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Abstract 

 Neuroimaging research frequently demonstrates load-dependent activation in the 
prefrontal cortex during working memory tasks such as the N-back. Most of this work has 
been conducted in fMRI, but functional near-infrared spectroscopy (fNIRS) is gaining 
traction as a less invasive and more flexible alternative to measuring cortical 
hemodynamics. Few fNIRS studies, however, have examined how working memory load-
dependent changes in brain hemodynamics relate to performance. The current study 
employs a newly developed and robust statistical analysis of task-based fNIRS data in a 
large sample, and demonstrates the utility of data-driven, multivariate analyses to link 
brain activation and behavior in this modality. Seventy participants completed a standard 
N-back task with three N-back levels (N = 1, 2, 3) while fNIRS data were collected from 
frontal and parietal cortex. Overall, participants showed reliably greater fronto-parietal 
activation for the 2-back versus the 1-back task, suggesting fronto-parietal fNIRS 
measurements are sensitive to differences in cognitive load. The results for 3-back were 
much less consistent, potentially due to poor behavioral performance in the 3-back task. To 
address this, a multivariate analysis (behavioral partial least squares, PLS) was conducted 
to examine the interaction between fNIRS activation and performance at each N-back level. 
Results of the PLS analysis demonstrated differences in the relationship between accuracy 
and change in the deoxyhemoglobin fNIRS signal as a function of N-back level in four mid-
frontal channels. Specifically, greater reductions in deoxyhemoglobin (i.e., more activation) 
were positively related to performance on the 3-back task, unrelated to accuracy in the 2-
back task, and negatively associated with accuracy in the 1-back task. This pattern of 
results suggests that the metabolic demands correlated with neural activity required for 
high levels of accuracy vary as a consequence of task difficulty/cognitive load, whereby 
more automaticity during the 1-back task (less mid-frontal activity) predicted superior 
performance on this relatively easy task, and successful engagement of this mid-frontal 
region was required for high accuracy on a more difficult and cognitively demanding 3-
back task. In summary, we show that fNIRS activity can track working memory load and 
can uncover significant associations between brain activity and performance, thus opening 
the door for this modality to be used in more wide-spread applications. 

  

Key words: fNIRS, N-back task, cognitive load, partial least squares, working memory, 

neural efficiency   
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1. Introduction 

 Functional near-infrared spectroscopy (fNIRS) is a neuroimaging modality that has 

gained traction in recent years due to its versatility to studying brain activity in realistic 

natural environments. Compared to electroencephalography (EEG) and functional 

magnetic resonance imaging (fMRI), fNIRS is robust to motion artifacts and environmental 

noise, making it an increasingly popular method for studying neural activity outside of 

standard laboratory experimentation (Pinti, Tachtsidis, et al., 2018; Yücel et al., 2017). 

fNIRS uses light spectroscopy at near-infrared wavelengths to measure the same cerebral 

metabolic changes that are measured using functional MRI (Buxton, 2010; Huppert et al., 

2006). In both methods, the measurements taken are metabolic proxies for neuronal 

activity. When neural activity increases, so does the metabolic demand, leading to 

increased blood flow in the surrounding vasculature. This blood flow causes an increase in 

concentrations of oxygenated hemoglobin and a decrease in concentrations of 

deoxygenated hemoglobin (Buxton, 2013; Huppert et al., 2006).  

 Historically, many of the typical fNIRS study paradigms and analysis techniques 

mirrored those of task-based fMRI. The vast majority of existing fNIRS studies involved 

initial data preprocessing (i.e., downsampling, bandpass or wavelet filtering, motion 

correction), before being converted into oxyhemoglobin (HbO) and deoxyhemoglobin 

(HbR) concentrations (Huppert et al., 2009; Scholkmann et al., 2014). A general linear 

model was then applied to create contrasts in HbX changes between task conditions or 

between task and rest (Cooper et al., 2012; Pinti, Scholkmann, et al., 2018; Scholkmann et 

al., 2014). However, it was recently demonstrated that these typical approaches overall fail 
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to account for specific statistical properties of the fNIRS signal, and in doing so, inflate the 

false positive rate of reported results (Barker et al., 2013; Huppert, 2016).  

 Due to these issues, new analysis methods have been developed to account for these 

specific statistical properties of fNIRS. By applying pre-whitening to the linear model to 

reduce noise correlations and using robust regression to down-weight statistical outliers, 

these methods perform better on sensitivity-specificity analyses and show better control of 

type-I errors (Barker et al., 2013; Huppert, 2016; Santosa et al., 2018). With proper 

statistical analysis to account for these unique noise properties, fNIRS provides an 

increasingly rigorous method of neuroimaging. Furthermore, the cost-effectiveness of 

fNIRS allows for larger sample sizes than in fMRI, lessening the risk of failures in 

replicability due to small samples (Turner et al., 2018).  

 One of the more well-studied effects in fMRI and fNIRS is that of cognitive load-

dependent changes in frontal and parietal cortical regions (Cui et al., 2011; Fishburn et al., 

2014; Herff et al., 2014; Mencarelli et al., 2019; Owen et al., 2005). That is, neural activity in 

these regions increases with more cognitively taxing and difficult tasks. Typically, this is 

achieved by increasing the number of items needed to be stored in working memory in a 

task requiring sustained attention, as in the N-back task (Conway et al., 2005; Kirchner, 

1958; Owen et al., 2005). In an N-back task, participants are required to compare a current 

stimulus to a stimulus presented N items back during continuous presentation. This N may 

be manipulated (typical values include N = 0, 1, 2, or 3), thus indicating the number of 

items in working memory. While some previous fNIRS studies have shown linear increases 

in frontal activation based on N-back level (Ayaz et al., 2012; Fishburn et al., 2014; 
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Kuruvilla et al., 2013), several others have found non-linear effects (i.e., activation that does 

not follow the pattern of 3-back > 2-back > 1-back > 0-back; Aghajani et al., 2017; Mandrick 

et al., 2016). In cases of non-linear increases in activation with greater task demands, 

researchers have proposed that participants may simply disengage from tasks that are too 

difficult (Causse et al., 2017). It has also been posited that once participants reach a 

maximum level of cortical activation during a demanding (but achievable) task, no 

additional neural “output” can be tapped into to perform well on an even more difficult task 

(Mandrick et al., 2013).  

 While these discrepancies are attributed to performance-based limitations on very 

demanding tasks, not all studies have attempted to explicitly link the load-dependent 

activation results to task accuracy, and those which did have yielded mixed results. When 

examined across a broader array of cognitive tasks which manipulate difficulty, some 

studies have not found significant correlations between fNIRS activity and performance in 

the cortical regions of interest (Ayaz et al., 2012; Causse et al., 2017; Matsuda & Hiraki, 

2006). Other work has identified negative relationships between task performance and 

cortical activation when participants undergo working memory training, resulting in 

increased neural efficiency (McKendrick et al., 2014). Results of one fNIRS study examining 

the role of expertise on prefrontal activity and task difficulty suggested that this 

relationship is a complex one, but did not directly link activation to behavior (Bunce et al., 

2011). Ultimately, while there is evidence that performance influences task-evoked fNIRS 

activity, how exactly this relationship is affected by task demands remains an open 

question.    
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 The primary goal of the current study was to conduct a well-powered validation of 

the load-dependent fNIRS responses demonstrated in prior work using a traditional verbal 

N-back task, large sample, and utilizing recently developed robust statistical analytical 

procedures. It was hypothesized that during the N-back task, prefrontal and parietal 

cortical activity would be largest for the 3-back task (highest cognitive load), lessened for 

the 2-back task (medium cognitive load), and smallest for the 1-back task (lowest cognitive 

load).  

A second, exploratory goal was to examine how individual differences in participant 

accuracy could affect load-dependent fNIRS activity. This work sought to examine whether 

the relationship between fNIRS activity and performance differed based on task difficulty, 

specifically by using a data-driven, multivariate partial least squares (PLS) analysis to 

evaluate this relationship. Behavioral PLS (McIntosh & Lobaugh, 2004) has been used in 

other neuroimaging modalities (such as fMRI, EEG, and magnetoencephalography (MEG)) 

as a data-driven approach to extract relationships between neural activity and behaviors of 

interest (Bialystok et al., 2005; Chang et al., 2017; Krishnan et al., 2011; Lobaugh et al., 

2001; McIntosh et al., 2008), but has not yet been implemented in fNIRS research. 

Therefore, the current study also tested the utility of a multivariate PLS approach in fNIRS 

research to shed light on how the link between performance and neural activation may be 

affected by task demands.  

In summary, the current study was designed to replicate the effect of load-

dependent activation in frontal and parietal cortex in fNIRS using more robust statistical 

analyses. As with several previous studies, we found non-linear activation effects, which 
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are likely attributable to poor performance on the 3-back task. To better elucidate the 

impact of performance on activation as a function by N-back level, a behavioral PLS 

analysis was conducted, and provided insight into how the relationship between accuracy 

and prefrontal activation differs based on task difficulty. 

 

2. Method 

2.1 Participants 

Seventy adults participated in this study. All participants had normal or corrected-

to-normal visual acuity. Participants gave written informed consent before participation 

and experimental procedures were approved by the University of Chicago’s Institutional 

Review Board (IRB). Participants were compensated $26 or 2 units of course credit, plus a 

performance-based bonus of up to $10. The full procedure included additional study 

elements related to a video intervention that were separate from the current work and 

lasted approximately 15 minutes. The total duration of the study was between 75 and 90 

minutes.  

Two participants were excluded from all data analysis due to participant non-

compliance with the study procedures. Six additional participants were excluded from 

fNIRS analysis due to technical issues (2 participants) or low quality fNIRS data (4 

participants), leaving a final sample of 62 participants. Of the 62 participants with usable 

fNIRS data, 28 were male and 34 were female, and the mean age was 23.6 years (SD = 6.3 

years).  
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2.2 fNIRS Data Acquisition 

fNIRS data were collected from a continuous-wave NIRSport2 device (NIRx Medical 

Technologies, LLC). The wavelengths of emitted light (LED sources) in this system were 

760 nm and 850 nm, corresponding to oxygenated hemoglobin and deoxygenated 

hemoglobin concentrations, respectively. The data were collected at a sampling rate of 4.5 

Hz using the NIRx acquisition software, Aurora fNIRS. The fNIRS cap contained a total of 16 

sources and 16 detectors creating 43 total channels covering bilateral frontal cortex (33 

channels) and right parietal cortex (10 channels).  

