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Preface

ΔΥΟ ΓΑΡ ΕΠΙΣΤΗΜΗ ΤΕ ΚΑΙ ΔΟΞΑ ΩΝ ΤΟ ΜΕΝ ΕΠΙΣΘΑΣΘΑΙ
ΠΟΙΕΕΙ ΤΟ ΔΕ ΑΓΝΟΕΕΙΝ.

ΙΠΠΟΚΡΑΤΗΣ (460 π.Χ-360 π.Χ.)

There are in fact two things, science and opinion; the former begets knowledge, the
latter ignorance.

Hippocrates (460BC-360BC)

This book represents a collection of recent advances in computational studies
in neuroscience research that practically applies to a collaborative and integrative
environment in engineering and medical domains. This work has been designed
to address the explosion of interest by academic researchers and practitioners in
highly-effective coordination between computational models and tools and quanti-
tative investigation of neuroscientific data. To bridge the vital gap between science
and medicine, this book brings together diverse research areas ranging from medi-
cal signal processing, image analysis, and data mining to neural network modeling,
regulation of gene expression, and brain dynamics.

We hope that this work will also be of value to investigators and practitioners
in academic institutions who become involved in computational modeling as an aid
in translating information in neuroscientific data to their colleagues in medical do-
main. This volume will be very appealing to graduate (and advanced undergraduate)
students, researchers, and practitioners across a wide range of industries (e.g., phar-
maceutical, chemical, biological sciences), who require a detailed overview of the
practical aspects of computational modeling in real-life neuroscience problems. For
this reason, our audience is assumed to be very diverse and heterogenous, including:
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viii Preface

• researchers from engineering, computer science, statistics, and mathematics do-
mains as well as medical and biological scientists;

• physicians working in scientific research to understand how basic science can be
linked with biological systems.

The book presents a collection of papers, several of which have been presented
at DIMACS Conference on Computational Neuroscience that took place at the Uni-
versity of Florida on February 20 – 21, 2008. It is consisted of three major research
themes in this book: data mining and medical data processing, brain modeling, and
analysis of brain dynamics and neural synchronization. Each theme addresses the
answer to a classical, yet extremely important, question in neuroscience, “How do
we go from the mathematical modeling and computational techniques to the practi-
cal investigations of neuroscience problems?”

The first theme includes six chapters focused on data mining and medical data
processing. The first chapter, by Paiva et al. lay down the platform of this book by
presenting a complete methodological framework based on optimization for repro-
ducing Hilbert spaces of spike trains. In the second chapter, Anderson et al. propose
graph-theoretic models to investigate functional cooperation in the human brain.
Not only can these models be applied to cognitive studies, they may also be used
in diagnosis studies. In the third chapter, Sakkalis and Zervakis propose a frame-
work for extracting time frequency features from electroencephalographic (EEG)
recordings through the use of wavelet analysis. In the fourth chapter Chih-I Hung et
al. present an application of independent component analysis (ICA) transformation
into Creutzfeldt–Jakob disease. In the fifth chapter, Ramezani and Fatemizadeh dis-
cuss a comparison study of classification methods using various data preprocessing
procedures applied to functional magnetic resonance imaging (fMRI) data for the
detection of brain activation. In the sixth chapter, Fan et al. discuss the most well-
known methods in biclustering applied to a neuroscientific application in evaluating
the therapeutic intervention using vagus nerve stimulation treatment for patients
with epilepsy. In the seventh chapter, Achler and Amir propose a genetic classifier
used in the study of gene expression regulation.

The second theme includes five chapters that provide reviews and challenges in
brain modeling in respect of human behavior and brain disease. In the eighth chap-
ter, Ramı́rez et al. provide a review of the inverse source localization problem for
neuroelectromagnetic source imaging of brain dynamics. In the ninth chapter, Wu
et al. propose an approach based on the queuing theory and reinforcement learn-
ing for modeling the brain function and interpreting the human behavior. In the
tenth and eleventh chapters, Cutsuridis suggests deterministic mathematical model
for modeling neural networks of voluntary single-joint movement organization in
normal subjects as well as patients with Parkinson’s disease. In the twelfth chapter,
Kawai et al. propose a parametric model for optical time series data of the respi-
ratory neural network in the brainstem. In the thirteenth chapter, Leondopulos and
Micheli-Tzanakou give an overview of the closed-loop deep brain stimulation tech-
nology and in the fourteenth chapter, Garzon and Neel present a novel approach to
build fine grain models of the human brain with a large number of neurons inspired
by recent advances in computing based on DNA modecules.
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The third theme includes six chapters that focus on quantitative analyses of EEG
recordings to investigate the brain dynamics and neural synchronization. In the fif-
teenth chapter, Sabesan et al. investigate the synchronization in the neural networks
based on information flow, measured by the metric of network transfer entropy,
among different brain areas. In the sixteenth chapter, Pardalos et al. describe an
optimization-based model for estimating all Lyapunov exponents to characterize
the dynamics of EEG recordings. In the seventeenth chapter, Faith et al. report the
potential use of nonlinear dynamics for analyzing EEG recordings to evaluate the
efficacy of antiepileptic drugs. In the eighteenth chapter, Kammerdiner and Pardalos
study the synchronization of EEG recordings using the measures of phase synchro-
nization and cointergrated VAR. In the nineteenth chapter, Liu et al. use the concept
of mutual information to measure the coupling strength of EEG recordings in order
to evaluate the efficacy of antiepileptic drugs in a very rare brain disease. In the last
chapter, Sackellares et al. propose a seizure monitoring and alert system to be used
in an intensive care unit based on statistical analyses of EEG recordings.

The completion of this issue would not have been possible without the assis-
tance of many of our colleagues. We wish to express our gratitude to the authors for
submitting and revising their work. We wish to express our sincere appreciation to
anonymous referees for their careful reviewing. Their constructive comments con-
tributed greatly to the quality of the issue. We cannot thank them enough for their
time, efforts, and dedication to make this volume successful. The experience has
been challenging, yet extremely rewarding. We truly hope that the reader will find
the presented fundamental research and application papers presented as stimulating
and valuable as we did.

USA, Wanpracha Chaovalitwongse
July 2009 Panos M. Pardalos

Petros Xanthopoulos
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Chapter 1
Optimization in Reproducing Kernel Hilbert
Spaces of Spike Trains

António R. C. Paiva, Il Park, and José C. Prı́ncipe

Abstract This chapter presents a framework based on reproducing kernel Hilbert
spaces (RKHS) for optimization with spike trains. To establish the RKHS for opti-
mization we start by introducing kernels for spike trains. It is shown that spike train
kernels can be built from ideas of kernel methods or from the intensity functions
underlying the spike trains. However, the later approach shall be the main focus of
this study. We introduce the memoryless cross-intensity (mCI) kernel as an example
of an inner product of spike trains, which defines the RKHS bottom-up as an in-
ner product of intensity functions. Being defined in terms of the intensity functions,
this approach toward defining spike train kernels has the advantage that points in
the RKHS incorporate a statistical description of the spike trains, and the statisti-
cal model is explicitly stated. Some properties of the mCI kernel and the RKHS it
induces will be given to show that this RKHS has the necessary structure for opti-
mization. The issue of estimation from data is also addressed. We finalize with an
example of optimization in the RKHS by deriving an algorithm for principal com-
ponent analysis (PCA) of spike trains.

António R. C. Paiva
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611,
USA, e-mail: arpaiva@cnel.ufl.edu

Il Park
Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
32611, USA, e-mail: memming@cnel.ufl.edu

José C. Prı́ncipe
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611,
USA, e-mail: principe@cnel.ufl.edu
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4 A. R. C. Paiva et al.

1.1 Introduction

A spike train s ∈ S(T ) is a sequence of ordered spike times s = {tm ∈ T : m =
1, . . . ,N} corresponding to the time instants in the interval T = [0,T ] at which a
neuron fires. In a different perspective, spike trains are realizations of stochastic
point processes. Spike trains can be observed whenever studying either real or ar-
tificial neurons. In neurophysiological studies, spike trains result from the activity
of multiple neurons in single-unit recordings by ignoring the stereotypical shape of
action potentials [5]. And, more recently, there has also been a great interest in using
spike trains for biologically inspired computation paradigms such as the liquid-state
machine (LSM) [13,12] or spiking neural networks (SNN) [3,12]. Regardless of the
nature of the process giving rise to the spike trains, the ultimate goal is to filter or
classify the spike trains to manipulate or extract the encoded information.

Filtering, eigendecomposition, clustering, and classification are often formulated
in terms of a criterion to be optimized. However, formulation of a criterion and/or
optimization directly with spike trains is not a straightforward task. The most widely
used approach is to bin the spike trains, obtained by segmenting the spike train in
small intervals and counting the number of spikes within each interval [5]. The
advantage of this approach is that the randomness in time is mapped to randomness
in amplitude of a discrete-time random process, and, therefore, our usual statistical
signal processing and machine learning techniques can be applied. It is known that if
the bin size is large compared to the average inter-spike interval this transformation
provides a rough estimate of the instantaneous rate. However, the discretization of
time introduced by binning leads to low resolution.

The caveats associated with binned spike trains have motivated alternative
methodologies involving the spike times directly. For example, to deal with the
problem of classification, Victor and Purpura [36, 37] defined a distance metric be-
tween spike trains resembling the edit distance in computer science. An alternative
distance measure was proposed by van Rossum [34]. Using spike train distances for
classification simplifies the problem to that of finding a threshold value. However,
for more general problems the range of applications that can be solved directly using
distances is limited since these metrics do not lend themselves to optimization. The
reason is that although distances are useful concepts in classification and pattern
analysis they do not provide a general framework for statistical signal processing
and machine learning. Recent attempts were also made to develop a mathematical
theory from simple principles [4, 31], such as the definition of an inner product and
an associated kernel, but these developments are mainly associated with the earlier
proposed distance measures [37, 34].

The framework described in this chapter is different in the sense that it does
not attempt to propose a distance or criterion directly. Rather, we propose to de-
fine first inner product kernel functions1 for spike trains. These kernels induce

1 Throughout this document we will refer to inner products and kernels indistinguishably since
they represent the same concept. However, stated more correctly, kernels denote inner products in
a reproducing kernel Hilbert space of functions on the arguments of the kernel.
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reproducing kernel Hilbert spaces (RKHS) of functions on spike trains, which pro-
vide the needed mathematical structure to easily define and optimize criteria for a
diverse range of problems. Another advantage of this approach is that many of the
difficulties found in manipulating spike trains which lead to the use of binning are
implicitly taken care of through the mapping to the RKHS. In this chapter we ex-
emplify the construction of an RKHS by defining an inner product of spike trains
called memoryless cross-intensity (mCI) kernel. This spike train kernel defines the
RKHS bottom-up as an inner product of intensity functions and thus incorporates
a statistical description of the spike trains. As will be showed later, this particular
kernel is related to the generalized cross-correlation (GCC) [18] but provides a more
principled and broader perspective on many spike train methods reported in the
literature.

For continuous and discrete random processes, RKHS theory has already been
proven essential in a number of applications, such as statistical signal processing
[20, 23] and detection [9, 11, 10], as well as statistical learning theory [29, 35, 38].
Indeed, Parzen showed that several statistical signal processing algorithms can be
stated as optimization problems in the RKHS and easily solved [20, 23]. For in-
stance, the cross-correlation function used throughout statistical analysis and signal
processing, including the celebrated Wiener filter [8], is a valid kernel and induces
an RKHS space [20]. Although frequently overlooked, RKHS theory plays a pivotal
role in kernel methods [29, 35] because it is the reason for the famed kernel trick
which allows for the otherwise seemingly intractable task of deriving and applying
kernel techniques.

In the following, we introduce how to define spike train kernels and present some
examples. A systematic approach which builds the RKHS from the ground up is fol-
lowed by defining inner products for spike trains. The main advantage in this path is
a general and mathematically precise methodology which, nevertheless, can easily
be interpreted intuitively by analyzing the definition of the inner product or, con-
versely, defining the inner product to match our understanding of a given problem.
In this study we present the mCI kernel as an example, since it incorporates a statis-
tical description of the spike trains and the statistical model is clearly stated, but the
ideas can be easily extended. A number of properties are proved for the mCI kernel,
and the relationships between the RKHS and the congruent spaces are discussed
for additional insight. The issue of estimation from data is also addressed. Finally,
the usefulness of an RKHS framework for optimization is demonstrated through the
derivation of an algorithm for principal component analysis (PCA) of spike trains.

1.2 Some Background on RKHS Theory

In this section, some basic concepts of kernel methods and RKHS theorem nec-
essary for the understanding of the next sections are reviewed. The notation was
purposely chosen to be different from the one used later since the presentation here
is meant to be as general and introductory as possible.
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The fundamental result in RKHS theory is the famed Moore–Aronszajn
theorem [1, 17]. Let K denote a generic symmetric and positive definite function
of two variables defined on some space E. That is, a function K(·, ·) : E ×E → R

such that it verifies:

(i) Symmetry: K(x,y) = K(y,x), ∀x,y ∈ E.
(ii) Positive definiteness: for any finite number of l (l ∈N) points x1,x2, . . . ,xl ∈ E

and any corresponding coefficients c1,c2, . . . ,cl ∈ R,

l

∑
m=1

l

∑
n=1

cmcnK(xm,xn) ≥ 0. (1.1)

These are sometimes called the Mercer conditions [16] in the kernel methods
literature. Then, the Moore–Aronszajn theorem [1, 17] guaranties that there exists a
unique Hilbert space H of real valued functions defined on E such that, for every
x ∈ E,

(i) K(x, ·) ∈H and
(ii) for any f ∈H

f (x) = 〈 f (·),K(x, ·)〉H . (1.2)

The identity on Equation (1.2) is called the reproducing property of K and, for this
reason, H is said to be an RKHS with reproducing kernel K.

Two essential corollaries of the theorem just described can be observed. First,
since both K(x, ·) and K(y, ·) are in H, we get from the reproducing property that

K(x,y) = 〈K(x, ·),K(y, ·)〉H . (1.3)

Hence, K evaluates the inner product in this RKHS. This identity is the kernel trick,
well known in kernel methods, and is the main tool for computation in this space.
Second, a consequence of the previous properties and which can be seen easily in
the kernel trick is that, given any point x ∈ E, the representer of evaluation in the
RKHS is Ψx(·) = K(x, ·). Notice that the functional transformation Ψ from the input
space E into the RKHS H evaluated for a given x, and in general any element of the
RKHS, is a real function defined on E.

A quite interesting perspective to RKHS theory is provided by Parzen’s work
[22]. In his work, Parzen proved that for any symmetric and positive definite func-
tion there exists a space of Gaussian distributed random variables defined in the
input space of the kernel for which this function is the covariance function [20].
Notice that, assuming stationarity and ergodicity, this space might just as well be
thought of as a space of random processes. That is to say that any kernel inducing
an RKHS denotes simultaneously an inner product in the RKHS and a covariance
operator in another space. Furthermore, it is established that there exists an iso-
metric inner product-preserving mapping, a congruence, between these two spaces.
Consequently, the RKHS H induced by the kernel and the space of random vari-
ables where this kernel is a covariance function are said to be congruent. This is an
important result as it sets up a correspondence between the inner product due to a
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kernel in the RKHS to our intuitive understanding of the covariance function and
the associated linear statistics. In other words, due to the congruence between the
two spaces an algorithm can be derived and interpreted in any of the spaces.

1.3 Inner Product for Spike Times

Denote the mth spike time in a spike train indexed by i as ti
m ∈ T , with m ∈

{1,2, . . . ,Ni} and Ni the number of spike times in the spike train. To simplify the
notation, however, the spike train index will be omitted if is irrelevant for the pre-
sentation or obvious from the context.

The simplest inner product that can be defined for spike trains operates with only
two spike times at a time as observed by Carnell and Richardson [4]. In the general
case, such an inner product can be defined in terms of a kernel function defined on
T ×T into the reals, with T the interval of spike times. Let κ denote such a kernel.
Conceptually, this kernel operates in the same way as the kernels operating on data
samples in kernel methods [29] and information theoretic learning [24]. Although
it operates only with two spike times, it will play a major role whenever we operate
with complete realizations of spike trains. Indeed, as the next sections show, the
estimators for one of the kernels we define on spike trains rely on this kernel as an
elemental operation for computation.

To take advantage of the framework for statistical signal processing provided by
RKHS theory, κ is required to be a symmetric positive definite function. By the
Moore–Aronszajn theorem [1], this ensures that an RKHS Hκ must exist for which
κ is a reproducing kernel. The inner product in Hκ is given as

κ(tm, tn) = 〈κ(tm, ·),κ(tn, ·)〉Hκ
= 〈Φm,Φn〉Hκ

, (1.4)

where Φm is the element in Hκ corresponding to tm (that is, the transformed spike
time).

Since the kernel operates directly on spike times and is, typically, undesirable to
emphasize events in this space, κ is further required to be shift-invariant; that is, for
any θ ∈ R,

κ(tm, tn) = κ(tm +θ , tn +θ), ∀tm, tn ∈ T . (1.5)

In other words, the kernel is only sensitive to the difference of the arguments and,
consequently, we may also write κ(tm, tn) = κ(tm − tn).

For any symmetric, shift-invariant, and positive definite kernel, it is known that
κ(0) ≥ |κ(θ)|.2 This is important in establishing κ as a similarity measure between
spike times. In other words, as usual, an inner product should intuitively measure
some form of inter-dependence between spike times. However, notice that the con-
ditions posed do not restrict this study to a single kernel. Quite on the contrary, any

2 This is a direct consequence of the fact that symmetric positive definite kernels denote inner
products that obey the Cauchy–Schwarz inequality.
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kernel satisfying the above requirements is theoretically valid and understood under
the framework proposed here although, obviously, the practical results may vary.

An example of a family of kernels that can be used (but not limited to) is the
radial basis functions [2],

κ(tm, tn) = exp(−|tm − tn|p), tm, tn ∈ T , (1.6)

for any 0 < p ≤ 2. Some well-known kernels, such as the widely used Gaussian and
Laplacian kernels, are special cases of this family for p = 2 and p = 1, respectively.

It is interesting to notice that shift-invariant kernels result in a natural norm in-
duced by the inner product with the following property:

‖Φm‖ =
√

κ(0), ∀Φm ∈Hκ . (1.7)

Since the norm of the transformed spike times in Hκ is constant, all the spike times
are mapped to the surface of a hypersphere in Hκ . The set of transformed spike
times is called the manifold of S(T ). Moreover, this shows in a different perspective
why the kernel used needs to be nonnegative. Furthermore, the geodesic distance
corresponding to the length of the smallest path contained within this manifold (in
this case, the hypersphere) between two functions in this manifold, Φm and Φn, is
given by

d(Φm,Φn) = ‖Φm‖arccos

( 〈Φm,Φn〉
‖Φm‖‖Φn‖

)
=
√

κ(0)arccos

[
κ(tm, tn)

κ(0)

]
.

(1.8)

Put differently, from the geometry of the transformed spike times, the kernel func-
tion is proportional to the cosine of the angle between two transformed spike times
in Hκ . Because the kernel is nonnegative, the maximum angle is π/2, which re-
stricts the manifold of transformed spike times to a small area of the hypersphere.
With the kernel inducing the above metric, the manifold of the transformed points
forms a Riemannian space. However, this space is not a linear space. Fortunately,
its span is obviously a linear space. In fact, it equals the RKHS associated with the
kernel. Although this is not a major problem, computing with the transformed points
will almost surely yield points outside of the manifold of transformed spike times.
This means that such points cannot be mapped back to the input space directly. De-
pending on the aim of the application this may not be necessary, but if required, it
may be solvable through a projection to the manifold of transformed input points.

1.4 Inner Product for Spike Trains

Although any kernel verifying the conditions discussed in the previous section in-
duces an RKHS and therefore is of interest on itself, the fact that it only operates
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with two spike times at a time limits its practical use. In particular, spike trains are
sets of spike times but we have not yet addressed the problem of how to combine the
kernel for all spike times. One immediate approach is to utilize the linearity of the
RKHS [4]. If the mth spike time is represented in the RKHS by Φm, then the spike
train can be represented in the RKHS as the sum of the transformed spike times,

Ψ =
N

∑
m=1

Φm. (1.9)

Notice that if a spike time is represented by a given function, say, an impulse, the
spike train will be a sum of time-shifted impulses centered at the spike times. Then
Equation (1.9) implies that the mapping of the spike train into the RKHS induced
by the spike time kernel is linear. Using the linearity of the RKHS it results that the
inner product of spike trains is

〈
Ψsi ,Ψs j

〉
Hκ

=
Ni

∑
m=1

Nj

∑
n=1

〈
Φ i

m,Φ j
n

〉
Hκ

=
Ni

∑
m=1

Nj

∑
n=1

κ(ti
m, t j

n). (1.10)

It must be remarked that Equation (1.10) is only one example of a spike train
kernel from inner products on spike times. Indeed, as is commonly done in kernel
methods, more complex spike train kernels can be defined utilizing the kernel on
spike times as a building block equating the nonlinear relationship between the spike
times. On the other hand, the main disadvantage in this approach toward spike train
analysis is that the underlying model assumed for the spike train is not clearly stated.
This is important in determining and understanding the potential limitations of a
given spike train kernel for data analysis.

Rather than utilizing this direct approach, an alternative construction is to define
first a general inner product for the spike trains from the fundamental statistical
descriptors. In fact, it will be seen that the inner product for spike trains builds upon
the kernel on single spike times. This bottom-up construction of the kernel for spike
trains is unlike the previous approach and is rarely taken in machine learning, but it
exposes additional insight on the properties of the kernel and the RKHS it induces
for optimization and data analysis.

A spike train is a realization of an underlying stochastic point process [33]. In
general, to completely characterize a point process, the conditional intensity func-
tion must be used. The Poisson process is a special case because it is memoryless
and, therefore, the intensity function (or rate function) is sufficient [33, Chapter 2].
Spike trains in particular have been found to be reasonably well modeled as realiza-
tions of Poisson processes [28, Chapter 2]. Hence, for the remaining of this study
only Poisson spike trains are considered.

Consider two spike trains, si,s j ∈ S(T ), with i, j ∈ N. Denote the intensity of
the underlying Poisson processes by λsi(t) and λs j(t), respectively, where t ∈ T =
[0,T ] denotes the time coordinate. Note that the dependence of the intensity function
on t indicates that the Poisson processes considered may be inhomogeneous (i.e.,
nonstationary). For any practical spike train and for finite T , we have that
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T

λ 2
si
(t)dt < ∞. (1.11)

As a consequence, the intensity functions of spike trains are valid elements of
L2(T ) ⊂ L2. Moreover, in this space, we can define an inner product of intensity
functions as the usual inner product in L2,

I(si,s j) =
〈
λsi ,λs j

〉
L2(T ) =

∫
T

λsi(t)λs j(t)dt. (1.12)

We shall refer to I(·, ·) as the memoryless cross-intensity (mCI) kernel. Notice that
the mCI kernel incorporates the statistics of the processes directly and treats seam-
lessly even the case of inhomogeneous Poisson processes.

Furthermore, the definition of inner product naturally induces a norm in the space
of the intensity functions,

‖λsi(·)‖L2(T ) =
√

〈λsi ,λsi〉L2(T ) =
√∫

T
λ 2

si
(t)dt (1.13)

which is very useful for the formulation of optimization problems.
It is insightful to compare the mCI kernel definition in Equation (1.12) with the

so-called generalized cross-correlation (GCC) [18],

CAB(θ) = E {λA(t)λB(t +θ)}

= lim
T→∞

1
2T

∫ T

−T
λA(t)λB(t +θ)dt.

(1.14)

Although the GCC was proposed directly as a more general form of cross-correlation
of spike trains, one verifies that the two ideas are fundamentally equivalent. Never-
theless, the path toward the definition of mCI is more principled. More importantly,
this path suggests alternative spike train kernel definitions which may not require a
Poisson assumption, or, if the Poisson model is assumed, extract more information
in the event of deviations from the model.

1.5 Properties and Estimation of the Memoryless Cross-Intensity
Kernel

1.5.1 Properties

In this section some relevant properties of the mCI kernel are presented. In addition
to the knowledge they provide, they are necessary for a clear understanding of the
following sections.

Property 1.1. The mCI kernel is a symmetric, nonnegative, and linear operator in
the space of the intensity functions.
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Because the mCI kernel operates on elements of L2(T ) and corresponds to the
usual dot product from L2, this property is a direct consequence of the properties
inherited from L2. More specifically, Property 1.1 guaranties the mCI kernel is a
valid inner product.

Property 1.2. For any set of n ≥ 1 spike trains, the mCI kernel matrix

V =

⎡⎢⎢⎢⎣
I(s1,s1) I(s1,s2) . . . I(s1,sn)
I(s2,s1) I(s2,s2) . . . I(s2,sn)

...
...

. . .
...

I(sn,s1) I(sn,s2) . . . I(sn,sn)

⎤⎥⎥⎥⎦
is symmetric and nonnegative definite.

The proof is given in the appendix. Through the work of Moore [17] and due to
the Moore–Aronszajn theorem [1], the following two properties result as corollaries
of Property 1.2.

Property 1.3. The mCI kernel is a symmetric and positive definite kernel. Thus,
by definition, for any set of n ≥ 1 point processes and corresponding n scalars
a1,a2, . . . ,an ∈ R,

n

∑
i=1

n

∑
j=1

aia jI(si,s j) ≥ 0. (1.15)

Property 1.4. There exists a Hilbert space for which the mCI kernel is a reproducing
kernel.

Actually, Property 1.3 can be obtained explicitly by verifying that the inequality
of Equation (1.15) is implied by Equations (1.44) and (1.45) in the proof of Prop-
erty 1.2 (in the appendix).

Properties 1.2, 1.3, and 1.4 are equivalent in the sense that any of these properties
implies the other two. The most important consequence of these properties, explic-
itly stated through Property 1.4, is that the mCI kernel induces an unique RKHS,
henceforth denoted by HI .

Property 1.5. The mCI kernel verifies the Cauchy–Schwarz inequality,

I2(si,s j) ≤ I(si,si)I(s j,s j) ∀si,s j ∈ S(T ). (1.16)

The proof is given in the appendix. The Cauchy–Schwarz inequality is important
since the triangle inequality results as an immediate consequence and it induces a
correlation coefficient-like measure very useful for matching spike trains. Indeed,
the Cauchy–Schwarz inequality is the concept behind the spike train measure pro-
posed by Schreiber et al. [32]. However, our proof in appendix verifies that all it
is required is a spike train kernel inducing an RKHS, and, therefore, the idea by
Schreiber and colleagues is easily extendible.
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Property 1.6. For any two point processes si,s j ∈S(T ) the triangle inequality holds.
That is, ∥∥λsi +λs j

∥∥≤ ‖λsi‖+
∥∥λs j

∥∥ .

As before, the proof is given in the appendix.

1.5.2 Estimation

As previous stated, spike trains are realizations of underlying point processes, but
the memoryless cross-intensity kernel as presented so far is a deterministic operator
on the point processes rather than on the observed spike trains. Using a well-known
methodology for the estimation of the intensity function we now derive an estimator
for the memoryless cross-intensity kernel. One of the advantages of this route is that
the conceptual construction of spike train kernel is dissociated from the problem
of estimation from data. Put differently, in this way it is possible to have a clear
statistical interpretation while later approaching the problem from a practical point
of view. The connection between the mCI kernel and κ will now become obvious.

A well-known method for intensity estimation from a single spike train is kernel
smoothing [5, 26]. Accordingly, given a spike train si comprising of spike times
{ti

m ∈ T : m = 1, . . . ,Ni} the estimated intensity function is

λ̂si(t) =
Ni

∑
m=1

h(t − ti
m), (1.17)

where h is the smoothing function. This function must be nonnegative and inte-
grate to one over the real line (just like a probability distribution function (pdf)).
Commonly used smoothing functions are the Gaussian, Laplacian, and α-functions,
among others.

From a filtering perspective, Equation (1.17) can be seen as a linear convolution
between the filter impulse response given by h(t) and the spike train given as a sum
of Dirac functionals centered at the spike times. In particular, binning is nothing
but a special case of this procedure in which the spike times are first quantized
according to the binsize and h is a rectangular window [5]. Moreover, compared with
pdf estimation with Parzen windows [21], we immediately observe that intensity
estimation as shown above is directly related to the problem of pdf estimation except
for a normalization term, a connection made clear by Diggle and Marron [6].

Consider spike trains si,s j ∈ S(T ) with estimated intensity functions λ̂si(t) and
λ̂s j(t) according to Equation (1.17). Substituting the estimated intensity functions
in the definition of the mCI kernel (Equation (1.12)) yields

Î(si,s j) =
Ni

∑
m=1

Nj

∑
n=1

κ(ti
m − t j

n), (1.18)



1 Optimization in Reproducing Kernel Hilbert Spaces of Spike Trains 13

where κ is the ‘kernel’ obtained by the autocorrelation of the smoothing function
h. Notice that ultimately the obtained estimator linearly combines and weights the
contribution of a kernel operating on a pair of event coordinates. Moreover, this
estimator operates directly on the event coordinates of the whole realization without
loss of resolution and in a computationally efficient manner since it takes advantage
of the, typically, sparse occurrence of events.

If the kernel κ is chosen such that it satisfies the requirements in Section 1.3, then
the mCI kernel corresponds to a summation of all pairwise inner products between
spike times of the spike trains, evaluated by kernel on the spike time differences.
Put in this way, we can now clearly see how the mCI inner product on spike trains
builds upon the inner product on spike times denoted by κ and the connection to
Equation (1.10). The later approach, however, clearly states the underlying point
process model.

1.6 Induced RKHS and Congruent Spaces

Some considerations about the RKHS space HI induced by the mCI kernel and
congruent spaces are made in this section. The relationship between HI and its con-
gruent spaces provides alternative perspectives and a better understanding of the
mCI kernel. Figure 1.1 provides a diagram of the relationships among the various
spaces discussed next.

Fig. 1.1: Relation between the original space of spike trains S(T ) and the vari-
ous Hilbert spaces. The double-line bi-directional connections denote congruence
between spaces.
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1.6.1 Space Spanned by Intensity Functions

In the introduction of the mCI kernel the usual dot product in L2(T ), the space of
square integrable intensity functions defined on T , was utilized. The definition of
the inner product in this space provides an intuitive understanding to the reasoning
involved. L2(λsi(t), t ∈ T ) ⊂ L2(T ) is clearly a Hilbert space with inner product
and norm defined in Equations (1.12) and (1.13). Notice that the span of this space
contains also elements (functions) that may not be valid intensity functions since, by
definition, intensity functions are always nonnegative. However, since our interest
is mainly on the evaluation of the inner product this is of no consequence. The key
limitation, however, is that L2(λsi(t), t ∈ T ) is not an RKHS. This should be clear
because elements in this space are functions defined on T , whereas elements in the
RKHS HI must be functions defined on S(T ).

Despite the differences, the spaces L2(λsi(t), t ∈ T ) and HI are closely related.
In fact, L2(λsi(t), t ∈ T ) and HI are congruent. This congruence can be verified
explicitly since there is clearly a one-to-one mapping,

λsi(t) ∈ L2(λsi(t), t ∈ T ) ←→ Λsi(s) ∈HI ,

and, by definition of the mCI kernel,

I(si,s j) =
〈
λsi ,λs j

〉
L2(T ) =

〈
Λsi ,Λs j

〉
HI

. (1.19)

A direct implication of the basic congruence theorem is that the two spaces have the
same dimension [20].

1.6.2 Induced RKHS

In Section 1.5.1 it was shown that the mCI kernel is symmetric and positive definite
(Properties 1.1 and 1.3, respectively) and consequently, by the Moore–Aronszajn
theorem [1], there exists a Hilbert space HI in which the mCI kernel evaluates the
inner product and is a reproducing kernel (Property 1.4). This means that I(si, ·) ∈
HI for any si ∈ S(T ) and, for any ξ ∈HI , the reproducing property holds

〈ξ , I(si, ·)〉HI
= ξ (si). (1.20)

As a result the kernel trick follows:

I(si,s j) =
〈
I(si, ·), I(s j, ·)

〉
HI

. (1.21)

Written in this form, it is easy to verify that the point in HI corresponding to a spike
train si ∈ S(T ) is I(si, ·). In other words, given any spike train si ∈ S(T ), this spike
train is mapped to Λsi ∈ HI , given explicitly (although unknown in closed form) as
Λsi = I(si, ·). Then Equation (1.21) can be restated in the more usual form
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I(si,s j) =
〈
Λsi ,Λs j

〉
HI

. (1.22)

It must be remarked that HI is in fact a functional space. More specifically, that
points in HI are functions of spike trains defined on S(T ). This is a key difference
between the space of intensity functions L2(T ) explained above and the RKHS HI ,
in that the latter allows for statistics of the transformed spike trains to be estimated
as functions of spike trains. The usefulness of an RKHS for optimization and general
computation with spike trains can be appreciated, for example, in the derivation of
principal component analysis in Section 1.7.

1.6.3 mCI Kernel and the RKHS Induced by κ

The mCI kernel estimator in Equation (1.18) shows the evaluation written in terms
of elementary kernel operations on the spike times. This fact alone provides a dif-
ferent perspective on how the mCI kernel uses the statistics of the spike times. To
see this more clearly, if κ is chosen according to Section 1.3 as symmetric positive
definite, then it can be substituted by its inner product (Equation (1.4)) in the mCI
kernel estimator, yielding

Î(si,s j) =
Ni

∑
m=1

Nj

∑
n=1

〈
Φ i

m,Φ j
n

〉
Hκ

=

〈
Ni

∑
m=1

Φ i
m,

Nj

∑
n=1

Φ j
n

〉
Hκ

.

