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Abstract 

Although practicing a task generally benefits later performance on that same task (‘practice effect’), 

there are large—and mostly unexplained—individual differences in reaping the benefits from 

practice. One promising avenue to model and predict such differences comes from recent research 

showing that brain networks can extract functional advantages from operating in the vicinity of 

criticality, a state in which brain network activity is more scale-free. As such, we hypothesized that 

individuals with more scale-free fMRI activity, indicated by BOLD time series with a higher Hurst 

exponent (H), gain more benefits from practice. In this study, participants practiced a test of 

working memory and attention, the dual n-back task (DNB), watched a video clip as a break, and 

then performed the DNB again, during MRI. To isolate the practice effect, we divided the 

participants into two groups based on improvement in performance from the first to second DNB 

task run. We identified regions and connections in which H and functional connectivity related to 

practice effects in the last run. More scale-free brain activity in these regions during the preceding 

runs (either first DNB or video) distinguished individuals who showed greater DNB performance 

improvements over time. In comparison, functional connectivity (r2) in the identified connections 

did not reliably classify the two groups in the preceding runs. Finally, we replicated both H and r2 

results from study 1 in an independent fMRI dataset of participants performing multiple runs of 

another working memory and attention task (word completion). We conclude that the brain 

networks can accommodate further practice effects in individuals with higher scale-free BOLD 

activity. 
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Introduction 

 Improvements in cognitive test performance due to repeated practice considerably vary 

across individuals, even within the same test (Calamia et al, 2012). When situational factors and age 

are controlled for, the variability observed in these so called ‘practice effects’ (see McCaffrey, Duff, 

& Westervelt, 2000) across healthy individuals is traditionally attributed to differences in 

intellectual ability, where individuals with higher fluid intelligence benefit more from practice 

(Rapport et al, 1997). The magnitude of practice effects in multiple tests of working memory, 

attention, and executive function has been shown to provide rich and unique information about the 

respondent for diagnosis of clinical conditions as well as their responsiveness to interventions (Duff 

et al, 2012). Given the diagnostic and prognostic values of practice effects, it is important to pursue 

mechanistic models for explaining individual differences in learning from practice (i.e., move 

beyond the less specific ‘the rich get richer’ argument), and hone in on a neuropsychological model 

of individuals’ future task improvement based on the state of their brain activity. In the current 

study, we characterize the brain as a network that imparts functional advantages when operating in 

the vicinity of criticality.  We show that brain network criticality provides a theoretical framework 

for investigating multiple aspects of cognitive performance, including whether or not one is likely to 

improve over time in a working memory and attention task. 

 A common way to measure the criticality of large-scale brain networks (see Box 1) is via 

estimation of time scale-invariance (e.g., the 1/f component of power spectral density function) in 

brain activity. Specifically, scale-free brain activity has been successfully measured using the Hurst 

exponent (H) for both electrophysiological brain activity (e.g., EEG, MEG, ECoG) and blood-oxygen-

level-dependent (BOLD) fMRI signals, where higher H indicates more scale-free dynamics. H in 

electrophysiological and fMRI signals has been shown to be suppressed during the exertion of 

cognitive effort (Churchill et al., 2016; He, 2014; Kardan, Adam, et al., 2020), following sport-related 

concussions (Churchill et al., 2020), and with distress and aging (Churchill et al., 2016; Goldberger 

et al., 2002). For example, Kardan et al. (2020) found that when individuals were performing a task 

with trials of low, medium, or high working memory demands, global suppression of H in EEG brain 

activity tracked the task loads, concluding that lowered H is indicative of a departure from the state 

of rest towards an ‘effortful’ state (i.e., further away from criticality). Notably, the degree of H 

suppression monotonically tracked task demands within individuals better than specific EEG 

oscillatory components. Given this modulation of H with cognitive exertion, we hypothesized that 

individual differences in average H of whole-brain activity when performing equally well on a task 
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could signal differences in the potential for further improvement in the task. Improving 

performance in non-trivial tasks generally requires efficient implicit and explicit learning of task 

characteristics and forming better task-relevant memories and cognitive strategies. Our hypothesis 

is that higher H would accommodate cognitive resources for such processes. 
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Box 1. Critical state in a dynamic network  

Consider a physical system whose large-scale behavior is not merely the sum of its smaller components 

(i.e., it is a network with interactions between nodes). Such system can be in different states based on 

whether the network configuration is poised at minimum stability or not. As a toy example, the network in 

Figure 1 consists of nodes with active or inactive states, where network dynamics are configured such that 

an active node becomes inactive at the rate of λ, and activity in a node spreads to a random neighboring 

inactive node at the rate of γ. In such network, the time evolution of a small scale local activity can be 

spread chaotically if λ < γ or be absorbed before resulting in global activity patterns if λ > γ. At the border 

between these two regimes (λ = γ), the observed global patterns of activity tend to become self-similar 

over different temporal or spatial scales, i. e., scale-invariant, as they follow the power-law distribution 

(Frette et al., 1996; Muñoz, 2018). In other words, this ‘critical’ state (λ = γ) separates the subcritical phase 

(λ > γ), where transient activity decays to a zero-activity steady state, from the supercritical phase (λ < γ), 

where transient activity turns into sustained global activity. Therefore, the minimal stability of the 

network at critical state enables maximum susceptibility to perturbation by environmental inputs while 

avoiding sustained global activity that prevents sensitivity to other transient activity (Chialvo, 2004; 

Fraiman, Balenzuela, Foss, & Chialvo, 2009; Frette et al., 1996). One can conceive of brain networks 

similarly:  small-scale neuronal ensembles with short- and long-term interactions (phase-coupled electro-

chemical activity) give rise to the emergent large-scale activity linked to cognitive functions (Chialvo, 

2010; Cocchi, Gollo, Zalesky, & Breakspear, 2017; Fagerholm et al., 2015; Gisiger, 2001; He, 2014; Werner, 

2010). There is evidence of self-organized criticality in the human brain’s intrinsic activity (de Arcangelis, 

Perrone-Capano, & Herrmann, 2006; Kitzbichler, Smith, Christensen, & Bullmore, 2009), permitting 

dynamic reorganization into alternative states (i.e., further from criticality) depending on behavioral and 

cognitive demands (Arviv, Goldstein, & Shriki, 2015; Fagerholm et al., 2015; Hahn et al., 2017; Yu et al., 

2017). 

 
Figure 1. Schematic of dynamics of de-activation of an active node or propagation of activity to a 

neighboring node in a simple network exhibiting non-equilibrium phase transition. Different relationship 

between activation rate (γ) and deactivation rate (λ) results in the network to be in subcritical, critical, or 

supercritical state. 
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In simulated neural networks, operating at critical state has been shown to provide multiple 

advantageous functional properties for the network such as improved information storage and 

transfer (Boedecker, Obst, Lizier, Mayer, & Asada, 2012; Shriki et al., 2013; Shriki & Yellin, 2016; 

Tanaka, Kaneko, & Aoyagi, 2008) and dynamic range (Gautam, Hoang, McClanahan, Grady, & Shew, 

2015; Kinouchi & Copelli, 2006). Operating near criticality may also facilitate learning and plastic 

adaptation (de Arcangelis & Herrmann, 2010). In our proposed framework, H is a measure that 

indicates brain network proximity or departure from criticality (Kardan et al., 2020). Under our 

hypothesis, the temporal and spatial efficiency of information transfer between the nodes of brain 

networks is diminished when H is low. For example, when an exogenous task demand suppresses 

H, the ability to process other exogenous or endogenous cognitive demands is diminished due to 

the transition to a sub-critical state. Therefore, between two individuals initially performing equally 

well in a working memory and attention test, the person with higher H while performing the task is 

likely enjoying more efficient information processing (as if performing an easier task despite the 

apparent equal performance). Our hypothesis is that such advantage will eventually emerge as 

higher performance in the task the second time around, because efficient information processing 

facilitates any additional processes required for improving the execution of task. Since this 

advantage resulting in disproportionate gain in later performance (compared to the lower H 

individual) need not be immediately apparent in initial behavioral performance, this proposed 

hypothesis could provide an avenue to model practice effects in a predictive manner. 

In the current study, participants performed an audio-visual dual n-back (DNB) task (Jaeggi, 

Buschkuehl, Jonides, & Perrig, 2008) two times, with an intermission video in between as a rest 

break. We divided the participants into two groups based on pure improvement in DNB 

performance (i.e., adjusted for baseline performance). Our hypothesis was that participants with 

higher H would show greater improvements in DNB performance from run 1 to run 2. We identified 

regions in which H related to practice effects in the last run, and showed higher average H during 

either the first DNB run or the video break run in those regions is sufficient for distinguishing task 

improvers from non-improvers. Additionally, we identified functional connections in the last run 

whose strength related to practice effects, and showed that the strength of these connections 

during either the first DNB run or the video run did not distinguish improvers from non-improvers, 

demonstrating that not any brain activity measure related to task performance can distinguish the 

two groups. Finally, we replicated our results of study 1 by showing that higher average H in the 

regions identified in study 1 successfully distinguished improvers from non-improvers in an 

independent dataset with a different repeated cognitive test of working memory and attention 
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(word completion task, study 2). In summary, we propose that differences in scale-invariance of 

fMRI BOLD activity can characterize individual differences in practice effects. 

 

Results 

Behavioral results in study1: Improvers vs. non-improvers 

For each fMRI run, task performance was operationalized as discrimination index A’ 

averaged across all 6 DNB task blocks. There was an average improvement of ΔA’ = 0.045 in 

performance (i.e., 5.5% improvement) from first run of dual n-back (A’0; Mean = 0.827, SD = 0.081) 

to dual n-back run 2 (A’f; Mean = 0.872, SD = 0.081), with large variability in the amount of change 

in performance (ΔA’) across individuals (SD = 0.045; Figure 2). Linear regression of ΔA’ on video 

type and preference rating for the video failed to find a significant relationship between video type 

or video rating and change in performance (t = 0.403, p = 0.688 for video type and t = -0.870, p = 

0.388 for preference rating). Therefore, we collapsed the participants on the video types for the rest 

of the analyses. 

All performance levels (shown in figure 2) were above chance (i.e., A’>0.5), suggesting that 

participants were engaged and compliant during the DNB runs. Importantly, we wanted to assess 

practice effects independent of baseline performance in our fMRI based classification models. To do 

this, we regressed A’0 out of ΔA’ to make adj. ΔA' scores that are linearly independent from baseline 

performance. We then split the participants into improvers and non-improvers based on a median 

split of adj. ΔA' (Figure 2 blue vs. red lines). When using adj. ΔA', there was no significant difference 

between the baseline performance of the two groups (A’0 = 0.836 for non-improvers and 0.818 for 

improvers, t = 0.838, p = 0.405), but improvers had significantly higher performance the second 

time around compared to non-improvers (A’f = 0.846 for non-improvers and 0.898 for improvers, t 

=2.528, p = 0.014). Although our main analysis involves the adjusted ΔA', we also performed an 

additional classification with improvers vs. non-improvers defined based on a median split of ΔA' 

non-adjusted for baseline performance and replicated the same findings (see supplementary Figure 

S1). 
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Figure 2. Performance in the dual n-back task in all participants color-coded by change in 
performance for improvers (blue) and non-improvers (red). When change in performance was 
residualized with baseline performance the defined improvers and non-improvers on average 
started equally well, but improvers had significantly higher performance in the second dual n-back 
run. Error bars show ±SE. 