2.3 fNIRS Optode Locations (Montage) 

The montage was created using fOLD (fNIRS Optodes’ Location Decider; Morais et 

al., 2018), which allows placement of optodes in the international 10-10 system to 

maximally cover anatomical regions of interest, as specified by one of 5 parcellation atlases. 

The AAL2 (Automated Anatomical Labeling; Rolls et al., 2015) parcellation was used to 

generate the montage, which was designed to provide as much coverage of the prefrontal 

cortex (PFC) as possible, covering bilateral superior and inferior frontal gyri. This emphasis 

on frontal cortical areas was decided based on evidence from other N-back studies using 

fMRI (see Owen et al., 2005 for a meta-analysis) and fNIRS, which have demonstrated that 

load-dependent changes in HbO and HbR are found across areas of the PFC (Ayaz et al., 

2012; Fishburn et al., 2014; Herff et al., 2014; Sato et al., 2013).  

The right parietal region was selected as an additional ROI for this task due to 

evidence that parietal cortical regions are engaged during attention-demanding tasks in 

fNIRS (Hosseini et al., 2017; Murata et al., 2015). As parietal data quality is usually less 
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consistent than channels unobstructed by hair (such as the forehead), the majority of 

optodes (12 sources and 12 detectors) were focused on prefrontal regions, leaving only 4 

sources and 4 detectors to cover parietal areas. Rather than sparsely covering bilateral 

parietal cortex, better coverage of right parietal cortex was examined in the current study. 

Right parietal was chosen as participants would be required to use their right hand to 

respond (hence activating left motor/sensorimotor areas) during the task and our parietal 

montage overlapped with the standard sensorimotor fNIRS montage. As we did not want to 

have the more anterior channels in our parietal montage to be affected by differences in 

contralateral sensory or motor-evoked activity (i.e. due to less or more responding based 

on task difficulty), we opted to focus on right parietal coverage. While verbal working 

memory storage and rehearsal are more associated with left-lateralized regions of parietal 

cortex (Awh et al., 1996; Ravizza et al., 2004), some meta-analytic data demonstrate 

bilateral parietal activation across verbal and non-verbal N-back tasks (Mencarelli et al., 

2019; Owen et al., 2005).  [Fig. 2] 
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Figure 2. fNIRS Montage in international 10-10 coordinate space 
Montage with 16 x 16 frontal source-detector pairs and 4 x 4 right parietal source-detector 
pairs. Sources are indicated in red, detectors are indicated in gray, and channels are 
indicated by purple lines. Cz highlighted in green. 

 
 

Gross ROIs from the montage (used in subsequent figures) were defined based on 

the Brain AnalyzIR Toolbox’s depth map function (Santosa et al., 2018). Depth maps show 

the distance from each fNIRS optode to the superficial cortex of several talairach daemon 

labeled regions of the Colin27 atlas (Lancaster et al., 2000), which can be used to determine 

coverage of an ROI based on the montage used. As a topological fNIRS layout cannot access 

depths greater than approximately 30 mm, the channels (lines) projected over yellow or 

orange regions in Fig. 3 (representing depths > 30 mm) are ones that do not reach the 
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specified ROI, whereas channels covering green or blue areas are within range of the 

nearest cortical point within the ROI. 

Figure 3. Gross ROI depth maps with superimposed montage 

fNIRS montage (registered to Colin27 atlas) and depth map for 6 ROIs taken from the 
talairach daemon parcellation: Left and Right Inferior Frontal Gyrus, Medial Superior 
Frontal Gyrus, Medial Orbitofrontal Cortex, Right Superior Parietal Gyrus, Right Inferior 
Parietal Gyrus. 

 
 

2.4 Procedure 

After providing informed consent, experimenters measured the participants’ head 

to determine cap size and placement, then began to set up the cap while participants were 

taken through task instructions and given an opportunity to practice the N-back task. After 
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the first round of practice, the cap was placed on the participants' head, moving hair as 

needed to provide clear access to the scalp for the sources and detectors. Cap alignment 

was verified based on the international 10-20 location of Cz (Klem et al., 1999). fNIRS data 

were then calibrated and checked for quality before proceeding. If any channels were not 

displaying sufficiently high quality data, placement and hair-clearing were performed again 

before continuing. Next, participants completed a short round of additional practice (single 

block of each 1-back, 2-back, and 3-back without trial-by-trial feedback), before continuing 

to the main round of the N-back task. After completing the experiment, the cap was 

removed and participants completed a demographics questionnaire. All experimental 

procedures were coded and presented using PsychoPy (Peirce et al., 2019).   

2.5 N-back Task 

The experimenter took participants through step-by-step instructions of the N-back 

task before participants began practice. Participants were told that they would see a 

sequence of short words that are separated by brief fixations, and that every 2 seconds a 

word would be presented that should be compared to the word “N” trials back. In the 

current study, N was 1, 2, or 3. Participants were instructed to press the “m” key every time 

the current word matched the word N trials back, and to press the “n” key every time the 

current word did not match the word N trials back [Fig. 1]. Each block began by displaying 

the N-back level and a fixation cross (5 seconds). Each task block contained a 15-length 

pseudorandom sequence of two words, presented for 2 seconds each for a total of 30 

seconds, followed by 20 seconds of rest. Therefore, the length of each block was 55 

seconds. To suppress sequence memory formation, the two words used in each block were 
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randomly selected from the eight word pool (‘WHAT', 'HOW', 'WHEN', 'WHY', 'WHERE', 

'WHO', 'THAT', 'BUT'), except during the first practice, in which the words “AXE” and “BOX” 

were used. In addition, the sequence of two words was determined using an m-sequence 

(base = 2, power = 4; thus one word appeared eight times, and the other word appeared 

seven times; Buračas & Boynton, 2002; Choe et al., 2014; Choe et al., 2016) to suppress its 

autocorrelation. In all cases, words were presented in white text on a black background.  

Fig. 1 N-back Task  

Example of 1-back task (Top) and 3-back (Bottom). 2-back task not shown. 
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After the experimenter took participants through the N-back instructions 

participants performed the first round of N-back practice, consisting of 9 blocks. In this first 

practice, accuracy feedback was provided on a trial-by-trial level as well as at the end of 

each block. Participants completed 3 blocks of 1-back, then 3 blocks of 2-back, and then 3 

blocks of 3-back. After the fNIRS cap was set up, participants began the second round of 

practice designed to more closely mimic the conditions of the real task. In this practice, 

participants performed a single block of 1-back, then 2-back, then 3-back, without trial-by-

trial feedback. The main N-back task involved 18 blocks, with 6 blocks of each N-back level, 

pseudorandomly presented.  

Participants received a performance-based bonus during this round of N-back task, 

wherein performance > 90% on a block earned an additional 40 cents per block, > 80% 

earned an additional 30 cents per block, and > 60% earned an additional 20 cents per 

block. Performance under 60% did not yield a cash bonus in this study.  

 

2.6 Analysis 

2.6.1. Behavioral Analysis 

 Accuracy on the N-back task was calculated by taking the average accuracy over the 

6 blocks of each N-back level. Statistical analysis was conducted using R version 3.5.1 (R 

Core Team, 2018). Accuracy-level differences between levels of the main N-back task, were 

analyzed with a repeated measures ANOVA using function ‘ezANOVA’ in the ‘ez’ package 

(Lawrence, 2016), effect size was calculated using the function ‘eta_sq’ in the ‘sjstats’ 
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package (Lüdecke, 2020), and Bonferroni corrected post-hoc contrasts were conducted 

using paired t-tests in the R ‘stats’ package. 

2.6.2. fNIRS Data Analysis: Quality Check 

fNIRS data were first loaded into the HOMER2 software package (Theodore J. 

Huppert et al., 2009) for visual inspection and segmentation of the main N-back trials from 

practice trials. Visual inspection was done to examine overall data quality (at the level of 

the participant) and to assess the quality of the parietal data, which was much more noisy 

and variable than the frontal data. Visual inspection was performed by examining the 

power spectral density plots for all channels to identify the presence of a cardiac 

oscillation, which is typically around 1 Hz (Tong et al., 2011). The presence of this cardiac 

signal is a good indicator that the optical density signals are successfully coupled with a 

physiological hemodynamic response (Hocke et al., 2018). This method was used to do a 

first pass evaluation. Based on this visual inspection, 4 participants with unusable data 

(defined as 5 or fewer clean channels) were identified and excluded from further analyses. 

Parietal data quality was also examined and logged to determine whether analysis of this 

region would be fruitful. Of the 62 participants that were kept, 17 had fully usable parietal 

data, 20 had mostly usable parietal data (at least half of channels showing good 

physiological coupling), and 25 had unusable parietal data (only a few usable channels or 

none). It should be noted that, as the statistical analysis downweights noisy channels in the 

linear model (see next section), including these channels will not increase the likelihood of 

a false positive effect, but the power to detect an effect in this area is reduced.  
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2.6.3. fNIRS Data Analysis: Pre-processing Pipeline and Task-Based Activation  

fNIRS data were then analyzed using the NIRS Brain AnalyzIR Toolbox (Santosa et 

al., 2018). Using this toolbox, the .nirs data (raw light intensity) were loaded into the 

program, converted into optical density, then converted to oxygenated (HbO) and 

deoxygenated (HbR) hemoglobin concentrations using the modified Beer-Lambert law 

(Strangman et al., 2003).  

Once the data were in the form of HbO and HbR concentrations, first level (subject-

level) statistics were calculated. As alluded to previously, fNIRS data have unique statistical 

properties that are not accounted for by typical fMRI-based analysis, and can inflate the 

type-I error rate (Huppert, 2016). In particular, unlike fMRI, fNIRS suffers from serially-

correlated errors (due to a higher sampling rate than the physiological signal of interest) 

and heavy-tailed noise distributions (due to motion-related artifacts and often, large 

differences in SNR between channels and between participants; Huppert, 2016). To correct 

for these issues, the first level general linear model run on individual participants’ data 

uses an autoregressive, iteratively reweighted least-squares model (AR-IRLS). The AR-IRLS 

model employs an auto-regressive filter (pre-whitening) to deal with the serially correlated 

errors and uses robust weighted regression to iteratively down-weight outliers due to 

motion artifacts (Barker et al., 2013). This model saves both the subject level regression 

coefficients and their error-covariance matrices to be used in statistical tests and contrasts 

for each subject, and eventually, for use in second-level (group-level) analyses.  