(1.23)

When the number of samples approaches infinity (so that the intensity functions and,
consequently the mCI kernel, can be estimated exactly) the mean of the transformed
spike times approaches the expectation. Hence, Equation (1.23) results in

I(si,s j) = Ni Nj
〈
E
{

Φ i} ,E
{

Φ j}〉
Hκ

, (1.24)

where E
{

Φ i
}

, E
{

Φ j
}

denotes the expectation of the transformed spike times and
Ni,Nj are the expected number of spikes in spike trains si and s j, respectively.

Equation (1.23) explicitly shows that the mCI kernel can be computed as an inner
product of the expectation of the transformed spike times in the RKHS Hκ induced
by κ . In other words, there is a congruence G between Hκ and HI in this case given
explicitly by the expectation of the transformed spike times, G (Λsi) = NiE

{
Φ i
}

,
such that〈

Λsi ,Λs j

〉
HI

=
〈
G (Λsi),G (Λs j)

〉
Hκ

=
〈
NiE

{
Φ i} ,NjE

{
Φ j}〉

Hκ
. (1.25)

Recall that the transformed spike times form a manifold (the subset of a hyper-
sphere) and, since these points have constant norm, the kernel inner product depends
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only on the angle between points. This is typically not true for the average of these
points, however. Observe that the circular variance [14] of the transformed spike
times of spike trains si is

var(Φ i) = E
{〈

Φ i
m,Φ i

m

〉
Hκ

}
−
〈
E
{

Φ i} ,E
{

Φ i}〉
Hκ

= κ(0)−
∥∥E
{

Φ i}∥∥2
Hκ

.
(1.26)

So, the norm of the mean transformed spike times is inversely proportional to the
variance of the elements in Hκ . This means that the inner product between two spike
trains depends also on the dispersion of these average points. This fact is important
because data reduction techniques rely heavily on optimization with the data vari-
ance. For instance, kernel principal component analysis [30] directly maximizes the
variance expressed by Equation (1.26) [19].

1.6.4 mCI Kernel as a Covariance Kernel

In Section 1.5.1 it was shown that the mCI kernel is indeed a symmetric positive
definite kernel. As mentioned in Section 1.2, Parzen [22] showed that any symmetric
and positive definite kernel is also a covariance function of a random process defined
in the original space of the kernel (see also Wahba [38, Chapter 1]). In the case of
the mCI kernel, this means the random processes are defined on S(T ).

Let X denote this random process. Then, for any si ∈ S(T ), X(si) is a random
variable on a probability space (Ω ,B,P) with measure P. As proved by Parzen, this
random process is Gaussian distributed with zero mean and covariance function

I(si,s j) = Eω
{

X(si)X(s j)
}

. (1.27)

Notice that the expectation is over ω ∈ Ω since X(si) is a random variable defined
on Ω , a situation which can be written explicitly as X(si,ω), si ∈ S(T ), ω ∈ Ω .
This means that X is actually a doubly stochastic random process. An intrigu-
ing perspective is that, for any given ω , X(si,ω) is an ordered and almost surely
nonuniform sampling of X(·,ω). The space spanned by these random variables is
L2(X(si),si ∈ S(T )) since X is obviously square integrable (that is, X has finite
covariance).

The RKHS HI induced by the mCI kernel and the space of random functions
L2(X(si),si ∈ S(T )) are clearly congruent. This fact is a consequence of the ba-
sic congruence theorem [22] since the two spaces have the same dimension or, al-
ternatively, by verifying that the congruence mapping between the two spaces ex-
ists. For this reason we may consider the mCI kernel also as a covariance measure
of random variables directly dependent on the spike trains with well-defined sta-
tistical properties. Allied to our familiarity and intuitive knowledge of the use of
covariance (which is nothing but cross-correlation between centered random vari-
ables) this concept can be of great importance in optimization and design of optimal
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learning algorithms that work with spike trains. This is because linear methods are
known to be optimal for Gaussian distributed random variables.

1.7 Principal Component Analysis

To exemplify the importance of the developments shown here, in the following we
derive the algorithm to perform principal component analysis (PCA) of spike trains.
The PCA algorithm will be derived from two different perspectives to show the
generality of an RKHS framework for optimization with spike trains.

First, PCA will be derived directly in the RKHS induced by the mCI kernel. This
approach highlights that optimization with spike trains is possible by the definition
of an inner product, and more specifically through the mathematical structure pro-
vided by the RKHS. This is also the traditional approach in the functional analysis
literature [25] and has the advantage of being completely general, regardless of the
spike train kernel definition. A well-known example of discrete PCA done in an
RKHS is kernel PCA [30].

In the second approach we will derive PCA in the space spanned by the intensity
functions utilizing the inner product defined in this space. Since the RKHS is con-
gruent to this space and, therefore, the inner products in the two spaces are isometric
the outcome will be found to be the same. However, this approach has the advan-
tage that the eigenfunctions are explicitly available. In general, the eigenfunctions
are not available in the RKHS because the transformation to the RKHS is unknown.
However, this approach is possible here due to the linearity of the space spanned by
the intensity functions with the inner product we defined.

1.7.1 Optimization in the RKHS

Suppose we are given a set of spike trains, {si ∈ S(T ), i = 1, . . . , N}, for which we
wish to determine the principal components. Computing the principal components
of the spike trains directly is not feasible because we would not know how to define
a principal component (PC), however, this is a trivial task in an RKHS.

Let {Λsi ∈HI , i = 1, . . . ,N} be the set of elements in the RKHS HI corresponding
to the given spike trains. Denote the mean of the transformed spike trains as

Λ̄ =
1
N

N

∑
i=1

Λsi , (1.28)

and the centered transformed spike trains (i.e., with the mean removed) can be ob-
tained as

Λ̃si = Λsi − Λ̄ . (1.29)
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PCA finds an orthonormal transformation providing a compact description of the
data. Determining the principal components of spike trains in the RKHS can be
formulated as the problem of finding the set of orthonormal vectors in the RKHS
such that the projection of the centered transformed spike trains {Λ̃si} has the
maximum variance. This means that the principal components can be obtained by
solving an optimization problem in the RKHS. A function ξ ∈ HI

(i.e., ξ : S(T ) −→ R) is a principal component if it maximizes the cost
function

J(ξ ) =
N

∑
i=1

[
Projξ (Λ̃si)

]2
−ρ

(
‖ξ‖2 −1

)
, (1.30)

where Projξ (Λ̃si) denotes the projection of the ith centered transformed spike train

onto ξ , and ρ is the Lagrange multiplier to the constraint
(
‖ξ‖2 −1

)
imposing that

the principal components have unit norm. To evaluate this cost function one needs
to be able to compute the projection and the norm of the principal components.
However, in an RKHS, an inner product is the projection operator and the norm
is naturally defined (see Equation (1.13)). Thus, the above cost function can be
expressed as

J(ξ ) =
N

∑
i=1

〈
Λ̃si ,ξ

〉2
HI

−ρ
(
〈ξ ,ξ 〉HI

−1
)

. (1.31)

Because in practice we always have a finite number of spike trains, ξ is restricted
to the subspace spanned by the centered transformed spike trains {Λ̃si}. Conse-
quently, there exist coefficients b1, . . . ,bN ∈ R such that

ξ =
N

∑
j=1

b jΛ̃s j = bT Λ̃ (1.32)

where bT = [b1, . . . ,bN ] and Λ̃(t) =
[
Λ̃s1(t), . . . ,Λ̃sN (t)

]T
. Substituting in Equa-

tion (1.31) yields

J(ξ ) =
N

∑
i=1

(
N

∑
j=1

b j
〈
Λ̃si ,Λ̃s j

〉)( N

∑
k=1

bk
〈
Λ̃si ,Λ̃sk

〉)

+ρ

(
1−

N

∑
j=1

N

∑
k=1

b jbk
〈
Λ̃si ,Λ̃sk

〉)
= bT Ĩ2b+ρ

(
1−bT Ĩb

)
,

(1.33)

where Ĩ is the Gram matrix of the centered spike trains; that is, the N ×N matrix
with elements
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Ĩi j =
〈
Λ̃si ,Λ̃s j

〉
=
〈
Λsi − Λ̄ ,Λs j − Λ̄

〉
=
〈
Λsi ,Λs j

〉
− 1

N

N

∑
l=1

〈
Λsi ,Λsl

〉
− 1

N

N

∑
l=1

〈
Λsl ,Λs j

〉
+

1
N2

N

∑
l=1

N

∑
n=1

〈
Λsl ,Λsn

〉
.

(1.34)

In matrix notation,

Ĩ = I − 1
N

(1NI +I1N)+
1

N2 1NI1N , (1.35)

where I is the Gram matrix of the inner product of spike trains Ii j =
〈
Λsi ,Λs j

〉
, and

1N is the N×N matrix with all ones. This means that Ĩ can be computed directly in
terms of I without the need to explicitly remove the mean of the transformed spike
trains.

From Equation (1.33), finding the principal components simplifies to the prob-
lem of estimating the coefficients {bi} that maximize J(ξ ). Since J(ξ ) is a quadratic
function its extrema can be found by equating the gradient to zero. Taking the
derivative with regard to b (which characterizes ξ ) and setting it to 0
results in

∂J(ξ )
∂b

= 2Ĩ2b−2ρ Ĩb = 0 (1.36)

and thus corresponds to the eigendecomposition problem3

Ĩb = ρb. (1.37)

This means that any eigenvector of the centered Gram matrix is a solution of Equa-
tion (1.36). Thus, the eigenvectors determine the coefficients of Equation (1.32)
and characterize the principal components. It is easy to verify that, as expected, the
variance of the projections onto each principal component equals the corresponding
eigenvalue. So, the ordering of ρ specifies the relevance of the principal compo-
nents.

To compute the projection of a given input spike train s onto the kth prin-
cipal component (corresponding to the eigenvector with the kth largest eigen-
value) we need only to compute in the RKHS the inner product of Λs with ξk.
That is,

3 Note that the simplification in the eigendecomposition problem is valid regardless if the Gram
matrix is invertible or not, since Ĩ2 and Ĩ have the same eigenvectors and the eigenvalues of Ĩ2 are
the eigenvalues of Ĩ squared.
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Projξk
(Λs) = 〈Λs ,ξk〉HI

=
N

∑
i=1

bki
〈
Λs ,Λ̃si

〉
=

N

∑
i=1

bki

(
I(s,si)−

1
N

N

∑
j=1

I(s,s j)

)
.

(1.38)

1.7.2 Optimization in the Space Spanned by the Intensity
Functions

As before, let {si ∈ S(T ), i = 1, . . . ,N} denote the set of spike trains for which we
wish to determine the principal components, and {λsi(t), t ∈ T , i = 1, . . . ,N} the
corresponding intensity functions. The mean intensity function is

λ̄ (t) =
1
N

N

∑
i=1

λsi(t), (1.39)

and, therefore, the centered intensity functions are

λ̃si(t) = λsi(t)− λ̄ (t). (1.40)

Again, the problem of finding the principal components of a set of data can be
stated as the problem of finding the eigenfunctions of unit norm such that the pro-
jections have maximum variance. This can be formulated in terms of the following
optimization problem. A function ζ (t) ∈ L2(λsi(t), t ∈ T ) is a principal component
if it maximizes the cost function

J(ζ ) =
N

∑
i=1

[
Projζ (λ̃si)

]2
− γ
(
‖ζ‖2 −1

)
=

N

∑
i=1

〈
λ̃si ,ζ

〉2

L2
− γ
(
‖ζ‖2 −1

)
,

(1.41)

where γ is the Lagrange multiplier constraining ζ to have unit norm. It can be
shown that ζ (t) lies in the subspace spanned by the intensity functions {λ̃si(t), i =
1, . . . ,N}. Therefore, there exist coefficients b1, . . . ,bN ∈ R such that

ζ (t) =
N

∑
j=1

b jλ̃s j(t) = bT r̃(t). (1.42)

with bT = [b1, . . . ,bN ] and r̃(t)=
[
λ̃s1(t), . . . , λ̃sN (t)

]T
. Substituting in Equation (1.31)

yields
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J(ζ ) =
N

∑
i=1

(
N

∑
j=1

b j

〈
λ̃si , λ̃s j

〉)( N

∑
k=1

bk

〈
λ̃si , λ̃sk

〉)

+ γ

(
1−

N

∑
j=1

N

∑
k=1

b jbk

〈
λ̃si , λ̃sk

〉)
= bT Ĩ2b+ γ

(
1−bT Ĩb

)
,

(1.43)

where Ĩ is the Gram matrix of the centered intensity functions (i.e., Ĩi j =
〈

λ̃si , λ̃s j

〉
L2

).

As expected, since the inner product is the same and the two spaces are congru-
ent, this cost function yields the same solution. However, unlike the previous, this
presentation has the advantage that it shows the role of the eigenvectors of the Gram
matrix and, most importantly, how to obtain the principal component functions in
the space of intensity functions. From Equation (1.42), the coefficients of the eigen-
vectors of the Gram matrix provide a weighting for the intensity functions of each
spike trains and, therefore, express how important a spike train is to represent oth-
ers. In a different perspective, this suggests that the principal component functions
should reveal general trends in the intensity functions.

1.7.3 Results

To illustrate the algorithm just derived we performed a simple experiment. We gen-
erated two template spike trains comprising of 10 spikes uniformly random dis-
tributed over an interval of 0.25 s. In a specific application these template spike
trains could correspond, for example, to the average response of a culture of neurons
to two distinct but fixed input stimuli. For the computation of the coefficients of the
eigendecomposition (“training set”), we generated a total of 50 spike trains, half for
each template, by randomly copying each spike from the template with probability
0.8 and adding zero mean Gaussian distributed jitter with standard deviation 3 ms.
For testing of the obtained coefficients, 200 spike trains were generated following
the same procedure. The simulated spike trains are shown in Fig. 1.2.

According to the PCA algorithm derived previously, we computed the eigende-
composition of the matrix Ĩ as given by Equation (1.35) so that it solves Equa-
tion (1.37). The evaluation of the mCI kernel was estimated from the spike trains
according to Equation (1.12) and computed with a Gaussian kernel with size 2 ms.
The eigenvalues {ρl , l = 1, . . . ,100} and first two eigenvectors are shown in Fig. 1.3.
The first eigenvalue alone accounts for more than 26% of the variance of the dataset
in the RKHS space. Although this value is not impressive, its importance is clear
since it is nearly four times higher than the second eigenvalue (6.6%). Furthermore,
notice that the first eigenvector clearly shows the separation between spike trains
generated from different templates (Fig. 1.3b). This again can be seen in the first
principal component function, shown in Fig. 1.4, which reveals the location of the
spike times used to generate the templates while discriminating between them with
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Fig. 1.2: Spike trains used for evaluation of the eigendecomposition coefficients
of PCA algorithm (a) and for testing of the result (b). In either case, the first half
of spike trains corresponds to the first template and the remaining to the second
template.
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(a) Eigenvalues ρl , l = 1, . . . ,100 in decreas-
ing order.

(b) First two eigenvectors.

Fig. 1.3: Eigendecomposition of the spike trains Gram matrix Ĩ .

opposite signs. Around periods of time where the spikes from both templates over-
lap, the first principal component is 0. As can be seen from the second principal
component function, the role of the second eigenvector is to account for the dis-
persion in the data capable of differentiate spike trains generated from different
templates.

Both datasets, for evaluation and testing, were projected onto the first two prin-
cipal components. Figure 1.5 shows the projected spike trains. As noted from the
difference between the first and second eigenvalues, the first principal component



1 Optimization in Reproducing Kernel Hilbert Spaces of Spike Trains 23

0 0.05 0.1 0.15 0.2 0.25
–800

–600

–400

–200

0

200

400

600

800

time (s)

 

 

first principal component
second principal component

Fig. 1.4: First two principal component functions (i.e., eigenfunctions) in the space
of intensity functions. They are computed by substituting the coefficients of the first
two eigenvectors of the Gram matrix in Equation (1.42).
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Fig. 1.5: Projection of spike trains onto the first two principal components. The
different point marks differentiate between spike trains corresponding to each one
of the classes.

is the main responsible for the dispersion between classes of the projected spike
trains. This happens because the direction of maximum variance is the one that
passes through both clusters of points in the RKHS due to the small dispersion
within class. The second principal component seems to be responsible for disper-
sion due to the jitter noise introduced in the spike trains and suggests that other
principal components play a similar role.
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A more specific understanding can be obtained from the considerations done in
Section 1.6.3. There, the congruence between the RKHS induced by the mCI kernel,
HI , and the RKHS induced by κ , Hκ , was utilized to show that the mCI kernel is
inversely related to the variance of the transformed spike times in Hκ . In this dataset
and for the kernel size utilized, this guaranties that the value of the mCI kernel within
class is always smaller than interclass. This is a reason why in this scenario the first
principal component always suffices to project the data in a way that distinguishes
between spike trains generated each of the templates.

Conventional PCA was also applied to this dataset by binning the spike trains.
Although cross-correlation is an inner product for spike trains and, therefore, the
above algorithm could have been used, for comparison, the conventional approach
was followed [27, 15]. That is, to compute the covariance matrix with each binned
spike train taken as a data vector. This means that the dimensionality of the co-
variance matrix is determined by the number of bins per spike train, which may
be problematic if long spike trains are used or small bin sizes are needed for high
temporal resolution.

The results of PCA using bin size of 5 ms are shown in Figs. 1.6 and 1.7. The
bin size was chosen to provide a good compromise between temporal resolution and
smoothness of the eigenfunctions (important for interpretability). Comparing these
results the ones using the mCI kernel, the distribution of the eigenvalues is quite
similar and the first eigenfunction does reveal somewhat of the same trend as in
Fig. 1.4. The same is not true for the second eigenfunction, however, which looks
much more “jaggy.” In fact, as Fig. 1.7 shows, in this case the projections along
the first two principal directions are not orthogonal. This means that the covariance
matrix does not fully express the structure of the spike trains. It is noteworthy that
this is not only because the covariance matrix is being estimated with a small num-
ber of data vectors. In fact, even if the binned cross-correlation was utilized directly
in the above algorithm as the inner product the same effect was observed, meaning
that the binned cross-correlation does not characterize the spike train structure in
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Fig. 1.6: Eigendecomposition of the binned spike trains covariance matrix.
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Fig. 1.7: Projection of spike trains onto the first two principal components of the
covariance matrix of binned spike trains. The different point marks differentiate
between spike trains corresponding to each one of the classes.

sufficient detail. Since the binned cross-correlation and the mCI kernel are concep-
tually equivalent apart from the discretization introduced by binning, this shows the
ill effects of this preprocessing step for analysis and computation with spike train,
and point process realizations in general.

1.8 Conclusion

A reproducing kernel Hilbert space (RKHS) framework for optimization with spike
trains is introduced. Although the application of kernel methods to spike trains
without binning is not entirely novel [4, 31], a more general view of the problem
is presented. Instead of a top-down approach often taken in kernel methods, the
mCI kernel was built bottom-up from the concept of intensity functions which are
basic statistical descriptors of spike trains. Indeed, intensity functions are the core
concept of the statistical analysis of spike trains and is perhaps one of reasons why
binning is such a well-established technique, at any timescale of interest [28, 5].
Kernel methods applied before to spike trains seemed to have no connection to
intensity estimation. This chapter, however, bridges these two perspectives seam-
lessly. In one perspective, the mCI kernel approximates our intuitive understanding
regarding intensity functions as functional descriptors of point processes. On the
other hand, the evaluation (or estimation) of the mCI kernel for given spike trains
easily links to other methodologies in the literature. Most importantly, the approach
taken lends itself to generalization to other point process models and spike train
kernels nonlinear in the space of intensity functions taking advantage of the RKHS
mathematical structure and without sacrifice in rigor.

In addition to this enlightening connection of point of view, the rigorous yet gen-
eral mathematical approach toward the problem of optimization for manipulating
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spike trains clarifies exactly from basic principles which kernels can be used and
what are the general properties of the mCI kernel defined. Even though it may be
argued that kernel methods can be applied directly for spike trains data given a ker-
nel, the true meaning of using such a kernel cannot be well determined. This is
one of the strengths of the explicit construction followed. In this way, the general
structure of the RKHS space induced is well understood allowing for methods to be
derived from their basic ideas. Additionally, we were able to establish a close math-
ematical relationship to several congruent spaces where the derived methods can be
thoroughly comprehended. Still, it must be remarked that the mCI kernel presented
here will likely not be the most appropriate for a number of problems. This was
not the goal of this chapter. Instead one of our aims was to show how other kernels
that operate with spike trains may be easily formulated. Depending on a specific
application other kernels may be defined which lead to simpler solutions and/or are
computationally simpler.

It is noteworthy that the mCI kernel is not restricted to applications with spike
trains but rather can be applied to processing with any Poisson point processes. In
fact, the mCI kernel can be applied for even more general point processes. Natu-
rally, it might not be the optimum inner product for point processes other than Pois-
son processes since the intensity function does not fully characterizes the process
but, in a sense, this is similar to the use of cross-correlation in continuous random
processes, which is only sensitive to second-order statistics.
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Appendix: Proofs

This section presents the proofs for Properties 1.2, 1.5, and 1.6 in Section 1.5.1.

Proof (Property 1.2). The symmetry of the matrix results immediately from Prop-
erty 1.1.

By definition, a matrix is nonnegative definite if and only if aT V a ≥ 0, for any
aT = [a1, . . . ,an] with ai ∈ R. So, we have that

aT V a =
n

∑
i=1

n

∑
j=1

aia jI(si,s j), (1.44)

which, making use of the mCI kernel definition (Equation (1.12)), yields

aT V a =
∫
T

(
n

∑
i=1

aiλsi(t)

)(
n

∑
j=1

a jλs j(t)

)
dt
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=

〈
n

∑
i=1

aiλsi ,
n

∑
j=1

a jλs j

〉
L2(T )

=

∥∥∥∥∥ n

∑
i=1

aiλsi

∥∥∥∥∥
L2(T )

≥ 0,

(1.45)

since the norm is nonnegative.

Proof (Property 1.5). Consider the 2×2 CI kernel matrix,

V =
[

I(si,si) I(si,s j)
I(s j,si) I(s j,s j)

]
.

From Property 1.2, this matrix is symmetric and nonnegative definite. Hence, its
determinant is nonnegative [7, p. 245]. Mathematically,

det(V ) = I(si,si)I(s j,s j)− I2(si,s j) ≥ 0,

which proves the result of Equation (1.16).

Proof (Property 1.6). Consider two spike trains, si,s j ∈ S(T ). The norm of the sum
of two spike trains is∥∥λsi +λs j

∥∥2 =
〈
λsi +λs j ,λsi +λs j

〉
(1.46a)

= 〈λsi ,λsi〉+2
〈
λsi ,λs j

〉
+
〈
λs j ,λs j

〉
(1.46b)

≤ ‖λsi‖2 +2‖λsi‖
∥∥λs j

∥∥+
∥∥λs j

∥∥2
(1.46c)

=
(
‖λsi‖+

∥∥λs j

∥∥)2
, (1.46d)

with the upper bound in step 1.46c established by the Cauchy–Schwarz inequality
(Property 1.5).
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Chapter 2
Investigating Functional Cooperation in the
Human Brain Using Simple Graph-Theoretic
Methods

Michael L. Anderson, Joan Brumbaugh, and Aysu Şuben

Abstract This chapter introduces a very simple analytic method for mining large
numbers of brain imaging experiments to discover functional cooperation between
regions. We then report some preliminary results of its application, illustrate some
of the many future projects in which we expect the technique will be of considerable
use (including a way to relate fMRI to EEG), and describe a research resource for in-
vestigating functional cooperation in the cortex that will be made publicly available
through the lab web site. One significant finding is that differences between cogni-
tive domains appear to be attributable more to differences in patterns of cooperation
between brain regions, rather than to differences in which brain regions are used in
each domain. This is not a result that is predicted by prevailing localization-based
and modular accounts of the organization of the cortex.

2.1 Introduction and Background

Hardly an issue of science or nature goes by without creating a stir over the dis-
covery of “the” gene for some disease, trait, or predisposition, or “the” brain area
responsible for some behavior or cognitive capacity. Of course, we know better; the
isolable parts of complex systems like the brain or the human genome do what they
do only in virtue of the cooperation of very many other parts, and often only by
operating within and taking advantage of specific environmental and developmental
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contexts. But while it is true that we have gotten better about acknowledging the
limitations of our instinctive reductionism – a bit of humility that the media would
do well to absorb into its reporting – actual scientific practice has yet to be much
affected by awareness of those limits. A recent case in point is John Anderson’s
project to map ACT-R components to brain regions [3]. The motivations for the
project are of course entirely sound: if ACT-R is to be a realistic model of human
cognition, then that model ought to have some significant, testable relationship to
the neural bases of cognition. In this particular set of experiments, the authors iden-
tify eight ACT-R modules and match each one to a different region of interest. They
then look for, and find, significant fit between the predictions for the BOLD signal in
those regions, based on the activity of the ACT-R modules while solving a particular
arithmetic task, and the measured BOLD signal in human participants performing
the same task. On its face, this is an intriguing result and seems to offer compelling
support for the ACT-R model. But the methodological assumption of the project –
that there is a 1:1 mapping of ACT-R modules and brain areas – is highly suspect.
Nor are the authors unaware of this difficulty, and in fact they specifically caution
against making any inference from their approach to the functional organization of
the brain:

Some qualifications need to be made to make it clear that we are not propos-
ing a one-to-one mapping between these eight regions and the eight functions.
First, other regions also serve these functions. Many areas are involved in vi-
sion and the fusiform gyrus has just proven to be the most useful to monitor.
Similarly, many regions have been shown to be involved in retrieval, particu-
larly the hippocampus. The prefrontal region is just the easiest to identify and
seems to afford the best signal-to-noise ratio. Equally, we are not claiming
these regions only serve one function. This paper has found some evidence for
multiple functions. For instance, the motor regions are involved in rehearsal
as well as external action (213–4).

Although we should appreciate the authors’ candor here, the caveat seriously
undermines the ability to interpret their results. If from the discovery that activity
in an ACT-R module predicts the BOLD signal in specific brain region, we can
neither infer that the region serves that specific function (because it is also activated
in other tasks), nor that the function is served by that region (because other regions
are activated by the target task), then we are not left with much. And yet despite
the authors’ awareness of these problems, they stick by the methodology that causes
them.

Why might this be so? Naturally, all scientists are faced with the necessity of
making simplifying abstractions to increase the tractability of their work; but as the
authors found themselves, the assumption of a 1:1 mapping of modules to brain
areas is not an approximation to reality, but appears to be fundamentally mislead-
ing. So what would account for the fact that they persist in applying methodological
assumptions that they know to be inadequate? Given the scientific stature of the
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authors, the question prompts reflection on the range and adequacy of the method-
ological tools actually available for work in this area. One sticks with improper tools
only when the other options appear even worse. And while there are indeed more
sophisticated tools for cooperation-sensitive investigations of neuroscientific data,
those techniques are typically highly complex, hard to master, and – most impor-
tantly – produce results that can be difficult to interpret.

To help address these related problems, this chapter will describe a very sim-
ple analytical technique that we have been using in our lab to make cooperation-
sensitive investigations tractable. In this chapter, we will outline that method, report
some preliminary results of its application, and illustrate some of the many future
projects in which we expect this technique (and the underlying database of brain
imaging studies) will be of considerable use.

2.2 Graph Theory and Neuroscience

A graph is a set of objects called points, vertices, or nodes connected by links
called lines or edges. Graphs have proven to be a convenient format to represent
relationships in very many different areas, including computer networks, telephone
calls, airline route maps, and social interactions [18, 19]. In neuroscience, graphs
have been used for such purposes as investigating neural connectivity patterns [27],
correcting brain images [17], and analyzing the patterns of neural activations in
epilepsy [32]. Nevertheless graphs and graph theory – the branch of mathematics
concerned with exploring the topological properties of graphs [15] – remain at this
time underutilized tools with enormous potential to advance our understanding of
the operations of the brain.

Our approach to investigating functional cooperation in the cortex involves build-
ing co-activation graphs, based on applying some simple data analysis techniques
to large numbers of brain imaging studies. The method consists of two steps: first,
choosing a spatial segmentation of the cortex to represent as nodes (current work
uses Brodmann areas, but alternate segmentation schemes could easily be used; see
below); and second, performing some simple analyses to discover which regions –
which nodes – are statistically likely to be co-active. These relationships are repre-
sented as edges in our graphs.

For this second step we proceed in the following way. Given a database of brain
imaging studies containing information about brain activations in various contexts
(we describe the particular database we have been using in the next section), we
first determine the chance likelihood of activation for each region by dividing the
number of experiments in which it is reported to be active by the total number of
experiments in the database. Then, for each pair of regions, we use a χ2 measure
to determine if the regions are more (or less) likely to be co-active than would be
predicted by chance. We also perform a binomial analysis, since a binomial measure
can provide directional information. (It is sometimes the case that, while area A and
area B are co-active more (or less) often than would be predicted by chance, the
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effect is asymmetric, such that area B is more active when area A is active, but not
the reverse.)

Figure 2.1 shows the results of one such analysis, for a set of action and at-
tention tasks. The graphs represent Brodmann areas that are significantly more
likely than chance to be co-active (χ2 > 3.84); it is hypothesized that the net-
work of co-activated areas revealed by such analysis represents those areas of the
cortex that cooperate to perform the cognitive tasks in the given domain. The co-
activation graphs are superimposed on an adjacency graph (where edges indicate
that the Brodmann areas share a physical border in the brain) for ease of visual
comparison.

Action Attention

Fig. 2.1: Cortex represented as adjacency + co-activation graphs. Here the Brod-
mann areas are nodes, with black lines between adjacent areas and orange lines
between areas showing significant co-activation. The graph on the left shows co-
activations from 56 action tasks, and the graph on the right shows co-activations
from 77 attention tasks. Edges determined using the threshold χ2 > 3.84. Graphs
rendered with aiSee v. 2.2.

Note that co-activation analysis is similar to, but distinct from, the approach
adopted by [31] in discovering “functional connectivity.” The main difference is
that edges in functional connectivity graphs indicate temporal co-variation between
brain regions. Moreover, the results they report generally represent the dynamics
of simulated neural networks (based on the structure of biological brain networks),
rather than the static analysis of data-mining imaging experiments. Hence we adopt
the term “functional cooperation” to distinguish our results from theirs. Neverthe-
less, there is presumably much to be gained by leveraging both sorts of analysis;
in a later section we describe one such future project for bringing co-activation and
co-variation graphs together.

The results of such analysis are not just visually striking, but afford the applica-
tion of some well-understood mathematical techniques to better understand features
of brain organization and functional cooperation. Of course, exactly what sorts of



2 Functional Cooperation in the Human Brain 35

techniques are appropriate, and how the end results should be interpreted, depend a
great deal on the nature of the underlying data. Thus, in the next section we de-
scribe the database that we have been working with and how other researchers
can get access to it for their own use. Then, in the final section, we will describe
some of the projects to which we have applied this resource and some of the future
possibilities.

2.3 A Database of Imaging Experiments

Over the last year or so we have compiled a database containing 665 experiments
in 18 cognitive domains. The database currently consists of every qualifying imag-
ing study in the Journal of Cognitive Neuroscience from 1996 to 2006, as well as
the 135 experiments from [11] that were used in previous studies [4, 6]. To qual-
ify for inclusion in the database, the study had to be conducted on healthy adults
and to use a subtraction-based methodology for analyzing results. The database
contains only post-subtraction activations. The data recorded for each experiment
include the publication citation, the domain and sub-domain, the imaging method,
the Talairach coordinates of each reported activation, the Brodmann area of each
reported activation, the relative placement of the activation in the Brodmann area
(e.g., frontal, caudal, ventral, dorsal), and the comparison used to generate the re-
sults. The domain labels are consistent with those used by the BrainMap database
[22]. For experiments where coordinates were reported in MNI coordinates, a soft-
ware package called GingerALE was used to translate these into Talairach co-
ordinates [21]. When the authors of the study reported the Brodmann areas of
their activations, these were recorded as reported. Where the authors did not re-
port Brodmann areas, a software package called the Talairach demon [24] was
used to provide Brodmann area labels for the coordinates. This program reports
a distance in millimeters from the coordinate to the reported Brodmann area; this
is the range, and it is recorded in cases where the BA label was generated us-
ing the software. The range is useful for excluding from analysis Brodmann area
labels for coordinates that are further than desired from the reported area. Our
plans are to continue to add to the database and analysis, and to publish ver-
sions at 1 year intervals beginning in the fall of 2008. The published versions of
the database will contain the base data detailed above, as well as co-activation
graphs, and will be prepared according to the following procedure: first, we will
only include in the co-activation analysis sample domains containing some mini-
mum number of experiments (e.g., 50 or 100, to be determined by what is feasi-
ble given the state of the database at that time). Having identified these domains,
we will generate a concordance of authors to be sure that no individual labs are
overrepresented in any given domain. The samples will be balanced by lab by
randomly excluding experiments from overrepresented authors. At this point we
will choose a target n based on the number of experiments in the domain contain-
ing the fewest number of experiments. An equal number of experiments will be
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randomly selected from the remaining domains. This set of experiments, equally
balanced between the domains, will be the sample for that year’s co-activation
analysis.

