, this non-linear load effect
as been demonstrated in other fNIRS studies ( Aghajani et al., 2017 ;
andrick et al., 2013 ; Mandrick et al., 2016 ), and seems likely due to

oor performance on the task. These results are consistent with the idea
hat when task demands exceed the current mental capacity of partici-
ants, they may disengage from the task and potentially, fail to recruit
he necessary cognitive resources ( Mandrick et al., 2013 ). 

Interestingly, results of the PLS analysis that incorporated individu-
ls’ accuracy by N-back level demonstrated evidence for an interaction
f load and performance in the recruitment of the PFC. Specifically, this
ultivariate approach showed that changes in deoxyhemoglobin con-

entrations (HbR) in the medial SFG, which were only uncovered when
9 
xamining the relationship between brain-behavior, but not when be-
avioral performance was not accounted for. Here, greater reductions
n HbR (i.e., more activation) was positively related to performance on
he 3-back task, unrelated to accuracy in the 2-back task, and negatively
elated to accuracy in the 1-back task. This pattern of results suggests
hat more automaticity during the 1-back task (i.e., less activation) led
o better performance on this relatively easy task, and extensive recruit-
ent of the PFC was required for high accuracy on the more difficult,

ognitively demanding 3-back task. 
This effect may reflect what has been proposed by the neural effi-

iency hypothesis: that participants with overall greater cognitive pro-
essing ability will show less activation during easy tasks and more dur-
ng difficult tasks ( Dunst et al., 2014 ; Neubauer and Fink, 2009 ). This
s thought to result from the lower metabolic demands that a “more
fficient ” brain requires during cognitive tasks. Though the neural ef-
ciency hypothesis is often framed as reflecting individual differences

n intelligence, there is also evidence that this effect occurs as a result
f more efficient strategies after adequate practice on a specific task
 Sayala et al., 2006 ). Thus, one possibility for this interaction of task
ifficulty and prefrontal activation is that this reflects individual differ-
nces in the learning and adoption of effective strategies during prac-
ice. Interestingly, recent neuroimaging work has shown that individuals
hose brains are in a more scale-free or fractal state tend to reap the
enefits of practice to a greater degree than do those starting in a less
cale-free state ( Kardan et al., 2020 ). Though scale-free neural dynam-
cs have been demonstrated in fMRI and EEG ( Churchill et al., 2016 ;
ardan et al., 2020 ), whether this signal can be extracted from fNIRS
ata remains an open question. 

While fNIRS differs from fMRI in its spatial specificity and instru-
entation, both techniques are well-suited to measure the task-evoked
emodynamic response in the cerebral cortex. As these methods are be-
ieved to measure the same underlying biological signal ( Buxton, 2010 ;
uppert et al., 2006 ), it is worth noting the clear correspondence be-

ween our results and those found in functional MRI. Specifically, the
oad-dependent increase in fronto-parietal metabolic activity for the 2-
ack task relative to the 1-back task in our study replicates many similar
ndings in the fMRI literature ( Mencarelli et al., 2019 ; Owen et al.,
005 ; Rottschy et al., 2012 ; Schmidt et al., 2009 ). Further recent
MRI studies have indicated that well practiced tasks may result in re-
uced PFC activation as a result of increased neural efficiency ( Miró-
adilla et al., 2019 ; Thompson et al., 2016 ), which is consistent with
he negative relationship between mid-frontal activity and performance
n the 1-back task demonstrated by the behavioral PLS analysis in the
resent study. 

The current study has a few limitations. Specifically, though it would
ave been ideal to get clean data from bilateral frontal and parietal cor-
ex, the montage was only able to cover the right parietal cortex and the
verall the signal-to-noise ratio (SNR) in these channels was very poor
ompared to the frontal channels. By design, the Brain AnalyzIR Toolbox
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Fig. 5. Group Average HRF plots by N-back level. 
Group-level results as an HRF time series, averaged across 5 general ROIs with 8–10 channels each. Color-coded montage in lower right indicates the channels 
included in each ROI. 
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erforms robust regression to downweight outliers and low SNR chan-
els, which is necessary to avoid high false positive rates ( Barker et al.,
013 ; Santosa et al., 2018 ). However, it is unclear whether the weaker
ffects in this area are due to lack of good signal (a false negative) or
ctually due to a lack of parietal cortical involvement in the N-back
ask relative to prefrontal cortex. Relatedly, this robust regression and
onservative multiple comparisons correction (using q -values with 43
hannels, 3 N-back levels, and both HbO and HbR) may explain the
imited number of channels demonstrating statistically significant acti-
ation for task relative to baseline. Lastly, as our sample was relatively
oung (average age = 23.6 years), these results may not generalize to
10 
lder populations. Future research with a larger age range would be
eneficial to examine whether this load-dependent pattern of accuracy
nd fNIRS activation is altered in an older cohort. 

Additionally, it is unclear from these data why the PLS analysis found
he load-dependent relationship in deoxyhemoglobin (HbR) concentra-
ion changes but not in oxyhemoglobin (HbO). In general, the HbO sig-
al is larger than HbR which makes it easier to detect significant effects
n task-based fNIRS, as is the case in this study’s N-back contrasts. Rel-
tive to HbO, the HbR signal is slower and more tightly coupled with
he BOLD response of fMRI ( Huppert et al., 2006 ). Therefore, one possi-
ility is that the relationship between task performance and activation
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Fig. 6. N-back level contrasts for HbO (left) 
and HbR (right). 
Only significant channels ( q < 0.05) are shown. 
Channels are displayed on top of 10–20 co- 
ordinates and grayscale depth maps for left 
and right Inferior Frontal Gyri, medial Supe- 
rior Frontal Gyri, and right Superior and Infe- 
rior Parietal Gyri. For HbO contrasts, positive t - 
values (red) correspond to relatively larger ac- 
tivity for the first term in the contrast, and neg- 
ative t -values (blue) correspond to larger activ- 
ity for the second term. The opposite pattern 
applies to HbR contrasts. 

11 
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Fig. 7. LV 1 demonstrated an N-back load-dependent relationship between changes in deoxyhemoglobin concentrations (HbR) and performance. (A) The left panel 
shows correlation between accuracy and HbR concentration change separately by N-back level. Error bars are 95% confidence intervals around the mean correlation. 
The right panel shows channels (labeled by number), which had bootstrap ratios (BSR) > |2|. (B) Scatterplots showing the correlation between HbR ( 𝛽 for task-evoked 
change from baseline) and performance (accuracy) at 4 channels with BSRs > 3, separated by N-back level. 
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o  
ot stronger with increasing time performing the task, which may be
eflected to a larger extent in the slower HbR signal. Additionally, as
bR is more sensitive to oxygen metabolism (and HbO is more sensi-

ive to blood flow changes), it may be that this effect is more driven by
etabolic changes. However, future investigations would be required to
irectly test these possibilities. 
12 
In conclusion, the present study demonstrates that fNIRS activation is
ensitive to cognitive load and is differentially affected by performance
ased on task difficulty. This work demonstrates the efficacy of using
obust statistical procedures to deal with unique statistical properties
f fNIRS signals and the utility of implementing data-driven, multivari-
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te techniques to elucidate more nuanced relationships between brain
ctivity and behavior. 
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