Based on research investigating the sensitivity and specificity of basis sets in fNIRS 

as a function of signal quality and task period (Santosa et al., 2019), a canonical HRF basis 
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set was selected for this analysis. Work by Santosa et al. (2019) found that for tasks of 

sufficiently long durations (>10 seconds, as in the current study), the canonical HRF 

performs best in a sensitivity-specificity (ROC) analysis. The canonical model has lower 

degrees of freedom than a full deconvolution of the raw hemodynamic response (finite 

impulse response, or FIR model), which improves performance on ROC analysis. This is 

true at durations of more than 10 seconds, even though there may be a mismatch between 

the shape of the canonical HRF and the actual hemodynamic response (Santosa et al., 

2019).       

Based on the output of the first level statistical models, 3 subjects with undue 

leverage for the group analyses were calculated (those which contribute significant 

leverage towards the group results, defined by subject-level leverage of p < 0.05) and were 

removed from group-level analyses. Next, second-level statistical models were calculated, 

which use the full covariance from the first-level models to perform a weighted least-

squares regression (Santosa et al., 2018). Robust regression was also applied to the second-

level model to down-weight outliers at the group-level. The results of this analysis were 

used for group-level contrasts between N-back levels at each channel.   

Group activation results are reported as statistical maps using Benjamini-Hochberg 

false-discovery rate-corrected p-values (e.g., q-values; Benjamini & Hochberg, 1995). This 

FDR correction was applied to all of the data in the second-level analysis, including 43 

channels, oxy- and deoxy-hemoglobin, and 3 conditions, making the correction very 

conservative over all tests.  
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2.6.4. fNIRS Data: Behavioral PLS Analyses 

 Behavioral PLS analysis (Berman et al., 2014; McIntosh & Lobaugh, 2004; 

https://www.rotman-baycrest.on.ca) was conducted to identify significant relationships 

between fNIRS activity and task performance as a function of N-back level. PLS (partial 

least squares) analysis is a multivariate, data-driven approach often used to examine brain-

behavior associations in neuroimaging research by relating two sets or “blocks'' of data to 

one another (Krishnan et al., 2011). In this study, the fNIRS data block consisted of the 

regression coefficients (ꞵ) from the first-level statistical model (AR-IRLS), corresponding to 

changes in HbO or HbR for each N-back level relative to baseline for each participant. The 

behavioral block consisted of average accuracy for each N-back level across blocks of the 

main N-back task for each participant. Thus, for each PLS (HbO or HbR), each participant 

had 129 values for the brain activity block (activation betas for each of three N-back levels 

for 43 channels) and three values for the behavioral block (average accuracy for each of 

three N-back levels). The goal of this analysis was to find the linear combination of 

conditions and brain activity that maximized their covariance.  These weighted patterns 

are referred to as latent variables (LVs). Behavioral PLS is a variant of PLS that examines 

brain-behavior relationships as a function of condition.  The resulting behavioral PLS 

analysis identified the correlation between behavioral data (in this case accuracy) and 

brain activity by condition type that again maximized the covariance between brain activity 

and conditions. Therefore, in this behavioral PLS, the LVs represent a specific pattern of 

brain-performance relationships that vary by condition. 
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 Before running the PLS analysis, histograms of the fNIRS beta values were plotted to 

examine whether the brain data contained any extreme outliers that may bias the PLS 

analysis and would ordinarily be removed in the AnalyzIR Toolbox’s robust regression 

(Huppert, 2016). One participant contained extreme outliers at channel 29 (i.e., beta values 

< -100 and > 100), and was therefore excluded from PLS analysis. However, the direction 

and significance of results did not change if this participant was included. Ten thousand 

permutation tests were performed to obtain p-values for each latent variable (LV) and 

10,000 bootstrapped samples with replacement were created to generate the 95% 

confidence intervals for the mean correlation between fNIRS activity and performance by 

condition for each channel. The bootstrap ratios (salience[weights]/SE[reliability]) 

measure the reliability of the brain-behavior relationship at each channel, and a larger 

bootstrap ratio indicates a strong and consistent contribution to the LV. In this study, 

channels with bootstrap ratios larger than +3 or smaller than -3 were determined to be 

statistically significant as these bootstrap ratios can be interpreted as z-scores.  

2.7 Data & Code Availability  

Data, analysis code, results, and experiment code are publicly available at: 

https://osf.io/sh2bf/  

3. Results 

3.1 Behavioral Results: N-back Performance 

 Results of the repeated measures ANOVA examining accuracy as a function of N-

back level in the main task yielded a significant effect of N-back level on accuracy, F(2,120) 

= 80.0, p < 0.001, ηp2 = 0.57, 95% CI [0.45, 0.65]. As expected, accuracy for the 1-back task 
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(M = 0.91, SD = 0.09) was significantly better than accuracy for the 2-back task (M = 0.79, 

SD = 0.17, p < 0.001) and for the 3-back task (M = 0.73, SD = 0.15, p < 0.001). Accuracy for 

the 2-back task was also significantly higher than for the 3-back task (p < 0.001). [Fig. 4] 

Figure 4. Boxplots of Average Accuracy by N-back Level for all participants 

 

3.2 fNIRS Activation Results 

3.2.1 Activation vs. Baseline in Main N-back Task 

 In the GLM, baseline is defined by everything that is not a task event (i.e., is a test 

against the DC regressor in the model). Relative to baseline, significant increases in 

oxygenated hemoglobin (HbO) were found for 1 channel (medial superior frontal gyrus) 

for the 1-back task and for 5 frontal channels and 1 parietal channel for the 2-back task. No 

channels showed significant increases in HbO concentrations for the 3-back task. [Table 1] 

No channels showed significant decreases in HbR for any N-back level. 
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Table 1. Significant Activation by Channel & ROI for each N-back level.  

Significant channels (Source (S) - Detector (D) pairs) identified as FDR-corrected q < 0.05. 
ROI defined by maximal coverage of talairach daemon parcellation ROI. p-value listed is 
before FDR correction. Power listed is the estimated type-II power for that entry 
(calculated by computing the minimum detectable change as detailed in Harcum & 
Dressing, 2015). 

 S D ROI t-stat p q power 

1-back 
HbO 

1 2 L Medial Superior Frontal 
Gyrus 

3.24 0.001 0.041 0.77 

2-back 
HbO 

2 1 R Superior Frontal Gyrus 3.48 0.001 0.032 0.83 

 4 2 L Superior Frontal Gyrus 3.28 0.001 0.042 0.78 

 4 3 L Superior Frontal Gyrus 3.66 < 0.001 0.023 0.88 

 2 10 R Middle Frontal Gyrus 3.3 0.001 0.042 0.79 

 11 10 R Inferior Frontal Gyrus 3.86 < 0.001 0.017 0.91 

 15 15 R Inferior Parietal  4.41 < 0.001 0.004 0.97 

3-back 
HbO  

-  - - - -   

 

3.2.2. fNIRS Contrasts: 2-back vs. 1-back  

For HbO, 18 channels in the bilateral frontal and right parietal cortex showed 

significantly larger (q < 0.05) increases during the 2-back task relative to the 1-back task. 

No channels yielded larger HbO increases for the 1-back task relative to 2-back.  

For HbR, 7 channels, primarily in bilateral inferior frontal gyrus (IFG), displayed 

larger decreases for 2-back over 1-back. Additionally, 5 channels, primarily in the right 
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middle occipital gyrus, yielded larger decreases in HbR for 1-back relative to 2-back. [Fig. 

5, Top Panel] 

3.2.3. fNIRS Contrasts: 3-back vs. 1-back 

 For HbO, 8 channels, primarily in left and right IFG, yielded significantly larger 

increases for 3-back relative to 1-back. Larger HbO increases for 1-back over 3-back were 

found in 7 channels, primarily located in the right inferior parietal cortex and left superior 

frontal gyrus (SFG).  

For HbR, 5 channels (4 prefrontal, 1 inferior parietal), demonstrated larger 

deactivation in the 3-back task compared to 1-back. Eight channels (4 frontal and 4 

occipito-parietal) showed the opposite pattern. [Fig. 5, Middle Panel] 

3.2.4. fNIRS Contrasts: 3-back vs. 2-back 

 For HbO, 22 channels showed significantly larger increases during the 2-back task 

compared to the 3-back task. These channels covered bilateral frontal and right parietal 

areas. Only one frontal channel was greater for the 3-back relative to the 2-back task.  

For HbR, 9 channels distributed across bilateral frontal and right parietal cortex 

showed larger decreases for the 2-back task relative to the 3-back, and 4 channels (2 in 

medial SFG and 2 in inferior parietal cortex) showed the inverse pattern. [Fig. 5, Bottom 

Panel] 
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Figure 5. N-back level contrasts for HbO (left) and HbR (right).  

Only significant channels (q < 0.05) are shown. Channels are displayed on top of 10-20 
coordinates and grayscale depth maps for left and right Inferior Frontal Gyri, medial 
Superior Frontal Gyri, and right Superior and Inferior Parietal Gyri. For HbO contrasts, 
positive t-values (red) correspond to relatively larger activity for the first term in the 
contrast, and negative t-values (blue) correspond to larger activity for the second term. The 
opposite pattern applies to HbR contrasts. 
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3.2.5. fNIRS Contrasts Summary 

Group level activation maps and contrasts between N-back conditions showed the 

most consistent results in the 2-back task relative to baseline and comparing activity 

during the 2-back task relative to the 1-back task. The consistently higher HbO and lower 

HbR concentration changes during the 2-back task, but not 3-back task, suggest that a 

minimum level of accuracy may be needed to elicit reliable activation in the fronto-parietal 

cortical regions examined. By minimum accuracy, we mean that if participants are not 

performing with a high enough accuracy they may not actually be engaged in the task 

because it has become too difficult. Participants overall performed more poorly on the 

main 3-back task. For the 59 participants used in group-level analysis of the main N-back 

task1, the average accuracy was 73.6% for the 3-back task. In comparison, average accuracy 

for these 59 participants was 80% for the 2-back task and 92.3% for the 1-back task.  