On this balanced sample we will run at least the following kinds of analysis.
(1) For each domain, and for the entire set, we will generate a co-activation graph,
constructed using the method outlined above, using Brodmann areas as nodes, and
including only activations with a range (see above) of less than 5 mm. The calculated
chance of activation and co-activation, as well as the binomial probability and χ2

value will be reported for each pair of Brodmann areas, allowing researchers to
set their own probability thresholds. (2) For each of the co-activation graphs, we
will do a clique analysis (see below). Lancaster et al. [23] review some methods
for generating cliques from brain activation data, and there are many other well-
established methods for extracting cliques of various descriptions from graphs [1,
8, 9, 16]. Finally, (3) for all of the co-activation graphs and cliques, we will project
them onto the adjacency graph (shown above) and calculate the average minimum
graph distance (the “scatter” in the cortex) of the included nodes. All of this data
will be made available for download from the lab web site, at

http://www.agcognition.org/brain_network
Before moving on to the next section, where we describe some of the uses to

which these data have been put, and how it can be applied in the future, it is worth
saying a word about our reliance on Brodmann areas as the basis for the analy-
ses. It is of course legitimate to wonder whether the sub-division of the cortex
into Brodmann areas will be a feature of our final functional map of the human
brain; one rather suspects it will be fully superseded by some yet-to-be developed
topographical scheme. Yet Brodmann areas remain the lingua franca in Cognitive
Neuroscience for reporting findings, and sticking to this tradition will make results
using these analyses easier to relate to past findings. Moreover, for the purposes
we have described here – investigating the functional cooperation between brain
areas involved in supporting different functions – virtually any consistent spatial
division of the brain will do, and regions the size of Brodmann areas offer ade-
quate spatial resolution for the required analysis. For, while the spatial resolution
of a single fMRI image is on the order of 3 mm or better, there are questions both
about the accuracy and precision of repeated fMRI, both within and between par-
ticipants, effectively reducing its functional resolution [28]. It is arguable, then, that
the use of Brodmann-sized regions of the cortex for representing the contribution
of individual brain areas to cognitive tasks is consistent with the realistic (con-
servatively estimated) spatial resolution of current imaging technologies [10, 34].
In any case, it should be noted that the coordinates of each activation are also
recorded in the database; if a Brodmann-based spatial scheme does not appear to
produce useful or legitimate results, other spatial divisions of the cortex can cer-
tainly be substituted, and the very same sort of analysis performed. For instance,
one can use the ALE (activation likelihood estimates) paradigm [33] to extract prob-
able activations for arbitrarily defined neural volumes and build graphs from these
data [23].
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2.4 The Usefulness of Co-activation Graphs

With brain imaging data in this format, it becomes possible to formulate some very
simple questions and use some well-understood methods to answer them. For in-
stance, a long-standing project in our lab has been adjudicating between functional
topographies of the brain based on the principle of localization and those based
on the principle of redeployment. Localization-based approaches to functional to-
pography, insofar as they typically expect brain regions to be dedicated to a small
and domain-restricted set of cognitive functions, would be committed to the notion
that differences in cognitive domains would be reflected primarily in differences in
which brain regions support tasks in the domain. In contrast, redeployment-based
approaches, being based on the idea that most brain regions are used in many dif-
ferent tasks across cognitive domains, would expect very little difference in which
brain regions were used in each domain. However, because redeployment neverthe-
less expects brain regions to have fixed low-level functions [3–5], it is committed
to the notion that differences in functions and domains must instead be the result of
differences in the ways in which the areas cooperate in supporting different tasks. To
put this in more concrete visual terms, imagine a simplified brain with six regions
that together support two different cognitive domains. If one supports a localization-
based (or a classical modular) organization for the brain, one would expect the re-
gional cooperation patterns to look like those in the diagram on the left. In contrast,
redeployment predicts an organization that looks something more like that shown in
the diagram on the right (Fig. 2.2).
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Fig. 2.2: Two different possibilities for the functional organization or the cortex.
Figure shows an imagined brain with six regions supporting two cognitive domains.
Localization predicts that domain 1 (blue) and domain 2 (black) will utilize different
brain areas, while redeployment predicts that the domains will utilize many of the
same brain areas, cooperating in different patterns.

There is an obvious analog for these features in our co-activation graphs: compar-
ing the graphs from different domains, node overlaps indicate Brodmann areas that
support tasks in both domains, whereas edge overlaps would indicate a similar pat-
tern of cooperation between Brodmann areas. Thus, localization predicts little node
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overlap between co-activation graphs (and therefore also low edge overlap), while
redeployment predicts a great deal of node overlap, but little edge overlap. Using
our database of imaging data, we did a co-activation analysis for the eight cognitive
domains having more than 30 experiments: action; attention; emotion; language;
memory; mental imagery; reasoning; and visual perception. The number of exper-
iments (472 total) was not balanced between domains and authors, but otherwise
followed the procedures outlined above. Using Dice’s coefficient as our measure
(d = 2(o1,2)/(n1 + n2), where o is the number of overlapping elements and n is
the total number of elements in each set), we compared the amount of node and
edge overlap between each of the eight domains. As predicted by redeployment, we
found a high degree of node overlap (d = 0.81, SD = 0.04) but very little edge over-
lap (d = 0.15, SD = 0.04). The difference is significant (two-sample Student’s-t test,
double-sided p << 0.001). Figure 2.3 shows a graph of the results. This is just one
among a number of findings that suggest that redeployment is the better supported
approach to understanding the functional topography of the cortex [4–6].

Fig. 2.3: Mean overlap of nodes vs. edges. A graph of the average Dice’s coefficient
for similarity between the sets of nodes and edges in a pair-wise comparison of co-
activation graphs from eight cognitive domains. Difference between the means is
significant (p << 0.001).

Looking at node and edge overlaps is just a simple example of the sorts of com-
parisons one might make using data in this format. Others more specific to graph-
based representations also readily suggest themselves. For instance, one common
form of analysis in graphs is a clique analysis, so called because of its origin in the
analysis of social networks [2]. A clique is a maximal complete sub-graph – that
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is, a set of nodes in a graph that are fully connected with one another, but not fully
connected with any other node in the whole graph. In this context, a clique would
indicate a set of Brodmann areas that are fully co-active with each other, but not
with other areas of the brain; any such neural cliques would obviously be structures
of interest. As in the case of social networks, however, this definition may be too
strict for many purposes. Intuitively, we would be interested in sets of nodes that are
cohesive and relatively isolated – that is, nodes that are highly but not necessarily
fully connected, and much more connected with each other than with other nodes in
the graph. These would represent sets of brain regions that are generally co-active
with each other, but that operate with relative independence from the rest of the
brain. Alba [2] offers the notion of a sociometric clique (an n-clique of diameter n),
as well as measures of cohesiveness and isolation, that could be adopted here to
discover sets of brain regions with the desired properties. Cohesive, isolated socio-
metric cliques seem likely to correspond to the neural components that cooperate to
support a set of closely related cognitive functions or sub-functions. Whether this is
so is an open scientific question, but such cliques are a far more plausible target for
investigations into the neural components supporting particular cognitive functions
than are individual brain areas. To return us to the issue with which this chapter be-
gan: co-activation graphs allow one to discover (among other things) neural cliques;
in our view, what Anderson et al. should be doing is trying to match ACT-R modules
to these sorts of structures, and not to individual brain areas.

These are far from the only research avenues that these data offer. One can also
look at other features of the graphs, such as local topography, which may help make
plausible inferences about underlying function. For instance, a hub-and-spoke pat-
tern of co-activation may indicate broadcast or information consolidation functions;
in contrast, long strings of connected nodes might indicate serial processing.

We could go on indefinitely, but the point is not to exhaustively list all the possi-
ble analyses one might make with graph-based co-activation data. Instead we would
like to take the opportunity to call to mind the fact that, at very many points in
the history of science, great progress has been made just in virtue of finding the
right format for otherwise well-known data. In a field as young as Cognitive Neu-
roscience it is still more than possible for simple ideas to make a transformative
impact; co-activation graphs may be one of those ideas.

2.5 Relating fMRI to EEG

We would like to conclude by describing one longer term application of co-
activation graphs about which we are especially excited. As the reader is no doubt
aware, a long-standing issue in experimental and clinical neuroscience has been the
question of how to relate data from EEG/MEG to fMRI. Chief among the many ob-
stacles standing in the way of relating the two have been (1) questions over whether
each technology measures the same underlying neural activity [26] and (2) difficulty
in finding the right representational format for the relation, given the vastly differ-
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ent temporal scale of the two data streams [20]. However, recent research seems to
indicate a mitigation of the first issue; and co-activation graphs may contribute to a
novel approach to the second. We will discuss each of these in turn.

Although there have been for some time, and continue to be, questions about the
neurophysiologial bases of the fMRI signal, converging evidence strongly suggests
that the BOLD signal is best correlated with local field potentials [25, 7, 35]. This
is good news for the project of relating EEG and fMRI, because recent work has
shown that EEG signals can also be analyzed to give estimations of LFP [29, 30].
Although this is hardly to be considered the last word on the subject, it appears
that differences in underlying neurophysiological basis do not necessarily pose an
obstacle to relating the two sources of data.

This brings us to the vast differences in temporal resolution. Since existing fMRI
data cannot be made faster, typical solutions to the mismatch in temporal resolu-
tion have involved lowering the resolution of the EEG signal, by sampling signals
over much longer timescales, and applying mathematical or statistical procedures
(e.g., temporal averaging) to generate a relevant structure such as a local maximum
in the 3D current distribution; this can then be compared to equivalent structures
from fMRI. Vitacco et al. [36] applied this method to relate EEG and fMRI in a
word classification task, but while they were able to obtain agreement between local
maxima for group mean data, there was much poorer correspondence for individ-
ual subjects. One reason for this problem may be that, in averaging or otherwise
manipulating EEG signals, one may be generating artifacts rather than discovering
real features of the data. This is not to say that such attempts at data fusion are not
promising, only that there is room for the introduction and evaluation of alternate
approaches.

We have already outlined our approach to mining large numbers of fMRI studies
and representing the results in graph format. This is relevant to the current issue be-
cause Chaovalitwongse et al. [13] recently developed a way to represent EEG data
that also emphasized cooperative activity and also involved a graph-based repre-
sentation scheme. In the scheme developed by Chaovalitwongse et al., cooperation
between brain areas is measured in terms of the co-variance between EEG elec-
trodes. Although the discovery of temporal correlation in large data sets is far from
a trivial problem. Chaovalitwongse et al. [14, 12] have developed different methods
to make such data mining tractable.

In discussions with Prof. Chaovalitwongse, we quickly realized that combining
our two approaches could help address the issue of relating fMRI and EEG, because
in approaches that focus on the cooperation of brain areas the small-scale temporal
features of the EEG signal are de-emphasized, and the graph-based representational
formats are entirely compatible; given the same underlying spatial segmentation of
the cortex, the two cooperation graphs can be directly overlaid.

Of course, while it is clear that co-activation and co-variation graphs can be easily
overlaid, what is unknown is whether there is any systematic relation between EEG
co-variance and fMRI co-activation. We are currently putting together a research
project to help answer this question (insofar as each graph is providing genuine
information about which brain areas cooperate in supporting various cognitive tasks,
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it certainly seems plausible that there would be some such relation). While it is
by no means certain that any such relation will be found, the potential payoff is
enormous. Among other things, it suggests it would be possible to mine the vast
trove of fMRI data to provide baseline expectations for normal brain function in
terms of the temporal correlation between brain areas. Since this can be observed
cheaply, noninvasively, and in real time with EEG, it would be of great use in clinical
settings for detecting deviations from normal function, such as might be observed
prior to the onset of an epileptic seizure [12].

2.6 Conclusion

This chapter introduced a very simple analytical method for mining large numbers
of brain imaging experiments to discover functional cooperation between brain re-
gions. We reported some preliminary results of its application, illustrated some of
the many future projects in which we expect the technique will be of considerable
use, and described a research resource for investigating functional cooperation in the
cortex that will be made publicly available through the lab web site. We hope and
expect the availability of this resource will help spur new and innovative discoveries
in the cognitive and computational neurosciences.
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Chapter 3
Methodological Framework for EEG Feature
Selection Based on Spectral and Temporal
Profiles

Vangelis Sakkalis and Michalis Zervakis

Abstract Among the various frameworks in which EEG signal analysis has been tra-
ditionally formulated, the most widely studied is employing power spectrum mea-
sures as functions of certain brain pathologies or increased cerebral engagement.
Such measures may form signal features capable of characterizing and differentiat-
ing the underlying neural activity. The objective of this chapter is to validate the use
of wavelets in extracting such features in the time–scale domain and evaluate them
in a simulated environment assuming two tasks (control and target) that resemble
widely used scenarios of assessing and quantifying complex cognitive functions or
pathologies. The motivation for this work stems from the ability of time–frequency
features to encapsulate significant power alteration of EEG in time, thus character-
izing the brain response in terms of both spectral and temporal activation. In the
presented algorithmic scenario, brain areas’ electrodes of significant activation dur-
ing the target task are extracted using time-averaged wavelet power spectrum esti-
mation. Then, a refinement step makes use of statistical significance-based criteria
for comparing wavelet power spectra between the target task and the control con-
dition. The results indicate the ability of the proposed methodological framework
to correctly identify and select the most prominent channels in terms of “activity
encapsulation,” which are thought to be the most significant ones.
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3.1 Introduction

Electroencephalographic (EEG) measures have been successfully used in the past as
indices of cerebral engagement in cognitive tasks or in the identification of certain
brain pathologies. Higher brain functions typically require the integrated, coordi-
nated activity of multiple specialized neural systems that generate EEG signals at
various brain regions. Linear [7,18] and nonlinear signal analysis methods have been
applied in order to derive information regarding patterns of local and coordinated
activity during performance of specific tasks [11] or in various pathologies [2, 13].
The inherent complexity and the dynamic nature of brain function make the eval-
uation using EEG a rigorous job. Nevertheless, EEG signal analysis provides the
advantage of high time resolution and thus it can deduce information related to both
local and widespread neuronal activations in short-time periods, as well as their time
evolution.

Traditional spectral analysis techniques with Fourier transform (FT) and more
specifically the windowed power spectral density function, known as the peri-
odogram [16], form the most commonly used analytical tool for spectral represen-
tation and evaluation of activity on different EEG frequency bands [7, 15] – namely
delta (δ ), theta (θ ), alpha (α), beta (β ), and gamma (γ). However, this approach
considers the EEG signal as a stationary process, which assumption is not satisfied in
practice, thus restricting the actual confidence on results. A more promising method-
ology is based on the time-varying spectral analysis that takes into account the
nonstationary dynamics of the neuronal processes [1]. The short-time Fourier
(STFT) and the wavelet transforms are the most prevalent analysis frameworks of
this class. The first approach uses a sliding time window, whereas the second one
forms the projection of the signal onto several oscillatory kernel-based wavelets
matching different frequency bands. Currently, such time-varying methods have
been widely applied in event-related potential (ERP) data, where distinct waveforms
are associated with an event related to some brain function [3]. Under certain as-
sumptions, both time–frequency transforms are in fact mathematically equivalent,
since they both use windows that under certain conditions can provide the same
results [4]. The reason why these approaches are often regarded as different lies
in the way they are used and implemented. Wavelet transform (WT) is typically
applied with the relative bandwidth (Δ f / f ) held constant, whereas the Fourier ap-
proach preserves the absolute bandwidth (Δ f ) constant. In other words, STFT uses
an unchanged window length, which leads to the dilemma of resolution; a narrow
window leads to poor frequency resolution, whereas a wide window leads to poor
time resolution. Consequently, according to the Heisenberg uncertainty principle
one cannot accurately discriminate frequencies in small time intervals. However,
the WT can overcome the resolution problem by providing multiresolution analy-
sis. The signal may be analyzed at different frequencies with different resolutions
achieving good time resolution but poor frequency resolution at high frequencies
and good frequency resolution but poor time resolution at low frequencies. Such
a setting is suitable for short duration of higher frequency and longer duration of
lower frequency components of the EEG bands. For the purposes of this study the
wavelet approach is used.
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In this work we attempt to retrieve additional information (as compared to tra-
ditional spectral analysis methods) by making use of the time profile of the EEG
signal during the target task under study. The motivation for this work stems from
the fact that the WT method is able to extract not only the spectral activations but
also the time segments at which they occur. It constitutes the cornerstone of our
feature extraction scheme and is used for analyzing task-related or control EEG
signals by effectively capturing the power spectrum (PS) of each frequency band
and channel. In particular, it encodes the activation differences between the mental
states of interest. The subsequent feature selection steps apply test statistics on the
extracted “time-averaged” PS features. In addition, our approach introduces an extra
refinement step that makes further use of the time profile provided by the WT as to
derive and encode the temporally activated brain regions and bands. The proposed
EEG feature extraction and selection method may also be applied to other similar
nonstationary biological signal analysis problems.

3.2 Methods

3.2.1 Methodology Overview

Two different cognitive tasks are assumed for simplicity: the control and the tar-
get ones that involve a modulated rather than random activity. The latter task en-
capsulates the crucial information for extracting both the frequency bands and the
location of brain activity, in terms of channel references or groups of channels (re-
lated to specific brain areas) as an index of cerebral engagement in certain men-
tal tasks. The testing hypothesis suggests that the target task induces activity on
certain brain lobes, reflected on the associated electrodes in a way significantly
different compared to a control task. The WT constitutes the cornerstone of fea-
ture extraction and is used in analyzing task-related or control EEG signals by
effectively capturing the power spectrum (PS) of each band and channel, partic-
ularly encoding the activation differences between the tasks. From the technical
point of view, statistics is used to extract and select salient features, testing for
significance in both the time and scale domains of the signal. The feature selec-
tion steps apply test statistics on the extracted “time-averaged” PS features, but
in addition our approach introduces an extra refinement step that makes further
use of the time profile of the WT, as to derive and encode the temporally acti-
vated brain regions and bands. Test statistics form appropriate means for the de-
sign of feature selection criteria strictly based on statistical significance; they are
simple to implement and often perform better than other heuristic selection meth-
ods. To that respect, we base our selection on statistical tests that rely on statistical
properties of the feature data under consideration. Hopefully the identified chan-
nels and lobes may elucidate any neurophysiological pathways involved in brain
function.



46 V. Sakkalis and M. Zervakis

A generic overview of the proposed methodology emphasizing the various statis-
tical approaches is illustrated in Fig. 3.1. Different statistical decisions are possible
according to the profile of the data under examination. The first choice is based on
whether the data are normally distributed, whereas the second is based on the num-
ber of different groups under examination – i.e., whether two or more classes (tasks)
are being tested. A detailed view of feature selection and refinement blocks match-
ing our data characteristics is presented in Fig. 3.2. The steps involved, as well as
their implementation issues, are analyzed in the following sections.

Fig. 3.1: The proposed methodology uses significance-based statistics to reduce the
dimensionality of the problem and select the most salient and descriptive feature
vectors. Different statistical decisions are possible according to the profile of the
data under examination. If one is interested in discriminating two or more classes of
normally distributed data, t-test or analysis of variance (ANOVA) tests are appropri-
ate candidates, respectively. If the data is nonnormally distributed, Mann–Whitney
and Kruskal–Walls tests are the alternatives.

3.2.2 Feature Extraction (Step 1)

Over the past decade the WT has developed into an important tool for analysis of
time series that contain nonstationary power at many different frequencies (such
as the EEG signal), as well as a powerful feature extraction method [9]. There are
several types of wavelet transforms, namely the discrete (DWT) and the continuous
(CWT), which involve the use of orthogonal bases or even nonorthogonal wavelet
functions, respectively [8]. CWT is preferred in this approach, so that the time and
scale parameters can be considered as continuous variables. In the WT, the notion
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Fig. 3.2: The diagram of the proposed algorithmic transitions, heading toward
derivation of significant activity channels and bands.

of scale s is introduced as an alternative to frequency, leading to the so-called time–
scale representation domain.

The CWT of a discrete sequence xn with time spacing δ t and N data points (n =
0,N − 1) is defined as the convolution of xn with consecutive scaled and translated
versions of the wavelet function ψ0(η):

Wn(s) =
N−1

∑
n′=0

xn′ψ∗ [(n′ −n)δ t/s
]
, (3.1)

ψ0(η) = π1/4eiω0ηe−η
2/2, (3.2)

where η and ω0 = 6 indicate nondimensional “time” and frequency parameters,
respectively and ψ∗(·) denotes the complex conjugate operation. In our application,
ψ0(η) describes the most commonly used wavelet type for spectral analyses, i.e.,
the normalized complex Morlet wavelet given in (3.2). The wavelet function ψ0 is
a normalized version of ψ that has unit energy at each scale, so that each scale is
directly comparable to each other. The normalization is given as

ψ
[
(n′ −n)δ t/s

]
= (δ t/s)1/2ψ0

[
(n′ −n)δ t/s

]
. (3.3)

In principle, a complex wavelet function is better suited for capturing oscillatory
behavior than a real one, because it captures both the amplitude and the phase of
EEG signal. The scale set is given by

s j = s02 jδ j, j = 0, · · · , J, (3.4)
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where s0 = 2δ t is the smallest scale chosen and δ j specifies the width of the wavelet
function. In our case δ j = 0.25, implying that there is a scale resolution of four sub-
octaves per octave [5]. The larger scale is determined by the value of J specified in
(3.5), which in our case is J = 29:

J = δ j−1 log2(Nδ t/s0). (3.5)

Finally, the power spectrum of the WT is defined by the square of coefficients in
(3.1) of the wavelet series as ‖Wn(s)‖2 . By adopting the above settings a smooth
wavelet power diagram is constructed as in Fig. 3.3b for the signal in Fig. 3.3a.

Fig. 3.3: (a) A typical normalized EEG signal acquired from a single electrode. (b)
The wavelet power spectrum presented as a color-coded picture. Mapped scales to
frequencies are calibrated on the y-axis, with the horizontal dashed lines indicating
the different frequency bands. The significant regions over the time–scale transform
are indicated by closed contours. Power increase and decrease is bounded by blue
and red contours, respectively. The outer elliptical region at the edges of this second
graph indicates the cone of influence in which errors (edge effects) may be apparent
due to the transformation of a finite-length series EEG signal. (c) The scalogram
of a selected averaged band (Theta 4–8 Hz) reflecting characteristic EEG activity
while the participant is performing a complex mathematical calculation [14]. The
significance levels are indicated by the horizontal dashed lines. PS values greater
above the upper dashed line indicate significant increase, whereas PS values below
the lower dashed line indicate significant decrease over the expected control power
levels.
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As noted before, there exists a concrete relationship between each scale and an
equivalent set of Fourier frequencies, often known as pseudo f requencies [10]. For

the Morlet wavelet used this relationship is f = ω0+
√

2+ω2
0

4πs , which in our case
(ω0 = 6); this gives a value of f = 1/(1.03s). In this study the power spectra is
classified in six sequential frequency bands that are coarsely mapped to the scales
tabulated in Table 3.1.

Table 3.1: Frequency bands – scale set mapping

Band Frequency Scale

Theta (θ ) 4–8 21, 22, 23, 24
Alpha1 (α1) 8–10 20
Alpha2 (α2) 10–13 18, 19
Beta (β ) 13–30 14, 15, 16, 17
Gamma1 (γ1) 30–45 11, 12, 13
Gamma2 (γ2) 45–90 7, 8, 9, 10

The first stage of our feature extraction method is based on capturing the time-
averaged power spectrum Wn

2
for each electrode and scale, which is computed by

averaging the power spectrum ‖Wn‖2 over time:

Wn
2(s) = (1/N)

N−1

∑
n=0

‖Wn(s)‖2. (3.6)

Further averaging in scale is performed, in order to map a single feature per fre-
quency band of interest. Thus, the scale-averaged power spectrum Wn

2
is defined

as the weighted sum of the wavelet power spectrum ‖Wn(s)‖ over scales s j1 to
s j2 within each frequency band, with scale correspondences defined in Table 3.1.
Based on these definitions, the average power over time and frequency band is
obtained as

Ws,n = (δ j/δ t/Cδ )
j2

∑
j= j1

(
‖Wn(s j)‖2/s j

)
, (3.7)

where Cδ is a constant scale-independent factor used for the exact reconstruction
of a δ (·) function from its wavelet transform (for the Morlet wavelet it equals to
0.776) [17]. Once the average PS for each of the studied EEG bands is calculated
for each EEG channel and task, we have a high number feature vectors (bands x
channels) per task (class), representing each participant (subject), which is actu-
ally the time–scale-averaged PS (Global PS – Fig. 3.2 – Step 1) over the band of
interest.
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3.2.3 Feature Selection (Step 2)

In data mining and classification applications, feature selection and reduction of
dimensionality in the feature space play a crucial role in the effective design by
regularizing and restricting the solution space. It is of practical concern that a large
number of features may actually degrade the performance of the classifier if the
number of training samples is limited in comparison to the number of features [12].
This study proposes a statistical method for mining the most significant channels,
resembling the way many clinical neurophysiological studies evaluate the brain
activation patterns.

Hence, the second step (Fig. 3.2 – Step 2) of our design involves the statisti-
cal test selection of features, which depends upon the feature-vector properties and
the experimental design. The distribution of features plays the most important role,
since it is the one to judge which statistical test is the most appropriate (Fig. 3.1).
Normality of the feature set may be tested using the D’Agostino–Pearson test [19].
Once normality is met and supposing that two classes are being discriminated,
t-test or analysis of variance (ANOVA) is the ideal test to use in our application.
The ANOVA test is superior for complex analyses for two reasons, the first being
its ability to combine complex data into one statistical procedure (more than two
groups may be compared). The second benefit over a simple t-test is the ANOVA’s
ability to determine interaction effects. One of the common assumptions underly-
ing ANOVA is that the groups being compared are independent of each other. In
the case of a related studies design (the same subjects perform each task), either
matched pairs or repeated measures are more appropriate, e.g., a repeated measures
ANOVA [19] with common measures factors being the two tasks and the number
of channels, testing for significance at the level of 0.05. For those bands where
the significance criterion is fulfilled, follow-up post hoc tests for each channel are
performed to accentuate the best candidate channels to preserve as features, which
resemble the most significant brain areas in terms of activity.

3.2.4 Feature Refinement (Steps 3 and 4)

The aforementioned steps derive a significant channels’ subset, based only on task
differentiation confidence intervals using Global PS measures. To further refine the
features and optimize the whole process, we propose to isolate only those time seg-
ments of the EEG signal where notable activity differences occur from the control
to the arithmetic task. The aim is to further map the EEG signal into a feature vec-
tor that best characterizes the EEG pattern of activity for the target task in terms
of significant temporal and spectral content. As we are interested in ongoing EEG
activity within various tasks, the temporal activity of EEG events is of interest.
Notice that we focus on significant (bursty and/or sequential) activations and not
on the evolution of brain operation during the task. Thus, we are mostly focused
on the time-localized EEG activity itself, without particular interest to the temporal
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relation of these events. We may describe the next step as an attempt to crop up
the most significantly different regions from control to target activity out of the bulk
initial signal (may be either significant power increase or decrease while performing
the requested task compared to the control condition). In fact, this study proposes
a way to derive the so-called significant PS activity on significantly activated EEG
time segments, by testing for significance in the wavelet–time domain the “active”
task over the control task (Significant PS – Fig. 3.2 – Step 3). The control task
spectra de-fine the mean time-averaged wavelet power spectrum over all subjects
performing the control task, as

W (s) = (1/P)
P

∑
p=1

‖W p
n (s)‖2, (3.8)

where p is the subject index and W p
n (s) is computed as in (3.1) for each subject.

P is the total number of participants. It should be noticed that all EEG signals are
normalized to zero mean and identity variance. Further rescaling and comparisons
may be performed using each subject’s actual signal variance in order to include
subject-specific information. Significant power increase on the “active” task is cal-
culated using the 95% confidence level at each scale by multiplying the control task
spectrum in Equation (3.8) by the 95th percentile value for a chi-squared distributed
variable χ2 with two degrees of freedom χ2

2 . This is justified because the wavelet
power spectrum is derived from the Morlet wavelet in a complex product with the
signal, so that both the squares of the real and the imaginary parts of the result are
being χ2 distributed with one degree of freedom each [17, 6]. In a similar manner,
significant power decrease is measured using the lower power limit of 5% confi-
dence level at each scale, by multiplying the control task spectrum in Equation (3.8)
by the 5th percentile value for the chi-squared distributed variable χ2

2 . Figure 3.3
depicts one subject’s initial normalized EEG signal (Fig. 3.3a) together with its WT
(Fig. 3.3b). The significant regions over the time–scale-transformed domain that
differentiate the two tasks are indicated by the closed contours; red for significantly
increased and blue for decreased activity. Figure 3.3c illustrates another view of the
scalogram focusing on a selected averaged band, i.e., (Theta 4–8 Hz). The signifi-
cance levels in this case are indicated by horizontal dashed lines.

Having derived this significant information, we are now able to form the so-called
significant power spectral (significant PS) features, which are obtained from the
signal energy over those time- and band-localized regions where apparent significant
differentiation is indicated (contours in Fig. 3.3b). For the computation of these
features, Equation (3.6) is adapted as

Wst
2 = (1/m)

mi+1

∑
m=mi

‖Wm(s)‖2, i = 1, · · · , I, (3.9)

where m is the total number of time points delimited between the boundaries mi and
mi+1 of all significant regions I denoted by each contour in Fig. 3.3b and i is the
index of each significant region. Finally, the last step (Fig. 3.2 – Step 4) is actually a
repetition of the statistical testing in the second step on the new feature set. ANOVA
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or any other better suited statistical method (as described previously) may be used
to further sort out and select the best candidate features (significant energy per time,
band and electrode), in terms of their task discriminating power.

3.3 Results

The proposed methodology is tested on simulated data, where there exist well-
defined spatiotemporal differences in frequency content between the target and the
control tasks, as discussed in the following section. In addition, the performance
of the proposed approach, as well as its results on actual experimental dataset, is
discussed in [14].

3.3.1 Simulation Test

Two different tasks are simulated by two different groups of signals. The first group
(control task) consists of 10 simulated spatiotemporal signals, each one comprised
of five channels. The idea is to reflect 10 participants virtually registered with a
5-channel-EEG system each. All the channels of the control task are randomly gen-
erated quasi-white noise signals, approximately 9-s-long (500 Hz sampling rate –
4,608 samples). The second group (target task) comprises of three channels (chan-
nels 1, 3, 4) reflecting white noise and two channels (channels 2, 5) encoding
frequency-modulated signals mixed again with quasi-white noise. Channel 2 con-
sists of a time-varying theta EEG signal occurring at a fixed latency, linearly mod-
ulated (5–7 Hz) and varying in length randomly between 512 and 1,024 samples
among subjects, and a gamma EEG signal, linearly modulated (30–90 Hz) and vary-
ing in length randomly between 1,024 and 2,048 samples among subjects, all mixed
with quasi-white noise. In a similar manner, channel 5 consists of an alpha band lin-
early modulated signal (9–12 Hz) varying in length randomly (768–1,536 samples)
and a gamma linearly modulated signal (30–90 Hz) varying in length randomly be-
tween 512 and 1,024 samples, mixed with quasi-white noise. Quasi-white noise
covers the interval between the modulated signals. Such a generated signal (channel
2) together with the wavelet time–frequency representation is depicted in Fig. 3.4.
Theta and gamma bands are apparent at different latencies. The tabulated channels
in Table 3.2 are the significant ones extracted with the proposed approach from the
six (most widely studied) frequency bands (delta, theta, alpha, beta, gamma1, and
gamma2). The channels listed in the first column are the selected ones after the first
statistical test (Step 2), whereas the channels listed in the second column are the
refined ones after the second statistical selection (Step 4). Although the first stage
can identify both channels (2 and 5) with the pre-specified frequency content, it is
not able to discriminate correctly the activated frequency bands because of leakage
effects between bands, as illustrated in Fig. 3.4. In contrast, the second stage focuses
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Fig. 3.4: (a) The simulated channel 2 consists of a time-varying (among different
participants) theta linearly modulated signal (length 2 s) occurring at a fixed latency
and a gamma linearly modulated signal (length 3 s) mixed with quasi-white noise.
Quasi-white noise also covers the interval between the modulated signals. (b) The
wavelet PS time–frequency representation picture. The significant regions over the
time–frequency transform are indicated by the contours. The significant signal seg-
ments (contours) are successfully discriminated from the white noise background.

on the significant regions and is able to detect and correctly account for the energy
content of the selected regions.

3.4 Discussion

Using the wavelet transform method on EEG signals, cortical activation evaluation
is normally performed by means of comparing a target task (while participant is
engaged with a difficult cognitive task or reflects certain pathology) and compares
it with a rest condition. This method, in contrast to traditional spectral ones, can
estimate changes between EEG signals without being bounded to the stationarity
assumption and can provide information for the entire time evolution of the signal.

The simulation test and the results presented justify the suggestion that relevant
characteristics are temporally localized in the most significant regions (contours in
the WT scalogram), rather than in the entire segment length of the EEGs. The Global
PS only partially encapsulates the significant information, since there is significant
frequency leakage between the bands due to the transient response of the time–
frequency filter in different frequencies. Using such features, both channels 2 and 5
in the simulated case induce activity in almost every band. However, the proposed
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Table 3.2: Statistical feature – channel selection results

Band Channel (step 2) Channel (step 4) Target

Delta (δ ) 2 – –
Theta (θ ) 2, 5 2 2
Alpha (α) 2, 5 5 5
Beta (β ) – – –
Gamma1
(gamma1)

2, 5 2, 5 2, 5

Gamma2
(gamma2)

2, 5 2, 5 2, 5

methodology with its second statistical feature selection scheme can efficiently iso-
late the channels and the correct band activations. Traditional FT spectral analysis
methods pose intrinsic limitations on encapsulating the time variation of the signal.
Beyond traditional spectral analysis, the WT enables the consideration of time spe-
cific significant regions as in Step 3 of the proposed methodology. WT is proved to
be a useful measure to detect time-varying spectral power and performs better than
traditional time–frequency methods in identifying activity, especially on a shorter
temporal scale in high frequencies, which could indicate neuronal synchronous
activation in some cortical regions. This is an advantage to previous methodolo-
gies, since high-frequency bands are weak and difficult to evaluate using spectral
methods.

A qualitative reasoning arising from the application of this methodology to ac-
tual data is discussed in [14], where the certain methodology is applied to a com-
plex mathematical reasoning task. Finally, the presented method reveals additional
signal characteristics, since it captures not only its average power but also the
time-localized activation of the signal.