 

fMRI results in study1: Defining regions and functional connections of interest  

 In addition to evaluating global average H and r2 across the whole brain (see Methods), we 

also selected a subset of voxel-level regions of interest (ROI) and a subset of functional connections 

of interest (COI) from the H and r2 whole-brain data that were most relevant in distinguishing the 

performance from improvers and from non-improvers in the dual n-back task. We used the fMRI 

data from the 2nd dual n-back run to define the ROIs and COIs. No brain data from the first two runs 
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(first dual n-back and video) were used in the ROI or COI selection, as these data were set aside for 

subsequent classification analyses. The selection of the subset of voxels for classification analysis 

(i.e., the ROI) and subset of connections for classification analysis (i.e., the COI) was done based on 

whether a voxel’s H or a functional connection’s r2 had a correlation above ρ > 0.25 with adj. ΔA' 

(i.e., at least a small association size (Kirk, 2012) between variables), and whether that condition 

was met in more than half of data bootstraps (total of 200 resamples with replacement)1. Figure 3A 

shows these voxels and figure 3B shows the connections which comprised of 5409 voxels (~8.5% 

of total) and 2747 pairwise connections (~3.6% of total), respectively. The ROI voxels fell mainly 

within the frontal and temporal lobes, and the COI connections mainly involved the temporal and 

frontal lobes, as well as the cerebellum. The full list of brain structures and their extent of overlap 

with the Hurst ROIs and the r2 COIs are presented in supplementary Tables S1 and S2.  

                                                           
1 The classification results are not dependent on this particular choice of threshold. For example for choices of 
ρ > 0.15 or ρ > 0.35, even though the sparsity of included voxels or connections in the ROI and COI change, the 
classification performances remain similar. 
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Figure 3. The selected ROIs (A) and COIs (B) are illustrated here. A. The main clusters of the Hurst 
ROIs are located in the frontal and temporal lobes. The colorbar shows proportion of re-samples 
where the voxel passed the ρ > 0.25 with adj. ΔA', with threshold at 50%. B. The nodes with most 
connections in the r2 COI (that passed the ρ > 0.25 with adj. ΔA') involve temporal and frontal 
regions, as well as cerebellum. For the full list of regions and connections see supplementary Tables 
S1 and S2. 

 

fMRI results in study1: Scale-invariance distinguishes improvers in the dual n-back task 

The classification of improvers vs. non-improvers within the dual n-back sample was 

successful using either average H in the ROI during the baseline/1st dual n-back run (i.e., HDNB1) or 

average H in the ROI during the video viewing run (i.e., HVid), with both having class prediction 

accuracies of 64% and significantly better than the null classification distribution (p = 0.025 and p = 

0.005 for HDNB1 and HVid, respectively). In comparison, the average r2 values in the COIs during the 

baseline dual n-back (ConnDNB1) or average r2 in the COI during the video viewing run (ConnVid) 

failed to classify improvers from non-improvers significantly better than the null model, with 

respective accuracies of 53% and 57%.2 The distribution for all classification bootstraps and their 

respective confusion matrices are shown in Figure 4 panels A and B. 

There was a chance in the previous analysis that the HDNB1 model was capitalizing on the fact 

that the behavioral performance from the DNB1 run of the left-out participants were used in 

making the median split of improvers and non-improvers (i.e., regressing A’0 out of ΔA’ included all 

subjects’ behavioral data). Therefore, we also used the fMRI data from only the video run (i.e., HVid 

or ConnVid) to predict improvers and non-improvers regardless of their baseline performance (i.e., 

where the median split was done on ΔA’ non-adjusted for baseline performance). We repeated the 

classification procedure using the HVid, ConnVid, or the baseline performance to distinguish the new 

split of improvers and non-improvers that does not adjust for baseline performance and using fMRI 

data that does not include performing a task. The results showed similar prediction accuracy of 

64% (p = 0.025) for HVid, while neither ConnVid nor baseline performance have classification 

accuracies significantly better than chance (57% and 58%, respectively). Additionally, we used all 

three variables (A’0, HVid, and ConnVid) and their two-way interactions for classification and left each 

variable out to observe the drops in prediction accuracy. This analysis showed that ConnVid was 

completely redundant in the full model (i.e., no accuracy drops absent of ConnVid), and the best 

                                                           
2 Separate analysis of negative and positive functional connectivity values (rather than r2) resulted in slightly 

worse performance for the connectivity-based classifications. 
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classification model was one that included HVid, A’0, and their two-way interaction, which performed 

at 70% accuracy. The classification accuracy distributions and confusion matrices for these 

analyses with non-adjusted ΔA’ are shown in supplementary Figure S1. 

 

Figure 4. Classification accuracy distributions and confusion matrices for improvers and non-
improvers (based on median split of adj. ΔA’) are plotted in panel A, with corresponding confusion 
matrices shown in panel B. In panel A, each box-plot shows all the distribution of accuracies using 
the model indicated on the x-axis. The p values compare the null model distribution with models 
containing the variable indicated on the x-axis. M shows mean of the distribution of accuracies (so 
do black horizontal ticks inside the boxes), notch in the boxes show medians of distributions, and 
thick teal vertical lines show the SD of distributions around the means. The boxes show ±1 quantile 
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around the median and whiskers show range of the distribution. All statistics reported included all 
1,000 bootstrap sample accuracies. In panel B, rows show true labels of the classes of improvers 
(labeled high) and non-improvers (labeled low), and columns show predicted labels. In confusion 
matrices higher values in main diagonals indicate better classification, while higher values off main 
diagonals indicates proportion of misclassified individuals.  

 

fMRI results in study1: Higher H for improvers in the dual n-back task 

To investigate whether the H signal distinguishing improvers from non-improvers was 

consistently higher for the improvers across the entire experiment (as we would hypothesize), we 

plotted average H across the whole brain and also within the selected ROIs across the three runs of 

the experiment for improvers and non-improvers (Figure 5 panels A and B, respectively). Even 

before ROI specification, we noted a trend toward higher global H averaged over all runs for 

improvers compared to non-improvers (t = 1.99, p = 0.052). This trend was considerably more 

pronounced after ROI selection (Figure 5B), which allowed for the successful classification of 

improvers and non-improvers presented earlier. Additionally, both global H and ROI H are higher 

during the video run compared to the dual n-back runs, irrespective of performance improvement 

(t = 4.19, p <0.001 for global H and t = 4.12, p <0.001 for ROI H). This replicates previous findings 

showing global H suppression with increased cognitive effort and task difficulty in fMRI and EEG 

data (Churchill et al., 2016; Kardan, Adam, et al., 2020). Figure 5B shows that ROI selection using 

the third run (DNB2) successfully increased the H distinction between the improvers and non-

improvers in a manner that generalizes to runs prior to it. In contrast, the distinction created by COI 

selection for functional connectivity strength did not generalize to previous runs (Figure 5 panels C 

and D). This result indicates that the feature selection approach used did not bias the cross-

validation results for the H model, given that the same approach was used for the r2 based model. 
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Figure 5. The average H (left panels) and average r2 (right panels) for improvers and non-
improvers. The H values are averaged over the whole brain in panel A and over the ROIs depicted in 
Figure 3A in panel B. The r2 values are averaged over all pairwise connections in panel C and over 
the COIs depicted in Figure 3B in panel D. Errorbars show ±SE. 

 

Study 2: Replication of H-based ROI results in word completion task 

We used fMRI data from an independent sample of 45 participants to classify task 

improvers from non-improvers in a different cognitive test, the word completion task (as part of a 
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Choose-and-Solve Task (CAST; Choe et al., 2019), see methods). The performance levels of 

participants are shown in Figure 6, and panel B shows the performance separately for the two 

groups of improvers and non-improvers. The two groups were made similarly as in the dual n-back 

dataset, where a median split in change in performance between the last and the first run, adjusting 

for the baseline performance (i.e., adj. Δ Performance), determined the dichotomy for classification. 

The average H in the pre-defined ROI from our dual n-back dataset was calculated for each 

participant, and the mean values for each group (improvers and non-improvers) are plotted in 

Figure 6 panel C. Again, the direction of the distinction followed our hypothesis that individuals 

with higher H improved more in subsequent repetitions of the task, although the H difference 

between groups was only marginally significant (F(1,43) = 3.99, p = 0.052).  

 We used the H in the pre-defined ROI from dual n-back study in earlier runs of the word 

completion task (1, 2, and 3) to classify the improvers and non-improvers with leave-one-out linear 

discriminant (LD) classification similar to dual n-back dataset to replicate our results in an 

independent dataset and cognitive test. Since we only have one feature for classification, this step is 

simply comparing the left-out subject’s H with mean H of left-in improvers and non-improvers, with 

similar bootstrapping and permutation procedure as before (see Methods Classification of 

improvers vs. non-improvers using ROI and COI average H or r2). Utilizing the H from the first 3 runs 

(out of 6) was sufficient for the classifier to successfully distinguish eventual improvers from non-

improvers above chance (63% accuracy, p = 0.011 compared to null distribution). Using only H in 

runs 1 and 2 did not classify the improvers from non-improvers significantly better than chance 

(59% accuracy, p = 0.075 compared to null distribution), though was numerically in our 

hypothesized direction. Figure 6D summarizes these classification results.  

 Importantly, there was no difference in reaction time to attention check trials in the word 

completion task between the improvers and non-improvers (965 ms for non-improvers vs. 956 ms 

for improvers, t = 0.135, p =0.893), ruling out any potential differences in level of task engagement 

between the two groups. Lastly, classification of improvers vs. non-improvers based on the 

connectivity strength r2 using the COI from dual n-back experiment failed to perform better than 

chance using the first three runs of word completion (and even when using all 6 runs) which was 

expected. 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted May 26, 2020. . https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted May 26, 2020. . https://doi.org/10.1101/2020.05.25.114959doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.114959
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

Figure 6. Behavioral performance in word completion task across runs (A), and separated by 
improvers vs. non-improvers groups (B). The H in the pre-defined ROI from the dual n-back 
experiment over all runs are shown in panel (C). Panel (D) shows classification accuracy boxplots of 
LD classifier with leave-one-participant-out cross-validation using the variable(s) indicated on the x 
axis. The p values compare each model with the null distribution, and thick vertical green lines 
indicate SD around the mean of distributions.   

 

 

Discussion 

 Across two datasets with different cognitive tasks, individual differences in scale-free 

dynamics of the BOLD signal reliably predicted variability in cognitive task improvement. Higher H 

of fMRI activity successfully distinguished task improvers from non-improvers, adjusted for 

baseline task performance, in both datasets. Taken together, these findings provide evidence for 

utilizing scale-free dynamics of brain activity as an objective measure to predict who will benefit 

the most from practice in cognitive tasks. 

Performing most complex tasks that engage working memory and focused attention require 

a degree of switching between sub-tasks and alterations in the locus of attention (Awh & Jonides, 

2001; Ikkai & Curtis, 2011). Both of those processes depend on active information storage and 

transfer in neuronal ensembles. Research on neural networks has shown that criticality optimizes a 

number of such computationally advantageous properties (Beggs John M, 2008; Shew & Plenz, 

2013, Boedecker et al., 2012; Shriki et al., 2013; Shriki & Yellin, 2016; Tanaka et al., 2008), in 

addition to the dynamic range of the network (Gautam et al., 2015; Kinouchi & Copelli, 2006). Let us 

assume that the observed fMRI scale-invariance differences between improvers and non-improvers 

in the current study delineate states of proximity or distance from criticality in brain networks 

(Kardan et al., 2020; see Muñoz, 2018 for other concepts in biology also termed as criticality and 

von Wegner, Laufs, & Tagliazucchi, 2018 for other interpretations of scale-free brain activity). 

Conceptualized in this way, we can then have a state-based or trait-based interpretation of our 

findings.  

The state-based interpretation is that individuals who happened to be in a higher H state at 

the time of experiment processed the tasks more efficiently, leaving cognitive resources required 

for additional learning of task characteristics and forming better task-relevant memories and 

cognitive strategies. The encoding of these additional task-relevant information then enabled these 

individuals (i.e., improvers) to perform better the second time around.  
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The trait-based interpretation can be made in two related, but not equivalent ways. First, 

the tasks utilized here demanded less cognitive effort from improvers (i.e., less suppression of H, 

Kardan et al., 2020) due to them having higher fluid intelligence or working-memory capacity, 

which is in line with the neural efficiency intelligence hypothesis (Neubauer & Fink, 2009a & 

2009b). This means that lower H during tasks for non-improvers could be due to them exerting 

more cognitive effort. As such lower/higher H is not a cause for less/more performance 

improvements, but a consequence of individuals being in different states of effort exertion. This 

account, however, does not explain the lower H observed in non-improvers even during the video 

run (i.e., when there is no overt task) for the dual n-back experiment. The other trait-based account 

is that improvers may have a more critically-organized functional brain network at baseline due to 

trait-level characteristics (e.g., maybe individuals with higher WM capacity or IQ are more 

frequently/consistently in more scale-free states). These individuals then have consistently higher 

H than others, even when not performing a task (e.g., during the video watching runs). Their higher 

H during cognitive tasks then enable them to more readily improve their performance due to 

advantages of criticality discussed before (He, 2011; Kitzbichler et al., 2009; Proekt, Banavar, 

Maritan, & Pfaff, 2012).  