3.3. Behavioral PLS Analysis: fNIRS Activity ~ Task Performance  

 Separate behavioral PLS analyses were run to relate performance to concentration 

changes in HbO and HbR by condition (i.e., 1-back, 2-back and 3-back). Though no 

statistically significant LVs were found for oxyhemoglobin (HbO), the first latent variable 

from the analysis with deoxyhemoglobin concentrations (HbR) was significant and 

explained 51% of the crossblock covariance (p = 0.025). Four superior frontal gyrus (SFG) 

channels (#4, #8, #12, and #25) showed N-back level dependent changes in the 

relationship between HbR and task accuracy [Table 2]. All of these significant channels had 

 
1 Three of the 62 usable fNIRS participants (#s P42, P67, and P70) were removed due to 
undue group-level leverage, see section 2.6.3. fNIRS Data Analysis: Pre-processing Pipeline 
and Task-Based Activation. 
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bootstrap ratios > 3, indicating the direction of the brain-behavior relationship was the 

same across all four channels. Specifically, for these channels, a larger reduction in HbR 

(equivalent to increased neural activity) was positively correlated with higher performance 

on the 3-back task, unrelated to activity on the 2-back task, and negatively correlated with 

performance on the 1-back task. In summary, this suggests that the metabolic demands 

placed on the prefrontal cortex that are necessary to achieve a high level of accuracy varies 

as a consequence of how difficult the task is. [Fig. 7]  

Table 2. Significant Channels for LV 1 

Channel number based on source (S) - detector (D) pair. ROI label defined by maximal 
coverage of talairach daemon ROI. Bootstrap ratios > 3 were considered significant.  

Channel # S D ROI Bootstrap Ratio 

4 2 1 R Superior Frontal Gyrus 3.3 

25 9 1 R Middle/Superior Frontal Gyrus 4.3 

8 3 2 Medial Superior Frontal Gyrus 3.8 

12 4 2 L Superior Frontal Gyrus 3.5 

 

Figure 7. Results from first latent variable for HbR 

LV 1 demonstrated an N-back load-dependent relationship between changes in 
deoxyhemoglobin concentrations (HbR) and performance. (A) The left panel shows 
correlation between accuracy and HbR concentration change separately by N-back level. 
Error bars are 95% confidence intervals around the mean correlation. The right panel 
shows significant channels (labeled by number), which had bootstrap ratios (BSR) > 3. (B) 
Scatterplots showing the correlation between HbR (ꞵ for task-evoked change from 
baseline) and performance (accuracy) at each channel, separated by N-back level.  
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Discussion 

The initial, confirmatory aim of this study was to further validate the use of fNIRS 

for measuring cognitive load with a large sample and utilizing recently developed robust 

statistical tools. Though a number of previous fNIRS studies have examined prefrontal 

activity using attention demanding working memory tasks such as the N-back (Aghajani et 

al., 2017; Ayaz et al., 2012; Fishburn et al., 2014; Kuruvilla et al., 2013; Sato et al., 2013), 

recent work has demonstrated that due to the unique statistical properties of fNIRS, the 

standard analysis approach (based on fMRI) can severely inflate the false positive rate 

(Huppert, 2016). In addition, discrepancies between studies that may be related to task 

performance have been demonstrated across a number of studies. Therefore, to provide 

convergent evidence for previous studies examining load-dependent changes in PFC and 

parietal cortex, a standard N-back task was employed with a large sample of participants, 

and using the recently developed Brain AnalyzIR Toolbox (Santosa et al., 2018) to deal with 

these fNIRS-specific statistical properties. As an exploratory aim, a behavioral PLS analysis 

was conducted to directly examine how performance and activation might be dependent 

upon cognitive load, which may explain non-linear load effects in this study and in previous 

work.  

Overall, the fNIRS results were consistent with the general hypothesis that tasks 

placing higher demands on attention and working memory would lead to increased frontal 

and parietal activation as measured by HbO and HbR concentration changes. This was most 

evident by the widespread frontoparietal activation elicited by the 2-back task relative to 

the 1-back task.   
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However, activity in the 3-back task did not follow the hypothesized pattern. As 

mentioned previously, this non-linear load effect has been demonstrated in other fNIRS 

studies (Aghajani et al., 2017; Mandrick et al., 2013, 2016), and seems likely due to poor 

performance on the task. These results are consistent with the idea that when task 

demands exceed the current mental capacity of participants, they may disengage from the 

task and potentially, fail to recruit the necessary cognitive resources (Mandrick et al., 

2013).  

Interestingly, results of the PLS analysis that incorporated individuals’ accuracy by 

N-back level demonstrated evidence for an interaction of load and performance in the 

recruitment of the PFC. Specifically, this multivariate approach showed that changes in 

deoxyhemoglobin concentrations (HbR) in the medial SFG, which were only uncovered 

when examining the relationship between brain-behavior, but not when behavioral 

performance was not accounted for. Here, greater reductions in HbR (i.e., more activation) 

was positively related to performance on the 3-back task, unrelated to accuracy in the 2-

back task, and negatively related to accuracy in the 1-back task. This pattern of results 

suggests that more automaticity during the 1-back task (i.e., less activation) led to better 

performance on this relatively easy task, and extensive recruitment of the PFC was 

required for high accuracy on the more difficult, cognitively demanding 3-back task.  

This effect may reflect what has been proposed by the neural efficiency hypothesis: 

that participants with overall greater cognitive processing ability will show less activation 

during easy tasks and more during difficult tasks (Dunst et al., 2014; Neubauer & Fink, 

2009). This is thought to result from the lower metabolic demands that a “more efficient” 
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brain requires during cognitive tasks. Though the neural efficiency hypothesis is often 

framed as reflecting individual differences in intelligence, there is also evidence that this 

effect occurs as a result of more efficient strategies after adequate practice on a specific 

task (Sayala et al., 2006). Thus, one possibility for this interaction of task difficulty and 

prefrontal activation is that this reflects individual differences in the learning and adoption 

of effective strategies during practice. Interestingly, recent neuroimaging work has shown 

that individuals whose brains are in a more scale-free or fractal state tend to reap the 

benefits of practice to a greater degree than do those starting in a less scale-free state 

(Kardan, Layden, et al., 2020). Though scale-free neural dynamics have been demonstrated 

in fMRI and EEG (Churchill et al., 2016; Kardan, Adam, et al., 2020), whether this signal can 

be extracted from fNIRS data remains an open question.  

The current study has a few limitations. Specifically, though it would have been ideal 

to get clean data from bilateral frontal and parietal cortex, the montage was only able to 

cover the right parietal cortex and the overall the signal-to-noise ratio (SNR) in these 

channels was very poor compared to the frontal optodes. By design, the Brain AnalyzIR 

Toolbox performs robust regression to downweight outliers and low SNR channels, which 

is necessary to avoid high false positive rates (Barker et al., 2013; Santosa et al., 2018). 

However, it is unclear whether the weaker effects in this area are due to lack of good signal 

(a false negative) or actually due to a lack of parietal cortical involvement in the N-back 

task relative to prefrontal cortex. 

Additionally, it is unclear from these data why the PLS analysis found the load-

dependent relationship in deoxyhemoglobin (HbR) concentration changes but not in 
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oxyhemoglobin (HbO). In general, the HbO signal is larger than HbR which makes it easier 

to detect significant effects in task-based fNIRS, as is the case in this study’s N-back 

contrasts. Relative to HbO, the HbR signal is slower and more tightly coupled with the 

BOLD response of fMRI (Huppert et al., 2006). Therefore, one possibility is that the 

relationship between task performance and activation got stronger with increasing time 

performing the task, which may be reflected to a larger extent in the slower HbR signal. 

Additionally, as HbR is more sensitive to oxygen metabolism (and HbO is more sensitive to 

blood flow changes), it may be that this effect is more driven by metabolic changes.  

However, future investigations would be required to directly test these possibilities. 

 In conclusion, the present study demonstrates that fNIRS activation is sensitive to 

cognitive load and is differentially affected by performance based on task difficulty. This 

work demonstrates the efficacy of using robust statistical procedures to deal with unique 

statistical properties of fNIRS signals and the utility of implementing data-driven, 

multivariate techniques to elucidate more nuanced relationships between brain activity 

and behavior.  

 

Data & Code Availability Statement: 

fNIRS data, accuracy data, analysis code (for Brain AnalyzIR Toolbox, Behavioral PLS, and 
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https://osf.io/sh2bf/  

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. . https://doi.org/10.1101/2020.08.21.261438doi: bioRxiv preprint 

https://paperpile.com/c/4Bbm9d/nTgpC
https://osf.io/sh2bf/
https://doi.org/10.1101/2020.08.21.261438


LOAD-DEPENDENT fNIRS AND PERFORMANCE 

31 

 

Author Contribution Statement: 

K.L.M. and K.W.C. formulated the research question, designed the study, and developed the 

acquisition protocol. K.W.C. implemented the N-Back study. K.L.M. collected the data. 

K.L.M., C.C.I., and T.J.H. analyzed the data. M.G.B. supervised the project. K.L.M. wrote the 

first draft. K.W.C., C.C.I., T.J.H., & M.G.B. provided critical revisions. All authors approved the 

final version of the manuscript for submission.  

 

Acknowledgements: 

Supported by the National Science Foundation BCS-1632445 to M.G.B. the TFK Foundation 

and the John Templeton Foundation to M.G.B. (The University of Chicago Center for 

Practical Wisdom and the Virtue, Happiness and Meaning of Life Scholars group) the 

Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior Shared 

Equipment Award to M.G.B.]; the Mansueto Institute for Urban Innovation [Postdoctoral 

Fellowship to K.W.C.]. 

 

Our fNIRS device was provided by the University of Chicago Grossman Institute for 

Neuroscience, Quantitative Biology, and Human Behavior (Shared Equipment Award).  

 

We thank Jaime Young, Tanvi Laktahkia, Olivia Paraschos, and Anabella Pinton for their 

assistance in data collection. 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. . https://doi.org/10.1101/2020.08.21.261438doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.21.261438


LOAD-DEPENDENT fNIRS AND PERFORMANCE 

32 

References:  

Aghajani, H., Garbey, M., & Omurtag, A. (2017). Measuring mental workload with EEG+ 

fNIRS. Frontiers in Human Neuroscience, 11, 359. 

Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., & Katz, S. (1996). 

Dissociation of Storage and Rehearsal in Verbal Working Memory: Evidence From 

Positron Emission Tomography. Psychological Science, 7(1), 25–31. 

Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., & Onaral, B. (2012). Optical 

brain monitoring for operator training and mental workload assessment. NeuroImage, 

59(1), 36–47. 