3.5 Conclusion

The proposed algorithmic approach emphasizes the idea of selecting EEG features
based on their statistical significance and further supports the use of time–scale WT
domain in order to select significant EEG segments capable of describing the most
prominent task-related changes.

Results suggest that the proposed methodology is capable of identifying regions
of increased activity during the specified target task. The entire process is automated
in the sense that different feature types can be adaptively (according to the data pro-
file) extracted and further refined in a way “transparent” to the user. Such processes
may be transferred to a clinical environment if the methods prove to be valuable
for the diagnosis of certain pathologies by comparing any routine EEG against a
database of pathological ones.
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Furthermore, the added value of this approach over other classical Fourier-based
methods lies in its ability to further utilize time-domain characteristics of the WT
in a way comparable to the evoked potential applications, without making any com-
promise in the statistical validity of the results.
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Chapter 4
Blind Source Separation of Concurrent
Disease-Related Patterns from EEG in
Creutzfeldt–Jakob Disease for Assisting Early
Diagnosis

Chih-I Hung, Po-Shan Wang, Bing-Wen Soong, Shin Teng, Jen-Chuen Hsieh,
and Yu-Te Wu

Abstract Creutzfeldt–Jakob disease (CJD) is a rare, transmissible, and fatal prion
disorder of brain. Typical electroencephalography (EEG) patterns, such as the peri-
odic sharp wave complexes (PSWCs), do not clearly emerge until the middle stage
of CJD. To reduce transmission risks and avoid unnecessary treatments, the recog-
nition of the hidden PSWCs’ forerunners from the contaminated EEG signals in
the early stage is imperative. In this study, independent component analysis (ICA)
was employed on the raw EEG signals recorded at the first admissions of five pa-
tients to segregate the co-occurrence of multiple disease-related features, which
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were difficult to be detected from the smeared EEG. Clear CJD-related waveforms,
i.e., frontal intermittent rhythmical delta activity (FIRDA), fore PSWCs (triphasic
waves), and periodic lateralized epileptiform discharges (PLEDs), have been suc-
cessfully and simultaneously resolved from all patients. The ICA results elucidate
the concurrent appearance of FIRDA and PLEDs or triphasic waves within the same
EEG epoch, which has not been reported in the previous literature. Results show
that ICA is an objective and effective means to extract the disease-related patterns
for facilitating the early diagnosis of CJD.

4.1 Introduction

Creutzfeldt–Jakob disease (CJD) is a rare prion disorder of brain, with an approxi-
mated incidence of 0.5–1 case per million persons per year. The subtypes of human
prion diseases can be familial, sporadic, or acquired, which are characterized by
combination of clinical findings such as duration of disease, EEG changes, age at
onset, and predominant neurological signs. Sporadic CJD (sCJD) is the most com-
mon subtype of CJD that usually develops in the 5th to 7th decade of life, with a
mean age of onset of 62 years old (median 65). Survival times ranging from 1 to 58
months have been reported [24]. The clinical presentations such as memory loss, vi-
sual disturbances, involuntary movements, myoclonus, dementia, and coma can be
observed subsequently from early to the terminal stage of the disease. Since CJD is
a rapidly progressive, uniformly fatal, and transmissible spongiform encephalopa-
thy, detection of the CJD symptom in the early stage is crucial to avoid the fatal
transmission.

Electroencephalography (EEG), cerebral magnetic resonance imaging (MRI),
and cerebrospinal fluid analysis (CSF analysis) are currently the most common di-
agnostic means of CJD. To evaluate these techniques, Collins et al. investigated
the influence of several clinical parameters, such as prion protein gene codon 129
polymorphism, molecular subtype, age at disease onset, and illness duration, on
the diagnostic sensitivity to EEG, cerebral MRI, and the CSF analysis. They re-
ported that the CSF analysis had the highest sensitivity for early diagnosis since
the 14-3-3 protein could be detected from the CSF after the disease had onset [14].
However, Geschwind et al. concluded that the sensitivity of CSF analysis in their
study was only 53% and advised that it was risky to exclude the diagnosis of
CJD in the case of negative CSF results [7]. Besides, the use of CSF 14-3-3 anal-
ysis, regardless of methods, is problematic since universally accepted standards
are not available for performing such tests. Magnetic resonance brain imaging is
another developing tool for detecting CJD. The study conducted by the Schröter
et al. revealed T2-weighted MRI alternations in 109 (67%) out of 162 sporadic
CJD patients [20], whereas the sensitivity of abnormal T2-weighted or diffusion-
weighted MRI reported by Collins et al. was 43% [3]. Accordingly, efforts to de-
velop more effective techniques for the aid to early diagnosis are of potentially great
importance.
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EEG is one of the major techniques used to diagnose CJD and has been included
in the World Heath Organization diagnostic classification criteria [24]. In general,
EEG patterns of sCJD exhibit longitudinal changes along with the course of the
disease, ranging from frontal intermittent rhythmical delta activity (FIRDA), i.e.,
slow waves with 1–3 Hz, in the early stage to periodic lateralized epileptiform dis-
charges (PLEDs) or prototypical periodic sharp wave complexes (PSWCs) in the
middle and late stages [1, 3, 6, 25]. The temporal waveforms and the spatial domi-
nances of FIRDA, PLEDs, and PSWCs are presented in the Fig. 4.1a, b, respectively.
The morphology of PLEDs shows complexes which consist of a bi- or multiphasic
spike or sharp wave and may include a slow wave [5]. The PSWCs mainly com-
prise simple sharp waves, i.e., monophasic, biphasic, and triphasic waves, with a
typical duration of 200–600 ms, although complexes with mixed spikes, polyspikes,
and slower waves may appear from times to times [5, 25, 24]. The peak-to-peak in-
tervals of PSWCs are usually between 0.5 and 2 s. The major difference between
the PLEDs and the PSWCs is their topographical dominances. The former is more
hemispherically lateralized while the latter is more focal in the early stage and be-
comes diffusive after the middle stage. Since the PSWCs are not evident until the
middle or late stage, detection of the PSWCs predecessors, such as FIRDA, PLEDs,
and focal tirphasic waves, hidden in the smeared EEG signals is critical for the early
diagnosis.

Fig. 4.1: (a) Temporal waveforms of FIRDA, PLEDs, and PSWCs. The PLEDs
mainly consist of a bi- or multiphasic spike or sharp wave. The PSWCs mainly
comprise simple sharp waves, i.e., monophasic, biphasic, and triphasic waves, with
a typical duration of 200–600 ms and the peak-to-peak intervals are usually between
0.5 and 2 s. (b) Spatial dominances of FIRDA, PLEDs, and PSWCs. The FIRDA is
usually observed in the frontal areas, the PLEDs are hemispherically lateralized, and
the PSWCs are usually more focal in early stage and become diffusive after middle
stage. (c) The whole scalp of each subject was covered with 19 EEG electrodes
placed onto anatomical locations according to the international 10–20 system, where
Fp, F, C, P, O, and T represent the abbreviations of frontal polar, frontal, central,
parietal, occipital, and temporal, respectively. b1: frontal dominant, b2: left-side
lateralization, b3: right-side lateralization, b4: generalized distribution, ID: interval
duration, D: duration, 0.5 s<ID<2 s, D<600 ms, typical triphasic wave.
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Fig. 4.2: The first selected EEG segment and ICA results from patient 1. Once W
and S were resolved by ICA (Equation 4.5), rows of S representing the temporal
waveforms of independent sources were displayed in (d), and each column of W-1
denoting the relative (spatial) weightings of each sources was depicted as a topogra-
phy map in (e). (a) A 15-s time window (2–17 s) within 5-min data used to display
results in (b) and (d). (b) The illustration of a 15-s segment where signals in the
shaded areas were severely contaminated by large eye movements and environmen-
tal noises. (c) The topographical maps generated at four peak time points p1, p2,
p3, and p4 (vertical lines in b) of four waves in IC3 at 3.3, 5.1, 9.6, and 10.9 s. (d)
The 17 decomposed ICs show that diseased-related pattern was PLEDs (IC3) and
the artifacts were eyeblinks (IC2), eye movements (IC8), and noise (IC11). (e) The
corresponding spatial maps of IC2, IC3, IC8, and IC11.

EEG recordings are overlapping potentials contributed from individual neurons
inside the brain as well as from the artifacts produced outside the brain [5]. Fig-
ures 4.2b, 4.3b, and 4.4b illustrate parts of typical segments of raw EEG signals
recorded from the first admissions of patient 1 (the early stage of CJD). The shaded
areas show that the brain activities are severely contaminated by significantly large
eye-movement potentials and environmental noises, which makes the visual inspec-
tion of FIRDA, PLEDs, and tirphasic waves in the early stage of CJD a difficult task.
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Fig. 4.3: The second selected EEG segment and ICA results from patient 1. (a)
The 15-s time window (152–167 s) used to display results in (b) and (d). (b) The
illustration of a 15-s segment where signals in the shaded areas were severely con-
taminated by large eye movements and environmental noises. (c) The topographical
maps generated at four peak time points p1, p2, p3, and p4 (vertical lines in b) of
four waves in IC4 at 154, 156.6, 159.9, and 162.9 s. (d) The 17 decomposed ICs
show that diseased-related pattern was focal triphasic waves (IC4) and the artifacts
were eyeblinks (IC2), eye movements (IC8), and noise (IC15). (e) The correspond-
ing spatial maps of IC2, IC4, IC8, and IC15.

To recover the CJD-related patterns from EEG data, we employed the indepen-
dent component analysis (ICA) [11, 23] in this study. ICA has been successfully
applied to remove nonphysiological artifacts from EEG data [14, 15], to segregate
Rolandic beta rhythm from magnetoencephalographic (MEG) measurements of the
right index finger lifting [18], to extract the task-related features from the motor
imagery EEG and the flash visual evoked EEG in the studies of the brain com-
puter interface [10, 17], to analyze the interactions during temporal lobe seizures in
stereotactic depth EEG [22], to separate generalized spike-and-wave discharges into
the primary and secondary bilateral synchrony [13], and to segment spatiotemporal
hemodynamics from perfusion magnetic resonance brain images [16].
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Fig. 4.4: The third selected EEG segment and ICA results from patient 1. (a) The
15-s time window (201–216 s) used to display results in (b) and (d). (b) The illustra-
tion of a 15-s segment where signals in the shaded areas were severely contaminated
by large eye movements and environmental noises. (c) The topographical maps gen-
erated at four peak time points p1, p2, p3, and p4 (vertical lines in b) of four waves
in IC3 at 203.9, 205.7, 210.4, and 211.1 s. (d) The 17 decomposed ICs show that
diseased-related patterns were PLEDs (IC3) and epileptiforms (IC5) and the arti-
facts were eye movements (IC8) and noise (IC15). (e) The corresponding spatial
maps of IC3, IC5, IC8, and IC15.

4.2 Patients and EEG Recordings

Five patients (all male) with sporadic CJD, aged 73, 74, 85, 52, and 80 years old
were recruited in this study (for details, see Table 4.1). All of them met the criteria
of probable CJD defined by WHO, were examined by board-certified neurologists,
and underwent extensive diagnostic workups, including clinical, neurophysiologi-
cal, neuroradiological examinations, and the CSF analysis. Disease onset was deter-
mined retrospectively based on history and clinical presentations as reported by the
patients themselves and their relatives. The onset times of patient 1 to patient 5 were
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Table 4.1: Clinical data of probable CJD patients

Patient Gender Age at onset Disease onset Clinical presentation Original EEG report

1 M 73 y/o 6 Memory impairment PLED, DBS 7 Hz
2 M 74 y/o 9 Memory impairment FIRDA, DBS 7–8 Hz
3 M 85 y/o 4 Memory impairment PLED, DBS 6–7 Hz
4 M 52 y/o 5 Memory impairment DBS 4–5 Hz
5 M 80 y/o 3 Memory impairment Periodic epileptiform

Disease onset time: weeks before the first admission. DBS: diffuse background slowing

6, 9, 4, 5, 3 weeks, respectively, before the first EEG recording. The EEGs were ac-
quired using a 19-channel Nicolet EEG system (digitized at 250 Hz) with Ag/AgCl
surface electrodes, which were placed based on the configuration of the international
10–20 system (Fig. 4.1c). We used the referential montage, rather than the bipolar
or standard EEG, because the EEG signals can be expressed as X = AS−Ref so
that the mixing matrix can be obtained directly from FastICA (the Ref term was
eliminated in the zero-mean preprocessing of FastICA). The use of bipolar montage
would make the recovery of the mixing matrix much more difficult since the bipo-
lar EEG signals are formulated as X = (A1 −A2)S with the additional constrain
A1(i, j) = A2(i, j + 1). Five-minute EEG recording was clipped for each subject,
which was bandpass filtered between 0.5 and 10 Hz prior to the ICA process. In this
study, the infinite impulse response (IIR) digital filter was designed based on the
Butterworth magnitude response:

‖PL(Ω)‖ =
1

√
1+Ω 2L , 1 ≤ L, (4.1)

where Ω was the analog frequency and L was the order of the normalized low-pass
analog filter [21]. Furthermore, the associated s-plane poles were given by

sk = exp

(
j(2k +L−1)π

2L

)
, 1 ≤ k ≤ 2L. (4.2)

The bandpass filtering of the EEG was performed by the 6th-order high-pass fil-
ter followed by the 16th-order low-pass filter, which were implemented using MAT-
LAB build-in functions.

Figure 4.2b displays a 15-s waveform of the 17-channel EEG (excluding two
referential electrodes, Ref1 and Ref2) from one patient. We selected several time
points at which the negative peaks or positive peaks (Figs. 4.2b, 4.3b, and 4.4b)
are in conjunction with the corresponding topographic maps (Figs. 4.2c, 4.3c, and
4.4c) which may possess some physiological meanings. However, due to the mix-
ture of source signals, such as disease-related waveforms, environmental noises, and
eye-movement artifacts, the disease-related compartments can be barely discerned
either from the waveforms or from the topographic maps. It should be noted that
the 15-s time windows showed in the Figs. 4.2, 4.3, and 4.4 were selected merely to
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demonstrate such obscure mixture in the raw EEGs (Figs. 4.2b, 4.3b, and 4.4b). In
our implementation, ICA was applied to the whole 5-min recording of each patient
and the selection of the interval of interest prior to ICA calculation was not needed.

4.3 Methods

4.3.1 Independent Component Analysis and Extraction
of CJD-Related Components

Independent component analysis is a statistical method that has been developed to
extract independent signals from a linear mixture of sources. Let X

mxn denote the
measured data with m and n being the number of channels and the number of data
samples, respectively. In the context of ICA, it is assumed to be linear combinations
of unknown independent components and can be expressed as

X
mxn = A mxk ·

S
kxn ,

(4.3)

where S contains k independent sources with the same data length as X, and A
is a constant mixing matrix with the kth column representing the spatial weights
corresponding to the kth component of S. Given the measurement X, ICA techniques
attempt to recover both the mixing matrix A and the independent sources S. In the
present study, all calculations were performed using the FastICA algorithm [11,23].
The FastICA technique first removes means of the row vectors in the X matrix and
then uses a whitening procedure, implemented by principal components analysis [1],
to transform the covariance matrix of the zero-mean data into an identity matrix. In
the next step, FastICA searches for a rotation matrix to further separate the whitened
data into a set of components which are as mutually independent as possible. In
combination with previous whitening process, the matrix X is transformed into a
matrix S via an unmixing matrix W, i.e.,

S
kxn

=
W

kxm
X

mxn
, (4.4)

so that rows of S are mutually independent. The fixed-point method for solving
W = (wi, · · · ,wk)T in the FastICA, where k is the number of independent sources,
can be summarized as follows [11]:

For i = 1 : k,

1. Randomly choose a weighting vector wi

2. Let w+ = E{xg(wT
i x)}−E{g′(wT

i x)}wi , where
g(u) = tanh(cu̇), 1 ≤ c ≤ 2

3. Let wi = w+
i /‖w+

i ‖
4. Go back to step 2 if not converge.
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5. Decorrelation by Gram–Schmidt-like scheme, Let
wi = wi −∑ j−1

j=1 wT
i w jw j

6. Renormalize wi, Let wi = wi/‖wi‖
end

Since EEG can be considered as a linear combination of electric brain activities
[5], we employed ICA to extract the disease-related components from the EEG of
five patients. In this study, each preprocessed epoch was arranged across m channels
(m = 17) and n sampled points (n = 250∗300) into a matrix X. The ith row contains
the observed signal from the ith EEG channel, and the jth column vector contains
the observed samples at the jth time point across all channels. FastICA was applied
on each preprocessed epoch to resolve the W and S. After estimating the unmixing
matrix W, we can recover the temporal waveforms by applying the inverse matrix
of W on both sides of Equation (4.4) to yield

X
mxn

=
W−1

mxk
· S

kxn
, (4.5)

where W−1 is the best estimation of the mixing matrix A in Equation (4.3). In the
cocktail-party problem, a popular example of ICA model, the kth row of S represents
the voice from the kth speaker, and the element of mixing matrix A in the mth
column and kth row, i.e., represents the weighting of the voice from the kth speaker
recorded in the mth microphone. In other words, the kth column of A represents
the weightings of the voice of kth speaker at each microphone. In this study, S
represents the time sequences of activation sources, i.e., temporal waveforms of ICs
in Figs. 4.2, 4.3, 4.4, and 4.5, and A stands for the weighting of sources recorded
from electrodes. Since W is the estimated unmixing matrix, each column represents
a spatial map describing the weightings of the corresponding temporal component
at each EEG channel. These spatial maps will hereinafter be referred to as IC spatial
maps. The validation of applying ICA to decompose EEG data has been addressed
in the previous studies [10,13,14,15,16,18,17,22,23,26]. In this study, we have also
varied the data length, namely 1-, 2-, 3-, 4-, and 5-min epoch of data, to evaluate
the performance of ICA and applied PCA on the same data sets for comparing their
results on the feature extraction.

4.3.2 Bayesian Information Criterion

We have adopted the Bayesian information criterion (BIC) [2, 9, 19], which was
based on the estimation of posterior probability P(X |A,k) given the number of
sources k and the observed data X to estimate the number of sources. The poste-
rior probability was the function of A given by

P(X |A,k) =∏
k

1√
|2πΛk|

(
1

|det(A)|

)T

· exp

(
−1

2∑t,t ′
Ŝk,t(Λ−1

k )t,t ′ Ŝk,t ′

)
, (4.6)
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Fig. 4.5: Summarized ICA results from patient 2 to patient 5. Each panel shows the
selected ICs and corresponding spatial maps for one patient. (a) The ICA results
display generalized triphasic waves (IC1), PLEDs lateralized to the left hemisphere
(IC3), and slow waves at delta frequency (shaded area of IC6). (b) The ICA results
show epileptiforms (IC6, IC7) and FIRDA (shaded area of IC8). (c) The ICA results
show the prominent FIRDA over left frontal-temporal area (IC2) and right frontal
region (shaded area of IC4), and epileptiforms on the right temporal-occipital lobe
(IC6). (d) The ICA results show periodic triphasic waves on the right occipital lobe
(IC2), the PLEDs on the right frontal-central area (IC7), and the diffused delta waves
(IC8).

where the notation Ŝk,t was the sources estimated from A and X, Ŝk,t = ∑l(A−1)k,l

Xl,t ,Λk was the covariance matrix of sources, and t was the time point. In theory,
the number of sources that produced the maximal posterior probability would be
selected since the predicted model was best fit to the observed data.

4.4 Results

4.4.1 Determination of the Number of Sources

A number of sources ranging from 2 to 17 (the number of channels) were introduced
to compute the posterior probabilities and the results in Fig. 4.6 demonstrated that
values of posterior probabilities were comparable when N was between 12 and 17.
In fact, the resultant CJD-related components were also comparable when N varied
from 12 to 17. Instead of using the BIC for determining the number of sources, we
simply used the number of channels as the number of sources, as suggested by the
previous studies [10, 14, 15, 16, 18, 17, 26].
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Fig. 4.6: The number of sources estimated by using the Bayesian information cri-
terion (BIC) from patient 1 to patient 5. Each panel shows the estimated posterior
probabilities (histograms) of a patient. A number of sources range from 2 to 17 (the
number of channels) were given for computing the posterior probabilities (Equa-
tion 4.6). It is evident that all the estimated posterior probabilities are comparable
in each plot when the source numbers are between 12 and 17.

4.4.2 CJD-Related Feature Extraction

We have observed that the distinct disease-related patterns were likely to occur in
different time windows. Three 15-s windows (Figs. 4.2a, 4.3a, and 4.4a) were se-
lected to illustrate the ICA results obtained from a 5-min EEG data. The resultant
independent temporal waveforms (patient 1, 73 y/o) were presented in Figs. 4.2d,
4.3d, and 4.4d, respectively, and the corresponding spatial maps elucidating CJD-
related characteristics or artifacts were depicted in Figs. 4.2e, 4.3e, and 4.4e, re-
spectively. The CJD-related components shown in Figs. 4.2d, e, 4.3d, e, and 4.4d, e
are the PLEDs lateralized to the right hemisphere (IC3), triphasic waves on the
occipital lobe (IC4), and the PLEDs (IC3) as well as the epileptiforms covering
the whole brain (IC5), respectively. The component IC2 was the artifact caused by
eyeblinks since the spikes occurred intermittently with irregular shapes and large
weights exhibited in the prefrontal area of the corresponding spatial map. Similarly,
IC8 was identified as an artifact due to left eye movements. The remaining ICs may
correspond to spontaneous brain activities irrelevant to CJD or artifacts and were
not taken into account in the analysis.

Figure 4.5 summarizes the individual CJD-related components from the other
patients. Each panel shows the selected temporal independent components and the
corresponding spatial maps for one patient. The ICA results from patient 2 (74
y/o), display generalized triphasic waves (IC1), PLEDs lateralized to the left hemi-
sphere (IC3), and slow waves at delta frequency (shaded area of IC6) (Fig. 4.5a).
In Fig. 4.5b, epileptiforms (IC6, IC7) and FIRDA (shaded area of IC8) were re-
solved from patient 3 (85 y/o). Figure 4.5c shows the prominent FIRDA over the
left frontal-temporal area (IC2) and the right frontal region (shaded area of IC4),
and epileptiforms on the right temporal-occipital lobe (IC6) from patient 4 (52 y/o).
Finally, Fig. 4.5d displays that the positive periodic triphasic waves appear predom-
inantly on the right occipital lobe (IC2), the PLEDs on the right frontal-central area
(IC7), and the diffused delta waves (IC8) from patient 5 (80 y/o).

Figure 4.7 shows the results when the 1-, 2-, 3-, 4-, and 5-min epochs of data
were analyzed by ICA. The bars with different colors in the Fig. 4.7a–e represent the
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Fig. 4.7: Performance of ICA when the 1-, 2-, 3-, 4-, and 5-min epochs of data
were analyzed. The bars with different colors in the panels (a)–(e) represent the
time periods during which features were resolved, namely, the epileptiform, PLED,
and triphasic waves. It can be seen that the ICA results remained unchanged un-
der various data lengths where the same CJD-related patterns repeatedly appeared.
Specifically, the PLED presents in the first 20 s within the first minute and in the
17th–35th s in the fifth minute of the epoch (see the yellow bars in the 1st and 5th
windows in (a), 1st and 4th windows in (b), 1st and 2nd windows in (c), 1st and 2nd
windows in (d) and in (e)). The epileptiform were detected within the 3rd window
in (a), 2nd and 3rd windows in (b), 2nd and 3rd windows in (c), 1st and 2nd win-
dows in (d) and in (e) (see orange bars). Finally, the triphasic waves can be observed
across from the 2nd to the 5th windows in (a), which also appeared in the 1st–4th
windows in (b), 1st and 2nd windows in (c), 1st and 2nd windows in (d) and in (e)
(see green bars). It should be noted that not only the temporal features preserved
the same waveforms and durations, but also the three corresponding spatial maps
remained resemble. E: epileptiform, P: PLED, T: triphasic wave.
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time periods during which features were resolved, namely, the epileptiform, PLED,
and triphasic waves. It can be seen that the ICA results remained unchanged un-
der various data lengths where the same CJD-related patterns repeatedly appeared.
Specifically, the PLED presents in the first 20 s within the first minute and in the
17th–35th seconds in the fifth minute of the epoch (see the yellow bars in the 1st
and 5th windows in (a), 1st and 4th windows in (b), 1st and 2nd windows in (c),
1st and 2nd windows in (d) and in (e)). The epileptiform were detected within the
3rd window in (a), 2nd and 3rd window in (b), 2nd and 3rd window in (c), 1st and
2nd window in (d) and in (e) (see orange bars). Finally, the triphasic waves can be
observed across from the 2nd to the 5th windows in (a), which also appeared in the
1st–4th windows in (b), 1st and 2nd windows in (c), 1st and 2nd windows in (d)
and in (e) (see green bars). It should be noted that not only the temporal features
preserved the same waveforms and durations, but also the three corresponding spa-
tial maps remained resemble (see Fig. 4.7). Similar results have been obtained from
other patients (not shown).

4.4.3 Feature Extraction by PCA

It has been reported that the use of ICA under the assumption of source indepen-
dence can separate more realistically neurophysiologic signals in comparison with
the principal component analysis (PCA) [10,12]. Since the EEG signals induced by
eyeblinking or contaminated by electrical noise usually present far larger variances
than physiological signals, the covariance-based PCA decomposing procedure is in-
ferior to ICA for resolving meaningful brain activities. As shown in the Fig. 4.8b
where the same time window in Fig. 4.4a was selected, the temporal waveforms
of the first four principal components (eigenvectors corresponding to the first four
largest eigenvalues) merely exhibit the preservation of the most power of the origi-
nal signals. None of them extracted the evident eyeblinking artifacts or CJD-related
features from the raw EEG as compared to the ICA results in Fig. 4.4.

4.5 Discussions

This study aims to extract the CJD-related waveforms in conjunction with the spa-
tial dominances from the EEG recordings for the early diagnosis of CJD. Our re-
sults demonstrate that ICA is an effective tool for distinguishing FIRDA, PLEDs
and PSWCs from EEG recordings in the early stage of CJD (Figs. 4.2d, e, 4.3d, e,
4.4d, e, and 4.5) with dominance in each corresponding spatial map being revealed.
In comparison with the raw EEG data in the shaded areas in Figs. 4.2b, 4.3b, and
4.4b, where the CJD-related waveforms were severely smeared by the large poten-
tials of eye movements, three PLEDs, four triphasic waves, and two epileptiforms
can be evidently recovered in the shaded areas of IC3 in Fig. 4.2d, IC4 in Fig. 4.3d,
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Fig. 4.8: The selected EEG segment and PCA results within the same time win-
dow as in Fig. 4.4 from patient 1. (a) The 15-s time window (201–216 s) is used to
display results in (b). (b) The 17 decomposed PCs show that the temporal wave-
forms of the first four principal components (eigenvectors corresponding to the first
four largest eigenvalues) merely exhibit the preservation of the most power of the
original signals. (c) The corresponding spatial maps of PC1 to PC4. None of them
extracted the evident eyeblinking artifacts or CJD-related features from raw EEG as
compared to the ICA results in Fig. 4.4.

and IC5 in Fig. 4.4d, respectively. In addition, it should be noted that any 5-min IC
waveform only corresponds to a single spatial map and the predominant region for
IC3, IC4, and IC 5 is manifested in Figs. 4.2e, 4.3e, and 4.4e, respectively. On the
contrary, the topographical maps produced from the peak times of the similar wave-
forms in the raw data varied from one to another. To illustrate this, we particularly
chosen four peak times of the disease-related IC waveforms and displayed the topo-
graphical maps based on the raw EEG at these peak times. As shown in the vertical
lines in Fig. 4.2b or d, four peak time points p1, p2, p3, and p4 of four waves in
IC3 at 3.3, 5.1, 9.6, and 10.9 s were selected and the corresponding topographical
maps produced from the raw data presented distinct patterns (Fig. 4.2c), which were
difficult to interpret for further analysis. Similar phenomenon and difficulty can be
seen in Figs. 4.3c and 4.4c.

Another salient feature of ICA is that, even a CJD-related wave hid at different
time windows and obscured across multiple channels, ICA is effective to extract
such waveforms from different channels into a single independent component, as
illustrated by IC3 in Figs. 4.2d, e and 4.4d, e, where repeated waves of PLEDs were
identified in IC3 which occurred during 2–17 and 201–216 s. Besides, muscular ar-
tifacts and environmental noise have been isolated by ICA which were in congruent
with previous studies [14, 15, 23]. The intermittent high amplitude waves induced
by eyeblinks with maximum over the prefrontal area were presented within IC2 in
Figs. 4.2d, e and 4.3d, e, large irregular waves caused by eye movements on the left
frontal region were within IC8 in Figs. 4.2 and 4.3d, e, and environmental noises
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exhibiting irregularly transient waveforms in a single channel were within IC11 in
Fig. 4.2d, e, IC15 in Figs. 4.3 and 4.4d, e.

Most of the previous studies have reported that only one CJD pattern appeared
in each stage. The co-occurrence of FIRDA and PLEDs or triphasic waves from the
same EEG data has not been explored. For example, either the FIRDA or FIRDA-
like waveforms could be found in the early stage of CJD in most cases [8,25], or the
PLEDs appeared initially and were replaced by PSWCs progressively in the middle
or late stage [1, 6]. The ICA results, nevertheless, illustrated that the FIRDA and
PLEDs, or FIRDA and epileptiforms, or FIRDA and triphasic waves concurrently
appeared in the same EEG data for each patient. As shown in Table 4.2, the PLEDs,
epileptiforms, and triphasic waves from the 5-min EEG signals of patient 1 can
be, respectively, recovered in IC3, IC5, and IC4, the FIRDA, PLEDs, and triphasic
waves in IC6 (shaded area in Fig. 4.5a), IC3 (stars in Fig. 4.5a), and IC1 (arrows
in Fig. 4.5a) from patient 2, and in IC8 (shaded area in Fig. 4.5d), IC7 (stars in
Fig. 4.5d), and IC2 (arrows in Fig. 4.5d) from patient 5. In addition, FIRDA can be
seen in IC8 (shaded area in Fig. 4.5b) and epileptiforms in IC6 and IC7 (arrows in
Fig. 4.5b) from patient 3, and FIRDA in IC2 and IC4 (shaded area in Fig. 4.5c) and
epileptiforms (arrows in Fig. 4.5c) in IC6 from patient 4. These findings suggest that
the EEG in the early stage of CJD is heterogeneous and concurrent appearance of
different CJD patterns should be taken into account in the diagnosis.

Table 4.2: The concurrent appearance of different CJD waveforms in the same EEG
data from each patient

Patient FIRDA PLEDs Epileptiform Triphasic wave

1 (Figs. 4.2, 4.3, and 4.4) IC3 IC5 IC4
2 (Fig. 4.5) IC6 IC3 IC1
3 (Fig. 4.5) IC8 IC6, IC7
4(Fig. 4.5) IC2, IC4 IC6
5 (Fig. 4.5) IC8 IC7 IC2

It should be noted that only the PSWC had been reported with a 85% specific
to the late CJD, the unaccompanied occurrence of each pattern, such as FRIDA,
epileptiform, PLED, and triphasic waves, might be seen in other neurological disor-
ders. Therefore, the hypothesis that EEGs of the CJD manifested the co-occurrence
of multiple disease-related features was further tested against the Alzheimer’s dis-
ease (AD) group with five patients who were all male and aged 85, 73, 45, 72, and
79 years old, i.e., age and gender matched with the CJD group. After applying ICA
on the AD group, we examined the independent components to detect the disease-
related features. No co-occurrence of multiple disease-related features was found in
the AD group, except that two ICs were detected to consist of FIRDA in patient 1
and one IC consisted of the epileptiform in patient 4. Based on the co-occurrence
of multiple disease-related features exhibited in both groups, the difference be-
tween AD and CJD groups was statistically significant (two-sample Wilcoxon test,
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p < 0.05). Accordingly, the concurrent existence of multiple features presented in
the early EEG of CJD patients can be used as an assistive tool for the early diagnosis
of CJD.

The order of same CJD-related components may vary from patient to patient
since both the mixing matrix A and source matrix S are unknown, which allows the
change of the order of rows in S. To see this, we can substitute a permutation matrix
P and its inverse into the model, X = AS, to give X = (AP−1)(PS). The matrix
AP−1 is a new unknown mixing matrix to be solved by the FastICA algorithm [11]
and the rows of PS are original sources but in different order because each row or
column in P consists of only one nonzero element with value 1. It is much easier
to detect the CJD-related patterns from the unmixed signals rather than from the
obscured mixing signals as illustrated in Figs. 4.2, 4.3, and 4.4, although the same
CJD-related sources would occur at different channels among patients. In addition,
we found that the ICs consisting of larger spikes, such as irregular waveforms and
bursts, tended to be decomposed earlier from the mixing signals in the calculation of
FastICA. All the CJD-related features, i.e., sharp waves or epileptiform, have been
recognized from ICs lower than IC8.

It is noted that the matrix S has lower amplitude in comparison with the matrix X.
Such an amplitude difference comes from the nature of the linear mixing model and
the algorithm of FastICA. Based on the vector form of the model x j = a js1 + · · ·+
ai jsi + · · · , it can be rewritten into the form x j = a j1s1 + · · ·+(a jiα−1)(αsi)+ · · · ,
where α is any arbitrarily nonzero scalar. In other words, the solutions of mixing A
and source matrix S are not unique since any source can be multiplied by a nonzero
scalar which can always be canceled by dividing the corresponding column of A by
the same scalar. In order to fix the magnitude of the independent components, each
source is restricted to have unit variance in the FastICA calculation [11]. As a result,
the resolved matrix S has lower amplitude than the matrix X.