Importantly, the differences in H between individuals could also result from interactions of 

both trait- and state-level fluctuations in cognitive capabilities. Until further research reveals long-

term stability of H in individuals, both possibilities (and their interaction) should be considered. 

Therefore, individual differences in H should not be deemed as indicators of trait measures of 

intelligence and intellectual ability alone.  In fact, we believe it to be highly likely that both trait and 

state factors are contributing to differences in H and resulting changes in performance. 

We also compared our H-based model’s classification performance with that of a functional 

connectivity strength measure with similar feature selection and model training steps. This analysis 

was performed to test the specificity of our model, ensuring it was not the case that any measure 

describing brain network activity would yield the same level of classification accuracy. Our results 

indicated that H, but not r2, predicted improvement from practice. Nevertheless, further 

comparisons between H-based models and functional connectivity-based models could be 

illuminating. Functional connectome-based models currently capitalize on diverse patterns of 

statistical dependencies between brain regions that are difficult to comprehensively integrate 

within a single theoretical framework. A strength of H is that it comes with a rich theoretical 

framework related to the efficiency of information transfer and criticality.  Recent work is 
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beginning to link H and functional connectivity based models to each other and to predictors of 

behavior (Stier et al., in preparation). 

There are a number of limitations to our study. First, as we mentioned, distinguishing state- 

versus trait-based contributions to individual differences in practice effects is difficult in the 

current study. Future studies should investigate the state vs. trait components of between-subjects 

variability in H by assessing it across multiple days of testing in both resting-state and task runs. 

Second, to assess whether practice effects indicated by H differences generalize to multiple 

cognitive tasks and evaluation schedules, other studies should examine a wider range of cognitive 

tasks and test-retest schedules to further extend our findings. Last but not least, as mentioned in 

the results, whole-brain H from the dual n-back task was trending as a sufficient predictor of 

performance change, and it is possible that with greater power, whole brain H would have led to 

successful classification of changes in performance in the DNB task. This was also the case for the 

word completion experiment, where whole-brain H was trending as being higher for the improvers 

compared to non-improvers (t = 1.998, p = 0.052). Indeed, when we tested the spatial specificity of 

the dual n-back ROI in word completion data, there was no difference in classification accuracy 

when using H from the whole brain compared to within the feature selected ROIs (i.e., classification 

was successful using whole-brain H of the first three runs of word completion, with mean accuracy 

= 67.9%, p = 0.026 compared to null distribution). This follows other research indicating 

classification in predictive models does not require the detail provided by precision mapping to be 

accurate because the features need not uniquely or specially facilitate prediction (Fair 2018, 

Nielsen et al., 2019). Thus, while our model is informative, it should not be conflated with precision 

mapping as the ROI spatial pattern is not unique.  Furthermore, much of our research has pointed 

to differences in H across individuals and changes in H within individuals being a global (i.e., whole 

brain) and unidirectional effect (Churchill et al., 2016; Kardan et al., 2020; Stier et al., in 

preparation). Therefore, future studies can interrogate whether H predictors of changes in 

performance are indeed global, or vary specifically with different cognitive tasks.  

In conclusion, the current study investigated the relationship between individual 

differences in practice-based improvements in cognitive task performance and respondents’ level 

of scale-free BOLD activity. We found that individuals with higher fMRI H were more likely to 

improve their task performance when repeating the same cognitive task.  In addition, to building 

upon previous work relating brain scale-invariance with overall behavioral performance, these 

results are the first to show how measures of scale invariance predict changes in behavioral 
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performance. These results provide empirical support for the hypothesis that brain networks 

impart functional advantages when their activity is in a more scale-free state. In addition to these 

theoretical contributions, our findings also have practical implications. Specifically, previous clinical 

research has proposed that variation in practice effects provide unique diagnostic and treatment 

information for clinical populations. For example, elder adults that show the expected practice 

effects in a test respond more to treatment for cognitive decline than those that do not show 

practice effects (Calero & Navarro, 2007; Duff, Beglinger, Moser, Schultz, & Paulsen, 2010; Fiszdon 

et al., 2006; Sergi, Kern, Mintz, & Green, 2005; Watzke, Brieger, Kuss, Schoettke, & Wiedl, 2008). 

However, the same line of research has found individual differences in practice effects for many 

cognitive tests to be uncorrelated with a wide range of demographic and cognitive ability scales 

that typically influence cognitive scores themselves (Duff et al, 2012; but also see Calamia, Markon, 

& Tranel, 2012). Our results suggest that H provides a promising avenue for future research in this 

field, as it appears capable of predicting who will improve with practice, irrespective of initial task 

performance at baseline.  In summary, we find that individual variability in H across the brain may 

hold promise as a neural-marker of learning potential, which has wide-ranging theoretical and 

applied implications for cognitive neuroscience. 

 

Methods 

Participants 

 68 participants (41 female) aged between 18 and 40 years old (mean = 24.3 years, SD = 5.6 

years) were recruited from the University of Chicago and surrounding area through fliers and 

geotargeted Facebook advertisements (30 White, 21 Asian, 13 Black, 4 Other). Twelve participants 

were excluded from analysis due to the following reasons: two participants were excluded due to 

incomplete fMRI data because of discomfort before the scanning session was finished; two were 

excluded due to technical issues with audio/visual during a run; five were flagged for sleepiness 

during the data acquisition as indicated by their eye-movement behavior by two on-site 

researchers (eye-movements were monitored using an MR-compatible EyeLink 1000 system); and 

five were excluded after the primary data quality check (see fMRI data acquisition and preprocessing 

section). Our final usable sample was N = 56. 

All participants had self-reported normal or corrected-to-normal visual acuity and normal 

color vision. All participants provided written informed consent and were compensated $35 for 
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participation plus a potential bonus of $10. Participants were informed before the scanning session 

that if they “stayed attentive and still” during scans they would receive a $10 bonus. All participants 

who were not excluded based on the stated criteria above successfully received the bonus.  

Experiment procedure 

 Participants arrived at the lab 45 minutes before the scanning session, and a research 

assistant provided detailed instructions for completing the audio-visual dual n-back (DNB) task. 

Each participant then performed a familiarization round of a dual 2-back and dual 3-back task (see 

the Audio-visual dual n-back task section for detail), with each round containing 22 and 23 trials, 

respectively. If the performance, measured with discrimination index A’, was at or worse than 

chance level (i.e.  A’ ≤ 0.5), additional rounds were completed until the participant declared they 

understood the task and performance exceeded chance. 

After the in-lab task familiarization, participants walked to the hospital and the fMRI 

scanning session commenced. Following the collection of anatomical scans, 3 functional runs were 

acquired: a 7-min dual n-back run, a 10-min passive video watching run, and a second 7-min dual n-

back run. Participants were randomly assigned to passively watch one of two videos during the 

video run: a video of non-nature tourist attractions in Europe or a video of outdoor nature scenes. 

Videos were roughly equated for aesthetic preference as rated by a different sample of 30 

participants prior to this study (Likert scale1-7, Mnature = 5.47, SD = 1.14 and Murban = 4.77, SD = 

1.38), and did not include sound. After the scan session, participants were asked to give a 

preference rating (1-7 scale) for the video they watched. Ratings were included in subsequent 

analyses as a potential nuisance variable. At the beginning of each dual n-back run, participants 

were instructed to perform the task to the best of their ability.  

fMRI data acquisition and preprocessing 

 Images were acquired on a Philips Achieva 3.0 T scanner with a standard quadrature 32-

channel head coil at University of Chicago MRI Research Center. A T1-weighted gradient echo (MP-

RAGE) was used to acquire high-resolution anatomical images for each participant (TR = 8 ms, TE = 

3.5 ms, flip angle = 8°, FOV = 240 mm × 228 mm× 171 mm, matrix size = 240 × 228, in-plane 

resolution 1.0 mm2, slice thickness = 1.0 mm, 171 sagittal slices). Functional T2* weighted images 

were acquired using an echo-planar sequence (TR = 2000 ms, TE = 26 ms, flip angle = 77°, FOV = 

208 mm × 208 mm× 143.25 mm, matrix size = 64 × 64, in-plane resolution 3.25 mm2, slice thickness 
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= 3.25 mm with 0.25 mm gap, 41 transverse-oblique slices parallel to the A-P line) during the dual 

n-back runs (241 volumes for each run) and the video run (305 volumes).  

Initial data quality checks were performed using MRIQC (Esteban et al., 2017), which 

revealed excessive head movement and low tSNR (peak frame displacement > 2 mm, mean frame 

displacement > 0.2 mm, or tSNR < 50) for 5 participants during at least one of the scanning runs. 

These participants were excluded from analysis. The first 5 TRs of each functional run were 

discarded for all participants. Image preprocessing was completed using Advanced Normalization 

Tools (ANTs) (Avants, Tustison, & Song, 2009). The processing included bias correction for 

magnetic field inhomogeneity in both functional and anatomical data (N4 algorithm in ANTs; 

(Tustison et al., 2010), affine motion correction of functional data using antsMotionCorr in ANTs, co-

registering participants’ anatomical data to their averaged functional data in each run using the 

symmetric normalization algorithm [SyN; (Avants et al., 2011)] in ANTs, warping anatomical 

images to the ICBM-152 template, and finally applying the combined transformation matrices of the 

two previous steps (coregistration and warping) to the functional data. Denoising included 

nuisance regression of 3 Principal Components of 24 motion parameters (6 translational and 

angular movements and their squares, derivatives, and squares of derivatives), linear and quadratic 

detrending, and band-pass filtering to [0.01, 0.1] Hz for removing physiological noise and drift. 

Audio-visual dual n-back 

 In an n-back task, participants are instructed to press a button if the current visual or 

auditory stimulus matches the stimulus that was presented ‘n’ previous trials back. The dual n-back 

(DNB) is a variant of this task in which two stimuli are presented simultaneously. Here, these 

stimuli were spoken integers, 1-9, and a blue square whose position varied in a 3 x 3 grid (see 

Figure 7). The paradigm was implemented in MATLAB and its code is publicly available at 

https://enl.uchicago.edu/stimuli-software/ (Layden, 2018). 

On each trial of the dual n-back task, participants pressed their right index finger, right 

middle finger, both fingers, or neither finger, to indicate a position match, a number match, both a 

position and number match, or no match. Each trial lasted 3000 ms and the button press was 

permitted throughout the trial. Immediate feedback was provided to participants via red (incorrect 

press) or green (correct press) text at the bottom of the screen (see Figure 7). 
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Figure 7. Audio-visual dual n-back task paradigm. In this example of the first three trials in a dual 

2-back round, the participant correctly pressed their index finger for a match between the current 

and 2-back position of blue square, but falsely pressed their middle finger when they should not 

have (i.e., 2 does not match 9; so the correct response was only an index finger response and not an 

index finger and middle finger response). This is an example of 1 hit and 1 false alarm. 

Performance improvers vs. non-improvers 

Each functional MRI run included 6 blocks of the dual n-back task (four 2-back blocks and 

two 3-back blocks). Each block contained 20+n trials (n = 2 or 3), resulting in a total of 134 trials 

per dual n-back fMRI run. Blocks were separated by a 10-sec countdown that indicated whether the 

upcoming task would be 2-back or 3-back. As in the practice, the discrimination index A’ (Stanislaw 

& Todorov, 1999) was used as the main performance measure. A’ is similar to other sensitivity 

indices such as d’, but is more robust to non-normality of responses (Stanislaw & Todorov, 1999). 