Barker, J. W., Aarabi, A., & Huppert, T. J. (2013). Autoregressive model based algorithm for 

correcting motion and serially correlated errors in fNIRS. Biomedical Optics Express, 

4(8), 1366–1379. 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B, 

Statistical Methodology, 57(1), 289–300. 

Berman, M. G., Misic, B., Buschkuehl, M., Kross, E., Deldin, P. J., Peltier, S., Churchill, N. W., 

Jaeggi, S. M., Vakorin, V., McIntosh, A. R., & Jonides, J. (2014). Does resting-state 

connectivity reflect depressive rumination? A tale of two analyses. NeuroImage, 103, 

267–279. 

Bialystok, E., Craik, F. I. M., Grady, C., Chau, W., Ishii, R., Gunji, A., & Pantev, C. (2005). Effect 

of bilingualism on cognitive control in the Simon task: evidence from MEG. 

NeuroImage, 24(1), 40–49. 

Bunce, S. C., Izzetoglu, K., Ayaz, H., Shewokis, P., Izzetoglu, M., Pourrezaei, K., & Onaral, B. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. . https://doi.org/10.1101/2020.08.21.261438doi: bioRxiv preprint 

http://paperpile.com/b/4Bbm9d/5iDc0
http://paperpile.com/b/4Bbm9d/5iDc0
http://paperpile.com/b/4Bbm9d/5iDc0
http://paperpile.com/b/4Bbm9d/5iDc0
http://paperpile.com/b/4Bbm9d/5iDc0
http://paperpile.com/b/4Bbm9d/5iDc0
http://paperpile.com/b/4Bbm9d/lTgvQ
http://paperpile.com/b/4Bbm9d/lTgvQ
http://paperpile.com/b/4Bbm9d/lTgvQ
http://paperpile.com/b/4Bbm9d/lTgvQ
http://paperpile.com/b/4Bbm9d/lTgvQ
http://paperpile.com/b/4Bbm9d/lTgvQ
http://paperpile.com/b/4Bbm9d/lTgvQ
http://paperpile.com/b/4Bbm9d/OmAq0
http://paperpile.com/b/4Bbm9d/OmAq0
http://paperpile.com/b/4Bbm9d/OmAq0
http://paperpile.com/b/4Bbm9d/OmAq0
http://paperpile.com/b/4Bbm9d/OmAq0
http://paperpile.com/b/4Bbm9d/OmAq0
http://paperpile.com/b/4Bbm9d/OmAq0
http://paperpile.com/b/4Bbm9d/8fIQu
http://paperpile.com/b/4Bbm9d/8fIQu
http://paperpile.com/b/4Bbm9d/8fIQu
http://paperpile.com/b/4Bbm9d/8fIQu
http://paperpile.com/b/4Bbm9d/8fIQu
http://paperpile.com/b/4Bbm9d/8fIQu
http://paperpile.com/b/4Bbm9d/8fIQu
http://paperpile.com/b/4Bbm9d/DFnEF
http://paperpile.com/b/4Bbm9d/DFnEF
http://paperpile.com/b/4Bbm9d/DFnEF
http://paperpile.com/b/4Bbm9d/DFnEF
http://paperpile.com/b/4Bbm9d/DFnEF
http://paperpile.com/b/4Bbm9d/DFnEF
http://paperpile.com/b/4Bbm9d/DFnEF
http://paperpile.com/b/4Bbm9d/SeScB
http://paperpile.com/b/4Bbm9d/SeScB
http://paperpile.com/b/4Bbm9d/SeScB
http://paperpile.com/b/4Bbm9d/SeScB
http://paperpile.com/b/4Bbm9d/SeScB
http://paperpile.com/b/4Bbm9d/SeScB
http://paperpile.com/b/4Bbm9d/SeScB
http://paperpile.com/b/4Bbm9d/SeScB
http://paperpile.com/b/4Bbm9d/eHCVa
http://paperpile.com/b/4Bbm9d/eHCVa
http://paperpile.com/b/4Bbm9d/eHCVa
http://paperpile.com/b/4Bbm9d/eHCVa
http://paperpile.com/b/4Bbm9d/eHCVa
http://paperpile.com/b/4Bbm9d/eHCVa
http://paperpile.com/b/4Bbm9d/hYn9H
https://doi.org/10.1101/2020.08.21.261438


LOAD-DEPENDENT fNIRS AND PERFORMANCE 

33 

(2011). Implementation of fNIRS for Monitoring Levels of Expertise and Mental 

Workload. Foundations of Augmented Cognition. Directing the Future of Adaptive 

Systems, 13–22. 

Buračas, G. T., & Boynton, G. M. (2002). Efficient Design of Event-Related fMRI Experiments 

Using M-Sequences. In NeuroImage (Vol. 16, Issue 3, pp. 801–813). 

https://doi.org/10.1006/nimg.2002.1116 

Buxton, R. B. (2010). Interpreting oxygenation-based neuroimaging signals: the importance 

and the challenge of understanding brain oxygen metabolism. Frontiers in 

Neuroenergetics, 2, 8. 

Buxton, R. B. (2013). The physics of functional magnetic resonance imaging (fMRI). Reports 

on Progress in Physics, 76(9), 096601. 

Causse, M., Chua, Z., Peysakhovich, V., Del Campo, N., & Matton, N. (2017). Mental workload 

and neural efficiency quantified in the prefrontal cortex using fNIRS. Scientific Reports, 

7(1), 5222. 

Chang, H., Sprute, L., Maloney, E. A., Beilock, S. L., & Berman, M. G. (2017). Simple 

arithmetic: not so simple for highly math anxious individuals. Social Cognitive and 

Affective Neuroscience, 12(12), 1940–1949. 

Choe, K. W., Blake, R., & Lee, S.-H. (2014). Dissociation between Neural Signatures of 

Stimulus and Choice in Population Activity of Human V1 during Perceptual Decision-

Making. In Journal of Neuroscience (Vol. 34, Issue 7, pp. 2725–2743). 

https://doi.org/10.1523/jneurosci.1606-13.2014 

Choe, K. W., Blake, R., & Lee, S.-H. (2016). Pupil size dynamics during fixation impact the 

accuracy and precision of video-based gaze estimation. Vision Research, 118, 48–59. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. . https://doi.org/10.1101/2020.08.21.261438doi: bioRxiv preprint 

http://paperpile.com/b/4Bbm9d/hYn9H
http://paperpile.com/b/4Bbm9d/hYn9H
http://paperpile.com/b/4Bbm9d/hYn9H
http://paperpile.com/b/4Bbm9d/hYn9H
http://paperpile.com/b/4Bbm9d/hYn9H
http://paperpile.com/b/4Bbm9d/nmdQ8
http://paperpile.com/b/4Bbm9d/nmdQ8
http://paperpile.com/b/4Bbm9d/nmdQ8
http://paperpile.com/b/4Bbm9d/nmdQ8
http://paperpile.com/b/4Bbm9d/nmdQ8
http://dx.doi.org/10.1006/nimg.2002.1116
http://paperpile.com/b/4Bbm9d/Fevlu
http://paperpile.com/b/4Bbm9d/Fevlu
http://paperpile.com/b/4Bbm9d/Fevlu
http://paperpile.com/b/4Bbm9d/Fevlu
http://paperpile.com/b/4Bbm9d/Fevlu
http://paperpile.com/b/4Bbm9d/Fevlu
http://paperpile.com/b/4Bbm9d/Fevlu
http://paperpile.com/b/4Bbm9d/SMBu6
http://paperpile.com/b/4Bbm9d/SMBu6
http://paperpile.com/b/4Bbm9d/SMBu6
http://paperpile.com/b/4Bbm9d/SMBu6
http://paperpile.com/b/4Bbm9d/SMBu6
http://paperpile.com/b/4Bbm9d/SMBu6
http://paperpile.com/b/4Bbm9d/wPj6g
http://paperpile.com/b/4Bbm9d/wPj6g
http://paperpile.com/b/4Bbm9d/wPj6g
http://paperpile.com/b/4Bbm9d/wPj6g
http://paperpile.com/b/4Bbm9d/wPj6g
http://paperpile.com/b/4Bbm9d/wPj6g
http://paperpile.com/b/4Bbm9d/wPj6g
http://paperpile.com/b/4Bbm9d/6Qzua
http://paperpile.com/b/4Bbm9d/6Qzua
http://paperpile.com/b/4Bbm9d/6Qzua
http://paperpile.com/b/4Bbm9d/6Qzua
http://paperpile.com/b/4Bbm9d/6Qzua
http://paperpile.com/b/4Bbm9d/6Qzua
http://paperpile.com/b/4Bbm9d/6Qzua
http://paperpile.com/b/4Bbm9d/CDmp5
http://paperpile.com/b/4Bbm9d/CDmp5
http://paperpile.com/b/4Bbm9d/CDmp5
http://paperpile.com/b/4Bbm9d/CDmp5
http://paperpile.com/b/4Bbm9d/CDmp5
http://paperpile.com/b/4Bbm9d/CDmp5
http://dx.doi.org/10.1523/jneurosci.1606-13.2014
http://paperpile.com/b/4Bbm9d/dHh2k
http://paperpile.com/b/4Bbm9d/dHh2k
http://paperpile.com/b/4Bbm9d/dHh2k
http://paperpile.com/b/4Bbm9d/dHh2k
http://paperpile.com/b/4Bbm9d/dHh2k
http://paperpile.com/b/4Bbm9d/dHh2k
https://doi.org/10.1101/2020.08.21.261438


LOAD-DEPENDENT fNIRS AND PERFORMANCE 

34 

Churchill, N. W., Spring, R., Grady, C., Cimprich, B., Askren, M. K., Reuter-Lorenz, P. A., Jung, 

M. S., Peltier, S., Strother, S. C., & Berman, M. G. (2016). The suppression of scale-free 

fMRI brain dynamics across three different sources of effort: aging, task novelty and 

task difficulty. Scientific Reports, 6, 30895. 

Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. 

(2005). Working memory span tasks: A methodological review and user’s guide. 

Psychonomic Bulletin & Review, 12(5), 769–786. 

Cooper, R. J., Selb, J., Gagnon, L., Phillip, D., Schytz, H. W., Iversen, H. K., Ashina, M., & Boas, D. 

A. (2012). A systematic comparison of motion artifact correction techniques for 

functional near-infrared spectroscopy. Frontiers in Neuroscience, 6, 147. 

Cui, X., Bray, S., Bryant, D. M., Glover, G. H., & Reiss, A. L. (2011). A quantitative comparison 

of NIRS and fMRI across multiple cognitive tasks. NeuroImage, 54(4), 2808–2821. 