4.6 Conclusions

We have employed ICA to detect the co-occurrence of multiple CJD-related
patterns from the EEG recording for aiding to the early diagnosis. Results demon-
strate that ICA is an effective tool for simultaneously recovering the FIRDA,
PLEDs, and triphasic waves (early PSWCs) that can be hardly discerned by vi-
sual inspection from the contaminated EEG recordings. The concurrent appear-
ance of FIRDA and PLEDs or triphasic waves from the same EEG data suggests
that the heterogeneity of EEG in the early diagnosis of CJD should be taken into
account.
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26. Wübbeler, G., Ziehe, A., Mackert, B., et al. Independent component analysis of noninvasively
recorded corticalmagnetic dc-fields in humans. IEEE Trans Biomed Eng 47, 594–599 (2000)



Chapter 5
Comparison of Supervised Classification
Methods with Various Data Preprocessing
Procedures for Activation Detection in fMRI
Data

Mahdi Ramezani and Emad Fatemizadeh

Abstract In this study we compare five classification methods for detecting ac-
tivation in fMRI data: Fisher linear discriminant, support vector machine, Gaus-
sian nave Bayes, correlation analysis and k-nearest neighbor classifier. In order
to enhance classifiers performance a variety of data preprocessing steps were em-
ployed. The results show that although kNN and linear SVM can classify active and
nonactive voxels with less than 1.2% error, careful preprocessing of the data, in-
cluding dimensionality reduction, outlier elimination, and denoising are important
factors in overall classification.

5.1 Introduction

Studying the functionality of the brain with versatile noninvasive tools has boost
enormously in recent years. It is widely believed that blood oxygen level, the ratio
of oxygenated to deoxygenated hemoglobin in the blood at the corresponding in
the brain, is influenced by local neural activity. Based on the blood oxygen level-
dependent (BOLD) principle, functional magnetic resonance imaging (fMRI) has
become one of the typical tools in the neurological disease diagnosis and human
brain research. This imaging method can quantify hemodynamic changes induced
by neuronal activity in human brain at high-spatial resolution during sensory or
cognitive stimulations. fMRI technology offers the promise of revolutionary new
approaches to studying human cognitive processes, provided we can develop ap-
propriate data analysis methods to make sense of this huge volume of data. The
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vast majority of published researches summarizes average fMRI responses when the
subject responds to repeated stimuli of some type (e.g., reading, mental imagery, re-
membering) [5]. Other researchers have since applied various multivariate methods
in analyzing distributed response patterns in the human fMRI data sets: approaches
include training machine learning classifiers to automatically decode the subjects’
cognitive state at a single time instant or interval [6]. These statistical pattern recog-
nition algorithms are powerful because they project the activity of multiple voxels
to achieve a discriminative separation of the activity patterns. Before performing
pattern recognition algorithms, there is a need to select a subset of voxels for further
analysis. The procedure of selecting particular voxels can greatly enhance classi-
fication performance [3]. The enhancement consists of avoiding the “curse of di-
mensionality” by reducing the dimension of the space of patterns to be labeled and
removing noise features that can only degrade performance [4]. Likewise, most clas-
sification of fMRI data depends on an effective feature selection procedure being
applied beforehand [5]. In a typical fMRI study, time courses of more than several
thousand voxels are simultaneously acquired. Many of these are uninformative and
could severely damage the performance of the algorithm. In order to perform pattern
recognition more efficiently, one should use a technique to find a reasonable subset
of voxels to feed the classifiers. The aim of this work is to exploit supervised clas-
sification techniques for the voxel selection procedure. The goal of these analyses
is to detect the activated voxels (those voxels with highest overall responsiveness).
In the present study we applied several pattern recognition techniques and data pre-
processing approaches to compare their performance in classifying active and in-
active voxels. We used five classification procedures: the Fisher linear discriminant
(FLD), support vector machine (SVM), Gaussian nave Bayes (GNB), correlation
analysis, and k-nearest neighbor classifier (kNN). This chapter is organized as fol-
lows. In the next section, we briefly explain the acquisition of fMRI used in the
application. In Section 5.3, we provide data preprocessing approaches. Section 5.4
describes the pattern recognition techniques. Results of experiments are presented in
Section 5.5.

5.2 Data Set

In the studies described in this chapter, a data set from the SPM site http://www.fil.
ion.ucl.ac.uk/spm/data/ was used which comprises whole brain BOLD/EPI images
acquired on a modified 2T Siemens MAGNETOM vision system. This data set was
the first ever collected and analyzed in the functional imaging laboratory (FIL). Each
acquisition consisted of 64 contiguous slices (64× 64× 64 3× 3× 3 mm voxels).
Acquisition took 6.05 s, with the repetition time (TR) set arbitrarily to 7 s. At whole
96 acquisitions were made from a single subject giving 16 42 s blocks. The condi-
tion for successive blocks alternated between rest and auditory stimulation, starting
with rest. Auditory stimulation was bi-syllabic words presented binaurally at a rate
of 60 per minute [2]. The images were then realigned to mitigate noise caused by



5 Supervised Classification for fMRI Activation Detection 77

head motion, smoothed to reduce the effect of high-frequency noise on the analysis,
and spatially normalized to allow for intersubject comparisons within SPM5 soft-
ware. After that the activation map was obtained and was used as a gold standard
in training the classifiers in this study. Figure 5.1 shows the activation map. For fur-
ther analysis we use a global threshold in order to identify those voxels with highest
overall responsiveness. Figure 5.2 shows the activation map after thresholding.

Fig. 5.1: The activation map.

Fig. 5.2: Active regions are shown as white pixels.

5.3 Data Preprocessing

To estimate the generalization ability of the classification methods, we split each
data set into two nonoverlapping subsets: the training set on which each classifier
was trained and the test set on which each classifier was tested. The procedure was
repeated many times for different random partitions of the data, and results were
averaged across the results. In order to enhance classifier performance a variety of
data preprocessing steps were employed. Two of them were done for all voxels. First
the data were normalized by subtracting the mean value and dividing by the overall
standard deviation. Thus, each voxel had mean activity of 0 and unit standard devia-
tion. Second the outliers were removed by setting all values that were beyond three
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standard deviations from the mean to a fixed value of 3 or −3, depending on the sign
of the original value. The remaining preprocessing steps were optionally performed
before each classification. They were done alone or together. One of these prepro-
cessing steps was singular vector decomposition (SVD) of the data. The SVD was
done in order to denoise the data by keeping only some of principal components.
For this purpose the eigenvalues of the matrix of the data were plot (Fig. 5.3) and
only the important eigenvalues were kept. Another popular preprocessing approach
which was used is the removal of noninformative features via subspace-based de-
composition techniques. This approach proceeds by discarding the irrelevant sub-
space based on assumption that the sparse portion of the data space carries little,
or no useful information. One of the approaches used in this study was to reduce
the data dimension via principal component analysis (PCA). The principal compo-
nent analysis is a representative of the unsupervised learning method which yields
a linear projection for mapping the input vector of observations onto a new feature
description which is more suitable for given task. It is a linear orthonormal projec-
tion which allows for the minimal mean square reconstruction error of the training
data [1]. Another approach that was used to reduce the data dimension was linear
discriminant analysis (LDA). The goal of the LDA is to train the linear data projec-
tion such that the class separability criterion is maximized. We further discuss the
effect of these procedures in our “Results” section.
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Fig. 5.3: Eigenvalues of the data matrix.

5.4 Pattern Recognition Methods

In this section, we describe our classification procedures. Five classifiers were used:
Fisher linear discriminant (FLD), a linear support vector machine (SVM), Gaussian
nave Bayes (GNB), correlation analysis, and k-nearest neighbor classifier (kNN).
These classifiers were selected because they have been used successfully in other
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applications involving high-dimensional data. We have used a Matlab implementa-
tion of the classifiers provided by statistical pattern recognition toolbox (abbreviated
STPRtool) which is available online at http://cmp.felk.cvut.cz/cmp/cmp software.
html.

5.4.1 Fisher Linear Discriminant

The linear classification rule is composed of a set of discriminant functions which
are linear with respect to both the input vector and their parameter vectors. In the
case of the Fisher linear discriminant (FLD), the parameter vector ω of the linear
discriminant function f (x) =< ω,x > +b is determined to maximize the class sep-
arability criterion. In other words, it aims to find a linear combination of voxels that
discriminate between the two classes. The weights of this linear combination are
given by

ω = S−1
w (μ1 −μ2), (5.1)

where μ1 and μ2 denote the respective means of the first and second classes and
Sw is the within class scatter matrix [7]. It can be shown that for Gaussian random
vectors, with equal covariance matrices in both classes, this is similar to the optimal
Bayesian classifier with the exception of a threshold value.

5.4.2 Support Vector Machine

SVM which is a linear classification algorithm does not assume a specific model of
the data points but rather seeks to find the hyperplane (train the linear discriminant
function f (x) =< ω,x > +b) that separates the two classes with maximum mar-
gin. The training of the optimal parameters (ω∗,b∗) is transformed to the following
programming task [7]:

min

{
1
2
‖ω2‖+C

N

∑
i=1
ξi

}
, (5.2)

s.t f (x1)(< ω,xi > +b) ≥ 1−ξi, i = 1,2, . . . ,N. (5.3)

ξi ≥ 0, i = 1,2, . . . ,N, (5.4)

where slack variables are used to relax the inequalities for the case of nonsepara-
ble data. The parameter C is a positive constant that controls the relative influence
of the two competing terms: regularization and classification error. It is clear that
minimizing the norm makes the margin maximum. This is a nonlinear optimization
task subject to a set of linear inequality constraints. So the problem is a convex
programming one, and the corresponding Lagrangian is given by [7]
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max

{
1
2
‖ω2‖+C

N

∑
i=1
ξi −

N

∑
i=1
μiξi −

N

∑
i=1
λi[ f (xi)(< ω,xi > +b)−1+ξi]

}
, (5.5)

s.t. ω =
N

∑
i=1
λi f (xi)xi, (5.6)

N

∑
i=1
λ f (xi) = 0, (5.7)

C−μi −λi = 0, i = 1,2, . . . ,N, (5.8)

λi ≥ 0,μi ≥ 0, i = 1,2, . . . ,N. (5.9)

In order to obtain the best value of the parameter C, the search space of SVM is
set C = 2 to the power of −5 to 5. We also investigated a nonlinear variant with a
radial basis function (RBF) kernel, which yielded similar results to the linear SVM.

5.4.3 Gaussian Nave Bayes

The GNB classifier uses the training data to estimate the probability distribution
over fMRI observations, conditioned on the stimuli. Responses conditioned on the
stimuli were modeled as Gaussians, where it was assumed that each voxel was in-
dependent of the others. The Gaussian mixture model (GMM) means and variances
were estimated by maximal likelihood estimation. With the obtained model, the de-
cision boundary for classification was the optimal boundary. The predicted class on
test data was the most probable class under this model.

5.4.4 Correlation Analysis

The responses in the training set for active and inactive voxels were averaged sepa-
rately to compute the mean responses for each category as templates. For prediction,
the correlation coefficients between each test point (time series of a voxel) and each
of the templates were obtained. Then, each test point was predicted to belong to
Class 1 if the correlation coefficient for Class 1 was bigger than for Class 2, and to
Class 2 otherwise.

5.4.5 k-Nearest Neighbor

The algorithm for k-nearest neighbor classifier is summarized as follows. Given an
unknown feature vector (voxel), the k-nearest neighbors irrespective of class label
was identified. Out of these k samples, the number of vectors that belong to class 1
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Fig. 5.4: The classification error for various values of k.

or 2 was identified. The feature vector was assigned to the class with the maximum
number of samples [7]. We have used nearest neighbor with a Euclidean distance
metric, considering values of 1, 3, 5, 7, and 9 for k. Figure 5.4 shows the classifica-
tion error for these values of k.

As can be seen in Fig. 5.4, the 5NN classifier outperformed other classifiers. So
we have chosen this kNN classifier in comparing the performance with the other
pattern recognition methods, described above.

5.5 Results

In this section we present experimental results. As discussed earlier, we experi-
mented with five classifier learning methods: FLD, SVM, GNB, correlation analy-
sis, and kNN. We report the performance of each classifier with various preprocess-
ing procedures mentioned in Section 5.4. By the obtained results we will be able to
decide with which preprocessing procedure the classifier has the best performance.
Performance for individual classifiers was measured by repeatedly splitting the data
into training and test sets and averaging classification performance on each test set.
Here the performance metric is a classification error. Table 5.1 shows the mean
classification error of different classifiers with different preprocessing procedures.
As can be seen, different preprocessing steps (denoising by SVD and dimension
reduction by PCA or LDA) had a substantial impact on prediction accuracy.

It is also clear that, in all experiments with different preprocessing procedures,
performance is best for the linear SVM. The mean classification error was less than
1.1% for this classifier. The different preprocessing procedure used has a weak ef-
fect on the performance of the both kNN and SVM classifiers. They approximately
perform equivalent (with classification error of less than 1.2%) and better than other
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Table 5.1: Mean classification error of different classifiers with different preprocess-
ing procedures
Preprocess FLD Linear SVM Nonlinear SVM GNB Corr kNN

None 2.261 0.9 2.25 50.824 62.522 1.168
SVD 36.228 1.05 2.03 13.766 64.775 1.055
LDA 2.858 0.9 1.692 1.572 11.288 1.198

LDA+SVD 2.826 0.82 1.078 1.768 17.066 1.108
PCA 2.38 0.9 2.098 1.842 2.17 1.06

PCA+SVD 3.128 0.6 2.02 1.57 3.022 1.106

approaches. Since correlation performs so much worse than the chance level in the
first two cases of preprocessing procedures (without preprocessing and with SVD
only), we will not consider it in observations of these two cases. Denoising the data
by SVD in first two rows helped all algorithms besides linear SVM and FLD (actu-
ally increased FLD classification error by 34%). For instance, the accuracy of GNB
was enhanced by 37% and the accuracy of kNN and nonlinear SVM were a little
enhanced. Dimension reduction by PCA or LDA enhances performance on the ma-
jority of classifiers reported. It is clear that the classification error of all classifiers
after reducing the data dimension via PCA is almost the same. So we can use any of
the classifiers after applying the PCA without any concern about the results.

5.6 Conclusions

In this chapter we have compared different classification methods with various
preprocessing procedures for detecting activation in fMRI data. The experimental
results presented here demonstrate the feasibility of training classifiers to distin-
guish between active and inactive voxels of fMRI data. kNN and SVM perform
equivalently and better than other approaches. They can classify the voxel with the
classification error of less than 1.2%. Further work could include the use of other
dimension reduction methods such as independent component analysis (ICA). It is
also of interest to examine other classification algorithms.
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Chapter 6
Recent Advances of Data Biclustering with
Application in Computational Neuroscience

Neng Fan, Nikita Boyko, and Panos M. Pardalos

Abstract Clustering and biclustering are important techniques arising in data min-
ing. Different from clustering, biclustering simultaneously groups the objects and
features according their expression levels. In this review, the backgrounds, moti-
vation, data input, objective tasks, and history of data biclustering are carefully
studied. The bicluster types and biclustering structures of data matrix are defined
mathematically. Most recent algorithms, including OREO, nsNMF, BBC, cMonkey,
etc., are reviewed with formal mathematical models. Additionally, a match score be-
tween biclusters is defined to compare algorithms. The application of biclustering
in computational neuroscience is also reviewed in this chapter.

6.1 Introduction

6.1.1 Motivation

With the number of database appearing in computational biology, biomedical en-
gineering, consumers’ behavior survey, and social networks, finding the useful in-
formation behind these data and grouping the data are important issues nowadays.
Clustering is a method to classify the objects into different groups, so that the
objects in each group share some common traits [15,31,57]. After this step, the data
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is reduced to small subgroups and research on each subgroup will be easier and
more direct. Clustering has been widely studied in past 20 years, and a general re-
view of clustering is by Jain et al. in [31] while a survey of clustering algorithms is
also available by Xu et al. in [57]. The future challenges in biological networks are
available in the book edited by Chaovalitwongse et al. in [9].

However, clustering only does the work of objects without considering the fea-
tures of each object may have. In other words, clustering compares two objects by
the features that two share, without depicting the different features of the two. A
method simultaneously groups the objects and features is called biclustering such
that a specific group of objects has a special kind group of features. More precisely,
a biclustering is to find a subset of objects and features satisfying these objects are
related to features to some level. Such kind of subsets are called biclusters. Mean-
time, biclustering does not require objects in the same bicluster to behave similarly
over all possible features, but to highly have specific features in this bicluster.

Besides the differences from clustering mentioned above, biclustering also has
the abilities to find the hide features and specify them to some subsets of objects.
We should also realize that biclustering also has relations but differences from other
techniques, such as classification, feature selection, and outlier detection in data
mining. Classification is a kind of supervised clustering while most algorithms used
in biclustering are unsupervised, and for some supervised biclustering see [4, 40].

The biclustering problem is to find biclusters in data sets, and it may have differ-
ent names such as co-clustering, two-mode clustering in some literatures.

6.1.2 Data Input

Usually, we call the objects as samples. Samples have different features and each
sample may have or may not have some features. The level of a sample having
some specific feature is called expression level. In real world, the samples may have
quantitative features or qualitative features. The expression levels of quantitative
features can be easily expressed in numerical data, while qualitative features have
to use some scale measurement to be transformed into data. For some algorithms of
biclustering, qualitative features are allowed.

Mainly, the biclustering algorithms are starting with matrices. There are two
kinds of them usually used, and the first is more possible to be used in bicluster-
ing.

• Expression Matrix. This data matrix has rows corresponding to samples, columns
to features, with entry measuring the expression level of a feature in a sample.
Each row is called a feature vector of the sample. We can also call this matrix as
sample-by-feature matrix.
Sometimes, the matrix is formed from all samples’ feature vectors, and the fea-
tures’ level in this sample will be observed directly. Generally we just scale and
then put these vectors together to form a matrix if all vectors have the same
length, which means they have the same set of features. However, the feature
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vectors may not conform each other. In this case, we should add values (may
be 0) to vectors with no corresponding features in order to form same-length
vectors. In some applications, there are always large set of samples with limited
features.

• Similarity Matrix. This data matrix has both rows and columns corresponding to
a set of samples, with each entry measuring the similarity between two corre-
sponding samples. It has same number of rows and columns, and it is symmetric.
This matrix can be called sample-by-sample matrix.
Note: this matrix can also be used as dissimilarity matrix with entry denoting
the dissimilarity between a pair of samples. There are many similarity measure-
ment functions to compute the (dis)similarity entries, such as Euclidean distance,
Mahalanobis distance. So the similarity matrix can be computed from the expres-
sion matrix.

Since the developments of biclustering are including some time series models
[38, 52], another kind of time series data is also used in biclustering. This data also
can be viewed as stored in a matrix with that rows denote samples, while columns
from left to right denote observed time points.

For some qualitative features in some cases, the data matrix is a kind of sign
matrix. Some biclustering algorithms are still used.

Sometimes, before processing algorithms on the matrix, some steps are used,
such as normalization, discretization, value mapping, and aggression, and the details
of these data preparation operations are available at [16].

In the following, the data matrix usually refers to the first kind of expression
matrix without explanation.

6.1.3 Objective of Task

Obviously, the objective of biclustering is to find biclusters in data. In clustering,
the obtained clusters should have the propositions that the similarities among the
samples within each cluster are maximized and the similarities between samples
from different clusters are minimized.

For biclustering, the samples and features in each bicluster are highly related.
But this does not mean the samples in this bicluster do not have other features,
they just have the features in this bicluster more obvious and they still share other
features. Thus, in each bicluster, the relations between the samples and the features
are closer rather than relations between samples (features) from this bicluster and
features (samples) from another bicluster.

Some biclustering algorithms allow that one sample or feature can belong to sev-
eral biclusters (called overlapping) while some others produce exclusive biclusters.
In addition, some algorithms have the property that each sample or feature must
have its corresponding bicluster, while some others need not to be exhaustive and
can allow only find one submatrix or several ones from data matrix to form the
biclusters.
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As we mentioned above, most of biclustering algorithms are unsupervised clas-
sification and it does not need to have any training sets. But supervised biclustering
methods are also useful in some cases of biomedicine applications [5, 4, 40].

In this chapter, an optimization prospective of biclustering will be studied, and
different objective functions will be used for different algorithms to satisfy part of
objectives above. There is no such algorithm that can satisfy all objectives, and
additionally, there is no such standard of justifying the algorithms. In distinct ap-
plications of biclustering, a specific or several objectives should be met so some
algorithms are designed to satisfy these requirements. There are some methods try-
ing to compare different algorithms, and we refer to [37, 44, 47, 61].

6.1.4 History

The first approach to biclustering is “direct clustering of data matrix” by Hartigan
[28] in 1972. But the term “biclustering” was famous after Cheng and Church [11]
using this technique to do gene expression analysis. After that, many biclustering
algorithms are designed in different areas’ applications, such as biological network,
microarray data, word-document co-clustering, biomedical engineering, of which
the most popular applications are in microarray data and gene expression data.

In 2004, Madeira and Oliveira [37] surveyed the biclustering algorithms for bi-
ological data analysis. In this survey, they identified the biclusters into four major
classes: biclusters with constant values, with constant values on rows or columns,
with coherent values, and with coherent evolutions. The biclustering structures of
a data matrix are classified into nine groups according to algorithms: single biclus-
ter, exclusive row and column biclusters, checkerboard structure, exclusive rows
biclusters, exclusive columns biclusters, nonoverlapping biclusters with tree struc-
ture, nonoverlapping nonexclusive biclusters, overlapping biclusters with hierar-
chical structure, and arbitrarily positioned overlapping biclusters. In addition, the
authors have also divided the algorithms into five classes: Iterative row and col-
umn clustering combination, divide and conquer, greedy iterative search, exhaustive
bicluster enumeration, and distribution parameter identification. A comparison of
these algorithms according to the above three classes is given in this survey.

Another review about biclustering algorithms is by Tanay et al. in [55] in 2004.
In this survey, nine mostly used algorithms are reviewed and given with their pseu-
docodes. Mostly recent review of biclustering is by Busygin et al. in [5], and 16
algorithms are reviewed with their applications in biomedicine and text mining. In
this chapter, the authors mentioned that “many of the approaches rely on not mathe-
matically strict arguments and there is a lack of methods to justify the quality of the
obtained biclusters.”

In this chapter, we are trying to review and study the biclustering algorithms
in mathematical and optimization prospectives. Not all of the algorithms will be
covered, but most recent valuable algorithms are covered.
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Since the development of biclustering algorithms, many softwares are designed
to include several algorithms, including BicAT [2], BicOverlapper [48], BiVisu [10],
toolbox by R(biclust) [32] etc. These software or packages allow to do data pro-
cessing, bicluster analysis, and visualization of results and can be used directly to
construct images.

In the toolbox named BicAT [2], it provides different facilities for data prepara-
tion, inspection, and postprocessing such as discretization, filtering of biclusters ac-
cordingly. Several algorithms of biclustering such as Bimax, CC, XMotifs, OPSM
are included, and three methods of viewing data including matrix (heatmap), ex-
pression, and analysis are presented. The software BicOverlapper [48] is a tool for
overlapping biclusters visualization. It can use three different kinds of data files
of original data matrix and resulted biclusters to construct beautiful and colorful
images such as heatmaps, parallel coordinates, TRN graph, bubble map, and over-
lapper. The BiVisu [10] is also a software tool for bicluster detection and visualiza-
tion. Besides bicluster detection, BiVisu also provides functions for preprocessing,
filtering, and bicluster analysis. Another software is a package written by R [32], bi-
clust, which contains a collection of bicluster algorithms, such as Bimax, CC, plaid,
spectral, xMotifs, preprocessing methods for two way data, and validation and visu-
alization techniques for bicluster results. For individual biclustering software, there
are also some packages available [55, 5].

6.1.5 Outline

In this chapter, we will follow the reviews of [37, 55, 5] and try to include the most
recent algorithms and advancements of biclustering. The perspective of this chapter
is of mathematical view, including linear algebra, optimization programming, bipar-
tite graphs, probabilistic or statistical models, information theory, and time series.
Section 6.1 has reviewed the motivation, data, objective, history, and softwares of
biclustering. In Section 6.2, the bicluster type and biclustering structures are for-
mally defined in a mathematical way. The most recent biclustering algorithms are
reviewed in Section 6.3 and a comparison score is also defined. The application
of biclustering in computational neuroscience will be reviewed in Section 6.4 and
conclusions and future works are in Section 6.5.

6.2 Biclustering Types and Structures

6.2.1 Notations

As mentioned in Section 6.1.2, the expression matrix is mostly used in biclustering.
Let A = (ai j)n×m denote the sample-feature expression matrix, where there are n
rows representing n samples, m columns representing m features, and the entry ai j
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denoting the expression level of feature j in sample i. Mostly, the matrix A is the
required input of an algorithm, but some algorithms also use the space of samples
or features.

Let S = {S1,S2, · · ·,Sn} be the sample set, where Si = (ai1,ai2, · · ·,aim) is also
called the feature vector of sample i. Similarly, for the features, it is denoted by F =
{F1,F2, · · ·,Fm} with each vector Fj = (a1 j,a2 j, · · ·,an j)T , a column vector. Thus,
the matrix A = (S1,S2, · · ·,Sn)T = (F1,F2, · · ·,Fm).

A bicluster is a submatrix of data matrix. It is denoted by Bk = (Sk,Fk) sat-
isfying that Sk ⊆ S, Fk ⊆ F and the entry denotes intersection entry with corre-
sponding row (sample) and column in both A and Bk. Assume that there are K
biclusters founded in data matrix A; the set of biclusters is denoted by B = {Bk :
k = 1,2, · · · ,K}. Sometimes, we use (Sk,F) to denote a cluster of rows (sam-
ples) and use (S,Fk) a cluster of columns (features). In some algorithms, the
number of row clusters is not equal to that of column clusters. Let K,K′ denote
the number of row clusters, column clusters, respectively, the set of biclusters is
B = {(Sk,Fk′) : k = 1, · · ·,K,k′ = 1, · · ·,K′}. Without explanation, we assume that
K = K′.

Additionally, |Sk| denotes the cardinality of itself, i.e., the number of samples
in bicluster Bk = (Sk,Fk) while for |Fk|, similarly, the number of features. Clearly,
|S| = n, |F| = m. In the following, the notation i ∈ Sk ( j ∈ Fk) is short for Si ∈ Sk

(Fj ∈ Fk) without misleading.
Given a data matrix A, the biclustering problem is to design algorithms to find

biclusters B = {Bk : k = 1,2, · · ·,K} of it, i.e., a subset of matrices of A such that
samples (rows, Sk) of each bicluster Bk exhibit some similar behavior under the
corresponding features (columns, Fk). From this point, a bicluster problem now is
transformed into a mathematical problem satisfying some requirements (which will
be defined in the following under different bicluster types and structures). Usually,
after finding biclusters in a data matrix, the rows and columns are rearranged so that
the samples/features in a same bicluster will be together, the resulted matrix is called
a proper rearrangement matrix. In the following discussions of bicluster types and
biclustering structures, the requirements are all based on the rearrangement of data
matrix.

6.2.2 Bicluster Types

The types of a bicluster is defined to be the relationships of entries within a bicluster.
As mentioned in Section 1.4, Madeira and Oliveira [37] have identified bicluster
types into following four major classes and here we follow their classification and
give the mathematical representations. For first three cases, the data matrix A is
required that A ∈ R2, i.e., all entries in A are real numbers.

1. Bicluster with constant values. For a bicluster Bk = (Sk,Fk), the following iden-
tity should be satisfied:
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ai j = μ ,∀i ∈ Sk,∀ j ∈ Fk,

where μ is a constant number.
2. Bicluster with constant values on rows or columns. For a bicluster Bk = (Sk,Fk)

with constant values on rows, the identity for it is

ai j = μ+αi, or ai j = μ×αi,∀i ∈ Sk,∀ j ∈ Fk,

where μ is a constant and αi is an adjustment number for row i. The first identity
is additive and the second one is multiplicative. Note in some data processing
steps, the two are equivalent, for example, if doing logarithmic transformation
on the second data matrix case. For the case of constant values on columns, the
identity is

ai j = μ+β j, or ai j = μ×β j,∀i ∈ Sk,∀ j ∈ Fk,

where μ is a constant and β j is an adjustment number for column j.
3. Bicluster with coherent values. For a bicluster Bk = (Sk,Fk) with coherent val-

ues, there are two transferable expressions. The first one is additive,

ai j = μ+αi +β j,∀i ∈ Sk,∀ j ∈ Fk,

and the second one is multiplicative,

ai j = μ×αi ×β j,∀i ∈ Sk,∀ j ∈ Fk.

The method to transform the second into the first is still doing logarithmic trans-
formation on the second data matrix.

4. Bicluster with coherent evolutions. In the above three cases, the data matrix
A ∈ R2. But for some cases, the algorithms are finding relationships of data
on rows or columns without considering the real value. For example, in order-
preserving submatrix (OPSM) algorithm, a bicluster is a group of rows whose
values induce a linear order across a subset of columns. Thus, the value of ai j is
not always required in this situation since here the relationships between entries
are considered. For other cases, the bicluster with coherent evolutions will be
discussed in the following algorithms.

Although the biclusters are classified into these four classes, there are still other
forms if the output bicluster was considered to reflect some relationships between
the rows and columns within this bicluster. For example, in [7], a
δ -valid pattern of bicluster is defined to satisfy max(ai j)−min(ai j) < δ ,∀ j ∈Fk for
row i.

Besides this, data initialization influences bicluster types, for example, row
normalizing a bicluster with constant values on rows (type 2) will result a bi-
cluster constant values (type 1). Similarly, column normalizing a bicluster with
constant values on columns (type 2) will result a bicluster constant values
(type 1).
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6.2.3 Biclustering Structures

The structure of biclustering is defined to be the relationships between biclusters
from B = {Bk = (Sk,Fk) : k = 1,2, · · ·,K} based on the data matrix A.

For the structures of biclustering, there are some properties which should be no-
ticed: exclusive, overlapping, and exhaustive, although some concepts or terms have
been used previously. For a data matrix A, and the corresponding set of biclusters
B = {Bk = (Sk,Fk) : k = 1,2, · · ·,K}, we have the following formal definitions.

• Exclusive (nonexclusive). A biclustering structure is said to be row exclusive
if Sk ∩ Sk′ = /0 for any k,k′ ∈ {1, · · ·,K},k �= k′; to be column exclusive if
Fk ∩Fk′ = /0 for any k,k′ ∈ {1, · · ·,K},k �= k′; to be exclusive if it is both row
exclusive and column exclusive.

• Overlapping (nonoverlapping). A biclustering structure is said to be overlapping
if some entry ai j belongs to two or more biclusters; otherwise, it is nonoverlap-
ping.

• Exhaustive (nonexhaustive). A biclustering structure is said to be row exhaustive
if any row Si belongs to at least one bicluster; to be column exhaustive if any
column Fj belongs to at least one bicluster; to be exhaustive if it is both row
and column exhaustive. Otherwise, it is said to be nonexhaustive if some row or
column does not belong to any bicluster.

Here, exclusive and overlapping are not opposite to each other, and it can found
from structure 7. The following biclustering structures are based on these three prop-
erties.

Still following the classification of Madeira and Oliveira in [37], the biclustering
structures are identified into following nine groups.

1. Single bicluster. In this single biclustering structure, only one submatrix is found,
i.e., k = 1 and B = {B1 = (S1,F1)}, from A.

2. Exclusive row and column biclusters. Given a data matrix A, as Definition 1
in [5], the structure of exclusive row and column biclusters B = {Bk = (Sk,Fk) :
k = 1,2, · · ·,K} should satisfy the requirements as follows: For rows⎧⎨⎩

Sk ⊆ S,(k = 1, · · ·,K),
S1 ∪S2 ∪·· ·∪SK = S,
Sk ∩Sk′ = /0,k,k′ = 1, · · ·,K,k �= k′,

(6.1)

and for corresponding columns

⎧⎨⎩
Fk ⊆F ,(k = 1, · · · ,K),
F1 ∪F2 ∪·· ·∪FK = F ,
Fk ∩Fk′ = /0,k,k′ = 1, · · ·,K,k �= k′.

(6.2)

In proper rearrangement of rows and columns of data matrix A, the biclusters are
the submatrices in a diagonal way without overlap between any two biclusters.
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3. Checkerboard biclusters. The clusters {Sk : k = 1, · · ·,K} of samples S and the
clusters of {Fk : k = 1, · · ·,K} of features F satisfy the same requirements (Equa-
tions (6.1) and (6.2)) as in structure 2. The set of checkerboard biclusters is

B = {Bkk′ = (Sk,Fk′) : k,k′ = 1, · · ·,K},

i.e., any entry of A is in someone’s biclusters.
Considering each bicluster as an entry, the proper rearrangement matrix of A is
a K ×K matrix with entry Bk,k′ . In some cases, the number of samples’ clusters
Sks do not need to be the same as that of features’ clusters Fks. This will imply
a rectangle not a square matrix.

4. Exclusive rows biclusters. Given a data matrix A, the structure of exclusive rows’
biclusters B = {Bk = (Sk,Fk) : k = 1,2, · · ·,K} should satisfy the requirements
as follows: For rows⎧⎨⎩

Sk ⊆ S,(k = 1, · · ·,K),
S1 ∪S2 ∪·· ·∪SK = S,
Sk ∩Sk′ = /0,k,k′ = 1, · · ·,K,k �= k′,

(6.3)

and for corresponding columns{
Fk ⊆F ,(k = 1, · · ·,K),
F1 ∪F2 ∪·· ·∪FK = F .

(6.4)

Comparing Equations (6.1) and (6.2) in structure 2, requirements for rows are
same, but for columns, Equation (6.4) has no disjoint requirement between Fk

and Fk′ ,k
′ �= k. In this structure, some features (columns) may belong to two or

more biclusters (submatrices), while any sample (row) should belong to exactly
one bicluster (submatrix).