Furthermore, unlike d’, A’ = 0.5 corresponds to chance level performance, A’ = 1 corresponds to 

perfect performance, and A’<0.5 corresponds to performance that is systematically worse than 

chance. A’ is calculated as follows: 

A’ = 0.5 +  𝑠𝑖𝑔𝑛(𝐻𝑖𝑡 −  𝐹𝐴) ∗
[(𝐻𝑖𝑡 − 𝐹𝐴)

2
+ 𝑎𝑏𝑠(𝐻𝑖𝑡 − 𝐹𝐴)]

(4 ∗𝑚𝑎𝑥(𝐻𝑖𝑡, 𝐹𝐴)  − 4 ∗ 𝐻𝑖𝑡 ∗ 𝐹𝐴) 
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Where Hit is the number of correct button presses and FA is the number of false alarms for both 

numbers and positions in a task block, where sign(Hit - FA) equals: +1 if (Hit - FA) > 0, 0 if (Hit - FA) 

= 0, and -1 if (Hit - FA) < 0, and where max(Hit, FA) equals the bigger value between Hit and FA. 

Estimation of scale-free activity (H) and strength of functional connections (r2) 

 Following our hypothesis, to evaluate the degree of scale-free dynamics of BOLD and its 

relationship to practice effects between individuals, we estimated the Hurst Exponent (H) of the 

fMRI timeseries from all 3 functional runs in for each participant (i.e., DNB-1, video watching and 

DNB-2). There are many different methods to estimate H. Here we used both detrended fluctuations 

analysis (DFA) and wavelet leader multifractal (WLMF) formalisms, both of which are robust to 

signal non-stationary and low-frequency confounds (Churchill et al., 2016; Jaffard, Lashermes, & 

Abry, 2007; Peng et al., 1995). The estimations were done on a voxel-wise level, and the DFA 

estimations of H were highly correlated with the first-order cumulant (i.e., mono-fractal) 

estimations of H from the WLMF. As such, further analysis was carried out using the DFA estimates, 

as this method is more computationally efficient. 

To elaborate DFA, consider the linearly detrended BOLD timeseries 𝑥(𝑡) in a voxel over a 

run of total length𝑇. This signal is first integrated and transformed into a cumulative sum 𝑦(𝑡), 

where 𝑦(𝑡)  =  ∑ (𝑥(𝑖) −  𝑥𝑎𝑣𝑒) 𝑡
𝑖=1 ; 𝑡 =  1, … , 𝑇. 𝑥(𝑖) is the 𝑖th data point in the timeseries and 𝑥𝑎𝑣𝑒 

is the average amplitude over all of the timeseries. Next, 𝑦(𝑡) is divided into windows of equal 

length n. A least-square linear regression is fit to each subdivision of 𝑦(𝑡) with length 𝑛, with the 

fitted values denoted as 𝑦̂𝑛(𝑡). Next we detrend the integrated timeseries 𝑦(𝑡) by subtracting the 

local trend (i.e., the local least-squares straight-line fit), 𝑦̂𝑛(𝑡) in each window. The root-mean-

square magnitude of fluctuations on the detrended data 𝐹(𝑛) is then computed over a range of 

window sizes: 

𝐹(𝑛)  =  √
1

𝑇
∑[𝑦(𝑡) −  𝑦̂𝑛(𝑡)]2

𝑇

𝑡=1

 

Where 𝑛 = 50 TRs is maximum window size corresponding to 0.01 Hz minimum frequency in the 

current study, and 𝑛 = 3 TRs is minimum window size for fitting a line with a non-zero residual. 

Finally, the linear fit of 𝑙𝑜𝑔(𝑛) vs. 𝑙𝑜𝑔(𝐹(𝑛)) is calculated and the slope of this fitted line is used as 

the estimate of the degree of scale-invariance (H) for the voxel time-series 𝑥(𝑡). A slope of H = 0.5 
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indicates no long-range correlation in the signal (i.e., a random walk), while H values closer to 1 

indicate greater scale-invariance.  

 We also quantified the strength of statistical dependency between brain regions (i.e., 

magnitude of functional connections) in the three functional runs to be used as a control variable 

when assessing H based classification model. The data was first down-sampled to 392 regions by 

averaging voxel-level time-series within each region of the CC-400 brain atlas (Craddock, James, 

Holtzheimer, Hu, & Mayberg, 2012), and the Pearson correlation between every pair of regions was 

calculated and squared (r2). The squared r was used to be agnostic towards the sign of correlation 

when averaging over connectivity strengths in the classification step to keep everything consistent 

between H and functional connectivity models. However, a supplementary analysis where Fisher z-

transformed correlations with negative and positive signs were averaged separately showed no 

difference in classification results using functional connectivity.3 The down-sampling was done to 

reduce the number of pairwise connections (76,636 vs. ~2 billion pairs from the non-down 

sampled voxel space data). The CC-400 atlas was used because it provided 76K pairwise 

connections, which is a similar order of magnitude to the number of voxels for the H-based analysis, 

thus keeping the H and r2 matrices used for defining regions and functional connections of interest 

for classifications comparable in size.  

Classification of improvers vs. non-improvers using ROI and COI average H or r2 

The H and r2 in fMRI functional runs 1 and 2 (dual n-back 1 and video) were averaged over 

the selected ROI and COI for each participant and were each used to classify the improvers and non-

improvers in a linear discriminant (LD) classification implemented in MATLAB (R2016b, The 

MathWorks, Inc., Natick, Massachusetts, United States) with leave-one-participant-out cross-

validation. Please note that since there is only one feature used in the classification (a subject has 

one averaged value of H or r2), the procedure is to simply compare the left-out subject’s H or r2 

value with the mean of H or r2 values in the training data. The left-out subject is then classified as 

improver or non-improver based on whether their H or r2 is closer to the mean of non-left-out 

improvers or non-improvers. A distribution of classification accuracies was constructed by 

bootstrapping (1000 resamples with replacement) the participants with intact class labels 

(improver vs. non-improver). Predictive power of each feature (i. e., HDNB1, HVid, ConnDNB1, or 

                                                           
3 In fact a Support Vector Machine classification trained with all of the functional connections in run 3 (i.e., no 
averaging over connections) still performed worse than chance when classifying improvers from non-
improvers in the test datasets run1 and run2. 
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ConnVid) was then tested against a null distribution with permuted class labels to test for statistical 

significance of classifications. 

Independent sample replication of results relating average H to practice effects 

 We also used the average H over the same ROIs from the dual n-back experiment dataset to 

predict improvers and non-improvers in an independent sample of 45 subjects performing a 

completely different working memory and attention task (a word completion task). The dataset 

was provided by Choe, Jenifer, Rozek, Berman, & Beilock (in preparation), and consists of fMRI runs 

for 45 participants aged between 18-35 who performed a math and word Choose-and-Solve Task 

(CAST) for 6 minutes in every run. This task involves choosing to solve math equation completion 

and word completion tasks and is originally designed for detecting math anxiety and math 

avoidance behavior (Choe et al., 2019). The participants performed the CAST in 6 runs in fMRI 

scanner which provided us with a different learning/practice paradigm to cross-validate the H-

based classification model used for dual n-back. The questions were designated as having a 1-7 

difficulty level (Choe et al., 2019). The performance of participants in CAST was quantified as their 

accuracy*difficulty level of questions they solved, since the question difficulty was adaptive in a 

manner that two correct answers in a row would result in an increase in difficulty and one wrong 

answer would result in decrease in question difficulty. Since the number of trials where difficult 

math questions (with higher reward) were chosen over easy math questions (with lower reward) 

was very sparse across participants, performance was quantified only over word-completion trials.  

In word completion trials, participants see words with omitted letters replaced by ~ and ☐. 

The participant has to quickly choose (< 2000 msec) the correct letter that should be in the square 

(i. e., ☐). For example, for E~☐DE~CE, the correct choice is letter ‘I’ (the word is ‘evidence’). In this 

dataset, the fMRI acquisition parameters were identical to our dual n-back dataset and we pre-

processed and calculated H values identically to the dual n-back dataset. The improvers and non-

improvers were labeled by a median split on change in performance between last run compared to 

first run, adjusted for performance in the first run, similar to the dual n-back dataset. The improvers 

had an average increase of 23% on their task performance compared to a decrease of -16% for non-

improvers. 
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Figure S1. Classification accuracy distributions and confusion matrices when the classes are based 
on median split of ΔA’ non-adjusted for baseline performance in panel A, with corresponding 
confusion matrices shown in panel B. In panel A, each box-plot shows all the distribution of 
accuracies using the model indicated on the x-axis. The p values compare the null model 
distribution with models containing the variable indicated on the x-axis. M shows mean of the 
distribution of accuracies (so do black horizontal ticks inside the boxes), notch in the boxes show 
medians of distributions, and thick teal vertical lines show the SD of distributions around the 
means. The boxes show ±1 quantile around the median and whiskers show range of the 
distribution. All statistics reported included all 1,000 bootstrap sample accuracies. In panel B, rows 
show true labels of the classes of improvers (labeled high) and non-improvers (labeled low), and 
columns show predicted labels. In confusion matrices higher values in main diagonals indicate 
better classification, while higher values off main diagonals indicates proportion of misclassified 
individuals. Note: When using non-adjusted ΔA', the defined non-improver group had a significantly 
higher baseline performance (A’0 = 0.850 for non-improvers and 0.803 for improvers, t = 2.244, p = 
0.029), but the improvers performed equally well, if not better, the second time around resulting in 
a non-significant difference in secondary performance (A’f = 0.860 for non-improvers and 0.883 for 
improvers, t =1.102, p = 0.275).  
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Figure S2. Steps in selection of voxels (ROI) and pairwise functional connections (COI) that 
enhance the distinction in H and functional connectivity between task improvers and non-
improvers based on run 3 of the fMRI session in dual n-back task. The H and r2 from prior runs 
(DNB1 and Video) are then averaged in these selected ROI and COI for each participant, denoted as 
HVid or HDNB1 and ConnVid or ConnDNB1 respectively, and used for classification in the DNB data. The 
same ROI and COI are also later used in the independent fMRI dataset of word completion task. 
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Table S1. The % of the ROI voxels used for classification in each anatomically significant brain 

structure is listed below. The structures with less than 10 voxels overlap (i. e., < 0.2% overlap) are 

omitted for brevity. 

Brain Structure 
% Overlap of 

ROI 

White Matter 57.54 

Left Cerebrum 46.80 

Right Cerebrum 41.46 

Frontal Lobe 36.02 

Gray Matter 25.43 

Temporal Lobe 17.63 

Sub-Gyral 17.11 

Sub-lobar 15.25 

Middle Frontal Gyrus 8.90 

Extra-Nuclear 7.08 

Limbic Lobe 6.99 

Parietal Lobe 6.46 

Precentral Gyrus 6.03 

Inferior Frontal Gyrus 5.95 

Occipital Lobe 5.77 

Superior Temporal Gyrus 5.69 

Left Cerebellum 5.65 

Middle Temporal Gyrus 5.13 

Precentral_R (aal) 4.53 

Cerebellum Posterior Lobe 4.26 

Frontal_Mid_L (aal) 4.13 

Cingulate Gyrus 4.04 

Superior Frontal Gyrus 4.00 

Thalamus 3.51 

brodmann area 6 3.46 

Temporal_Mid_L (aal) 3.40 

Middle Occipital Gyrus 2.80 

Postcentral Gyrus 2.78 

Cerebellar Tonsil 2.63 

Thalamus_R (aal) 2.54 

Temporal_Sup_R (aal) 2.42 

Insula 2.33 

Frontal_Mid_R (aal) 2.29 

Precentral_L (aal) 2.29 

Frontal_Sup_L (aal) 2.08 

Frontal_Inf_Oper_R (aal) 2.01 
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Postcentral_L (aal) 1.97 