Dunst, B., Benedek, M., Jauk, E., Bergner, S., Koschutnig, K., Sommer, M., Ischebeck, A., 

Spinath, B., Arendasy, M., Bühner, M., Freudenthaler, H., & Neubauer, A. C. (2014). 

Neural efficiency as a function of task demands. Intelligence, 42(100), 22–30. 

Fishburn, F. A., Norr, M. E., Medvedev, A. V., & Vaidya, C. J. (2014). Sensitivity of fNIRS to 

cognitive state and load. Frontiers in Human Neuroscience, 8, 76. 

Herff, C., Heger, D., Fortmann, O., Hennrich, J., Putze, F., & Schultz, T. (2014). Mental 

workload during n-back task—quantified in the prefrontal cortex using fNIRS. 

Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00935 

Hocke, L. M., Oni, I. K., Duszynski, C. C., Corrigan, A. V., Frederick, B. D., & Dunn, J. F. (2018). 

Automated Processing of fNIRS Data-A Visual Guide to the Pitfalls and Consequences. 

Algorithms, 11(5). https://doi.org/10.3390/a11050067 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. . https://doi.org/10.1101/2020.08.21.261438doi: bioRxiv preprint 

http://paperpile.com/b/4Bbm9d/dmiBF
http://paperpile.com/b/4Bbm9d/dmiBF
http://paperpile.com/b/4Bbm9d/dmiBF
http://paperpile.com/b/4Bbm9d/dmiBF
http://paperpile.com/b/4Bbm9d/dmiBF
http://paperpile.com/b/4Bbm9d/dmiBF
http://paperpile.com/b/4Bbm9d/dmiBF
http://paperpile.com/b/4Bbm9d/dmiBF
http://paperpile.com/b/4Bbm9d/fs6d3
http://paperpile.com/b/4Bbm9d/fs6d3
http://paperpile.com/b/4Bbm9d/fs6d3
http://paperpile.com/b/4Bbm9d/fs6d3
http://paperpile.com/b/4Bbm9d/fs6d3
http://paperpile.com/b/4Bbm9d/fs6d3
http://paperpile.com/b/4Bbm9d/Y2GHy
http://paperpile.com/b/4Bbm9d/Y2GHy
http://paperpile.com/b/4Bbm9d/Y2GHy
http://paperpile.com/b/4Bbm9d/Y2GHy
http://paperpile.com/b/4Bbm9d/Y2GHy
http://paperpile.com/b/4Bbm9d/Y2GHy
http://paperpile.com/b/4Bbm9d/Y2GHy
http://paperpile.com/b/4Bbm9d/GZb6U
http://paperpile.com/b/4Bbm9d/GZb6U
http://paperpile.com/b/4Bbm9d/GZb6U
http://paperpile.com/b/4Bbm9d/GZb6U
http://paperpile.com/b/4Bbm9d/GZb6U
http://paperpile.com/b/4Bbm9d/GZb6U
http://paperpile.com/b/4Bbm9d/zk7pF
http://paperpile.com/b/4Bbm9d/zk7pF
http://paperpile.com/b/4Bbm9d/zk7pF
http://paperpile.com/b/4Bbm9d/zk7pF
http://paperpile.com/b/4Bbm9d/zk7pF
http://paperpile.com/b/4Bbm9d/zk7pF
http://paperpile.com/b/4Bbm9d/zk7pF
http://paperpile.com/b/4Bbm9d/g2aKF
http://paperpile.com/b/4Bbm9d/g2aKF
http://paperpile.com/b/4Bbm9d/g2aKF
http://paperpile.com/b/4Bbm9d/g2aKF
http://paperpile.com/b/4Bbm9d/g2aKF
http://paperpile.com/b/4Bbm9d/g2aKF
http://paperpile.com/b/4Bbm9d/7aVNQ
http://paperpile.com/b/4Bbm9d/7aVNQ
http://paperpile.com/b/4Bbm9d/7aVNQ
http://paperpile.com/b/4Bbm9d/7aVNQ
http://paperpile.com/b/4Bbm9d/7aVNQ
http://paperpile.com/b/4Bbm9d/7aVNQ
http://dx.doi.org/10.3389/fnhum.2013.00935
http://paperpile.com/b/4Bbm9d/VVNYy
http://paperpile.com/b/4Bbm9d/VVNYy
http://paperpile.com/b/4Bbm9d/VVNYy
http://paperpile.com/b/4Bbm9d/VVNYy
http://paperpile.com/b/4Bbm9d/VVNYy
http://paperpile.com/b/4Bbm9d/VVNYy
http://dx.doi.org/10.3390/a11050067
https://doi.org/10.1101/2020.08.21.261438


LOAD-DEPENDENT fNIRS AND PERFORMANCE 

35 

Hosseini, S. M. H., Bruno, J. L., Baker, J. M., Gundran, A., Harbott, L. K., Gerdes, J. C., & Reiss, A. 

L. (2017). Neural, physiological, and behavioral correlates of visuomotor cognitive 

load. Scientific Reports, 7(1), 8866. 

Huppert, T. J. (2016). Commentary on the statistical properties of noise and its implication 

on general linear models in functional near-infrared spectroscopy. Neurophotonics, 

3(1), 010401. 

Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). HomER: a review of 

time-series analysis methods for near-infrared spectroscopy of the brain. Applied 

Optics, 48(10), D280–D298. 

Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2006). A 

temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor 

stimuli in adult humans. NeuroImage, 29(2), 368–382. 

Kardan, O., Adam, K. C. S., Mance, I., Churchill, N. W., Vogel, E. K., & Berman, M. G. (2020). 

Distinguishing cognitive effort and working memory load using scale-invariance and 

alpha suppression in EEG. NeuroImage, 211, 116622. 

Kardan, O., Layden, E., Choe, K. W., Lyu, M., Zhang, X., Beilock, S. L., Rosenberg, M. D., & 

Berman, M. G. (2020). Scale-invariance in brain activity predicts practice effects in 

cognitive performance. In bioRxiv (p. 2020.05.25.114959). 

https://doi.org/10.1101/2020.05.25.114959 

Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing 

information. Journal of Experimental Psychology, 55(4), 352–358. 

Klem, G. H., Lüders, H. O., Jasper, H. H., & Elger, C. (1999). The ten-twenty electrode system 

of the International Federation. The International Federation of Clinical 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. . https://doi.org/10.1101/2020.08.21.261438doi: bioRxiv preprint 

http://paperpile.com/b/4Bbm9d/Gr4Ih
http://paperpile.com/b/4Bbm9d/Gr4Ih
http://paperpile.com/b/4Bbm9d/Gr4Ih
http://paperpile.com/b/4Bbm9d/Gr4Ih
http://paperpile.com/b/4Bbm9d/Gr4Ih
http://paperpile.com/b/4Bbm9d/Gr4Ih
http://paperpile.com/b/4Bbm9d/Gr4Ih
http://paperpile.com/b/4Bbm9d/jYSW6
http://paperpile.com/b/4Bbm9d/jYSW6
http://paperpile.com/b/4Bbm9d/jYSW6
http://paperpile.com/b/4Bbm9d/jYSW6
http://paperpile.com/b/4Bbm9d/jYSW6
http://paperpile.com/b/4Bbm9d/jYSW6
http://paperpile.com/b/4Bbm9d/jYSW6
http://paperpile.com/b/4Bbm9d/b2Luz
http://paperpile.com/b/4Bbm9d/b2Luz
http://paperpile.com/b/4Bbm9d/b2Luz
http://paperpile.com/b/4Bbm9d/b2Luz
http://paperpile.com/b/4Bbm9d/b2Luz
http://paperpile.com/b/4Bbm9d/b2Luz
http://paperpile.com/b/4Bbm9d/b2Luz
http://paperpile.com/b/4Bbm9d/nTgpC
http://paperpile.com/b/4Bbm9d/nTgpC
http://paperpile.com/b/4Bbm9d/nTgpC
http://paperpile.com/b/4Bbm9d/nTgpC
http://paperpile.com/b/4Bbm9d/nTgpC
http://paperpile.com/b/4Bbm9d/nTgpC
http://paperpile.com/b/4Bbm9d/nTgpC
http://paperpile.com/b/4Bbm9d/y7wLe
http://paperpile.com/b/4Bbm9d/y7wLe
http://paperpile.com/b/4Bbm9d/y7wLe
http://paperpile.com/b/4Bbm9d/y7wLe
http://paperpile.com/b/4Bbm9d/y7wLe
http://paperpile.com/b/4Bbm9d/y7wLe
http://paperpile.com/b/4Bbm9d/y7wLe
http://paperpile.com/b/4Bbm9d/6DAy1
http://paperpile.com/b/4Bbm9d/6DAy1
http://paperpile.com/b/4Bbm9d/6DAy1
http://paperpile.com/b/4Bbm9d/6DAy1
http://paperpile.com/b/4Bbm9d/6DAy1
http://paperpile.com/b/4Bbm9d/6DAy1
http://dx.doi.org/10.1101/2020.05.25.114959
http://paperpile.com/b/4Bbm9d/2vbKx
http://paperpile.com/b/4Bbm9d/2vbKx
http://paperpile.com/b/4Bbm9d/2vbKx
http://paperpile.com/b/4Bbm9d/2vbKx
http://paperpile.com/b/4Bbm9d/2vbKx
http://paperpile.com/b/4Bbm9d/2vbKx
http://paperpile.com/b/4Bbm9d/HwbM
http://paperpile.com/b/4Bbm9d/HwbM
https://doi.org/10.1101/2020.08.21.261438


LOAD-DEPENDENT fNIRS AND PERFORMANCE 

36 

Neurophysiology. Electroencephalography and Clinical Neurophysiology. Supplement, 

52, 3–6. 

Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial Least Squares (PLS) 

methods for neuroimaging: a tutorial and review. NeuroImage, 56(2), 455–475. 

Kuruvilla, M. S., Green, J. R., Ayaz, H., & Murman, D. L. (2013). Neural correlates of cognitive 

decline in ALS: an fNIRS study of the prefrontal cortex. Cognitive Neuroscience, 4(2), 

115–121. 

Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., Kochunov, 

P. V., Nickerson, D., Mikiten, S. A., & Fox, P. T. (2000). Automated Talairach atlas labels 

for functional brain mapping. Human Brain Mapping, 10(3), 120–131. 