5. Exclusive columns biclusters. Given a data matrix A, the structure of exclusive
columns’ biclusters B = {Bk = (Sk,Fk) : k = 1,2, · · ·,K} should satisfy the re-
quirements as follows: For rows{

Sk ⊆ S,(k = 1, · · ·,K),
S1 ∪S2 ∪·· ·∪SK = S,

(6.5)

and for corresponding columns⎧⎨⎩
Fk ⊆F ,(k = 1, · · ·,K),
F1 ∪F2 ∪·· ·∪FK = F ,
Fk ∩Fk′ = /0,k,k′ = 1, · · ·,K,k �= k′.

(6.6)

Comparing Equations (6.1) and (6.2) in structure 2, requirements for columns
are same, but for rows, Equation (6.5) has no disjoint requirement between Sk

and Sk′ ,k
′ �= k. In this structure, some samples (rows) may belong to two or more

biclusters (submatrices), while any feature (column) should belong to exactly one
bicluster (submatrix).
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6. Nonoverlapping with tree-structured biclusters. For a data matrix A, nonoverlap-
ping means no entry can belong to more than one bicluster. Thus some entries
may not belong to any bicluster. Tree structure means in the proper rearrange-
ment matrix, the blocks of submatrices (biclusters) are not crossing each other.

7. Nonoverlapping nonexclusive biclusters. Nonoverlapping is same as above. Non-
exclusive means a sample or feature can belong to more than one biclusters, and
a sample can belong to two sets of important features in two biclusters, and vice
versa.

8. Nonoverlapping hierarchically structured biclusters. Nonoverlapping is same as
above. Hierarchically structured means a bicluster may belong to some other
“bigger” biclusters, i.e., in the set of biclusters B= {Bk = (Sk,Fk): k = 1,2, · · ·,K}
of data matrix A, there exists some biclusters Bk = (Sk,Fk) and Bk′ = (Sk′ ,Fk′)
such that Sk ⊆ Sk′ or Fk ⊆Fk′ .

9. Arbitrary positioned overlapping biclusters. In the set of biclusters B = {Bk =
(Sk,Fk) : k = 1,2, · · ·,K} of data matrix A, there exists some entry ai j such that
ai j ∈ Bk and ai j ∈ Bk′ with k �= k′. In the meantime, biclusters Bk,Bk′ may share
some common samples or features.

To check the nine biclustering structures, and according to above definitions of
exclusive and exhaustive, structures 1, 2 are exclusive; structure 3 is nonoverlap-
ping; structure 1 is nonexhaustive; structures 2, 3, 4, and 5 are exhaustive; and the
properties for some other structures can be found from its classification. Note that
these structures are not always strict. For example, structures 2, 3, 4, and 5 also have
nonexclusive versions (which will not satisfy above formal requirements), and for
details we refer to [37].

6.3 Biclustering Techniques and Algorithms

In this section, the biclustering techniques and algorithms are divided into several
class based on the methods used for different areas of mathematics, probability,
or other optimization methods. Here we are concentrating on mathematical back-
grounds.

6.3.1 Based on Matrix Means and Residues

For a bicluster Bk = (Sk,Fk), several means based on the bicluster are defined. The
mean of row i of Bk is

μ(r)
ik =

1
|Fk| ∑j∈Fk

ai j, (6.7)

the mean of column j of Bk is
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μ(c)
jk =

1
|Sk| ∑i∈Sk

ai j, (6.8)

and the mean of all the entries in Bk is

μk =
∑i∈Sk ∑ j∈Fk

ai j

|Fk||Sk|
. (6.9)

The residue of the entry ai j in bicluster Bk is

ri j = ai j −μ(r)
ik −μ(c)

jk +μk, (6.10)

the variance of bicluster Bk is

Var(Bk) = ∑
i∈Sk

∑
j∈Fk

(ai j −μk)2, (6.11)

and mean squared residue of the bicluster Bk is

Hk =
∑i∈Sk ∑ j∈Fk

r2
i j

|Fk||Sk|
. (6.12)

The first approach of biclustering by Hartigan [28] is known as block clustering,
with the objective function as

minVar(B) =
K

∑
k=1

Var(Bk) =
K

∑
k=1
∑

i∈Sk

∑
j∈Fk

(ai j −μk)2,

where the number of biclusters is a given number. For each bicluster, the variance
Var(Bk) is 0 if it is constant.

CC. Cheng and Church’s Algorithm (CC) [11] defines a bicluster to be a sub-
matrix for which the mean squared residue score is below a user-defined threshold
δ , i.e., Hk ≤ δ , where δ represents the minimum possible value. To find the largest
bicluster in A, they propose a two-phase strategy: removing rows and columns and
then adding the removed rows and columns with some rules. First, the row to be
removed is the one

argmax
i

1
|Fk| ∑j∈Fk

r2
i j,

and column is

argmax
j

1
|Sk| ∑j∈Sk

r2
i j.

Repeating these removing steps until the bicluster with Hk ≤ δ obtained. Then some
previously removed rows and columns can be added without violating the require-
ment of Hk ≤ δ . Yang et al. [58,59] proposed an improved version of this algorithm
which allows missing data entry of A with a heuristic flexible overlapped clustering
(FLOC) algorithm.
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RWC. Angiulli et al. [1] proposed a random walk biclustering algorithm (RWC)
based on a greedy technique and enriched with a local search strategy to escape
poor local minima. The algorithm starts with an initial random bicluster Bk and
searches for a δ -bicluster by successive transformations of Bk, until a gain func-
tion is improved. The transformations consist in the change of membership (called
flip or move) of the row/column that leads to the largest increase of the gain func-
tion. If a bit is set from 0 to 1 it means that the corresponding sample or feature,
which was not included in the bicluster Bk, is added to Bk. Vice versa, if a bit is set
from 1 to 0 it means that the corresponding sample or feature is removed from the
bicluster.

The gain function combines mean squared residue, row variance, and size of the
bicluster by means of user-provided weights wres,wvar, and wvol(wres +wvar +wvol =
1,0 ≤ wres,wvar,wvol ≤ 1). The gain function is defined as

gain = wres(2Δ res −1)−wvar(2Δvar −1)−wvol(2Δvol −1),

where Δ res,Δvar,Δvol are relative changes of mean squared residue, row variance,
and size between a new bicluster and an old bicluster, respectively. This function
assumes values in the interval [−1,1]. Decreasing wres and increasing wvar and wvol,
biclusters with higher row variance and larger size can be obtained.

6.3.2 Based on Matrix Ordering, Reordering, and Decomposition

The following several biclustering algorithms are based on matrix reordering or
decomposition.

OPSM. Ben-Dor et al. [3] proposed order-preserving submatrix algorithm
(OPSM) for biclustering. A bicluster is defined as a submatrix that preserves the
order of the selected columns for all of the selected rows. In other words, the ex-
pression values of the samples within a bicluster induce an identical linear ordering
across the selected features. Based on a stochastic model, the authors [3] developed
a deterministic algorithm to find large and statistically significant biclusters. This
concept has been taken up in a recent study by Liu and Wang [36] as OP-cluster.

ISA. Ihmels et al. [30] proposed the iterative signature algorithm (ISA) for biclus-
tering. Given the data matrix A, the two matrices As,A f are obtained by normalizing
A such that∑i as

i j = 0,∑i(as
i j)

2 = 1 (mean, variance) for each feature Fj and similarly

for sample Si, ∑ j a f
i j = 0,∑ j(a

f
i j)

2 = 1.
Starting with an initial set of samples, all features are scored with respect to this

sample set and those features are chosen for which the score exceeds a predefined
threshold. In the same way, all samples are scored regarding the selected features
and a new set of samples is selected based on another predefined threshold. The
entire procedure is repeated until the set of samples and the set of features do not
change anymore. Multiple biclusters can be identified by running the iterative sig-
nature algorithm on several initial sample sets.
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xMotif. In the framework proposed by Murali and Kasif [39], biclusters are
defined such that samples are nearly constantly expressed across the selection of
features. In first step, the input matrix is preprocessed by assigning each sam-
ple a set of statistically significant states. These states define the set of valid bi-
clusters: A bicluster is a submatrix where each sample is exactly in the same
state for all selected features. To identify the largest valid biclusters, an itera-
tive search method is proposed that is run on different random seeds, similarly to
ISA.

OREO. DiMaggio Jr. et al. [19] proposed an algorithm of optimal re-ordering
(OREO) of the rows and columns of the data matrix A to biclustering. The idea of
OREO is to optimally rearrange the rows and columns of data matrix A to minimize
the similarities between rows and columns in the rearranged matrix. The algorithm
has three main iterative steps: optimally re-ordering rows (or columns) of the data
matrix; computing the median for each pair of neighboring rows (or columns) in
the final rearranged matrix, sorting these values from highest to lowest and classi-
fying cluster boundaries between the rows (or columns) to obtain submatrices; and
optimally re-ordering the columns (or rows) of each submatrix and computing the
cluster boundaries for the re-ordered columns (or rows) analogous to the second
step.

Here we use rows to reorder, and the authors [19] defined three associated cost
measurement functions between row i and row i′:

cii′ =
m

∑
j=1

|ai j −ai′ j|,
m

∑
j=1

(ai j −ai′ j)
2,

√
∑ j(ai j −ai′ j)2

m
.

The authors [19] use two models to reorder rows in order to minimize the total
similarities between rows of final rearranged matrix: the network flow model and
TSP model, which are ideas from network optimization. In the network flow model,
defining the binary variables

yrow
ii′ =

{
1, if row i is adjacent and above i′ in the final ordering;
0, otherwise,

and two additional ones for the topmost and bottommost rows

y sourcerow
i =

{
1, if row i is the topmost row in the final ordering;
0, otherwise,

y sinkrow
i =

{
1, if row i is the bottommost row in the final ordering;
0, otherwise,

and choosing one of the three associated cost measurement functions, the optimiza-
tion problem is to find solution to binary variables yrow

ii′ ,y sourcerow
i ,y sinkrow

i ,
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min ∑
i
∑
i′

cii′y
row
ii′

s.t. ∑
i �=i′

yrow
ii′ + y sourcerow

i = 1 ∀i

∑
i′ �=i

yrow
ii′ + y sinkrow

i = 1 ∀i

∑
i

y sourcerow
i = 1

∑
i

y sinkrow
i = 1

f sourcerow
i = n · y sourcerow

i ∀i

∑
i′

( f row
i′i − f row

ii′ )+ f sourcerow
i − f sinkrow

i = 1 ∀i

f row
ii′ ≤ (n−1) · yrow

ii′ ∀(i, i′)
f row
ii′ ≥ yrow

ii′ ∀(i, i′)
yrow

ii′ ,y sourcerow
i ,y sinkrow

i ∈ {0,1}.

In the TSP model, the variables are the same as network flow model except including
variables y sourcerow

i ,y sinkrow
i , and the optimization problem is

min ∑
i
∑
i′

cii′y
row
ii′

s.t. ∑
i′

yrow
ii′ = 1 ∀i

∑
i′

yrow
i′i = 1 ∀i

yrow
ii′ ∈ {0,1}.

The two optimization problems induced by the models are mixed integer linear
programming and can be solved by CPLEX [14].

After reordering the rows of data matrix, for rows i and i + 1 in the final
rearranged matrix, the median of each pairwise term of the objective function
φ(ai, j,ai+1, j) is computed by MEDIAN jφ(ai, j,ai+1, j). In [19], top 10% of largest
median values are suggested to be boundaries between re-ordered rows.

nsNMF. Pascual-Montano et al. [43] and Carmona-Saez et al. [8] proposed
a biclustering algorithm based on nonsmooth nonnegative matrix factorization
(nsNMF). The method nsNMF approximates the data matrix A as a product of two
submatrices, W and H. Rows of H constitute basis samples, while columns of W
are basis features. Coefficients in each pair of basis samples and features are used to
sort features and samples in the original matrix, respectively. The biclusters are the
submatrices of the sorted matrix.

Originally, the nonnegative matrix factorization is used to analyze facial im-
ages [35]. The nonnegative matrix factorization (NMF) is to decompose matrix
A = (ai j)n×m into two matrices, i.e.,
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A ≈WH,

where W = (wia)n×k are the reduced k (k ≤ m) basis vectors (factors), and H =
(ha j)k×m contains the coefficients of the linear combinations of the basis vectors
(encoding vectors). All matrices A,W,H are nonnegative and the columns of W are
normalized. Thus, the entry ai j can be expressed as

ai j ≈ (WH)i j =
k

∑
a=1

wiaha j.

Based on Poisson likelihood, the objective function of this factorization is to mini-
mize the divergence function, i.e.,

minD(A,WH) =
n

∑
i=1

m

∑
j=1

(
ai j log

ai j

(WH)i j
−ai j +(WH)i j

)
.

The solution to this objective function of finding W,H uses an iterative algorithm
with random number initialization [8].

The nsNMF method, which will [8] “produce more compact and localized fea-
ture representation of the data than standard NMF” of finding sparse structures in
data matrix, is an improvement of NMF. The nsNMF method introduces a smooth
distribution of the factors to get sparseness, and the decomposition of data matrix A
is

A ≈WSH,

where the matrix S = (1−θ)I +θ eeT

k is a positive smothness matrix, I is the iden-
tity matrix, e is a row vector of k 1s, and θ controls the sparseness of the model,
satisfying 0 ≤ θ ≤ 1. And now the objective function for nsNMF method is

minD(A,WSH) =
n

∑
i=1

m

∑
j=1

(
ai j log

ai j

(WSH)i j
−ai j +(WSH)i j

)
.

When θ = 0, the nsNMF backs to NMF; when θ → 1, the vector SX (X is a
positive nonzero vector) tends to the constant with all elements almost equal to the
average of the elements of X and all entries are equal to the same nonzero value,
which is the smoothest possible vector, in the sense of “nonsparseness.” The al-
gorithm to solve this objective function can be done as the same way of previous
function with small changes [8].

Bimax. Prelic et al. [44] presented a fast-and-conquer approach, binary inclusion-
maximal biclustering algorithm (Bimax). This algorithm assumes that the data ma-
trix A is binary with ai j ∈ {0,1} where an entry 1 means feature j is important in
sample i.

In this algorithm, a named inclusion-maximal bicluster is defined to be Bk =
(Sk,Fk) such that ai j = 1 for any i ∈ Sk, j ∈ Fk, and there does not exist another
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bicluster Bk′ = (Sk′ ,Fk′) of A with ai j = 1 for any entry in Bk′ and Sk ⊆ Sk′ ,Fk ⊆
Fk′ ,(Sk,Fk) �= (Sk′ ,Fk′).

The Bimax algorithm is to find such inclusion-maximal bicluster of A, which is
different from the SAMBA, where 0 entry can be contained in a bicluster. More
specifically, the idea behind the Bimax algorithm is to partition A into three subma-
trices, one of which contains only 0-cells. Therefore, it can be disregarded in the
following. The algorithm is then recursively applied to the remaining two subma-
trices U and V ; the recursion ends if the current matrix represents a bicluster, i.e.,
contains only 1s. If U and V do not share any rows and columns of A, the two matri-
ces can be processed independently from each other. If U and V have a set of rows
in common as shown, special care is necessary to only generate those biclusters in
V that share at least one common column.

6.3.3 Based on Bipartite Graphs

The following two algorithms are based on bipartite graphs since there is a close
relationship between expression matrix of samples and features and weighted bipar-
tite graph.

A bipartite graph is defined as a graph G = (U,V,E), where U,V are two disjoint
sets of vertices, and E is the set of edges between vertices from U and V , while no
edge appears between any two vertices from U or V .

In order to do biclustering problem, the data matrix A can be transformed into
a bipartite graph where each vertex in one set U denotes a sample while vertex
from another set V denotes a feature. The expression level ai j between samples and
features is denoted by the weighted edges (ui,v j) ∈ E between vertices ui ∈U and
v j ∈V with weight wi j = ai j. A bicluster corresponds to a subgraph Hk = (Uk,Vk,Ek)
of G = (U,V,E) where Uk ⊆ U,Vk ⊆ V and Ek ⊆ E and edges in Ek induced by
vertices from Uk,Vk. Thus, the set (S,F ,A) is corresponding to bipartite graph
G = (U,V,E) and the bicluster Bk = (Sk,Fk) is to subgraph Hk = (Uk,Vk,Ek). Some-
times, we may only consider one subgraph of G and denote it as H = (U ′,V ′,E ′).
Clearly, here |U | = n, |V | = m.

Spectral biclustering. The first algorithm of biclustering based on bipartite graph
is called spectral biclustering, proposed by Dhillon [17]. Since this biclustering al-
gorithm has some close relationships, which will be shown later, with spectral graph
theory [13], it got its name spectral biclustering. Before presenting this algorithm,
several matrices are based on A and bipartite graph G = (U,V,E) with edges’ weight
wi j = ai j.

The adjacency weighted matrix of the bipartite graph G = (U,V,E) is expressed
in the form of data matrix A as

W = (wi j)(n+m)×(n+m) =
(

0 A
AT 0

)
,
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and the weighted degree di of vertex ui is defined as di = ∑ j:(i, j)∈E wi j, and the
degree matrix Du = (di j)n×n of the graph is a diagonal matrix as

di j =

{
di, if i = j,

0, otherwise.

Similarly, we can get the degree matrix Dv. The degree matrix of the bipartite
graph G = (U,V,E) is

D =
(

Du 0
0 Dv

)
,

where the diagonal elements of Du and Dv are weighted degree of vertices belonging
to U and V , and all other elements are 0. The Laplacian matrix of the bipartite graph
G = (U,V,E) for data set A is defined as

L = D−W =
(

Du −A
−AT Dv

)
.

The production of spectral clustering is exclusive row and column biclusters.
Therefore, the corresponding subgraphs Hk of G are disjoint with each other. The
weight of edges between such subgraphs is defined as cut. Without loss of generality,
assume there are two subgraphs H1 = (U1,V1,E1) and H2 = (U2,V2,E2) such that
U1 ∪U2 = U,U1 ∩U1 = /0,V1 ∪V2 = V,V1 ∩V2 = /0, and Ei ⊆ E induced all edges
between Ui and Vi. Subgraphs H1 = (U1,V1,E1) and H2 = (U2,V2,E2) are called a
partition of G. The cut of such partition of bipartite graph is the sum of weights of
edges between U1,V2 and U2,V1, i.e.,

cut(H1,H2) = ∑
i ∈U1, j ∈V2,(i, j) ∈ E

and i ∈U2, j ∈V1,(i, j) ∈ E

wi j.

Obviously, the objective of biclustering is to minimize such intersimilarities be-
tween biclusters (subgraphs). At the same time, the similarities within each bi-
cluster should be maximized. The intrasimilarity of bicluster(subgraph) is defined
as ∑k. In order to balance the intersimilarities and intrasimilarities of biclusters,
several different cuts are defined, such as ratio cut [27, 17, 33], normalized cut
[51, 33], minimax cut [60], ICA cut [45]. The most popularly used are ratio cut and
normalized cut.

For a partition H1 = (U1,V1,E1),H2 = (U2,V2,E2) of the bipartite graph G =
(U,V,E), the ratio cut is defined as

cut(H1,H2)
|U1 ∪V1|

+
cut(H2,H1)
|U2 ∪V2|

,

and the normalized cut is defined as
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cut(H1,H2)
dp1

+
cut(H2,H1)

dp2

,

where dp1 = ∑i∈(U1∪V1) di,dp2 = ∑ j∈(U2∪V2) d j.
Define the indicator vector as

yi =

{√
(n2 +m2)/((n1 +m1)(n+m)), i ∈U1 ∪V1,

−
√

(n1 +m1)/((n2 +m2)(n+m)), i ∈U2 ∪V2,

where |U1| = n1, |U2| = n2, |V1| = m1, |V2| = m2, the objective of minimizing the
ratio cut of partition H1 = (U1,V1,E1),H2 = (U2,V2,E2) can be expressed as

min yT Ly,

s.t. yT y = 1,yT e = 0.

Relax y to any real number, the solution is the eigenvector corresponding to the
second smallest eigenvalue of L [13,17]. Thus, after obtaining the indicator for each
vertex of U,V , the corresponding subgraphs can be easily transformed back into
biclusters. Similarly, for normalized cut, define the indicator vector as

yi =

{√
dU2∪V2/(dU1∪V1 d), i ∈U1 ∪V1,

−
√

dU1∪V1/(dU2∪V2 d), i ∈U2 ∪V2,

where dU1∪V1 = ∑i∈U1∪V1
di,dU2∪V2 = ∑ j∈U2∪V2

d j, the objective of minimizing the
normalized cut of partition H1 = (U1,V1,E1),H2 = (U2,V2,E2) can be expressed as

min yT Ly, (6.13)

s.t. yT Dy = 1,yT De = 0. (6.14)

Now the solution of this programming is the eigenvector corresponding to the
generalized eigenvalue problem Ly = λDy [51]. The above programming problems
can be also modeled to mixed integer programming.

For large data matrix A, the solution of its eigenvector problem is very difficult
and a method proposed by [17]. For more details of spectral biclustering, see [22]. In
above, only two biclusters are obtained instead of K ones. For K biclusters, Dhillon
[17] used k-means algorithm [31, 57] after obtaining the indicator vector y, and
another direct approach is from [23] by defining an indicator matrix.

SAMBA. Tanay et al. [54] presented a statistical algorithmic method for biclus-
ter analysis (SAMBA) based on bipartite graph and probabilistic modeling. Under
a bipartite graph model, the weight of each edge is assigned according to a prob-
abilistic model, thus, to find biclusters of A become to find heavy subgraphs of G
with high likelihood. This method is motivated by finding the complete bipartite
subgraph(biclique) of G. The idea of SAMBA has three steps: forming the bipartite
graph and calculating weights of edges and nonedges (two models introduced in
this step: a simple model and a refined model); applying a hashing technique to find
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heaviest bicliques(biclusters) in the graph; and performing a local improvement pro-
cedure on the biclusters in each heap.

Given a data matrix A, the corresponding bipartite graph is G = (U,V,E). A
bicluster corresponds to a subgraph H = (U ′,V ′,E ′) as introduced above. The
weight of a subgraph is the sum of the assigned weights of edges (u,v) ∈ E ′ and
nonedges (u,v) ∈ Ē ′ = (U ′ ×V ′) \E ′. The subgraph with assigned weights has its
statistical significance and finding a bicluster is to search heavy subgraph with re-
spect to the weight of subgraph. There are two models introduced in [54]: a simple
model and a refined model.

In the simple model, let |E|= k, p = k/mn and assume that edges occur indepen-
dently and equiprobability with density p. Let BT (k, p,n), binomial distribution, be
the probability of observing k or more success occurs independently with p, the
probability of observing a graph at least as dense as H is p(H) = BT (k′, p,n′m′),
where k′,n′,m′ are corresponding notations in H = (U ′,V ′,E ′). Finding a maximum
weight subgraph of G is equivalent of finding a subgraph H with lowest p(H). In
the refined model, each edge (u,v) is an independent Bernoulli variable pu,v, which
is fraction of bipartite graphs with degree sequence identical to G that contains edge
(u,v). The probability of observing H is

p(H) =

(
∏

(u,v)∈E ′
pu,v

)⎛⎝ ∏
(u,v)∈Ē ′

(1− pu,v)

⎞⎠ .

In practice, a likelihood ratio is chosen, i.e.,

logL(H) = ∑
(u,v)∈E ′

log
pc

pu,v
+ ∑

(u,v)∈Ē ′
log

1− pc

1− pu,v
,

where pc ≥ max(u,v)∈U×V pu,v, which corresponds to the weight of subgraph H with

weight log pc
pu,v

> 0 of each edge (u,v) and log 1−pc
1−pu,v

< 0 for each nonedge (u,v).
Then a hash technique is applied to solve the maximum biclique problem in order to
find the heavy subgraphs (biclusters). The final step of local improvement iteratively
applies the best modification to the bicluster.

In a recent study of Tanay et al. [53], this SAMBA has been extended to integrate
multiple types of experimental data.

6.3.4 Based on Information Theory

In [18], Dhillon et al. proposed a biclustering algorithm based on information theory.
This information theoretic biclustering algorithm that simultaneously clusters both
the rows and the columns is called co-clustering by Dhillon et al.
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By proper transformation, the data matrix A is to be a joint probability distri-
bution matrix p(S,F) between two discrete random variables S,F . Let K be the
number of disjoint clusters of samples and K′ the number of disjoint features. The
set of biclusters is B = (S′,F′) = ({Sk, : k = 1, · · · ,K},{Fk′ : k′ = 1, · · · ,K′}). The
mappings of CS,CF are objectives to find in this biclustering algorithm such that

CS : {S1,S2, · · · ,Sn}→ {S1, · · · ,SK},

CF : {F1,F2, · · · ,Fm}→ {F1, · · · ,FK′}.
The mutual information I(S,F) of two random variables S,F is the amount of

information shared between these two variables and is defined as in information
theory

I(S,F) =
n

∑
i=1

m

∑
j=1

p(Si,Fj) log
p(Si,Fj)

p(Si)p(Fj)
= D(p(S,F)||p(S)p(F)),

where p(Si,Fj), p(Si), p(Fj) are probabilities from distribution matrix p(S,F), and

D(p1||p2) = ∑x p1(x) log p1(x)
p2(x) is the relative entropy between two probability dis-

tributions p1(x) and p2(x).
The objective of this biclustering is to find optimal biclusters of A such that the

loss in mutual information is minimized, i.e.,

min I(S,F)− I(S′,F′).

In order to solve this objective function, q(x,y) = p(x′,y′)p(x′,y′)p(x|x′)p(y|y′)
is defined so that the objective function can be written as

min I(S,F)− I(S′,F′) = D(p(S,F)||q(S,F)).

For proof of this result, we refer to [18]. Then an iterative way is used to solve
by transformed the objective function [18].

6.3.5 Based on Probability

The following two biclustering algorithms (named as BBC and cMonkey) use the
theory of probability.

BBC. Gu and Liu [26] proposed a Bayesian biclustering model (BBC) and im-
plemented a Gibbs sampling [34] procedure for its statistical inference. This model
can also consider an implementation of plain model [50] of biclustering.

Given data matrix A, assume the entry

ai j =
K

∑
k=1

((μk +αik +β jk + εi jk)δikκ jk)+ ei j

(
1−

K

∑
k=1

δikκ jk

)
,
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where μk is the main effect of bicluster k, and αik and β jk are the effects of sample i
and feature j, respectively, in bicluster k, εi jk is the noise term for bicluster k, and ei j

models the data points that do not belong to any bicluster. Here δik,κ jk are binary
variables: δik = 1 indicates that row i belongs to bicluster k, and δik = 0 otherwise;
similarly, κ jk = 1 indicates that column j is in cluster k, and κ jk = 0 otherwise.
In plain model [50], the entry ai j has similar assumption with less factors to be
considered.

In nonoverlapping feature biclustering,∑K
k=1κ jk ≤ 1, and in nonoverlapping sam-

ple biclustering,∑K
k=1 δ jk ≤ 1. Here, nonoverlapping sample is discussed. The priors

of the indicators κ and δ are set so that a feature can be in multiple biclusters while
sample is at more than one.

In this model, an observation ai j can belong to either one or none of the biclusters,
and the probability distribution of ai j conditional on the bicluster indicators can be
rewritten as

ai j|δik = 1,κ jk = 1 ∼ N(μk +αik +β jk,σ2
εk)

if ai j belongs to bicluster k; otherwise,

ai j|δikκ jk = 0 for all k ∼ N(0,σ2
e ).

With Gaussian zero-mean priors on the effect parameters, the marginal distribu-
tion of the ai j conditional on the indicators is

B|δ ,κ ∼ N(0,Σ),

where Σ is the covariance of matrix of B and B = {B0,B1,B2, · · · ,BK}T with Bk =
{ai j : δikκ jk = 1},k ≥ 1 and B0 being the vector of data points belonging to no
bicluster. More specifically, Σ is a sparse matrix of the form

Σ =

⎛⎜⎜⎜⎝
σ2

e I 0 · · · 0
0 Σ1 · · · 0
...

...
. . .

...
0 0 · · · ΣK

⎞⎟⎟⎟⎠ ,

where Σk = Cov(Bk,Bk) is the covariance matrix of all data points belonging to
cluster k.

To make inference form above BBC model, the implemented Gibbs sampling
method is used. Initializing from a set of randomly assigned values of δ ’s and κ’s,
the column indicators κ are sampled by calculating the log-probability ratio

log
P(V2|κ jk = 1,σ2

μk,σ
2
αk,σ

2
βk,σ

2
εk,σ

2
e )P(κ jk = 1)

P(V2|κ jk = 0,σ2
μk,σ

2
αk,σ

2
βk,σ

2
εk,σ2

e )P(κ jk = 0)
,

where V1 = {ail : δik = 0 or κlk = 0, l �= j}, the set contains data points not in cluster
k, and V2 = {ail : δik = 1,κlk = 1, l �= j}∪{ai j:δik = 1}, the set contains data points
that are or can in bicluster k. This notation follows that in [26].
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In order to calculate the likelihood term in the above ratio, we need to take the
inverse and determinant of the covariance matrices for the vector V2 in both cases.
For details of rest of BBC algorithm, we refer to [26].

cMonkey. Reiss et al. [46] proposed an integrated biclustering algorithm (named
cMonkey) used in heterogeneous genome-wide data sets for the inference of global
regulatory networks. In this model, each bicluster is modeled via a Markov chain
process, in which the bicluster is iteratively optimized, and its state is updated
based upon conditional probability distributions computed using the cluster’s pre-
vious state. Three major distinct data types are used (gene expression, upstream
sequences, and association networks), and accordingly p-values for three such
model components are computed: the expression component, the sequence com-
ponent, and the network component. Here we only reviewed the expression
component.

Given the expression data matrix A, the variance in the measured levels of feature
j is σ2

j = 1
n ∑

n
i=1(ai j − ā j)2, where ā j = ∑n

i=1 ai j/n. The mean expression level of

feature j over the bicluster’s samples Sk is ¯a jk = μ(r)
ik as defined previously. As

defined in [46] the likelihood of an arbitrary measurement ai j relative to this mean
expression level is

p(ai j) =
1√

2π(σ2
j + ε2)

exp

[
− (ai j − ¯a jk)2 + ε2

2(σ2
j + ε2)

]
,

where ε for an unknown systematic error in condition j, here assumed to be the
same for all j. The likelihood of the measurements of an arbitrary sample i among
the conditions in bicluster k is p(Si) =∏ j∈Fk

p(ai j), and similarly the likelihood of
a feature j’s measurements is p(Fj) =∏i∈Sk

p(ai j).
Before the following iterative steps, the Markov chain process by which a bi-

cluster is optimized requires “seeding” of the bicluster to start the procedure. The
iterative steps include searching for motifs in bicluster, computing conditional prob-
ability that each sample/feature is a member of the bicluster, and performing moves
sampled from the conditional probability.

6.3.6 Comparison of Biclustering Algorithms

Since the biclustering algorithms are designed based on different bases and used in
different data, and the requirements are different for different applications, there is
no standard rule to judge which biclusters produced are better. In [44], Prelic et al.
defined match score of two clusters Si,S′

i of samples as

S(B1,B2) =
|Si ∩S′

i|
|Si ∪S′

i|
,
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and match score between two sets B,B′ of biclusters for matrix A as

S∗(B,B′) =
1
|B| ∑

(Si,Fi)∈B
max

(S ′
i,F ′

i)∈B′

|Si ∩S′
i|

|Si ∪S′
i|
,

which reflects the average of the maximum match scores for all biclusters in B with
respect to the biclusters in B′.

In [44], Prelic et al. used this score to comparing the algorithms of Bimax, CC,
OPSM, SAMBA, xMotifs, and ISA with respect to the data set of a metabolic path-
way map. And in [12], Cho and Dhillon also use this score to compare several
biclustering algorithms on human cancer microarrays data sets.

6.4 Application of Biclustering in Computational Neuroscience

Epilepsy is one of the most common nervous system disorders. It affects about
1% of the world’s population with the highest incidence among infants and the el-
derly [20,21]. For many years there have been attempts to control epileptic seizures
by electrically stimulating the brain [25]. This alternate method of treatment is the
subject of much study since the approval of the chronic vagus nerve stimulation
(VNS) implant for treatment of intractable seizures [56, 24, 49]. The device con-
sists of an electric stimulator implanted subcutaneously in the chest and connected,
via subcutaneous electrical wires, to the left cervical vagus nerve. The VNS is pro-
grammed to deliver electrical stimulation at a set intensity, duration, pulse width,
and frequency. Optimal parameters are determined on a case-by-case basis, depend-
ing on clinical efficacy (seizure frequency) and tolerability.

Busygin et al. used supervised consistent biclustering [6] to develop a physio-
logic marker for optimal VNS parameters (e.g., output current, signal frequency)
using measures of scalp EEG signals.

The raw EEG data was obtained from two patients A and B at 512 Hz sam-
pling rate from 26 scalp EEG channels arranged in the standard international 10–20
system (see Fig. 6.1). Then the EEG was transformed into a sequence of short-
term largest Lyapunov exponents (STLmax) values. A famous practical applica-
tion of STLmax measure of EEG signal time series is to predict epileptic seizures,
see [29,41,42]. Thus, Lyapunov exponents are considered to be a perfect descriptor
of such extremely complex dynamic system as human brain.

STLmax values were computed for each scalp EEG channel recorded from two
epileptic patients using the algorithm developed by Iasemidis et al. [29]. Then the
STLmax values were used as features of the two data sets. The averaged samples
from stimulation periods were then separated from averaged samples from nonstim-
ulation periods by feature selection performed within the consistent biclustering
routine.
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Fig. 6.1: Montage for scalp electrode placement.