Frontal_Inf_Tri_L (aal) 1.95 

Cingulum_Mid_R (aal) 1.93 

Temporal_Sup_L (aal) 1.77 

Frontal_Inf_Tri_R (aal) 1.75 

Occipital_Mid_L (aal) 1.71 

brodmann area 9 1.69 

Medial Frontal Gyrus 1.69 

Corpus Callosum 1.65 

Occipital_Mid_R (aal) 1.63 

brodmann area 10 1.62 

brodmann area 22 1.54 

Cerebro-Spinal Fluid 1.54 

Temporal_Inf_L (aal) 1.52 

Lateral Ventricle 1.52 

Pulvinar 1.52 

Parahippocampa Gyrus 1.48 

Postcentral_R (aal) 1.45 

Cerebellum Anterior Lobe 1.39 

brodmann area 19 1.39 

Inferior Parietal Lobule 1.35 

Fusiform_L (aal) 1.31 

Anterior Cingulate 1.22 

Cerebelum_Crus1_L (aal) 1.18 

Rolandic_Oper_R (aal) 1.15 

Cerebelum_Crus2_L (aal) 1.13 

Thalamus_L (aal) 1.11 

brodmann area 8 1.03 

Occipital_Inf_R (aal) 1.01 

Culmen 1.00 

Frontal_Sup_Medial_L (aal) 1.00 

Parietal_Inf_L (aal) 0.98 

Fusiform Gyrus 0.88 

Cerebelum_8_L (aal) 0.88 

Insula_L (aal) 0.85 

brodmann area 21 0.83 

brodmann area 13 0.83 

Temporal_Mid_R (aal) 0.77 

Caudate_L (aal) 0.75 

Caudate 0.71 

brodmann area 4 0.71 
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Frontal_Inf_Orb_L (aal) 0.69 

Rolandic_Oper_L (aal) 0.69 

Cingulum_Ant_R (aal) 0.69 

Frontal_Mid_Orb_L (aal) 0.66 

brodmann area 40 0.64 

Paracentral Lobule 0.62 

Inferior Semi-Lunar Lobule 0.62 

SupraMarginal_L (aal) 0.62 

Inferior Temporal Gyrus 0.60 

Inter-Hemispheric 0.58 

Lingual_L (aal) 0.58 

Precuneus 0.58 

Tuber 0.58 

Precuneus_R (aal) 0.56 

Cerebelum_9_L (aal) 0.54 

brodmann area 31 0.54 

brodmann area 37 0.54 

brodmann area 3 0.53 

brodmann area 39 0.53 

Hippocampus_R (aal) 0.51 

Insula_R (aal) 0.51 

Cingulum_Mid_L (aal) 0.51 

Caudate Body 0.51 

Supp_Motor_Area_R (aal) 0.51 

brodmann area 2 0.51 

brodmann area 44 0.49 

Inferior Occipital Gyrus 0.47 

brodmann area 46 0.47 

Frontal_Sup_Medial_R 
(aal) 

0.47 

Cerebelum_7b_L (aal) 0.43 

Frontal_Sup_R (aal) 0.41 

Hippocampus_L (aal) 0.39 

Medial Dorsal Nucleus 0.39 

Ventral Lateral Nucleus 0.39 

brodmann area 18 0.39 

brodmann area 24 0.38 

Occipital_Sup_L (aal) 0.36 

Precuneus_L (aal) 0.36 

ParaHippocampal_L (aal) 0.36 

Temporal_Inf_R (aal) 0.34 

Cuneus 0.32 
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Temporal_Pole_Sup_L (aal) 0.32 

brodmann area 32 0.32 

brodmann area 41 0.32 

Frontal_Inf_Oper_L (aal) 0.32 

Midbrain 0.30 

Calcarine_L (aal) 0.30 

Right Brainstem 0.30 

Supramarginal Gyrus 0.30 

brodmann area 45 0.28 

Cerebelum_6_L (aal) 0.28 

brodmann area 20 0.28 

Pyramis 0.26 

Paracentral_Lobule_R (aal) 0.24 

brodmann area 42 0.24 

ParaHippocampal_R (aal) 0.24 

Transverse Temporal Gyrus 0.23 

brodmann area 47 0.23 

Cingulum_Post_R (aal) 0.21 

Caudate Tail 0.21 

brodmann area 11 0.21 

SupraMarginal_R (aal) 0.21 

Putamen 0.19 

Lentiform Nucleus 0.19 

 

 

Table S2. The % connections in the classification COI for each node (CC-400 region), together with 

the AAL-116 (Automated Anatomical Labeling) anatomical labels of voxels in the node are shown 

below. Numbers in brackets in the AAL label column shows proportion of overlap between the AAL-

116 region and the CC-400 region. 

CC-400 
region 

% of 
COI  

AAL label 

1 0.4602 ["Cerebelum_4_5_L": 0.64]["Lingual_L": 0.29] 

2 0.5487 ["Frontal_Sup_R": 0.51]["Frontal_Mid_R": 0.49] 

3 0.1770 ["Postcentral_L": 0.94] 

4 0.4956 ["Caudate_R": 0.96] 

5 0.1062 ["Temporal_Sup_R": 0.85]["SupraMarginal_R": 0.15] 

6 0.0354 ["Occipital_Mid_L": 0.77]["Temporal_Mid_L": 0.21] 

7 0.2832 ["Frontal_Mid_L": 0.63]["Frontal_Sup_L": 0.37] 

8 0.1947 ["Angular_R": 0.86] 

9 0.8496 ["Insula_L": 0.74]["Frontal_Inf_Tri_L": 0.19] 
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10 0.1239 ["Rolandic_Oper_L": 0.39]["Heschl_L": 0.25]["Temporal_Sup_L": 0.25]["Insula_L": 0.12] 

11 0.0354 ["Precuneus_L": 0.36]["Precuneus_R": 0.32]["Cingulum_Post_L": 0.18] 

12 0.0000 ["Amygdala_R": 0.38]["Hippocampus_R": 0.36]["ParaHippocampal_R": 0.22] 

13 0.3717 ["Cerebelum_Crus1_L": 0.88] 

14 0.5310 ["Caudate_L": 0.98] 

15 0.6372 ["Frontal_Mid_R": 0.75]["Frontal_Inf_Oper_R": 0.25] 

16 0.2655 ["Frontal_Mid_R": 0.80]["Precentral_R": 0.13] 

17 0.0177 ["Cerebelum_Crus1_R": 0.89]["Cerebelum_Crus2_R": 0.11] 

18 0.6549 ["Cerebelum_6_L": 0.60]["Cerebelum_Crus1_L": 0.40] 

19 0.1770 ["Temporal_Pole_Sup_L": 0.80]["Temporal_Pole_Mid_L": 0.20] 

20 0.4248 ["Cingulum_Mid_L": 0.79]["Supp_Motor_Area_L": 0.21] 

21 0.0708 ["Thalamus_L": 0.91] 

22 0.2124 ["Rolandic_Oper_R": 0.55]["Insula_R": 0.40] 

23 0.0885 ["Postcentral_R": 0.85]["Precentral_R": 0.15] 

24 0.0885 ["Lingual_L": 0.43]["Cerebelum_Crus1_L": 0.28]["Calcarine_L": 0.14] 

25 0.0000 ["Frontal_Inf_Orb_L": 0.59]["Frontal_Mid_Orb_L": 0.38] 

26 0.0354 ["Temporal_Mid_R": 0.74]["Angular_R": 0.14]["Occipital_Mid_R": 0.12] 

27 0.6018 ["Vermis_4_5": 0.26]["Vermis_6": 0.16]["Vermis_10": 0.14]["Cerebelum_4_5_L": 0.12] 

28 0.1416 ["Paracentral_Lobule_L": 0.56]["Supp_Motor_Area_L": 0.37] 

29 0.3363 ["Cingulum_Ant_R": 0.83]["Cingulum_Mid_R": 0.15] 

30 0.0000 ["Temporal_Mid_L": 0.70]["Angular_L": 0.29] 

31 0.3363 ["Frontal_Mid_Orb_R": 0.68]["Frontal_Inf_Orb_R": 0.32] 

32 0.3009 ["Frontal_Inf_Oper_L": 0.43]["Precentral_L": 0.35]["Frontal_Mid_L": 0.12] 

34 0.1239 ["Temporal_Inf_R": 0.38]["Temporal_Mid_R": 0.34]["Temporal_Pole_Mid_R": 0.28] 

35 0.0531 ["Postcentral_L": 0.78]["Precentral_L": 0.21] 

36 1.0088 ["Temporal_Mid_L": 1.00] 

37 0.1416 ["Cuneus_R": 0.49]["Precuneus_R": 0.48] 

38 0.1770 ["Frontal_Med_Orb_R": 0.21]["Cingulum_Ant_L": 0.19]["Frontal_Med_Orb_L": 0.14]["Cingulum_Ant_R": 
0.13]["Olfactory_L": 0.11]["Olfactory_R": 0.11] 

39 0.4602 ["Insula_L": 0.83]["Putamen_L": 0.15] 

40 1.1150 ["Precentral_R": 0.69]["Postcentral_R": 0.31] 

41 0.2655 ["Cerebelum_6_L": 0.60]["Cerebelum_4_5_L": 0.22] 

42 0.5841 ["Putamen_L": 0.76]["Insula_L": 0.18] 

43 0.0000 ["Occipital_Mid_L": 1.00] 

44 0.0000 ["Frontal_Mid_Orb_R": 0.57]["Frontal_Sup_Orb_R": 0.43] 

45 0.1416 ["Fusiform_L": 0.66]["Temporal_Inf_L": 0.21]["ParaHippocampal_L": 0.13] 

46 0.0708 ["Heschl_R": 0.41]["Insula_R": 0.37]["Rolandic_Oper_R": 0.20] 

47 0.5487 ["Cingulum_Mid_L": 0.32]["Cingulum_Mid_R": 0.26]["Cingulum_Ant_L": 0.20]["Cingulum_Ant_R": 0.18] 

48 0.0531 ["Temporal_Inf_R": 0.85]["Temporal_Mid_R": 0.15] 

49 0.1062 ["Parietal_Inf_L": 0.59]["SupraMarginal_L": 0.22]["Postcentral_L": 0.19] 

50 0.0531 ["None": 1.00] 

51 0.3009 ["Precuneus_L": 0.82]["Parietal_Sup_L": 0.18] 

52 0.1416 ["Temporal_Mid_R": 0.59]["Temporal_Sup_R": 0.41] 
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53 0.2478 ["Frontal_Sup_Medial_L": 0.68]["Frontal_Sup_Medial_R": 0.23] 

54 0.0177 ["Paracentral_Lobule_R": 0.71]["Paracentral_Lobule_L": 0.24] 

55 2.3363 ["Cerebelum_6_R": 0.47]["Cerebelum_4_5_R": 0.31]["Cerebelum_10_R": 0.13] 

56 1.2212 ["Precentral_R": 0.77]["Frontal_Inf_Oper_R": 0.20] 

57 0.1770 ["Temporal_Mid_L": 1.00] 

58 0.3186 ["Cuneus_L": 0.46]["Calcarine_L": 0.31]["Occipital_Sup_L": 0.13] 

59 0.0000 ["Frontal_Sup_Medial_L": 0.42]["Frontal_Sup_L": 0.36]["Supp_Motor_Area_L": 0.21] 

60 0.2655 ["Cingulum_Ant_R": 0.94] 

61 0.1416 ["Parietal_Sup_R": 0.56]["Precuneus_R": 0.41] 

62 0.2124 ["Occipital_Inf_R": 0.81]["Lingual_R": 0.12] 

63 0.0531 ["Lingual_R": 0.49]["Calcarine_R": 0.39] 

64 0.0177 ["Frontal_Inf_Oper_R": 0.65]["Frontal_Inf_Tri_R": 0.34] 

65 0.3717 ["Temporal_Sup_L": 0.50]["SupraMarginal_L": 0.30]["Postcentral_L": 0.20] 

66 0.0000 ["Temporal_Mid_L": 0.58]["Temporal_Sup_L": 0.42] 

67 0.0885 ["Caudate_R": 0.94] 

68 0.3540 ["SupraMarginal_R": 0.92] 

69 0.2301 ["Temporal_Mid_R": 0.85]["Temporal_Sup_R": 0.15] 

70 0.2301 ["Fusiform_R": 0.57]["Cerebelum_6_R": 0.32] 