Lawrence, M. A. (2016). ez: Easy Analysis and Visualization of Factorial Experiments. 

https://CRAN.R-project.org/package=ez 

Lobaugh, N. J., West, R., & McIntosh, A. R. (2001). Spatiotemporal analysis of experimental 

differences in event-related potential data with partial least squares. Psychophysiology, 

38(3), 517–530. 

Lüdecke, D. (2020). sjstats: Statistical Functions for Regression Models (Version 0.17.9). 

https://doi.org/10.5281/zenodo.1284472 

Mandrick, K., Derosiere, G., Dray, G., Coulon, D., Micallef, J.-P., & Perrey, S. (2013). Prefrontal 

cortex activity during motor tasks with additional mental load requiring attentional 

demand: a near-infrared spectroscopy study. Neuroscience Research, 76(3), 156–162. 

Mandrick, K., Peysakhovich, V., Rémy, F., Lepron, E., & Causse, M. (2016). Neural and 

psychophysiological correlates of human performance under stress and high mental 

workload. Biological Psychology, 121(Pt A), 62–73. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. . https://doi.org/10.1101/2020.08.21.261438doi: bioRxiv preprint 

http://paperpile.com/b/4Bbm9d/HwbM
http://paperpile.com/b/4Bbm9d/HwbM
http://paperpile.com/b/4Bbm9d/HwbM
http://paperpile.com/b/4Bbm9d/HwbM
http://paperpile.com/b/4Bbm9d/HwbM
http://paperpile.com/b/4Bbm9d/HwbM
http://paperpile.com/b/4Bbm9d/whDvw
http://paperpile.com/b/4Bbm9d/whDvw
http://paperpile.com/b/4Bbm9d/whDvw
http://paperpile.com/b/4Bbm9d/whDvw
http://paperpile.com/b/4Bbm9d/whDvw
http://paperpile.com/b/4Bbm9d/whDvw
http://paperpile.com/b/4Bbm9d/ai1jT
http://paperpile.com/b/4Bbm9d/ai1jT
http://paperpile.com/b/4Bbm9d/ai1jT
http://paperpile.com/b/4Bbm9d/ai1jT
http://paperpile.com/b/4Bbm9d/ai1jT
http://paperpile.com/b/4Bbm9d/ai1jT
http://paperpile.com/b/4Bbm9d/ai1jT
http://paperpile.com/b/4Bbm9d/PHEco
http://paperpile.com/b/4Bbm9d/PHEco
http://paperpile.com/b/4Bbm9d/PHEco
http://paperpile.com/b/4Bbm9d/PHEco
http://paperpile.com/b/4Bbm9d/PHEco
http://paperpile.com/b/4Bbm9d/PHEco
http://paperpile.com/b/4Bbm9d/PHEco
http://paperpile.com/b/4Bbm9d/XTgJ
http://paperpile.com/b/4Bbm9d/XTgJ
http://paperpile.com/b/4Bbm9d/XTgJ
http://paperpile.com/b/4Bbm9d/XTgJ
https://cran.r-project.org/package=ez
http://paperpile.com/b/4Bbm9d/sDnNA
http://paperpile.com/b/4Bbm9d/sDnNA
http://paperpile.com/b/4Bbm9d/sDnNA
http://paperpile.com/b/4Bbm9d/sDnNA
http://paperpile.com/b/4Bbm9d/sDnNA
http://paperpile.com/b/4Bbm9d/sDnNA
http://paperpile.com/b/4Bbm9d/sDnNA
http://paperpile.com/b/4Bbm9d/cPHk
http://paperpile.com/b/4Bbm9d/cPHk
http://paperpile.com/b/4Bbm9d/cPHk
http://paperpile.com/b/4Bbm9d/cPHk
http://dx.doi.org/10.5281/zenodo.1284472
http://paperpile.com/b/4Bbm9d/HsrqC
http://paperpile.com/b/4Bbm9d/HsrqC
http://paperpile.com/b/4Bbm9d/HsrqC
http://paperpile.com/b/4Bbm9d/HsrqC
http://paperpile.com/b/4Bbm9d/HsrqC
http://paperpile.com/b/4Bbm9d/HsrqC
http://paperpile.com/b/4Bbm9d/HsrqC
http://paperpile.com/b/4Bbm9d/EAXfW
http://paperpile.com/b/4Bbm9d/EAXfW
http://paperpile.com/b/4Bbm9d/EAXfW
http://paperpile.com/b/4Bbm9d/EAXfW
http://paperpile.com/b/4Bbm9d/EAXfW
http://paperpile.com/b/4Bbm9d/EAXfW
http://paperpile.com/b/4Bbm9d/EAXfW
https://doi.org/10.1101/2020.08.21.261438


LOAD-DEPENDENT fNIRS AND PERFORMANCE 

37 

Matsuda, G., & Hiraki, K. (2006). Sustained decrease in oxygenated hemoglobin during 

video games in the dorsal prefrontal cortex: a NIRS study of children. NeuroImage, 

29(3), 706–711. 

McIntosh, A. R., Kovacevic, N., & Itier, R. J. (2008). Increased brain signal variability 

accompanies lower behavioral variability in development. PLoS Computational 

Biology, 4(7), e1000106. 

McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data: 

applications and advances. NeuroImage, 23 Suppl 1, S250–S263. 

McKendrick, R., Ayaz, H., Olmstead, R., & Parasuraman, R. (2014). Enhancing dual-task 

performance with verbal and spatial working memory training: continuous 

monitoring of cerebral hemodynamics with NIRS. NeuroImage, 85 Pt 3, 1014–1026. 

Mencarelli, L., Neri, F., Momi, D., Menardi, A., Rossi, S., Rossi, A., & Santarnecchi, E. (2019). 

Stimuli, presentation modality, and load-specific brain activity patterns during n-back 

task. Human Brain Mapping, 40(13), 3810–3831. 

Morais, G. A. Z., Balardin, J. B., & Sato, J. R. (2018). fNIRS Optodes’ Location Decider (fOLD): 

a toolbox for probe arrangement guided by brain regions-of-interest. Scientific Reports, 

8(1), 3341. 

Murata, A., Park, J., Kovelman, I., Hu, X., & Kitayama, S. (2015). Culturally non-preferred 

cognitive tasks require compensatory attention: a functional near infrared 

spectroscopy (fNIRS) investigation. Culture and Brain, 3(1), 53–67. 

Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience and 

Biobehavioral Reviews, 33(7), 1004–1023. 

Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. . https://doi.org/10.1101/2020.08.21.261438doi: bioRxiv preprint 

http://paperpile.com/b/4Bbm9d/aXPCv
http://paperpile.com/b/4Bbm9d/aXPCv
http://paperpile.com/b/4Bbm9d/aXPCv
http://paperpile.com/b/4Bbm9d/aXPCv
http://paperpile.com/b/4Bbm9d/aXPCv
http://paperpile.com/b/4Bbm9d/aXPCv
http://paperpile.com/b/4Bbm9d/aXPCv
http://paperpile.com/b/4Bbm9d/lx81A
http://paperpile.com/b/4Bbm9d/lx81A
http://paperpile.com/b/4Bbm9d/lx81A
http://paperpile.com/b/4Bbm9d/lx81A
http://paperpile.com/b/4Bbm9d/lx81A
http://paperpile.com/b/4Bbm9d/lx81A
http://paperpile.com/b/4Bbm9d/lx81A
http://paperpile.com/b/4Bbm9d/futAE
http://paperpile.com/b/4Bbm9d/futAE
http://paperpile.com/b/4Bbm9d/futAE
http://paperpile.com/b/4Bbm9d/futAE
http://paperpile.com/b/4Bbm9d/futAE
http://paperpile.com/b/4Bbm9d/futAE
http://paperpile.com/b/4Bbm9d/FP3CE
http://paperpile.com/b/4Bbm9d/FP3CE
http://paperpile.com/b/4Bbm9d/FP3CE
http://paperpile.com/b/4Bbm9d/FP3CE
http://paperpile.com/b/4Bbm9d/FP3CE
http://paperpile.com/b/4Bbm9d/FP3CE
http://paperpile.com/b/4Bbm9d/FP3CE
http://paperpile.com/b/4Bbm9d/oZNRB
http://paperpile.com/b/4Bbm9d/oZNRB
http://paperpile.com/b/4Bbm9d/oZNRB
http://paperpile.com/b/4Bbm9d/oZNRB
http://paperpile.com/b/4Bbm9d/oZNRB
http://paperpile.com/b/4Bbm9d/oZNRB
http://paperpile.com/b/4Bbm9d/oZNRB
http://paperpile.com/b/4Bbm9d/xEChz
http://paperpile.com/b/4Bbm9d/xEChz
http://paperpile.com/b/4Bbm9d/xEChz
http://paperpile.com/b/4Bbm9d/xEChz
http://paperpile.com/b/4Bbm9d/xEChz
http://paperpile.com/b/4Bbm9d/xEChz
http://paperpile.com/b/4Bbm9d/xEChz
http://paperpile.com/b/4Bbm9d/TqTBa
http://paperpile.com/b/4Bbm9d/TqTBa
http://paperpile.com/b/4Bbm9d/TqTBa
http://paperpile.com/b/4Bbm9d/TqTBa
http://paperpile.com/b/4Bbm9d/TqTBa
http://paperpile.com/b/4Bbm9d/TqTBa
http://paperpile.com/b/4Bbm9d/TqTBa
http://paperpile.com/b/4Bbm9d/31FUS
http://paperpile.com/b/4Bbm9d/31FUS
http://paperpile.com/b/4Bbm9d/31FUS
http://paperpile.com/b/4Bbm9d/31FUS
http://paperpile.com/b/4Bbm9d/31FUS
http://paperpile.com/b/4Bbm9d/31FUS
http://paperpile.com/b/4Bbm9d/MI6K2
https://doi.org/10.1101/2020.08.21.261438


LOAD-DEPENDENT fNIRS AND PERFORMANCE 

38 

paradigm: A meta-analysis of normative functional neuroimaging studies. Human 

Brain Mapping, 25(1), 46–59. 

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & 

Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior 

Research Methods, 51(1), 195–203. 

Pinti, P., Scholkmann, F., Hamilton, A., Burgess, P., & Tachtsidis, I. (2018). Current Status 

and Issues Regarding Pre-processing of fNIRS Neuroimaging Data: An Investigation of 

Diverse Signal Filtering Methods Within a General Linear Model Framework. Frontiers 

in Human Neuroscience, 12, 505. 