As each stimulation lasted for 30 s and a 4-s time window was used to compute
one element of the Lyapunov exponent time series, each stimulation provided seven
data points. Since the EEG patterns of a patient may have been changing throughout
the observed period due to changes in his/her conditions not relevant to the inves-
tigated phenomenon, each of the seven samples across all stimulation cycles were
averaged. Thus, seven Lyapunov exponent samples have been created to represent
the positive class. To create the negative class, 10 Lyapunov exponent data points
were considered 250 s after each stimulation. In the similar way, these 10 samples
were averaged across all stimulation cycles. So, the created negative class contains
10 averaged Lyapunov exponent data samples from nonstimulation time intervals.

Then, the biclustering experiment was done on two 26× 17 matrices represent-
ing patients A and B. The patient A data were conditionally biclustering admitting
with respect to given stimulation and nonstimulation classes without excluding any
features. All but one feature were classified into the nonstimulation class, which in-
dicates that for almost all EEG channels the Lyapunov exponent was consistently
decreasing during the stimulation with one channel being the only exception.

Cross-validation was performed for the obtained biclustering by leave-one-out
method examining for each sample whether it would be classified in the appropriate
class if the feature selection was performed without it. It turned out that all classes
of all 17 samples are confirmed by this method.

To make the patient B data set conditionally biclustering admitting with respect
to given stimulation and nonstimulation classes only five features were selected. The
one-leave-out experiment classified correctly all but four samples. The biclustering
heatmaps are presented in Fig. 6.2.

The obtained biclustering results allow to assume that signals from certain parts
of the brain consistently change their characteristics when VNS is switched on
and could provide a basis for desirable VNS stimulation parameters. A physiologic
marker of optimal VNS effect could greatly reduce the cost, time, and risk of cal-
ibrating VNS stimulation parameters in newly implanted patients compared to the
current method of clinical response.
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Fig. 6.2: Heatmaps for patients A and B.

6.5 Conclusions

In this review, the formal definitions of biclustering with its different types and
structures are given and the algorithms are reviewed in mathematical prospective.

Biclustering is recently a hot research area with its applications in bioinformat-
ics. Other application areas are text mining, marketing analysis, etc. In practical
applications, some problems, such as the data missing, the noise of data, and data
processing, influence a lot to the results of biclustering. Besides, the comparisons of
biclustering algorithms are still another direction to be studied.
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Chapter 7
A Genetic Classifier Account for the Regulation
of Expression

Tsvi Achler and Eyal Amir

Abstract This work is motivated by our model of neuroscience processing which
incorporates large numbers of reentrant top-down feedback regulation connections.
Such regulation is fundamental and can be found throughout biology. The purpose
of this chapter is to broaden this model’s application.

Genes perform important life functions, responsible for virtually every organic
molecule that organisms produce. The genes must closely regulate the amount of
their products, because too little or too much production may be deleterious for the
organism. Furthermore, they must respond efficiently and in unison to the environ-
ments that the organism faces. Networks that are closely regulated can behave as
robust classifiers which can recognize and respond to their environment. Using sim-
ple examples we demonstrate that such networks perform dynamic classification,
determining the most efficient set of genes needed to replace consumed products.

7.1 Introduction

7.1.1 Motivation

Genes working together are involved in the production and regulation of proteins
and precursors necessary to maintain life. These genetic networks must self-regulate
their expression in order to produce the correct products in practical amounts. The
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focus of this chapter is on network-wide coordination through a simple control
mechanism at every gene.

A basic assumption of the genetic model of expression is that each gene is closely
regulated by its products. If the rate of consumption of a gene’s product exceeds the
rate of production, more is produced. If little is consumed, less is produced. How-
ever, production pathways are complex. Products can share pathways of consump-
tion or production. For example, different products may require similar enzymes.
Some molecules can be converted to common precursors. A product can contribute
to or be produced by separate pathways and consumed for different purposes. For
regulation to be effective the expression of the genes whose products intermix must
be coordinated. The hypothesis is that genes interact and regulate each other through
their common products. Yet each gene is regulated by a simple control mechanism.
Such networks show complex coordination, perform recognition, and have been pre-
viously described in the context of neuroscience [3, 4].

It is demonstrated that if a protocol of regulation is preserved, regulation can form
a genetic classifier. The classifier monitors product consumption and finds the most
efficient configuration of genes to replace the products. This configuration mini-
mizes the amount of unused products and responds to environmental demands. A
fundamental understanding of these regulatory mechanisms can guide experiment
design, reveal methods to control gene expression, and advance genetic therapy
approaches.

7.1.2 Background

Complex interactions occur between the genes and the cellular environment they
control. Genes not only autoregulate their expression but interact with each other via
numerous mechanisms within the process of converting DNA to final proteins. Gene
regulatory networks integrate multiple signals to determine protein production. Ex-
pression is ultimately regulated by concentrations of products and intermediaries of
metabolic pathways.

Understanding genetic-protein structure and dynamics relationships in networks
is a major goal of complex systems research [8]. Although numerous relationships
between specific structural and dynamical aspects of network components have been
investigated [5,6,10], general principles behind such relationships are still unknown
[9]. Thus a high degree of regulation occurs throughout genetic-protein production
pathways, but many aspects are unclear.

Instead of direct gene-to-gene interactions (i.e., gene1 promotes or inhibits
gene2), our model focuses on a gene–product axis. Suppose gene1 and gene2 share
the same product or pathway. The genes also share regulation. A gene’s regulation of
its product will affect the other gene that regulates that product. All genes that regu-
late the same product reach a communal equilibrium. Any change in the communal
equilibrium changes the expression of multiple genes. Gene–product regulation es-
tablishes indirect and nonlinear gene-to-gene interactions. With these interactions a
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system emerges that is sufficient to implement a recognition system [3, 4, 2]. The
properties of such genetic regulatory networks are investigated.

7.2 Model and Methods

This section describes the structure, function, and equations of the genetic regula-
tion model.

7.2.1 Basic Assumptions

The role of a gene promoter is to measure the amount of product available and deter-
mine gene expression levels. The most important assumption, on which this model
builds upon, is that each promoter aims to produce a fixed amount of product. If too
much product is consumed, the promoter signals more product must be expressed. If
too little is consumed, the promoters signal less to be expressed. A gene that affects
multiple products is regulated by those products. Thus, every input–output relation
is regulated by feedback.

A classifier based on feedback can be surprisingly powerful [3,4]. This structure
maintains its simplicity in large networks but can still make complex recognition
decisions based on distributed processing.

7.2.2 Model Structure

The proposed tight association between genes and products and promoters is de-
picted in Fig. 7.1.

y1

x1 x2

y4y3y2

f2f1
Promoters: fi

Genes: yi

Production Feedback 

Products: xi

Fig. 7.1: Self-regulation. If y1 and y2 affect x1 then f1 monitors x1 and regulates y1

and y2. Similarly if y1, y2, y3, and y4 affect x2 then f2 monitors x2 and regulates y1,
y2, y3, and y4.
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Every product x has a corresponding promoter “ f ,” which samples the concen-
tration of x and accordingly regulates the genes associated with product x. The pro-
moter modulates the gene’s expression y based on function x/f .

The tight association creates a situation where the only way a gene can be fully
promoted by a promoter, say f1, is if it is the only active gene that affects product
x1 (reducing f1). Each promoter maintains equilibrium of its product regardless
of the state of other promoters. However, multiple promoters can affect a gene’s
expression.

If several genes affect the same product, no gene will be fully promoted by the
amount the product is consumed. For example, if two genes affect the same product,
the promoters each uses will not be available for the other. In this way they “inhibit”
each other through the product’s promoter, forcing these genes’ promotion to be
mediated through other promoters from other processes.

The more products two genes mutually interact with, the more they will blunt
each other’s promoters. The less products genes mutually affect, the less their pro-
moters will mutually interfere, and the more “parallel” or independent these genes
can be.

The network dynamically evaluates gene expression by

1. Determining promoter activity based on product concentration.
2. Modifying gene expression based on the promoter.
3. Redetermining promoter activity based on new product concentration.

Steps 1–3 are continuously cycled through expression, promoters, and products.

7.2.3 Model Equations

This section introduces the nonlinear equations governing this network. For any
gene y denoted by index a, let Na denote all products that gene ya affects. Let na

denote the number of products gene ya affects. For any product x denoted by index
b, let Mb denote all genes that affect xb. The total amount of expression of product
xb is Yb, which is the sum of expression from all genes that affect product xb.

Yb = ∑
j∈Mb

y j(t) (7.1)

Efficacy of promoter fb is determined by consumption of xb and the overall pro-
duction of xb:Yb. This is determined by

fb =
xb

Yb
(7.2)

The expression of ya is dependent on its previous expression and its promoters.
The equations are designed so that gene expression is proportional to the amount of
product consumed and inversely proportional to their promoters based on product
consumption and also depends on their previous expression levels [2,1]. Describing
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these equations with engineering control theory nomenclature, feedback regulation
is “negative,” stabilizing feedback.

ya(t +dt) =
ya(t)

na
∑

i∈Na

fi =
ya(t)

na
∑

i∈Na

⎛⎜⎝ xi

∑
j∈Mi

y j(t)

⎞⎟⎠ (7.3)

7.2.4 Stability

Stability of related equations has been previously analyzed [7]. If nonlinear equa-
tions are bounded and well behaved locally, they remain stable. In this model, all
variables are limited to positive values. Thus the values of y cannot become negative
and have a lower bound of 0. The upper values of y are bounded as well. The expres-
sion value of gene ya will be greatest if all of its promoters fi are maximized. The
promoters will be maximized if genes coactivated by that promoter are not active.
Assuming this is the case then the equation simplifies to

ya(t +Δt) ≤ 1
na
∑

i∈Na

(
ya(t) · xmax

ya(t)

)
=

1
na
∑

i∈Na

xmax ≤
xmax ·na

na
= xmax (7.4)

If maximum consumption xmax is bounded by 1, then ya expression is bounded by
1. The values are bounded by positive numbers between zero and the consumption
level. Thus they satisfy boundary conditions and are well behaved. Furthermore as
dt → 0, Lyapunov functions can be written. This indicates that the networks will set-
tle to a steady state and not display chaotic oscillations. Numerical simulations also
show the equations are well behaved and several cases of gene–product interactions
are demonstrated.

7.3 Results

This system attempts to replace consumed products through a minimum amount of
overall gene expression. Several configurations of genes are analyzed to illustrate
how the system interacts with different patterns of product consumption.

7.3.1 Composition by Overlap of Nodes

7.3.1.1 Complete Overlap

Given that two genes lead to the same product but one of them also leads to another
product, how do they respond to consumption patterns to minimize expression? In a
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Network Shorthand 

x1 x2 x1 x2

f2f1

y1 y2 y1 y2Genes: 

Products: 

Promoters

Fig. 7.2: Example 1, simple network with two genes. With feedforward and feed-
back connections included (left). Equivalent configuration redrawn with bidirec-
tional connections (right).

simple example, Example 1 (Fig. 7.2), if genes y1 and y2 lead to product x1, then by
definition the x1 promoter f1 affects genes y1 and y2. Similarly if gene y2 leads to
product x2, gene y2 is additionally regulated by product x2. Thus gene y1 is regulated
by product x1 and gene y2 is regulated by products x1 and x2. Due to the feedback
model, the activation of gene y1 can depend on the level of product x2, because
if products x1 and x2 are consumed equally, then gene y2 will be promoted at the
expense of gene y1.

The network is evaluated until it settles onto a steady state. The solutions are pre-
sented as (products consumed) → (genes expressed). Since there are two products
and two genes in Example 1, the solution is written in the form (x1, x2) → (y1, y2).

The steady-state solution for Example 1 is (x1, x2)→ (y1 = x1−x2, y2 = x2). The
mathematical equations and their derivation follow:

y1(t +dt) =
y1(t)x1

y1(t)+ y2(t)
, y2(t +dt) =

y2(t)
2

(
x1

y1(t)+ y2(t)
+

x2

y2(t)

)
. (7.5)

The network solution at steady state is derived by setting y1(t + dt) = y1(t) and
y2(t + dt) = y2(t) and solving these equations. The solutions are y1 = x1 − x2 and
y2 = x2. If x1 ≤ x2 then y1 = 0 and the equation for y2 becomes y2 = x1+x2

2 .
This solution demonstrates efficient outcomes where minimal products are wasted.

Neither x1 nor x2 is produced if they are not needed. For example, when products
x1 and x2 are equally consumed (x1 = x2) then gene y2 is expressed and gene y1 is
silenced. This occurs because x1 and x2 equally usurp promoter f1. From the per-
spective of the genes, gene y1 has all of its promoters reduced when f1 is usurped,
while gene y2 still has an independent promoter f2. Gene y2 expression becomes
preferred and in the process inhibits gene y1. The final result is that if product x2 is
not consumed, gene y2 is not expressed.

If only product x1 is consumed (x2 = 0) then only gene y1 is expressed avoiding
extraneous products. There are consumption patterns where this configuration is
not efficient. For example, if only product x2 is consumed (x1 = 0) then only y2 is
expressed but extraneous product x1 is produced.
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7.3.1.2 Incomplete Overlap

What happens if there are no efficient configurations? In these cases genes may not
completely dominate. In Example 2 (Fig. 7.3), gene y1 is replaced by gene y3. Genes
y2 and y3 can equally affect product x2, but also affect independent products x1 and
x3, respectively. If only product x2 is consumed, or products x1 − x3 are consumed
equally, either gene y2 or gene y3 can lead to the needed product x2. However, in
either case, there will be some extraneous products that are not consumed. Genes
that lead to two products cannot express only one product. The simulations reflect
this imbalance and the solution is more complicated. The mathematical solutions are

(x1,x2,x3) →
(

y1 =
x1(x1 + x2 + x3)

2(x1 + x3)
,y2 =

x3(x1 + x2 + x3)
2(x1 + x3)

)
(7.6)

x1 x2 x3

Genes: 

Products: 

y2 y3

Fig. 7.3: Example 2.

When inputs are (1, 1, 1) the output cells become (3/4, 3/4). Furthermore, if only
the middle input is active (0, 1, 0) then the forces on both cells are symmetrical, the
equation collapses to 2(y1 +y2) = x2 and the solution depends on initial conditions.
Thus either gene can express x2, and there is no preference between the genes.

7.3.2 Multiple Gene Scenarios

7.3.2.1 Three Genes

Given multiple genes with overlapping products how can they promote or inhibit
each other’s expression based on consumption patterns? Example 3 (Fig. 7.4) is
composed of Examples 1 and 2 combined. Now three genes share products. A third
gene y3 is introduced which leads to products x2 and x3 (and regulated by products x2

and x3). This example demonstrates how genes can interact in a distributed fashion.
In this configuration genes y1 and y3 can together turn off the expression of gene y2.

Equation analysis: equation y1(t +dt) remains the same as Example 1. y2(t +dt)
and y3(t +dt) are given by
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Genes: 

Products: x1 x2 x3

y2y1 y3

Fig. 7.4: Example 3.

y2(t +dt) =
y2(t)

2

(
x1

y1(t)+ y2(t)
+

x2

y2(t)+ y3(t)

)
, (7.7)

y3(t +dt) =
y3(t)

2

(
x2

y2(t)+ y3(t)
+

x3

y3(t)

)
The steady-state solution limited to positive gene expression values is

(x1,x2,x3) → (y1 = x1 − x2 + x3,y2 = x2 − x3,y3 = x3). (7.8)

If x2 ≤ x3 then y2 = 0 and the equations become
(
x1,0, x2+x3

2

)
. If x3 = 0 the

solution becomes that of Example 1: (x1, x2, 0) → (x1 − x2, x2, 0).
Similar to Example 1, if product x1 is consumed, gene y1 is expressed. If only

products x1 and x2 are consumed equally, then gene y2 is expressed. The underlying
mechanisms remain the same as Example 1.

However, unlike Example 2, this configuration now has an efficient configura-
tion for the case where products x1, x2, and x3 are equally consumed. With equal
consumption genes y1 and y3 are expressed equally (1, 1, 1) → (1, 0, 1) and gene
y2 expression turned off. This expression pattern most efficiently replaces this con-
sumption pattern with the least amount of extraneous products.

This case demonstrates that information travels indirectly “through” the promot-
ers based on gene structures. Given equal consumption of x1 and x2, expression of
y1 is determined by consumption of x3 through y3. If x3 is not consumed (its value
is 0), then gene y1 is not expressed. If x3 is consumed, y1 becomes active. However,
x3 is not directly affected by y1, and the product affected by y1(x1) is not directly
expressed by y3. Thus genes can cooperate and function in groups, choosing the best
single gene or gene combination that efficiently replaces the consumption pattern.

7.3.3 Composition by Infinite Chains

What are the limits of these interactions? The behavior of an infinitely large num-
ber of genes with overlapping products is analyzed. No matter how many genes
are linked, this genetic model attempts to match the product consumption with the
most efficient gene expression configuration. To demonstrate this, gene networks are
composed of chained subunits linked at infinitum. The promoters and genes interact
indirectly by transferring their dynamic activation through the chain.
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7.3.3.1 Chain of Genes Including A 1-Product Gene

Consider the case where there are N two-product genes that are connected in a
chain shown in Fig. 7.5. This configuration includes a 1-product gene similar to
Examples 1 and 3. Suppose all products are consumed equally, for example, all
have the value 1. The network will find the most efficient configuration of expression
where no extraneous products are created. These configurations may change based
on the properties of the links. For example, suppose there are N gene links. If N is
an odd number then gene y1 will express its single product and every second gene
will express their products. The genes interspersed in between will be turned off (0).
If N is even, y1 will be turned off and the even genes expressed (1) and odd ones
turned off. If i and j represent gene indexes the general solution becomes

(x1,xi, · · · ,xN) →
(
∑

i≤ j≤N
(−1) jx j, · · · ,xN

)

y y2 yn

…
x1 x2 xn–1 xn

With a 1-Product Gene (y1)

Fig. 7.5: Example 4a.

For example, with four genes chained, N = 4 : (1,1,1,1) → (0, 1, 0, 1). With
five genes chained N = 5 : (1,1,1,1,1) → (1, 0, 1, 0, 1). If the concentrations of x
are such that y < 0, the chain breaks at that gene and the rest of the links behave as
smaller independent chains from that point (see Section 7.3.4).

7.3.3.2 Chain of Genes Without A 1-Product Gene

If a one product gene is not available, then the network does not have a favorable set
of genes to resolve an odd number of products. Two-product genes cannot produce
an odd number of products. The configuration with three products was presented in
Example 2. In case of four inputs (even) distributed over three genes the solution
becomes(

x1(ΣX)
2(x1 + x3)

,
−(ΣX)(x1x4 − x3x2)
2(x1 + x3)(x2 + x4)

,
x4(ΣX)

2(x2 + x4)

)
where ΣX = x1 + x2 + x3 + x4.
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When all products are consumed, all x′s = 1, the cells settle on a binary solution
(1, 0, 1). Thus simple solutions can be found as long as there is an even number of
products consumed. Cases with N > 4 genes become progressively complicated to
solve and beyond the scope of this chapter (Fig. 7.6).

2-Product Genes Only
y4y2 y3

x1 x2 x3 x4

Fig. 7.6: Example 4b.

7.3.4 Subchains

If a product in the chain is not consumed, this can break the chain into independent
components composed of the right and left parts of the chain from the unconsumed
product. These chains can function as smaller chains. For example, if product x6 = 0,
the chains involving genes y1−6 and y6−N become independent. Thus gene expres-
sion patterns are determined by distributed product-promoter dynamics involving
consumption and gene structures. Further analysis remains for future research.

7.4 Discussion

This theory shows that highly regulated genes can affect one another and form a
classification system. The recognition system configures the expression of multiple
genes to efficiently minimize extraneous products. This chapter serves as a demon-
stration of this concept. Though details of the molecular mechanisms have been
abstracted, this model suggests methods to control gene expression by artificially in-
troducing products. Genetic data indicating shared promoter regions between genes
may predict which genes compete.

Suppose a patient has a deleterious gene. Though still highly speculative, this
model suggests that introducing artificial products which match a gene’s regulation
pattern may change the deleterious gene’s expression. Through gene competition,
artificial products may be introduced to favor other native genes which share the
same production pathway and will turn off the deleterious gene.
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Alternatively, if a gene has been artificially inserted but its products are not suf-
ficiently expressed, it may be possible to inhibit native genes. This can be achieved
by introducing protein products to match product patterns of the native genes.

Lastly, since promoters are distributed across genes, this system reveals how
copied genes can integrate into the genome while still being closely regulated.

In summary, this chapter outlines the concept and implications of regulatory feed-
back systems that maintain homeostasis and explores their systematic properties.
This model suggests speculative methods to control gene expression by manipulat-
ing shared molecular pathways.
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Chapter 8
Neuroelectromagnetic Source Imaging of Brain
Dynamics

Rey R. Ramı́rez, David Wipf, and Sylvain Baillet

Abstract Neuroelectromagnetic source imaging (NSI) is the scientific field devoted
to modeling and estimating the spatiotemporal dynamics of the neuronal currents
that generate the electric potentials and magnetic fields measured with electromag-
netic (EM) recording technologies. Unlike functional magnetic resonance imaging
(fMRI), which is indirectly related to neuroelectrical activity through neurovascu-
lar coupling [e.g., the blood oxygen level-dependent (BOLD) signal], EM measure-
ments directly relate to the electrical activity of neuronal populations. In the past few
decades, researchers have developed a great variety of source estimation techniques
that are well informed by anatomy, neurophysiology, and the physics of volume con-
duction. State-of-the-art approaches can resolve many simultaneously active brain
regions and their single trial dynamics and can even reveal the spatial extent of local
cortical current flows.

8.1 Introduction

NSI methods model and estimate the spatiotemporal dynamics of neuronal currents
throughout the brain as accessed by noninvasive and invasive surface measurements
such as electroencephalography (EEG), magnetoencephalography (MEG), and elec-
trocorticography (ECoG) [6, 22, 30, 31].
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Like all imaging modalities, NSI is an endeavor that encompasses a great vari-
ety of multidisciplinary knowledge: modeling the neural electrophysiology of cell
assemblies, neuroanatomy, bioelectromagnetism, measurement technology, denois-
ing, reconstruction of time-resolved brain current flows from original sensor data,
and subsequent multidimensional analysis and interpretation in the spatial, tempo-
ral, spectral, and connectivity domains.

This chapter is an attempt to assemble these otherwise disparate elements in a
principled manner to provide the reader an in-depth overview of this exciting evolv-
ing field – with an emphasis on estimation techniques – that let us access functional
imaging at the speed of brain.

8.1.1 Neuronal Origins of Electromagnetic Signals

The measured EM signals that are generated by the brain are thought to be due
primarily to ionic current flow in the apical dendrites of cortical pyramidal neurons
and their associated return (a.k.a., volume) currents throughout the head tissues, i.e.,
the volume conductor [62, 63].

The unique architecture of each neural cell conditions the paths taken by both
the synaptically driven and intrinsic tiny intracellular currents that sum up vectori-
ally throughout the neuron to produce the dynamic net current generated by each
cell. This summation results in a significant net current at the cellular level if the
dendrites are organized along a single preferential direction rather than in a radial
shape. Furthermore, when multiple adjacent neurons with similar morphologies are
synchronously active, their cellular net currents constructively add up to produce
a group current density effect at the cell assembly level. For these reasons, assem-
blies of pyramidal cells in neocortical layers II/III and V are considered to be the
main sources of EM surface signals detected remotely. Neurons that have dendritic
arbors with closed field geometries (e.g., interneurons) are thought to produce no ex-
ternally measurable EM signals [37]. However, some non-pyramidal neurons such
as the Purkinje cells of the cerebellar cortex have been evidenced to generate EM
signals measurable at some distance [57].

Recent quantitative investigations using realistically shaped computer models of
neurons suggest that EM signals generated by neocortical columns made of as few as
50,000 pyramidal cells could be detectable outside the head and on the scalp. These
models also suggest that the contribution of intracellular currents due to voltage-
dependent ion channels involved in fast spiking activity might well be larger than
formerly expected, which supports the experimental evidence of high-frequency
brain oscillations (>100 Hz) detected from surface signals [54].

Although still somewhat controversial, there is cumulative evidence that activity
within deeper brain structures, such as the basal ganglia, amygdala, hippocampus,
brain stem, and thalamus [76, 96, 88, 42, 4], may be detected remotely. However,
single neurons produce weak fields, and if the current flow is spatiotemporally in-
coherent (e.g., a local desynchronization) the fields end up canceling. Thus, EM
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recordings are particularly suited for studying spatiotemporally coherent and locally
synchronized collective neural dynamics. There is a limit to how much current den-
sity a patch of cortex can support [62], thus large amplitude fields/potentials entail
distributed synchronized oscillations.

From a practical standpoint, signals may be contaminated by EM artifacts orig-
inating from the heart, muscles, eyes, and the environment. These sources of per-
turbation to the estimation of neural currents can be attenuated and/or corrected
using appropriate denoising techniques. These include noise cancelation using fil-
ters in the temporal, spatial, and frequency domains (see Section 12.3 and [6] for a
review).

8.2 Measurement Modalities

All the EM recording techniques share the important benefit of high sampling rates
during acquisition (up to 5 KHz on several hundreds of channels). However, they
measure different, yet closely related physical quantities at different spatial scales.
In principle, the inverse modeling methods described here can be applied to data
acquired using MEG, EEG, ECoG, and combinations of these measurement modal-
ities. A prerequisite is the modeling of source currents, tissue geometry and conduc-
tivity, and sensor technology. This has yield an abundant literature in the domain of
forward modeling techniques, which is reviewed in Section 8.4.4.

8.2.1 Magnetoencephalography (MEG)

In MEG, an array of sensors is used to noninvasively measure components of the
magnetic vector field surrounding the head [31, 97]. The magnetic fields generated
by neurons are extremely weak and range by about a billion times smaller than
the Earth’s static magnetic field. This low signal-to-noise ratio (SNR) challenged
the early development of MEG technology. The first magnetoencephalogram was
recorded with a single heavily wounded coil [12]. Not long after, the superconduct-
ing quantum interference device (SQUID) was invented [103]. This extremely sen-
sitive magnetometer (consisting of a superconducting loop with one or two Joseph-
son junctions), coupled to a pickup coil via a flux transformer, allowed for the first
low-noise MEG recordings by the early 1970s [13]. For a thorough overview of
SQUID electronics and modern integrated thin-film magnetometers and gradiome-
ters, see [31]. Importantly, to dramatically increase the SNR, MEG measurements
are acquired inside a magnetically shielded room (MSR). Current state-of-the-art
systems include a large number of sensors (>300), organized as a helmet-array of
magnetometers and/or gradiometers (planar or axial) that can measure spatial gra-
dients of the magnetic field. This latter arrangement has been demonstrated to be
beneficial to the SNR by attenuating environmental perturbations. Distant reference
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sensors can also be used to eliminate noise and to synthesize higher order virtual
gradiometers [97]. Also, cost-efficient active shielding technology has been devel-
oped to further reduce the effects of sources outside the MSR and to reduce the
need for heavily shielded rooms. Recent significant progress on active shielding has
allowed the installation of MEG systems in a greater variety environments, with
reduced MSR bulk and weight.

8.2.2 Electroencephalography (EEG)

In EEG, an array of electrodes is placed on the scalp surface to noninvasively sample
the scalar field of electric potentials relative to a reference electrode [58, 61]. EEG
recording technology has progressed much since the first human recordings by Hans
Berger in 1924 [8] and the later work by Edgar Adrian [1]. Due to its relative low-
cost and portability, EEG has become a standard technique for clinical monitoring.
Modern state-of-the-art research systems use electrode caps with as many as 256
sensors. It is sometimes considered as a bridge-technique between brain imaging
modalities. Indeed, some EEG systems are used for simultaneous EEG/MEG or
EEG/fMRI recordings. Research is being conducted on wireless acquisition and on
dry electrode technologies that do not use conductive gel, thereby reducing prepa-
ration time.

8.2.3 Electrocorticography (ECoG)

In patients undergoing ECoG, grid or strip electrode arrays are neurosurgically
placed to record the electric potential more closely to the neural sources and undis-
torted by the skull [40,11]. Grid arrays have typical interelectrode distances of about
1 cm or lower. Invasive measurements of the local field potential (LFP) can be
recorded by depth electrodes, electrode grids, and laminar electrodes [67, 91, 77].
Although the variations of electrical potentials captured by invasive recordings are
usually considered as being locally generated (that is, within the immediate vicinity
of the electrode), intracranial electrodes can pick up contributions from remotely
located sources when they are strongly or coherently activated.

8.3 Data Preprocessing

Data is usually preprocessed with a variety of methods prior to localization, the pur-
pose being correction and/or rejection of cardiac, eye, muscle, respiratory, and envi-
ronmental artifacts, and the extraction of features of interest. For that purpose, data
channels may be processed either sequentially or all at once. In the former, so-called
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univariate case, treatments include baseline subtraction (i.e., DC offset) and band-
pass filtering. Signals can also be transformed to the time-frequency/scale domains
with Fourier/wavelet methods, or can be bandpass filtered and Hilbert transformed
to extract instantaneous amplitude and phase information [84, 83, 29]. Filtering or
time-frequency analysis is of great utility for studying wavelike activity and oscil-
lations within specific frequency bands: slow oscillations (<1 Hz), delta (1–4 Hz),
theta (5–8 Hz), alpha (9–12 Hz), mu (9–12 Hz and 18–25 Hz), spindles (∼14 Hz),
low beta (13–20 Hz), high beta (20–30 Hz), gamma (30–80 Hz), high gamma or
omega (80–200 Hz), ripples of high-frequency oscillations (HFO, ∼200 Hz), and
sigma bursts (∼600 Hz). This great variety is a reflection of the fairly large spectrum
of relevant signals of electrophysiological origin accessible to NSI, using MEG or
ECoG in particular, as the spatial smearing due to the skull barrier in EEG tends to
obliterate its access to higher-frequency oscillations, which are supposed to origi-
nate more locally than the slower oscillations of the neural spectrum.

The continuously and simultaneously acquired time series of all MEG, EEG,
and/or ECoG channels can be concatenated to form a multivariate data array
B ∈ℜdb×dt , where db is the number of measurement channels and dt is the number
of time points. This data contains correlated noise generated by physiological and
environmental sources. Such perturbations may be reduced using a variety of multi-
variate signal processing tools such as, blind source separation, subspace projection,
and machine learning methods [47,92,48,85,64,104]. The general principle consists
in extracting undesired features from the data using linear transformations that ei-
ther aim to project noise components away from the recordings or to unmix the data
into separate components before recombining those only thought to be originating
from neural sources.

The signal-space projection (SSP) algorithm and principal component analysis
(PCA) are two popular techniques that use the second-order statistics of the data to
estimate the spatiotemporal characteristics of noisy components [92]. SSP may be
applied by default to MEG data based on the statistics of an empty MSR recording
to account for the perturbations that still can get into the MSR from the environ-
ment. The denoised B matrix can be cut into epochs time-locked to an event (e.g.,
stimulus onset) for single trial analysis or averaged across epochs to extract the
event-related potential and/or field (ERP/F) [44]. The ERP/F can then be localized
by many different inverse methods as described below.

Alternatively, blind source separation algorithms that use higher order statistics
or temporal information [e.g., infomax/maximum-likelihood independent compo-
nent analysis (ICA) or second-order blind identification (SOBI)] can be applied to
the entire unaveraged multivariate data time series to learn a data representation ba-
sis of sensor mixing vectors (associated with maximally independent time-courses)
that can be localized separately and to reject non-brain components (i.e., denois-
ing) [7, 46, 48, 85].

For MEG, the signal-space separation (SSS) algorithm and its temporal extension
(tSSS) suggest an alternative route to the rejection of external perturbations [86]. In
short, SSS builds a spatial-filter which removes the EM components in the data that
are generated from outside a spherical volume encompassing the brain. This is done
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by projecting the data onto a magnetic signal subspace obtained from a truncated
expansion of spherical harmonic basis functions of the scalar magnetic potential.

Regardless of any transformation or averaging of the original measurements, the
data to be simultaneously solved can be represented as a db by dv real or complex
matrix B, which contains dv measurement column vectors. For example, if B is a
time series matrix, its ith column vector is the db-dimensional measurement vector
at the ith time. But B needs not be a time series, it can also be any given set of vectors
obtained from the data that benefit from simultaneous source localization (e.g., a
subspace spanned by the data). When dv = 1, the single measurement problem is
recovered. This case is also used for localizing individual sensor maps obtained
from a decomposition of the data (e.g., ICA).

8.4 Overview of Modeling Steps

A quick overview of several aspects of modeling, which directly affect source es-
timation is presented in this section. Throughout this chapter, uppercase Latin and
Greek letters will be used to represent matrices, and Latin lowercase letters will be
used for vectors, except when in italics, which will be used for scalars. Lowercase
Greek letters will be used for vectors, scalars, and functions depending on the con-
text. The ith element of a vector will be specified by ai, and the notation A: i and Ai :

will be used to refer, respectively, to the ith column vector and ith row vector of A.
Also, A: i and Ai : will represent matrices made out, respectively, of the column and
row vectors specified by the vector of indices i.

8.4.1 Modeling of Neural Generators

The source model refers to the mathematical model used to approximate the pri-
mary current density within a cellular assembly. A popular source model for surface
and volume distributions of neural currents is the equivalent current dipole (ECD),
which approximates the current density as concentrating to a single point in space
rq = (x,y,z)T as expressed by jp(r) = qδ (r−rq), where jp(r) is the 3D primary cur-
rent density vector at 3D spatial coordinates r, and δ is the Dirac delta distribution
with dipole moment q =

∫
jp(r)dr flowing along a preferred direction as derived by

the average morphology of cells within the neural ensemble [31, 6]. The popularity
of the ECD source model stems from its compact description of distributed current
flows using a limited number of parameters: 3 for position, 2 for orientation, and
1 for amplitude. Higher dimensional parametric source models have been proposed
to describe more complex geometries of the primary current through most notably,
multipolar expansions [39].