71 0.2301 ["Thalamus_R": 0.51]["None": 0.32]["Thalamus_L": 0.17] 

72 0.1416 ["Precentral_L": 0.69]["Frontal_Mid_L": 0.17]["Frontal_Sup_L": 0.15] 

73 0.0177 ["Parietal_Inf_L": 0.79]["Angular_L": 0.18] 

74 0.6549 ["Frontal_Inf_Tri_L": 0.84]["Frontal_Mid_L": 0.15] 

75 0.0885 ["Insula_R": 0.51]["Frontal_Inf_Tri_R": 0.22]["Putamen_R": 0.15]["Frontal_Inf_Orb_R": 0.12] 

76 0.1416 ["Lingual_R": 0.84]["Cerebelum_6_R": 0.11] 

77 0.0177 ["Cingulum_Mid_L": 0.94] 

78 0.0885 ["Cerebelum_8_L": 0.40]["Cerebelum_Crus2_L": 0.27]["Cerebelum_Crus1_L": 0.18] 

80 0.2478 ["Frontal_Mid_Orb_R": 0.38]["Frontal_Sup_Orb_R": 0.29]["Frontal_Sup_R": 0.25] 

81 0.5133 ["Postcentral_R": 0.51]["Precentral_R": 0.49] 

82 0.0354 ["Temporal_Pole_Sup_L": 0.50]["Temporal_Mid_L": 0.27] 

83 0.0177 ["Cerebelum_Crus1_R": 0.61]["Temporal_Inf_R": 0.29] 

84 0.1416 ["Frontal_Sup_Medial_L": 0.50]["Frontal_Sup_Medial_R": 0.39] 

85 0.0531 ["Hippocampus_L": 0.43]["ParaHippocampal_L": 0.40]["Fusiform_L": 0.12] 

87 0.0000 ["Fusiform_L": 0.46]["Temporal_Inf_L": 0.44] 

88 0.1593 ["Frontal_Mid_L": 0.70]["Frontal_Inf_Tri_L": 0.30] 

89 0.0177 ["Supp_Motor_Area_R": 0.41]["Supp_Motor_Area_L": 0.29]["Frontal_Sup_Medial_R": 
0.16]["Frontal_Sup_Medial_L": 0.14] 

90 0.0885 ["Precentral_L": 0.57]["Postcentral_L": 0.36] 

91 0.0531 ["Amygdala_L": 0.42]["Hippocampus_L": 0.35] 

92 0.0531 ["Calcarine_R": 0.52]["Precuneus_R": 0.30]["Cuneus_R": 0.17] 

93 0.2655 ["Frontal_Sup_R": 0.61]["Frontal_Mid_R": 0.39] 

94 0.0885 ["Temporal_Mid_L": 0.56]["Temporal_Inf_L": 0.37] 

95 0.1239 ["Postcentral_L": 0.88]["Precentral_L": 0.12] 

96 0.3363 ["Frontal_Mid_R": 0.73]["Frontal_Inf_Tri_R": 0.27] 
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97 0.3186 ["Cerebelum_9_R": 0.47]["None": 0.39]["Cerebelum_10_R": 0.11] 

98 0.6903 ["Thalamus_R": 0.96] 

99 0.6549 ["Cingulum_Mid_R": 0.54]["Cingulum_Mid_L": 0.25]["None": 0.21] 

100 1.0442 ["Caudate_L": 0.36]["Olfactory_L": 0.26]["Olfactory_R": 0.18]["Caudate_R": 0.14] 

101 0.1593 ["Temporal_Pole_Mid_R": 0.60]["Temporal_Pole_Sup_R": 0.40] 

102 0.0708 ["Parietal_Inf_L": 0.82]["Postcentral_L": 0.15] 

103 0.4248 ["Cingulum_Mid_R": 0.87] 

104 0.1947 ["Parietal_Sup_L": 0.55]["Precuneus_L": 0.44] 

105 0.6018 ["Occipital_Mid_R": 0.47]["Temporal_Mid_R": 0.44] 

106 0.1239 ["Frontal_Sup_L": 0.69]["Frontal_Mid_L": 0.31] 

107 0.0531 ["Putamen_R": 0.85]["Pallidum_R": 0.15] 

108 0.0531 ["Cuneus_L": 0.83]["Occipital_Sup_L": 0.17] 

109 0.5310 ["Cingulum_Ant_L": 0.55]["Cingulum_Ant_R": 0.45] 

110 0.4248 ["Temporal_Inf_R": 0.90] 

111 0.0000 ["Fusiform_R": 0.65]["ParaHippocampal_R": 0.31] 

112 0.0177 ["Temporal_Inf_L": 0.69]["None": 0.16]["Temporal_Pole_Mid_L": 0.11] 

113 0.0177 ["Supp_Motor_Area_R": 0.99] 

114 0.0000 ["Occipital_Mid_L": 0.97] 

115 0.0885 ["SupraMarginal_R": 1.00] 

116 0.8142 ["Frontal_Sup_Medial_R": 0.78]["Frontal_Sup_R": 0.22] 

117 0.0177 ["Postcentral_L": 0.94] 

118 0.0177 ["Precuneus_L": 0.77]["Cingulum_Mid_L": 0.23] 

119 0.0885 ["Cerebelum_Crus1_R": 0.92] 

120 0.0177 ["Occipital_Mid_L": 0.90] 

121 0.0354 ["Frontal_Inf_Orb_R": 0.77]["Frontal_Mid_Orb_R": 0.12]["Frontal_Sup_Orb_R": 0.11] 

122 0.0531 ["Calcarine_L": 0.59]["Lingual_L": 0.39] 

123 0.4779 ["Frontal_Inf_Orb_L": 0.78]["Frontal_Inf_Tri_L": 0.22] 

124 0.1770 ["Postcentral_R": 0.55]["Paracentral_Lobule_R": 0.35] 

125 0.0708 ["Putamen_R": 0.81]["Pallidum_R": 0.19] 

126 0.4956 ["None": 1.00] 

127 0.0177 ["Cerebelum_Crus1_L": 0.82]["Cerebelum_Crus2_L": 0.18] 

128 0.6549 ["Temporal_Mid_R": 0.54]["Temporal_Sup_R": 0.45] 

129 0.0531 ["Frontal_Sup_L": 0.62]["Frontal_Mid_L": 0.35] 

130 0.1062 ["Insula_L": 0.37]["Putamen_L": 0.35]["Temporal_Sup_L": 0.15] 

131 0.1062 ["Frontal_Inf_Tri_L": 0.93] 

132 0.1593 ["Thalamus_L": 0.50]["None": 0.25]["Hippocampus_L": 0.20] 

133 0.1593 ["Frontal_Inf_Tri_R": 0.82]["Frontal_Inf_Orb_R": 0.18] 

134 0.0708 ["Cerebelum_Crus1_R": 0.85] 

135 0.0531 ["Occipital_Mid_R": 0.67]["Angular_R": 0.33] 

136 0.3894 ["Cerebelum_Crus2_L": 0.68]["Cerebelum_Crus1_L": 0.30] 

137 0.1593 ["Cingulum_Post_L": 0.38]["Cingulum_Post_R": 0.25]["Cingulum_Mid_R": 0.22] 

138 0.9735 ["Angular_L": 0.39]["Parietal_Inf_L": 0.38]["SupraMarginal_L": 0.23] 

139 0.1062 ["Hippocampus_L": 0.50]["ParaHippocampal_L": 0.30]["Amygdala_L": 0.12] 
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140 0.0885 ["Frontal_Inf_Orb_L": 0.87]["Frontal_Mid_Orb_L": 0.13] 

141 0.0000 ["SupraMarginal_R": 0.50]["Angular_R": 0.45] 

142 0.3717 ["Frontal_Sup_Medial_R": 0.93] 

143 0.0531 ["Temporal_Inf_R": 0.65]["Temporal_Pole_Mid_R": 0.31] 

144 0.4956 ["Vermis_8": 0.48]["Cerebelum_8_R": 0.32] 

145 0.2478 ["Precentral_L": 0.74]["Frontal_Sup_L": 0.23] 

146 0.1947 ["Fusiform_R": 0.68]["Lingual_R": 0.16] 

147 0.2124 ["Precentral_R": 0.58]["Frontal_Sup_R": 0.42] 

148 0.3186 ["Insula_L": 0.78]["Frontal_Inf_Oper_L": 0.18] 

149 0.1593 ["Rectus_L": 0.37]["Rectus_R": 0.31]["Frontal_Med_Orb_L": 0.19]["Frontal_Med_Orb_R": 0.13] 

150 0.0885 ["Supp_Motor_Area_R": 0.50]["Frontal_Sup_R": 0.42] 

151 0.1770 ["Cuneus_R": 0.55]["Occipital_Sup_R": 0.31]["Calcarine_R": 0.13] 

152 1.1681 ["None": 1.00] 

153 1.3805 ["Frontal_Mid_R": 1.00] 

154 0.0885 ["Frontal_Sup_L": 0.70]["Frontal_Mid_L": 0.30] 

155 1.5398 ["Temporal_Mid_R": 0.67]["Temporal_Inf_R": 0.33] 

156 0.1770 ["Cingulum_Mid_L": 0.56]["Supp_Motor_Area_L": 0.33] 

157 0.3717 ["Temporal_Mid_L": 0.70]["Temporal_Sup_L": 0.30] 

158 0.3540 ["Cingulum_Ant_L": 0.54]["Frontal_Sup_Medial_L": 0.46] 

159 0.2478 ["Precentral_R": 0.70]["Frontal_Mid_R": 0.30] 

160 0.0177 ["Frontal_Mid_L": 0.91] 

161 0.4425 ["Insula_L": 0.52]["Rolandic_Oper_L": 0.46] 

162 0.2655 ["Insula_R": 0.75]["Rolandic_Oper_R": 0.13] 

163 0.2478 ["Calcarine_R": 0.69]["Lingual_R": 0.25] 

164 0.2478 ["Angular_L": 0.79]["Parietal_Inf_L": 0.16] 

165 0.3540 ["Rolandic_Oper_R": 0.61]["Precentral_R": 0.23]["Postcentral_R": 0.16] 

166 0.2301 ["Fusiform_R": 0.41]["Hippocampus_R": 0.21]["Temporal_Inf_R": 0.20]["ParaHippocampal_R": 0.18] 

167 0.6549 ["Frontal_Sup_L": 0.70]["Frontal_Mid_L": 0.27] 

168 0.3894 ["Caudate_L": 0.42]["Putamen_L": 0.30]["Rectus_L": 0.22] 

169 0.0354 ["Occipital_Inf_R": 0.85] 

170 0.3894 ["Caudate_R": 0.37]["Olfactory_R": 0.26]["Rectus_R": 0.20]["Putamen_R": 0.13] 

171 0.0000 ["Paracentral_Lobule_L": 0.56]["Precuneus_L": 0.37] 

172 0.4602 ["Frontal_Mid_Orb_R": 0.81]["Frontal_Mid_R": 0.19] 

173 0.0708 ["Occipital_Inf_L": 0.89] 

174 0.1062 ["Frontal_Sup_R": 0.81]["Supp_Motor_Area_R": 0.19] 

175 0.0354 ["Cerebelum_6_L": 0.75]["Cerebelum_Crus1_L": 0.24] 

176 0.1416 ["Calcarine_L": 0.79]["Occipital_Sup_L": 0.11] 

177 0.1416 ["Calcarine_L": 0.35]["Precuneus_L": 0.28]["Lingual_L": 0.26] 

178 0.4602 ["Frontal_Sup_Medial_L": 0.83]["Frontal_Sup_L": 0.17] 

179 0.3363 ["Cerebelum_Crus1_R": 0.64]["Cerebelum_6_R": 0.22]["Cerebelum_Crus2_R": 0.12] 

180 0.0885 ["Lingual_R": 0.55]["Precuneus_R": 0.17]["Vermis_4_5": 0.16] 

181 0.3894 ["Parietal_Sup_L": 0.86]["Parietal_Inf_L": 0.14] 