Pinti, P., Tachtsidis, I., Hamilton, A., Hirsch, J., Aichelburg, C., Gilbert, S., & Burgess, P. W. 

(2018). The present and future use of functional near-infrared spectroscopy (fNIRS) 

for cognitive neuroscience. Annals of the New York Academy of Sciences. 

https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/nyas.13948 

Ravizza, S. M., Delgado, M. R., Chein, J. M., Becker, J. T., & Fiez, J. A. (2004). Functional 

dissociations within the inferior parietal cortex in verbal working memory. 

NeuroImage, 22(2), 562–573. 

R Core Team. (2018). R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing. https://www.R-project.org/ 

Rolls, E. T., Joliot, M., & Tzourio-Mazoyer, N. (2015). Implementation of a new parcellation 

of the orbitofrontal cortex in the automated anatomical labeling atlas. NeuroImage, 

122, 1–5. 

Santosa, H., Fishburn, F., Zhai, X., & Huppert, T. J. (2019). Investigation of the sensitivity-

specificity of canonical- and deconvolution-based linear models in evoked functional 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. . https://doi.org/10.1101/2020.08.21.261438doi: bioRxiv preprint 

http://paperpile.com/b/4Bbm9d/MI6K2
http://paperpile.com/b/4Bbm9d/MI6K2
http://paperpile.com/b/4Bbm9d/MI6K2
http://paperpile.com/b/4Bbm9d/MI6K2
http://paperpile.com/b/4Bbm9d/MI6K2
http://paperpile.com/b/4Bbm9d/MI6K2
http://paperpile.com/b/4Bbm9d/UwsfZ
http://paperpile.com/b/4Bbm9d/UwsfZ
http://paperpile.com/b/4Bbm9d/UwsfZ
http://paperpile.com/b/4Bbm9d/UwsfZ
http://paperpile.com/b/4Bbm9d/UwsfZ
http://paperpile.com/b/4Bbm9d/UwsfZ
http://paperpile.com/b/4Bbm9d/UwsfZ
http://paperpile.com/b/4Bbm9d/YN9GI
http://paperpile.com/b/4Bbm9d/YN9GI
http://paperpile.com/b/4Bbm9d/YN9GI
http://paperpile.com/b/4Bbm9d/YN9GI
http://paperpile.com/b/4Bbm9d/YN9GI
http://paperpile.com/b/4Bbm9d/YN9GI
http://paperpile.com/b/4Bbm9d/YN9GI
http://paperpile.com/b/4Bbm9d/YN9GI
http://paperpile.com/b/4Bbm9d/BblCL
http://paperpile.com/b/4Bbm9d/BblCL
http://paperpile.com/b/4Bbm9d/BblCL
http://paperpile.com/b/4Bbm9d/BblCL
http://paperpile.com/b/4Bbm9d/BblCL
http://paperpile.com/b/4Bbm9d/BblCL
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/nyas.13948
http://paperpile.com/b/4Bbm9d/awvo7
http://paperpile.com/b/4Bbm9d/awvo7
http://paperpile.com/b/4Bbm9d/awvo7
http://paperpile.com/b/4Bbm9d/awvo7
http://paperpile.com/b/4Bbm9d/awvo7
http://paperpile.com/b/4Bbm9d/awvo7
http://paperpile.com/b/4Bbm9d/S8LO
http://paperpile.com/b/4Bbm9d/S8LO
http://paperpile.com/b/4Bbm9d/S8LO
http://paperpile.com/b/4Bbm9d/S8LO
https://www.r-project.org/
http://paperpile.com/b/4Bbm9d/PiQGx
http://paperpile.com/b/4Bbm9d/PiQGx
http://paperpile.com/b/4Bbm9d/PiQGx
http://paperpile.com/b/4Bbm9d/PiQGx
http://paperpile.com/b/4Bbm9d/PiQGx
http://paperpile.com/b/4Bbm9d/PiQGx
http://paperpile.com/b/4Bbm9d/PiQGx
http://paperpile.com/b/4Bbm9d/oXKxU
http://paperpile.com/b/4Bbm9d/oXKxU
https://doi.org/10.1101/2020.08.21.261438


LOAD-DEPENDENT fNIRS AND PERFORMANCE 

39 

near-infrared spectroscopy. Neurophotonics, 6(2), 025009. 

Santosa, H., Zhai, X., Fishburn, F., & Huppert, T. (2018). The NIRS Brain AnalyzIR Toolbox. 

Algorithms, 11(5), 73. 

Sato, H., Yahata, N., Funane, T., Takizawa, R., Katura, T., Atsumori, H., Nishimura, Y., 

Kinoshita, A., Kiguchi, M., Koizumi, H., Fukuda, M., & Kasai, K. (2013). A NIRS–fMRI 

investigation of prefrontal cortex activity during a working memory task. NeuroImage, 

83, 158–173. 

Sayala, S., Sala, J. B., & Courtney, S. M. (2006). Increased neural efficiency with repeated 

performance of a working memory task is information-type dependent. Cerebral 

Cortex , 16(5), 609–617. 

Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Mata Pavia, J., Wolf, U., & Wolf, M. 

(2014). A review on continuous wave functional near-infrared spectroscopy and 

imaging instrumentation and methodology. NeuroImage, 85 Pt 1, 6–27. 

Strangman, G., Franceschini, M. A., & Boas, D. A. (2003). Factors affecting the accuracy of 

near-infrared spectroscopy concentration calculations for focal changes in 

oxygenation parameters. NeuroImage, 18(4), 865–879. 

Tong, Y., Lindsey, K. P., & deB Frederick, B. (2011). Partitioning of physiological noise 

signals in the brain with concurrent near-infrared spectroscopy and fMRI. Journal of 

Cerebral Blood Flow and Metabolism: Official Journal of the International Society of 

Cerebral Blood Flow and Metabolism, 31(12), 2352–2362. 

Turner, B. O., Paul, E. J., Miller, M. B., & Barbey, A. K. (2018). Small sample sizes reduce the 

replicability of task-based fMRI studies. Communications Biology, 1, 62. 

Yücel, M. A., Selb, J. J., Huppert, T. J., Franceschini, M. A., & Boas, D. A. (2017). Functional 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. . https://doi.org/10.1101/2020.08.21.261438doi: bioRxiv preprint 

http://paperpile.com/b/4Bbm9d/oXKxU
http://paperpile.com/b/4Bbm9d/oXKxU
http://paperpile.com/b/4Bbm9d/oXKxU
http://paperpile.com/b/4Bbm9d/oXKxU
http://paperpile.com/b/4Bbm9d/oXKxU
http://paperpile.com/b/4Bbm9d/lV7Jz
http://paperpile.com/b/4Bbm9d/lV7Jz
http://paperpile.com/b/4Bbm9d/lV7Jz
http://paperpile.com/b/4Bbm9d/lV7Jz
http://paperpile.com/b/4Bbm9d/lV7Jz
http://paperpile.com/b/4Bbm9d/lV7Jz
http://paperpile.com/b/4Bbm9d/0sVtP
http://paperpile.com/b/4Bbm9d/0sVtP
http://paperpile.com/b/4Bbm9d/0sVtP
http://paperpile.com/b/4Bbm9d/0sVtP
http://paperpile.com/b/4Bbm9d/0sVtP
http://paperpile.com/b/4Bbm9d/0sVtP
http://paperpile.com/b/4Bbm9d/0sVtP
http://paperpile.com/b/4Bbm9d/0sVtP
http://paperpile.com/b/4Bbm9d/8b0P9
http://paperpile.com/b/4Bbm9d/8b0P9
http://paperpile.com/b/4Bbm9d/8b0P9
http://paperpile.com/b/4Bbm9d/8b0P9
http://paperpile.com/b/4Bbm9d/8b0P9
http://paperpile.com/b/4Bbm9d/8b0P9
http://paperpile.com/b/4Bbm9d/8b0P9
http://paperpile.com/b/4Bbm9d/3rub4
http://paperpile.com/b/4Bbm9d/3rub4
http://paperpile.com/b/4Bbm9d/3rub4
http://paperpile.com/b/4Bbm9d/3rub4
http://paperpile.com/b/4Bbm9d/3rub4
http://paperpile.com/b/4Bbm9d/3rub4
http://paperpile.com/b/4Bbm9d/3rub4
http://paperpile.com/b/4Bbm9d/qMm4A
http://paperpile.com/b/4Bbm9d/qMm4A
http://paperpile.com/b/4Bbm9d/qMm4A
http://paperpile.com/b/4Bbm9d/qMm4A
http://paperpile.com/b/4Bbm9d/qMm4A
http://paperpile.com/b/4Bbm9d/qMm4A
http://paperpile.com/b/4Bbm9d/qMm4A
http://paperpile.com/b/4Bbm9d/w0LdF
http://paperpile.com/b/4Bbm9d/w0LdF
http://paperpile.com/b/4Bbm9d/w0LdF
http://paperpile.com/b/4Bbm9d/w0LdF
http://paperpile.com/b/4Bbm9d/w0LdF
http://paperpile.com/b/4Bbm9d/w0LdF
http://paperpile.com/b/4Bbm9d/w0LdF
http://paperpile.com/b/4Bbm9d/w0LdF
http://paperpile.com/b/4Bbm9d/wqjHW
http://paperpile.com/b/4Bbm9d/wqjHW
http://paperpile.com/b/4Bbm9d/wqjHW
http://paperpile.com/b/4Bbm9d/wqjHW
http://paperpile.com/b/4Bbm9d/wqjHW
http://paperpile.com/b/4Bbm9d/wqjHW
http://paperpile.com/b/4Bbm9d/7HhSi
https://doi.org/10.1101/2020.08.21.261438


LOAD-DEPENDENT fNIRS AND PERFORMANCE 

40 

Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging. Current 

Opinion in Biomedical Engineering. https://doi.org/10.1016/j.cobme.2017.09.011 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 24, 2020. . https://doi.org/10.1101/2020.08.21.261438doi: bioRxiv preprint 

http://paperpile.com/b/4Bbm9d/7HhSi
http://paperpile.com/b/4Bbm9d/7HhSi
http://paperpile.com/b/4Bbm9d/7HhSi
http://paperpile.com/b/4Bbm9d/7HhSi
http://dx.doi.org/10.1016/j.cobme.2017.09.011
https://doi.org/10.1101/2020.08.21.261438