182 0.0177 ["Temporal_Inf_L": 0.32]["Fusiform_L": 0.29]["Temporal_Pole_Mid_L": 0.25] 
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183 1.0619 ["Occipital_Mid_R": 0.53]["Occipital_Sup_R": 0.47] 

184 0.7257 ["Cingulum_Ant_L": 0.39]["Cingulum_Ant_R": 0.32]["Cingulum_Mid_L": 0.27] 

185 0.1062 ["Thalamus_L": 0.54]["Thalamus_R": 0.46] 

186 0.2301 ["Frontal_Mid_L": 0.80]["Precentral_L": 0.20] 

187 0.1239 ["Precentral_L": 0.61]["Postcentral_L": 0.39] 

188 0.0177 ["Fusiform_L": 0.80]["Cerebelum_4_5_L": 0.14] 

189 0.6726 ["Angular_L": 0.92] 

190 0.2478 ["Frontal_Sup_R": 0.82]["Frontal_Sup_Medial_R": 0.18] 

191 0.3363 ["Frontal_Inf_Oper_R": 0.72]["Frontal_Inf_Tri_R": 0.13] 

192 0.2832 ["Frontal_Mid_R": 0.51]["Frontal_Inf_Tri_R": 0.36]["Frontal_Inf_Orb_R": 0.13] 

193 0.0708 ["Precuneus_L": 0.74]["Precuneus_R": 0.22] 

194 0.7611 ["Postcentral_R": 0.74]["Precentral_R": 0.19] 

195 0.7257 ["Cerebelum_6_R": 0.49]["Cerebelum_4_5_R": 0.40] 

196 0.1770 ["None": 0.93] 

197 0.0000 ["Temporal_Mid_L": 0.98] 

198 0.0000 ["Frontal_Inf_Tri_L": 0.64]["Frontal_Mid_L": 0.36] 

199 0.4425 ["Postcentral_R": 0.50]["SupraMarginal_R": 0.47] 

200 0.3186 ["Cingulum_Mid_R": 0.65]["Precuneus_R": 0.16]["Paracentral_Lobule_R": 0.12] 

201 0.0885 ["Frontal_Inf_Orb_R": 0.49]["Insula_R": 0.41] 

202 0.0354 ["Frontal_Mid_Orb_L": 0.77]["Frontal_Mid_L": 0.14] 

203 0.0177 ["Fusiform_L": 0.45]["Hippocampus_L": 0.20]["Temporal_Inf_L": 0.20]["ParaHippocampal_L": 0.15] 

204 0.2124 ["Cerebelum_Crus2_L": 0.52]["Cerebelum_Crus1_L": 0.48] 

205 0.0177 ["Temporal_Pole_Sup_R": 0.58]["Temporal_Pole_Mid_R": 0.36] 

206 0.2832 ["SupraMarginal_L": 0.54]["Parietal_Inf_L": 0.46] 

207 0.3717 ["Parietal_Inf_R": 0.63]["Angular_R": 0.37] 

208 1.1504 ["Hippocampus_R": 0.44]["Precuneus_R": 0.27] 

209 0.4779 ["Temporal_Mid_R": 0.93] 

210 0.5133 ["Temporal_Sup_L": 0.44]["Rolandic_Oper_L": 0.30]["Temporal_Pole_Sup_L": 0.20] 

211 0.4956 ["Precuneus_L": 0.44]["Cuneus_L": 0.28]["Occipital_Sup_L": 0.17]["Parietal_Sup_L": 0.11] 

212 0.2478 ["Frontal_Mid_R": 0.96] 

213 0.1062 ["None": 0.66]["Vermis_1_2": 0.15] 

214 0.1770 ["Frontal_Inf_Tri_L": 0.84]["Frontal_Inf_Oper_L": 0.16] 

215 0.2478 ["Frontal_Mid_L": 0.56]["Precentral_L": 0.44] 

216 0.0531 ["Postcentral_R": 0.62]["Parietal_Sup_R": 0.38] 

217 0.0000 ["Temporal_Mid_L": 0.90] 

218 0.4248 ["Temporal_Mid_R": 1.00] 

219 0.0177 ["Occipital_Mid_L": 1.00] 

220 0.2655 ["Postcentral_R": 0.78]["Precentral_R": 0.22] 

221 0.4956 ["Frontal_Inf_Orb_L": 0.80]["Temporal_Pole_Sup_L": 0.18] 

222 0.2832 ["Frontal_Mid_R": 0.50]["Precentral_R": 0.46] 

223 0.0000 ["Cingulum_Mid_R": 0.63]["Supp_Motor_Area_R": 0.37] 

224 0.1770 ["Insula_R": 0.61]["Temporal_Sup_R": 0.17] 

225 0.1770 ["Lingual_R": 0.51]["Cerebelum_Crus1_R": 0.38] 
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226 0.6903 ["Cingulum_Ant_L": 0.81]["Frontal_Sup_Medial_L": 0.18] 

227 0.5664 ["Cerebelum_6_R": 0.89] 

228 0.1416 ["Temporal_Mid_R": 0.69]["Temporal_Inf_R": 0.31] 

229 0.0177 ["Occipital_Sup_R": 0.69]["Cuneus_R": 0.31] 

230 0.5841 ["Cerebelum_9_L": 0.64]["Cerebelum_10_L": 0.36] 

231 0.1593 ["Fusiform_L": 0.42]["Lingual_L": 0.30]["Cerebelum_6_L": 0.21] 

232 0.9558 ["Frontal_Med_Orb_R": 0.73]["Frontal_Sup_Orb_R": 0.14]["Rectus_R": 0.13] 

233 0.1239 ["Thalamus_L": 1.00] 

234 0.1947 ["Temporal_Mid_L": 0.50]["Occipital_Mid_L": 0.49] 

235 0.1062 ["Frontal_Sup_L": 0.98] 

236 0.2655 ["Temporal_Pole_Sup_R": 0.31]["Insula_R": 0.26]["Frontal_Inf_Orb_R": 0.19] 

237 0.0531 ["Parietal_Inf_L": 1.00] 

238 0.0354 ["Amygdala_L": 0.37]["Putamen_L": 0.32]["Hippocampus_L": 0.16] 

239 0.4602 ["Cingulum_Mid_R": 0.48]["Cingulum_Mid_L": 0.38]["None": 0.14] 

240 0.2832 ["Precuneus_R": 0.71]["Parietal_Sup_R": 0.17]["Precuneus_L": 0.13] 

241 0.0000 ["Frontal_Sup_R": 0.59]["Frontal_Mid_R": 0.38] 

242 0.2301 ["None": 0.45]["Lingual_R": 0.22]["Thalamus_R": 0.19] 

243 0.3009 ["Temporal_Mid_L": 0.70]["Temporal_Sup_L": 0.30] 

244 0.0885 ["Paracentral_Lobule_L": 0.46]["Supp_Motor_Area_R": 0.17]["Cingulum_Mid_L": 
0.12]["Paracentral_Lobule_R": 0.11] 

245 0.3894 ["None": 0.51]["Thalamus_L": 0.22]["Thalamus_R": 0.16] 

246 0.2478 ["Insula_R": 0.54]["Temporal_Sup_R": 0.21]["Putamen_R": 0.13] 

247 0.0177 ["Cerebelum_9_L": 0.40]["None": 0.31]["Vermis_10": 0.21] 

248 0.0177 ["Precuneus_R": 0.72]["Cingulum_Mid_R": 0.20] 

249 0.1239 ["Frontal_Sup_L": 0.62]["Frontal_Mid_L": 0.38] 

250 0.4602 ["Postcentral_R": 0.30]["Rolandic_Oper_R": 0.27]["Temporal_Sup_R": 0.26]["SupraMarginal_R": 0.16] 

251 0.2301 ["Temporal_Inf_L": 0.58]["Temporal_Mid_L": 0.42] 

252 0.4071 ["Angular_R": 0.96] 

253 0.2832 ["Vermis_6": 0.40]["Cerebelum_6_L": 0.37] 

254 0.1239 ["Frontal_Sup_L": 0.41]["Frontal_Sup_Orb_L": 0.33]["Frontal_Mid_Orb_L": 0.24] 

255 0.0000 ["Frontal_Sup_Medial_R": 0.66]["Frontal_Sup_R": 0.32] 

256 0.3363 ["Cingulum_Mid_R": 0.89] 

257 0.0708 ["Postcentral_L": 0.79]["Parietal_Sup_L": 0.21] 

258 0.6195 ["Cerebelum_6_R": 0.75]["Cerebelum_Crus1_R": 0.12]["Cerebelum_8_R": 0.11] 

259 0.0708 ["Temporal_Inf_R": 0.84] 

260 0.3009 ["Frontal_Inf_Orb_L": 0.63]["Insula_L": 0.18] 

261 0.2655 ["SupraMarginal_L": 0.81]["Postcentral_L": 0.19] 

262 0.0885 ["ParaHippocampal_L": 0.57]["Cerebelum_4_5_L": 0.35] 

263 0.0708 ["Occipital_Mid_L": 0.47]["Occipital_Sup_L": 0.39] 

264 0.3009 ["Frontal_Med_Orb_L": 0.83]["Rectus_L": 0.15] 

265 0.6903 ["Frontal_Inf_Tri_R": 0.93] 

266 0.0708 ["Frontal_Mid_L": 1.00] 

267 0.7080 ["Cerebelum_3_R": 0.53]["Cerebelum_4_5_R": 0.19]["ParaHippocampal_R": 0.13] 
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268 0.1239 ["Thalamus_L": 0.47]["Hippocampus_L": 0.25]["Lingual_L": 0.18] 

269 0.1416 ["Cuneus_R": 0.78]["Cuneus_L": 0.18] 

270 0.3009 ["Temporal_Sup_R": 1.00] 

271 0.5133 ["Temporal_Pole_Sup_L": 0.56]["Temporal_Sup_L": 0.30]["Temporal_Mid_L": 0.15] 

272 0.4248 ["Parietal_Inf_R": 0.59]["SupraMarginal_R": 0.41] 

273 0.0531 ["Frontal_Inf_Orb_R": 0.99] 

274 0.0885 ["Insula_L": 0.54]["Rolandic_Oper_L": 0.44] 

275 0.5841 ["Precuneus_R": 0.86]["Precuneus_L": 0.14] 

276 0.1239 ["Cerebelum_4_5_L": 0.66]["Cerebelum_3_L": 0.19]["None": 0.14] 

277 0.2478 ["Temporal_Inf_R": 0.65]["Fusiform_R": 0.35] 

278 0.0354 ["Fusiform_L": 0.35]["Temporal_Inf_L": 0.23]["Cerebelum_6_L": 0.19]["Occipital_Inf_L": 0.16] 

279 0.1416 ["Frontal_Mid_L": 0.88] 

280 0.1062 ["Temporal_Mid_L": 0.96] 

281 0.2301 ["Precentral_R": 0.87]["Frontal_Sup_R": 0.11] 

282 0.0000 ["Fusiform_L": 0.47]["Lingual_L": 0.45] 

283 1.1858 ["Cingulum_Ant_L": 0.68]["Frontal_Med_Orb_L": 0.27] 

284 0.1416 ["Hippocampus_R": 0.58]["ParaHippocampal_R": 0.35] 

285 0.1239 ["Frontal_Mid_R": 1.00] 

286 0.1947 ["Calcarine_L": 0.35]["Vermis_6": 0.16] 

287 0.1062 ["Parietal_Sup_R": 0.75]["Parietal_Inf_R": 0.13] 

288 0.0177 ["Temporal_Pole_Sup_R": 0.72]["Insula_R": 0.15] 

289 0.8319 ["Frontal_Sup_Medial_R": 0.82]["Frontal_Sup_R": 0.18] 

290 0.0885 ["Temporal_Inf_R": 0.62]["Temporal_Mid_R": 0.38] 

291 0.2832 ["Supp_Motor_Area_L": 0.61]["Supp_Motor_Area_R": 0.39] 

292 0.3540 ["Putamen_L": 0.27]["Pallidum_L": 0.22]["None": 0.11] 

293 0.4425 ["Precentral_L": 0.74]["Frontal_Inf_Oper_L": 0.26] 

294 0.6903 ["Occipital_Mid_R": 0.68]["Temporal_Mid_R": 0.32] 

295 0.3186 ["Vermis_4_5": 0.54]["Cerebelum_4_5_R": 0.26]["Cerebelum_4_5_L": 0.14] 

296 0.0000 ["Fusiform_L": 0.53]["Temporal_Inf_L": 0.39] 

297 0.0177 ["Frontal_Sup_Medial_L": 0.89]["Frontal_Sup_L": 0.11] 

298 0.0531 ["Temporal_Pole_Sup_L": 0.72]["Insula_L": 0.12] 

299 0.0531 ["Hippocampus_R": 0.63]["ParaHippocampal_R": 0.24] 

300 0.2124 ["Vermis_3": 0.37]["Vermis_1_2": 0.23]["Cerebelum_3_R": 0.20] 

301 0.0885 ["Cerebelum_Crus2_L": 0.52]["Cerebelum_Crus1_L": 0.46] 

302 0.5487 ["Temporal_Sup_R": 0.55]["SupraMarginal_R": 0.27]["Rolandic_Oper_R": 0.18] 

303 0.4248 ["Cingulum_Mid_L": 0.67]["Supp_Motor_Area_L": 0.33] 

304 0.1416 ["Precentral_R": 0.44]["Frontal_Mid_R": 0.29]["Frontal_Sup_R": 0.26] 

305 0.4779 ["Temporal_Sup_L": 0.39]["Rolandic_Oper_L": 0.33]["Postcentral_L": 0.18] 

306 0.0354 ["Frontal_Sup_R": 0.53]["Frontal_Mid_R": 0.47] 

307 0.0531 ["Insula_R": 0.68]["Putamen_R": 0.24] 

308 0.1947 ["Occipital_Mid_R": 0.53]["Occipital_Sup_R": 0.47] 

309 0.1416 ["ParaHippocampal_R": 0.46]["Hippocampus_R": 0.39]["None": 0.15] 

310 0.6726 ["None": 0.40]["Cerebelum_4_5_R": 0.38]["Cerebelum_3_R": 0.19] 
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312 0.1062 ["Temporal_Inf_L": 0.93] 

313 0.0000 ["Temporal_Pole_Mid_R": 0.52]["ParaHippocampal_R": 0.19]["Fusiform_R": 0.15]["Temporal_Inf_R": 
0.13] 

314 0.1062 ["SupraMarginal_L": 0.60]["Temporal_Sup_L": 0.30] 

315 0.1770 ["Cerebelum_9_L": 0.63]["Cerebelum_8_L": 0.21]["Vermis_9": 0.12] 

316 0.1239 ["Supp_Motor_Area_L": 0.99] 

317 0.0708 ["Rolandic_Oper_R": 0.48]["Temporal_Sup_R": 0.35]["Heschl_R": 0.17] 

318 0.0177 ["Occipital_Inf_L": 0.35]["Cerebelum_Crus1_L": 0.34]["Lingual_L": 0.23] 

319 0.1062 ["Temporal_Mid_L": 0.96] 

320 0.0000 ["Frontal_Inf_Tri_R": 0.56]["Frontal_Mid_R": 0.44] 

321 0.1593 ["Vermis_7": 0.38]["Cerebelum_Crus2_R": 0.27]["Cerebelum_Crus1_R": 0.18] 

322 0.1770 ["Fusiform_R": 0.64]["Cerebelum_6_R": 0.28] 

323 0.3540 ["Parietal_Inf_R": 0.45]["Parietal_Sup_R": 0.32]["Postcentral_R": 0.21] 

324 0.5487 ["Calcarine_R": 0.53]["Calcarine_L": 0.35] 

325 0.3894 ["Frontal_Med_Orb_R": 0.39]["Cingulum_Ant_R": 0.38]["Frontal_Sup_Medial_R": 0.22] 

326 0.2655 ["Occipital_Sup_L": 0.71]["Occipital_Mid_L": 0.26] 

327 0.2832 ["Precuneus_R": 0.62]["Cuneus_R": 0.25] 

328 0.2124 ["None": 0.32]["Hippocampus_R": 0.23]["ParaHippocampal_R": 0.18]["Amygdala_R": 0.12]["Pallidum_R": 
0.12] 

329 0.5133 ["Temporal_Sup_R": 0.37]["Temporal_Mid_R": 0.33]["Temporal_Pole_Sup_R": 0.25] 

330 0.0000 ["Fusiform_R": 0.63]["ParaHippocampal_R": 0.25] 

331 0.9027 ["Temporal_Sup_L": 0.63]["Rolandic_Oper_L": 0.13]["Heschl_L": 0.12] 

332 0.0885 ["Lingual_L": 0.59]["Cerebelum_6_L": 0.29] 

333 0.1239 ["ParaHippocampal_R": 0.49]["None": 0.33]["Hippocampus_R": 0.18] 

334 0.0531 ["Frontal_Sup_L": 0.67]["Supp_Motor_Area_L": 0.30] 

335 0.4602 ["Cerebelum_Crus1_R": 0.76] 

336 0.0354 ["Temporal_Sup_R": 0.54]["Rolandic_Oper_R": 0.33]["Temporal_Pole_Sup_R": 0.11] 

337 0.0000 ["Hippocampus_L": 0.70]["ParaHippocampal_L": 0.22] 

338 0.0531 ["Frontal_Inf_Orb_R": 0.81]["Temporal_Pole_Sup_R": 0.13] 

339 0.6372 ["Putamen_L": 0.83]["Pallidum_L": 0.17] 

340 0.0000 ["Occipital_Sup_L": 0.56]["Occipital_Mid_L": 0.29]["Cuneus_L": 0.15] 

341 0.1593 ["Temporal_Mid_R": 0.46]["Temporal_Sup_R": 0.30]["Angular_R": 0.16] 

342 0.0177 ["Calcarine_R": 0.30]["Calcarine_L": 0.23]["Cuneus_R": 0.16]["Cuneus_L": 0.13]["Precuneus_R": 0.12] 

343 1.0796 ["Temporal_Mid_L": 0.67]["Temporal_Pole_Mid_L": 0.18]["Temporal_Inf_L": 0.13] 

344 0.1593 ["Postcentral_R": 0.45]["SupraMarginal_R": 0.34]["Parietal_Inf_R": 0.16] 

345 0.3894 ["Precentral_L": 0.94] 

346 0.0708 ["Temporal_Inf_L": 0.40]["Cerebelum_Crus1_L": 0.36]["Fusiform_L": 0.14] 

347 0.0531 ["Insula_R": 0.57]["Putamen_R": 0.19]["Frontal_Inf_Oper_R": 0.16] 

348 0.0885 ["Calcarine_R": 0.52]["Lingual_R": 0.40] 

349 0.2478 ["Cerebelum_9_R": 0.66]["Vermis_9": 0.26] 

350 0.0708 ["Cerebelum_4_5_L": 0.30]["Cerebelum_3_L": 0.24]["None": 0.20]["ParaHippocampal_L": 0.14] 

351 0.3540 ["Lingual_L": 0.48]["Calcarine_L": 0.46] 

352 0.0708 ["Supp_Motor_Area_L": 0.58]["Supp_Motor_Area_R": 0.34] 

353 0.0531 ["Calcarine_L": 0.51]["Cuneus_L": 0.44] 
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354 0.4071 ["Frontal_Inf_Oper_R": 0.49]["Frontal_Inf_Tri_R": 0.27]["Frontal_Mid_R": 0.14] 

355 0.1593 ["Precuneus_L": 0.67]["Precuneus_R": 0.33] 

356 0.2124 ["Parietal_Inf_R": 0.66]["Angular_R": 0.33] 

357 0.5310 ["Cerebelum_Crus2_R": 0.59]["Cerebelum_Crus1_R": 0.41] 

359 0.0177 ["Precentral_R": 0.50]["Postcentral_R": 0.50] 

360 0.1947 ["Parietal_Inf_L": 0.44]["Parietal_Sup_L": 0.30]["Postcentral_L": 0.26] 

361 0.6195 ["Fusiform_R": 0.70]["Cerebelum_4_5_R": 0.21] 

362 0.0000 ["Occipital_Inf_L": 0.74]["Occipital_Mid_L": 0.25] 

363 0.0531 ["Temporal_Sup_L": 0.73]["SupraMarginal_L": 0.24] 

364 0.4602 ["Temporal_Mid_R": 0.87]["Temporal_Sup_R": 0.13] 

365 0.1416 ["Caudate_R": 0.84]["Thalamus_R": 0.13] 

366 0.1947 ["Temporal_Pole_Sup_L": 0.30]["Insula_L": 0.29]["Frontal_Inf_Orb_L": 0.25] 

367 0.1947 ["Occipital_Mid_R": 1.00] 

368 0.0354 ["Precuneus_L": 0.49]["Cingulum_Mid_L": 0.29]["Cingulum_Post_L": 0.22] 

370 0.1062 ["Frontal_Inf_Oper_L": 0.71]["Rolandic_Oper_L": 0.14]["Precentral_L": 0.12] 

371 0.0354 ["Frontal_Sup_Medial_L": 0.59]["Frontal_Sup_Medial_R": 0.24]["Cingulum_Mid_R": 0.12] 

372 0.4602 ["Fusiform_R": 0.48]["Lingual_R": 0.30]["Cerebelum_6_R": 0.17] 

373 0.2478 ["Caudate_L": 0.79]["Putamen_L": 0.15] 

374 0.1416 ["Temporal_Mid_L": 0.76]["Temporal_Inf_L": 0.24] 

375 0.0000 ["Putamen_R": 0.43]["Amygdala_R": 0.30]["Pallidum_R": 0.24] 

376 0.0885 ["Parietal_Sup_R": 0.62]["Occipital_Sup_R": 0.17]["Precuneus_R": 0.13] 

377 0.1062 ["Cerebelum_6_L": 0.60]["Cerebelum_4_5_L": 0.38] 

378 0.4956 ["Lingual_R": 0.32]["Lingual_L": 0.27]["Vermis_4_5": 0.23] 

379 0.0354 ["Frontal_Mid_L": 0.95] 

380 0.1062 ["Cingulum_Mid_R": 0.82]["Supp_Motor_Area_R": 0.18] 

381 0.2832 ["Parietal_Sup_L": 0.82]["Parietal_Inf_L": 0.18] 

383 0.4602 ["Temporal_Mid_R": 0.64]["Temporal_Sup_R": 0.36] 

384 0.0000 ["Cerebelum_Crus1_L": 0.91] 

385 0.0177 ["Frontal_Mid_Orb_L": 0.80]["Frontal_Inf_Orb_L": 0.12] 

386 0.3363 ["Frontal_Sup_R": 0.56]["Frontal_Mid_R": 0.44] 

387 0.0531 ["Frontal_Mid_R": 0.85]["Frontal_Sup_R": 0.15] 

388 0.0177 ["Temporal_Pole_Mid_L": 0.73]["Temporal_Inf_L": 0.18] 

389 0.1947 ["Paracentral_Lobule_R": 0.44]["Precuneus_L": 0.18]["Precuneus_R": 0.15] 

391 0.2478 ["Cerebelum_4_5_R": 0.52]["Lingual_R": 0.17]["ParaHippocampal_R": 0.15]["Cerebelum_3_R": 0.13] 

392 0.5841 ["Frontal_Sup_Medial_L": 0.81]["Frontal_Sup_L": 0.19] 

393 0.0177 ["Supp_Motor_Area_R": 0.81] 

394 0.0177 ["Temporal_Sup_L": 0.68]["Insula_L": 0.32] 

395 0.0708 ["Temporal_Mid_R": 0.76]["Temporal_Sup_R": 0.14] 

396 0.0177 ["Olfactory_R": 0.23]["Temporal_Pole_Sup_R": 0.23]["ParaHippocampal_R": 0.18]["Putamen_R": 0.11] 

397 0.3717 ["Frontal_Mid_R": 1.00] 

398 0.2478 ["Thalamus_R": 0.98] 

399 0.2655 ["None": 1.00] 

400 0.3717 ["Frontal_Mid_L": 0.88]["Frontal_Sup_L": 0.12] 
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