EM recordings are dependent on the total flow of currents generated by neural
activity. We have so far described the modeling of the primary currents generated
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within cell assemblies. These currents circulate and return through secondary vol-
ume currents (see Section 8.4.4), which depend on the geometry and conductivity
properties of head tissues, as discussed in the upcoming sections.

8.4.2 Anatomical Modeling of Head Tissues and Neural Sources

To conduct subject-specific anatomical modeling, the geometry of head compart-
ments is obtained from the analysis of the T1-weighted MRI data. Head tissues,
such as gray and white matter, skull bone, scalp, cerebrospinal fluid (CSF), and fat
are classified from MRI data using segmentation techniques [17]. The geometry of
these components is represented using surface and volume tessellation techniques
for subsequent modeling of their electromagnetic properties as discussed in Sec-
tion 8.4.4.

The anatomical domain of sources can then be constrained to the gray matter
volume, or rather to the cortical surfaces since NSI cannot discriminate generators
from different cortical layers. With this surface approach, dipole orientations can
easily be constrained to point along the normal direction of the cortical surfaces
(i.e., in the direction of the apical dendrites of cortical pyramidal neurons). Non-
cortical structures can be modeled as volumetric source subspaces without dipole
orientations constraints.

If a subject’s MRI is not available, a standardized MRI may be warped to opti-
mally fit the subject’s anatomy based on the individual’s digitized head shape points.
The warped brain anatomy can then be used as a standardized volumetric source
space and for standardized forward modeling [16].

8.4.3 Multimodal Geometric Registration

As a prerequisite to the modeling of EM signals originating from anywhere in the
source space, the sensor and source positions and orientations must be expressed in
the same coordinate system. This registration process is usually done by transform-
ing (i.e., using rigid-body translation and rotation based on anatomical landmarks)
the sensor positions and orientations to the coordinate system of the MRI, where the
NSI generators are modeled. Errors in the definition of the fiducial anatomical land-
marks in either the NSI or MRI modality can result in poor geometrical alignment
and therefore, critical errors in the modeling of generators. Improved registration
can be achieved by matching a larger number of fiducial points – beyond the three
typical nasion and auricular locations – such as a digitized head-shape or the loca-
tions of EEG electrodes to the skin surface extracted from MRI data. Careful align-
ment can help minimize geometrical registration errors within the range of under
5 mm.
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8.4.4 Forward Modeling

In order to obtain an estimate of the primary current density, one needs to model
the EM signals produced by both the primary (i.e., impressed) and the secondary
(i.e., volume, return) current density throughout the head volume conductor, which
in reality has an inhomogenous and anisotropic conductivity profile. Analytic MEG
forward solutions can be computed if the volume conductor is approximated by an
isotropic sphere or a set of overlapping spheres [78, 36]. The same is true for EEG
but using concentric spherical shells with different isotropic conductivities. Most
MEG and EEG studies assume a spherically symmetric volume conduction model.
Solutions and software exist to improve the level of realism of the forward volume
conduction head model, as the measured signals – especially with EEG – may have
significant contributions from volume currents.

Much progress has been made toward realistic EM forward modeling using nu-
merical techniques such as the boundary element method (BEM) and the finite el-
ement method (FEM) [32, 3, 102]. The BEM assumes a homogenous and isotropic
conductivity profile through the volume of each tissue shell (e.g., brain, CSF, skull,
skin), but with a conductivity inhomogeneity across the boundaries of the shells.
The FEM usually also assumes homogeneity and isotropy within each tissue type,
but in contrast to BEM, can also be used to model the conductivity anisotropy of
white matter and that of the skull’s spongiform and compact layers. Although real-
istic modeling exploits any available subject-specific information from MRI (e.g.,
T1, T2, PD, DTI) or CT, standardized BEM or FEM head models can be used as a
first approximation for subjects without an MR scan [19,16]. We should note, how-
ever, that realistic modeling is ultimately limited by the uncertainty in parameters
such as the in vivo individual distribution of electrical conductivity throughout head
tissues, which is yet to be accessible reliably to MRI techniques [90] and electrical
impedance tomography [24].

8.4.5 Inverse Modeling

The goal of inverse modeling is to estimate the location and strengths of the sources
that generated the measured EM data. As in many other problems in physics, this is
a so-called ill-posed inverse problem, which essentially means there are an infinite
number of solutions that explain the measured data equally well. The main reason is
that some source configurations produce no EM signals at the sensors. This means
that these silent source configurations can always be added to an existing solution
without affecting the fit to the data [33]. This nonuniqueness forces us to make
a priori assumptions, additional to the experimental data, to further constrain the
number of feasible source patterns to one unique solution [78, 31].

These additional constraints are usually handled within the general framework of
regularization, which is also common to most medical imaging applications where
reconstruction of source signals of measured data is required. In NSI, these con-
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straints can take many forms but are generally handled by making assumptions about
the nature of the sources (e.g., number of brain areas involved, constraints on their
spatial extent and the relative smoothness or sparsity of the current density, priors
on source parameters and hyperparameters, priors on their anatomical locations –
e.g., on the cortex – and from electrophysiology – e.g., the maximum expected am-
plitude of currents). Thus, the accuracy and validity of the source estimates depend
to some extent on the biological correctness of the assumptions and priors adopted
in the models. A recent trend in the domain of NSI research consists is considering
that such priors should – to some extent – be flexible and adaptive to the data under
study. The rest of this chapter focuses on presenting a variety of inverse modeling
approaches. We have identified three basic approaches that encompass most of the
methods that have been published so far: (1) parametric source model fitting, (2)
source imaging techniques explained within a general Bayesian framework, and (3)
spatial scanning and filtering through beamforming.

8.5 Parametric Dipole Modeling

One of the most common assumptions adopted to handle nonuniqueness is that the
measurements were generated within a small number of brain regions that can be
modeled using a limited number of ECDs. The associated estimation algorithms
minimize a data-fit cost function, defined typically in the least-squares sense, in the
multidimensional space of nonlinear parameters. Usually, algorithms estimate five
nonlinear parameters per dipole: the x, y, and z parameters that define the dipole
position, and the two angles necessary to define the dipole orientation in 3D space.
However, in the MEG spherically symmetric volume conductor model only one an-
gle (on the tangent space of the sphere) is necessary because the radial dipole com-
ponent is silent, thereby reducing the dimensionality to four dimensions per dipole.
The dipole amplitudes are linear parameters estimated directly from data. The di-
mension of the space where the cost function is minimized can be reduced further
to three dimensions per dipole if the dipole orientations are allowed to be obtained
linearly from the data. Technically, parametric dipole modeling is performed in the
sense of a least-squares fit of a model of the data, which writes differently depending
on the model of noise statistics under consideration as we shall now describe.

8.5.1 Uncorrelated Noise Model

Parametric dipole fitting algorithms, minimize a data-fit cost function such as the
square of the Frobenius norm of the residual,

min
s

||B− B̂||2F = ||B−LsĴs||2F = ||(I−LsL†
s )B)||2F = ||P⊥

Ls
B||2F , (8.1)
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where s refers to the set of nonlinear parameters that are optimized to minimize the
data-fit cost, and the Frobenius norm of a matrix is the square root of the sum of the
squares of all the elements of the matrix [80,6]. The nonlinear parameters of the ith
dipole are its position vector, r(i) = (xi,yi,zi)T , and its angle vector, ω(i) = (φi,θi)T ,
which specify the dipole’s location and orientation. Thus, the cost is minimized in a
space of dimension 5dd (or 4dd for the MEG single sphere head model), where dd

is the number of dipoles in the model (i.e., the order of the model).
B̂ is the part of the data explained by the ECD generative model: B̂ = LsĴs,

where Ls is the lead field or gain matrix containing dd db-dimensional column vec-
tors called gain vectors. They are computed for dd dipoles of unit amplitude with
parameters specified in s. The estimated dd by dv current matrix, Ĵs = L†

s B, contains
the moments of the dd dipoles, where L†

s is the pseudoinverse of Ls [23]. Thus, the
ith row vector of Ĵs contains the moments of the dipole located at position r(i) with
orientation ω(i). I is the db-dimensional identity matrix, and P⊥

Ls
is the orthogonal

projection operator onto the null space of Ls. Note that the gain matrix needs to be
recomputed at each iteration for every new s.

Alternatively, the orientations of the dipoles can be obtained linearly if only the
positions are optimized by including the gain vectors of all three orthogonal dipole
components pointing in the (x,y,z) directions, so that Ls is a db by 3dd matrix and
Js is a 3dd by dv matrix. For this rotating dipole model, the cost function exists in a
space of 3dd dimensions.

This least-squares approach is equivalent to maximum likelihood estimation of
the parameters that maximize the Gaussian likelihood defined by:

p(B|Ĵs,s,dd ,σ2
ϒ) =

(
2πσ2

ϒ
)−dbdv/2

exp

(
− 1

2σ2
ϒ

∥∥B−LĴs
∥∥2

F

)
, (8.2)

where noise is assumed to be Gaussian and uncorrelated with scalar variance σ2
ϒ.

The parameters s(ml) and Js
(ml) that maximize the likelihood or equivalently mini-

mize the negative log likelihood at convergence are the maximum likelihood esti-
mates of the dipole positions, orientations, and amplitudes.

8.5.2 Correlated Noise Model

In the presence of correlated noise, a modified cost function can be minimized:

min
s

∥∥∥Σ−1/2
ϒ

(
B−LsĴs

)∥∥∥2

F
= tr

((
B−LĴs

)T Σ−1
ϒ
(
B−LĴs

))
, (8.3)

where Σ−1/2
ϒ is a whitening matrix obtained by taking the square root inverse of

the noise covariance matrix, Σϒ [78]. This solution again is equivalent to a maxi-
mum likelihood estimate of the parameters using a Gaussian likelihood noise model
defined by:
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p(B|Ĵs,s,dd ,Σϒ) =
(2π)−dbdv/2

|Σϒ|1/2
exp

(
−1

2
tr
(
ϒTΣ−1

ϒ ϒ
))

, (8.4)

where ϒ= B−LĴs is the residual data noise not explained by the model, and noise
is assumed to be Gaussian and correlated.

8.5.3 Global Minimization

These cost functions are usually minimized using nonlinear optimization algo-
rithms (e.g., Nelder–Meade downhill simplex, Levenberg–Marquardt). Unfortu-
nately, when the number of dipoles is increased (e.g., dd > 1), the profile of the cost
functional has many local minima. Furthermore, it should be noted that by adding a
spatial term to the data-fit cost function, dipoles can be constrained to reside as close
as desired to the gray matter volume. However, such spatial penalties can introduce
even more local minima problems. Robust global minimization can theoretically be
achieved using computationally intensive algorithms such as simulated annealing,
multistart simplex algorithms, or genetic algorithms [35, 93], but the minimization
over continuous parameters makes the endeavor unpractical for source models with
over a handful of ECDs.

Alternatively, instead of selecting a point estimate, one can use Markov Chain
Monte Carlo (MCMC) algorithms to make Bayesian inferences about the number
of sources and their spatial extents, and to compute probabilistic maps of activity
anatomically constrained to gray matter [82, 9].

As a side note, it is important to distinguish the cost function from the opti-
mization algorithm. Although the standard costs for dipole fitting have many local
minima, other costs, like for example, the negative log marginal likelihood (see
Section 8.6.4), have fewer local minima and can also be minimized with nonlinear
optimization algorithms.

8.6 Source Space-Based Distributed and Sparse Methods

Instead of performing low-dimensional nonlinear optimization, one can assume
dipoles at all possible candidate locations of interest within a grid and/or mesh called
the source space (e.g., source points in gray matter), and then solve the underdeter-
mined linear system of equations

B = LJ+ϒ (8.5)

for Ĵ, the d j by dv estimated current density matrix (d j being the number of dipole
components throughout the source space). The lead field matrix L ∈ℜdb×d j linearly
maps the current space onto the measurement space. ϒ is the db by dv noise matrix
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usually assumed to be Gaussian. Since there is no unique solution to this problem,
additional priors are needed to find solutions of interest. These algorithms can be
best presented from the standpoint of a general Bayesian framework that makes ex-
plicit the source prior assumptions using probability density functions (pdfs). Bayes
theorem

p(J|B,H) =
p(B|J,H)p(J|H)

p(B|H)
(8.6)

states that the posterior probability of J given the measurements B and hypothesis or
Bayesian model H (consisting of all implicit assumptions and parameters) is equal
to the likelihood of J multiplied by the marginal prior probability of J, divided by
the normalizing constant of the posterior called the evidence for H which is defined
by

p(B|H) =
∫

p(B|J,H)p(J|H)dJ. (8.7)

8.6.1 Bayesian Maximum a Posteriori (MAP) Estimates

A Gaussian likelihood model is usually assumed,

p(B|J,H) =
(
2πσ2

ϒ
)−dbdv/2

exp

(
− 1

2σ2
ϒ

∥∥B−LĴ
∥∥2

F

)
, (8.8)

together with a prior pdf, which assigns a probability density to every possible esti-
mate before the measurement data has been taken into account. A very useful family
of prior models can be obtained with the generalized Gaussian marginal pdfs

p(J|H) ∝ exp

(
−sgn(p)

dn

∑
i=1

∥∥Ĵi :
∥∥p

q

)
, (8.9)

where dn is the total number of source points, p specifies the shape of the pdf or
equivalently the p-norm-like measure to be minimized, which controls the sparsity
of the estimate, and q specifies the norm of Ĵi : (the matrix containing the row vectors
of J associated with the ith source point as indexed by i), which here is assumed to
be the Frobenius norm. The signum function, sgn(p), takes values of 1, 0, or −1 for
positive, zero, or negative p, respectively. However, the special case of p = 0 (i.e.,
the so-called zero norm) rather implies minimizing the number of Ĵi :’s with nonzero
Frobenius norms. Other priors are also possible for MAP estimation.

Since the normalizing constant p(B|H) does not affect the location of the poste-
rior mode, it can be ignored, and thus the MAP point estimate can be computed by

Ĵ(map), σ̂2(map)
ϒ = arg max

Ĵ,σ2
ϒ

log p(Ĵ|B) ∝ log p(B|Ĵ,H)+ log p(Ĵ|H). (8.10)
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Maximizing the log posterior rather than the posterior, illustrates how these MAP
approaches are equivalent to algorithms that minimize p-norm-like measures

min
Ĵ,σ2

ϒ

(2σ2
ϒ)

−1
∥∥B−LĴ

∥∥2
F + sgn(p)

dn

∑
i=1

∥∥Ĵi :
∥∥p

q +
dbdv

2
log(2πσ2

ϒ). (8.11)

The noise variance σ2
ϒ is equivalent to the λ 2 parameter used in Tikhonov regu-

larization, which can be fixed to a value, stabilized (e.g., using the empirical L-curve
or generalized cross validation methods [56]), learned from the data, or adjusted to
achieve a desired representation error ε using the discrepancy principle,∥∥B−LĴ

∥∥2
F = ‖ϒ‖2

F = ε. (8.12)

MAP estimates using a Gaussian prior (p = 2) are equivalent to noise-regularized
minimum-l2-norm solutions, often called minimum-norm estimates (MNE),

Ĵ = LT (LLT +σ2
ϒI
)−1

B, (8.13)

which are widely used in the field [2,98,21]. This basic model assumes homoscedas-
tic uncorrelated noise. Heteroscedastic uncorrelated noise can be modeled by replac-
ing σ2

ϒI with a diagonal matrix containing the estimated variance of each channel
on the diagonal. To suppress correlated noise, the matrix σ2

ϒI can be replaced with
a non-diagonal noise covariance matrix Σϒ obtained from the measurements, which
is equivalent to performing whitening.

The point estimates obtained with the Gaussian prior are spatially distributed
and suffer from depth bias (i.e., deep source distributions tend to mislocalize to
more superficial source points). Many different types of weighted minimum-l2-norm
algorithms can be used to partially compensate for this depth bias by assuming an a
priori source covariance other than the identity matrix, which is the assumed source
covariance in the standard minimum-l2-norm approach. In its more general form,
the inverse operator using a Gaussian prior is given by

Ω(map−L2) = ΣJLT (LΣJLT +Σϒ
)−1

, (8.14)

where ΣJ is the source covariance matrix. Depth bias compensation is often im-
plemented by setting ΣJ = WWT , where W is a diagonal matrix [e.g., W =
diag

(
‖L: i‖−1

2

)
, W = diag

(
‖L: i‖−1/2

2

)
, 3D Gaussian function, or fMRI priors]

[38, 20]. More generally, and to include the case of unconstrained dipole orienta-

tions, the source covariance matrix can be defined as ΣJ = diag
(
‖L: i‖−2κ

F

)
, where

L: i is the gain matrix for the ith source point containing one column per dipole com-
ponent (indexed by the vector i), and this value is assigned to all variance diagonal
elements corresponding to the ith source point. A κ value between 0.5 and 0.8 is
usually adopted to avoid overcompensating with a full normalization (κ = 1). Non-
diagonal ΣJ matrices can be used to incorporate source covariance and smoothness
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constraints. For example, in the low resolution brain electromagnetic tomography
(LORETA) method (i.e., spatial Laplacian minimization), ΣJ =

(
WT DT DW

)−1
,

where W = diag(‖L: i‖2), and D is the discrete spatial Laplacian operator [66].
To obtain more focal estimates, MAP estimation can be performed using super-

Gaussian priors such as the Laplacian pdf, which is equivalent to obtaining minimum-
l1-norm solutions, often called minimum current estimates (MCE) [48, 94]. These
are traditionally computed using linear programming, but can alternatively be ob-
tained more efficiently using an expectation maximization (EM) algorithm by pa-
rameterizing the prior as a Gaussian scale mixture. This approach can be used to
find MAP estimates with generalized Gaussian prior pdfs defined by p ≤ 2 (the
Laplacian being the special case p = 1).

These source priors can be formulated within a hierarchical Bayes framework, in
which each Ji : has a Gaussian prior, p(Ji :|α−1

i ) =N (Ji :|0,α−1
i I), with zero mean,

and covariance α−1
i I, and each α−1

i has a hyperprior p(α−1
i |γ) that controls the

shape of the pdf. The variances are integrated out to obtain the prior

p(Ji :|γ) =
∫

p(Ji :|α−1
i )p(α−1

i |γ)dα−1
i . (8.15)

Different priors can be obtained by assuming different hyperpriors. For exam-
ple, the Laplacian prior is obtained with an exponential hyperprior p(α−1

i |γ) =
γ
2 exp

( γ
2α

−1
i

)
, and the Jeffreys prior p(Ji :) = ‖Ji :‖−1

F is obtained with the nonin-
formative Jeffreys hyperprior p(α−1

i ) = αi, which has the advantage of being scale
invariant and parameter free.

The EM algorithm minimizes the negative log posterior by alternating between
two steps. In the E-step, the conditional expectation of the inverse source variances

at the kth iteration, A(k) = diag(α(k)), given B, J(k), and σ2(k)
ϒ is computed

E[α(k)
i |J(k),σ2(k)

ϒ ] =
(

1
dv

∥∥∥Ĵ(k)
i :

∥∥∥2

F

) p−2
2

. (8.16)

In the M-step, the noise variance and the current density estimates are computed

σ̂2(k+1)
ϒ =

(∥∥∥B−LĴ
(k)
∥∥∥2

F
/dbdv

)1− p
2

, (8.17)

Ĵ(k+1) = Σ(k)
J LT

(
LΣ(k)

J LT +Σ(k+1)
ϒ

)−1
B, (8.18)

where Σ(k)
J = E[A(k)|J(k),σ2(k)

ϒ ]−1 and Σ(k+1)
ϒ = σ̂2(k+1)

ϒ I are the source and noise
covariance matrices. Note that the noise variance update rule implements MAP es-
timation with a non-Gaussian prior on σ̂2

ϒ. In practice, the discrepancy principle is
often used based on some reasonable expected representation error to avoid under-

regularizing. When Ĵ(k+1) = Ĵ(k) and σ2(k+1)
ϒ = σ2(k)

ϒ , the algorithm has converged
and the MAP inverse operator for this generalized Gaussian prior (e.g., p = 1) can
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be computed by

Ω(map−Lp) = Σ(k)
J LT

(
LΣ(k)

J LT +Σ(k)
ϒ

)−1
. (8.19)

In practice, the iterations are usually carried out until a threshold of change is

reached (e.g.,
∥∥∥Ĵ(k+1) − Ĵ(k)

∥∥∥
2
≤ ε). Also, to accelerate convergence one usually

truncates source points from all equations for which the current is smaller than a
very small threshold, but this can have a negative effect on the minimization of the
cost function. If the cost is not minimized at one iteration due to this thresholding,
a smaller threshold value should be used. Also, to compensate for depth bias, the
lead field matrix should be weighted as explained earlier in the context of weighted
minimum-l2-norm algorithms, but in this case it should be weighted before the start
of MAP optimization, and the final solution can be unweighted after convergence
by multiplying with the original weight factors.

These update equations are equivalent to a generalized form of the FOCal Unde-
termined System Solver (FOCUSS) algorithm, which was developed as a recursive
weighted minimum-norm algorithm for p = 0, but was later derived as a Bayesian
MAP algorithm using generalized Gaussian prior pdfs [26, 25, 75, 74, 14, 69]. For
the case of p = 0, truncation of the rows of J with smallest norms is usually imple-
mented so that the minimization involves the count of nonzero rows. When p =−2,
the magnetic field tomography (MFT) algorithm is recovered if the update rule is
based on the current modulus, there is only one iteration, and the a priori weight
matrix is a 3D Gaussian used for depth bias compensation [38, 76, 87]. If one is not
sure whether one should use a Gaussian or Laplacian prior, one can use MCMC
methods to learn which lp-norm is optimal for that particular data set [5].

To simultaneously identify the generators of a long data time series, the matrix
BBT can be decomposed efficiently using the SVD, and B in (8.17) and (8.18) can
be replaced with the matrix US1/2, where U and S are the left singular vectors and
singular values matrices, respectively [99].

8.6.2 Dynamic Statistical Parametric Mapping (dSPM)

Another approach directly related to the MNE is the noise normalized dynamic sta-
tistical parametric mapping (dSPM) technique, which normalizes the MNE by the
noise sensitivity at each location, thereby producing statistical activity maps [15,41].
This extra step helps compensate for depth bias. First, the linear inverse operator is
computed by (8.14). This operator is equivalent to that used in Wiener filtering or in
weighted minimum-l2-norm estimation assuming correlated noise. Then the noise-
normalized operator is computed, which in the case of fixed dipole orientations
yields:

Ω(dspm) = diag(v)−1/2Ω(map−L2), (8.20)
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where v = diag
(
Ω(map−L2)ΣϒΩT (map−L2)

)
. Note that dSPM performs noise nor-

malization after the inverse operatorΩ(map−L2) has been computed. Thus, the noise-
normalized source activity estimates are given by

Ŝ(dspm) =Ω(dspm)B = diag(v)−1/2 Ĵ(map−L2). (8.21)

More generally, to include the case where dipole orientation constraints are not
enforced, the noise-normalized dSPM time series of source power at the ith source
point is computed as

Ŝ2(dspm)
i: = diag

(
ĴT (map−L2)

i : Ĵ(map−L2)
i:

)T
/tr
(
Ω(map−L2)

i : ΣϒΩ
T (map−L2)
i :

)
. (8.22)

8.6.3 Standardized Low Resolution Brain Electromagnetic
Tomography (sLORETA)

An alternative approach for depth-bias compensation and source standardization is
the sLORETA technique [65]. In contrast to the dSPM method, the MNE is modi-
fied by the resolution matrix, R = Ω(map−L2)L , that is associated with the inverse
and forward operators: Ω(map−L2) and L. For fixed dipole orientations, the pseudo-
statistics of power and absolute activation at the ith source point for a time slice are
respectively given by

ϕi =
ĵ2
i

Rii
and

√
ϕi, (8.23)

and the standardized sLORETA inverse operator can be written as

Ω(sloreta) = diag(r)−1/2Ω(map−L2), (8.24)

where r = diag(R) . Thus, the sLORETA activity time-series is computed by

Ŝ(sloreta) =Ω(sloreta)B = diag(r)−1/2 Ĵ(map−L2). (8.25)

More generally, for the case of no dipole orientation constraints, the sLORETA
standardized source power time series at the ith source point is computed as

Ŝ2(sloreta)
i : = diag

(
ĴT (map−L2)

i : (Rii)
−1 Ĵ(map−L2)

i :

)T
. (8.26)

Interestingly, the sLORETA algorithm is similar to the first step of the sparse
Bayesian learning (SBL) algorithm explained in the next section.
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8.6.4 Sparse Bayesian Learning (SBL) and Automatic Relevance
Determination (ARD)

Sparse Bayesian learning (SBL) uses the same Gaussian likelihood model defined
in (8.8) and also uses a hierarchical Bayes formulation similar to that explained for
MAP estimation, but instead of integrating out the hyperparameters as in parameter
MAP estimation, in SBL we integrate out the parameters [45, 44, 55, 89, 100, 79,
69, 99, 101, 60]. Thus, instead of finding point estimates at the posterior modes us-
ing fixed priors, it performs the evidence maximization procedure to learn adaptive
hyperparameters from the data itself. SBL assumes an automatic relevance determi-
nation (ARD) prior for the current density defined as

p(J|α) =
dα

∏
i=1

N (0,α−1
i I), (8.27)

where α is a vector of hyperparameters or precisions (i.e., inverse source variances),
dα is the number of hyperparameters, and each Ji : has a zero-mean Gaussian prior
with covariance α−1

i I. The inverse source and noise variances have Gamma hyper-
priors,

p(α) =
dα

∏
i=1

Gamma(αi|a,b), (8.28)

p(σ−2
ϒ ) = Gamma(σ−2

ϒ |c,d), (8.29)

where a, b, c, and d are the degrees of freedom parameters of the Gamma dis-
tributions of α and σ−2

ϒ given by Gamma(α|a,b) = Γ (a)−1baαa−1e−bα with
Γ (a) =

∫ ∞
0 ta−1e−tdt. The Gamma hyperprior results in a student-t prior for the

source parameters. However, to avoid tuning the hyperprior, the Gamma distribu-
tion parameters can be set to a small number (e.g., a = b = c = d = 10−4) to make
these priors noninformative (i.e., flat in log space, as is common for scale parame-
ters), or they can be made exactly zero, in which case we obtain the Jeffreys prior,
which results in scale invariance.

SBL is an important alternative because the posterior mode may not be repre-
sentative of the full posterior, and thus, a better point estimate may be obtained,
the posterior mean, by tracking the posterior probability mass. In the case of the
Jeffreys prior, this is achieved by finding the maximum likelihood hyperparameters

α(ml) and σ2(ml)
ϒ that maximize a tractable Gaussian approximation of the evidence

of the hyperparameters, also known as the type-II likelihood or marginal likelihood

α̂(ml), σ̂2(ml)
ϒ = arg max

α,σ2
ϒ

p(B|α,σ2
ϒ) =

∫
p(B|J)p(J|α,σ2

ϒ)dJ = N (0, Σ̂B), (8.30)

or equivalently by minimizing the negative log marginal likelihood
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α̂(ml), σ̂2(ml)
ϒ = arg min

α,σ2
ϒ

− log p(B|α,σ2
ϒ) = dv log

∣∣Σ̂B
∣∣+ tr

(
BT Σ̂−1

B B
)
, (8.31)

where Σ̂B = LΣJLT +Σϒ is the model data covariance, and ΣJ = diag(α)−1 is the
prior source covariance matrix. The noise covariance matrix, Σϒ, can be assumed
to be a multiple of the identity matrix (e.g., σ2

ϒI, where σ2
ϒ is the noise variance,

a hyperparameter that can also be learned from the data), or can be empirically
obtained from the measurements.

In the case of Gamma hyperpriors (i.e., a, b, c, and d are nonzero), the poste-
rior probability of the log hyperparameters given the data, that is, the product of the
marginal likelihood and the hyperprior, p(B|logα, logσ2

ϒ)p(logα, logσ2
ϒ), is maxi-

mized, or equivalently the negative log posterior is minimized,

log α̂(map), log σ̂2(map)
ϒ = arg min

logα,logσ2
ϒ

− log p(B|logα, logσ2
ϒ)p(logα, logσ2

ϒ)

= arg min
logα,logσ2

ϒ

dv log
∣∣Σ̂B
∣∣+ tr

(
BT Σ̂−1

B B
)
+

dα

∑
i=1

(a logαi −bαi)+ c logσ−2
ϒ −dσ−2

ϒ . (8.32)

Evidence maximization is usually achieved by using Expectation–Maximization
update rules

α(k+1)
i = (1+2a)

(
1

dvdr

∥∥∥Ω(k)
i : B

∥∥∥2

F
+

1
dr

tr
((

I−Ω(k)
i : L: i

)
α−1(k)

i

)
+2b

)−1

,

(8.33)

σ2(k+1)
ϒ =

(
1
dv

∥∥∥B−LĴ(k)
∥∥∥2

F
+σ2(k)

ϒ tr(R(k))+2d

)
/(db +2c) , (8.34)

or alternatively using the MacKay gradient update rules

α(k+1)
i =

(
1
dr

tr
((

I−Ω(k)
i : L: i

)
α−1(k)

i

)
+2a

)
/

(
1

dvdr

∥∥∥Ω(k)
i : B

∥∥∥2

F
+2b

)
, (8.35)

σ2(k+1)
ϒ =

(
1
dv

∥∥∥B−LĴ(k)
∥∥∥2

F
+2d

)
/
(

db − tr(R(k))+2c
)

, (8.36)

where L: i is a matrix with column vectors from L that are controlled by the

same ith hyperparameter, dr is the rank of L: iL
T
: i, Ω

(k)
i : = α−1(k)

i LT
: i

(
Σ̂(k)

B

)−1
, and

R(k) = Σ(k)
J LT

(
Σ̂(k)

B

)−1
L is the kth resolution matrix. With fixed dipole orienta-

tions L: i is a vector, but with loose orientations L: i is a db by three matrix. For
patch source models involving dipoles within a region, L: i is a matrix containing
all gain vectors associated with the local patch of cortex. The gradient update rule
is much faster than the EM rule and is similar to the update rules used in several
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hybrid sLORETA/FOCUSS algorithms [81]. In practice, the discrepancy principle
is often used to avoid under-regularizing. Once the optimal maximum likelihood or
maximum a posteriori hyperparameters have been learned (i.e., they have stopped
changing), the SBL inverse operator can be expressed as

Ω(sbl) = Σ(sbl)
J LT

(
Σ̂(sbl)

B

)−1
, (8.37)

and the posterior mean is given by

Ĵ = E
[
J|B;Σ(sbl)

J

]
=Ω(sbl)B. (8.38)

It is important to note that many useful SBL variants can be obtained by the
reparametrization of the source covariance matrix ΣJ = ∑dα

i=1 Ciα−1
i . In fact, if only

a few hyperparameters are used, and each controls many source points, then the
parametrization cannot support sparse estimates. For example, in the restricted max-
imum likelihood (ReML) algorithm one of the source covariance components is the
identity matrix, which is controlled by a single hyperparameter [18, 68, 50, 99]. In
standard SBL, Ci = e(i)eT

(i), where e(i) is a vector with zeros everywhere except at
the ith element, where it is one. This delta function parametrization can be extended
to box car functions in which e(i) takes a value of 1 for all three dipole components
or for a patch of cortex. Alternatively, each e(i) can be substituted by a geodesic ba-
sis function ψ(i) (e.g., a 2D Gaussian current density basis function) centered at the
ith source point and with some spatial standard deviation [79, 70]. This approach
can be extended to a multiscale algorithm, in which the source covariance matrix
is composed of components across many possible spatial scales, by using multiple
ψ(i) vectors located at the ith source point but with different spatial standard devi-
ations [70, 73, 71, 72]. This approach can be used to estimate the spatial extent of
distributed sources by using a mixture model of geodesic Gaussian distributions at
different spatial scales. Such multiscale approach can also be used with parameter
MAP estimation [47, 72].

The problem of finding optimal hyperpriors to handle multimodal posteriors and
to eliminate the use of improper priors has been dealt with by using flat hyperpriors
or by introducing MCMC strategies [59, 60]. In practice, the noninformative hyper-
prior works well and helps avoid the problem of determining the optimal hyperprior.
Finally, as explained for parameter MAP estimation, to simultaneously localize the
generators of a very long time series of any length very quickly, instead of localizing
the times series matrix B, one can use the matrix US1/2, where U and S are the left
singular vectors and singular values matrices of BBT .

8.7 Spatial Scanning and Beamforming

An alternative approach to the ill-posed bioelectromagnetic inverse problem is to
independently scan for dipoles within a grid containing candidate locations (i.e.,
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source points). Here the goal is to estimate the activity at a source point or region
while avoiding the cross talk from other regions so that these affect as little as pos-
sible the estimate at the region of interest.

8.7.1 Matched Filter

The simplest spatial filter, a matched filter, is obtained by normalizing the columns
of the lead field matrix and transposing this normalized dictionary. The spatial filter
for location ri is given by

Ω(m f )
i : =

LT
: i

‖L: i‖F
. (8.39)

This approach essentially projects the data onto the column vectors of the lead-
field dictionary. Although this guarantees that the absolute maximum of the map
corresponds to the true maximum when only one source is active and with the cor-
rect fixed dipole orientation, this filter is not recommended since these assumptions
are usually not valid, and since the spatial resolution of the filter is so low given
the high correlation between dictionary columns. This approach can be extended to
fast recursive algorithms, such as matching pursuit and its variants, which sequen-
tially project the data or residual to the nonused dictionary columns to obtain fast
suboptimal sparse estimates.

8.7.2 Multiple Signal Classification (MUSIC)

The MUSIC algorithm was adopted from spectral analysis and modified for spatial
filtering of MEG data [53, 52]. The MUSIC cost function is given by

Mi =

∥∥(I−UsUT
s

)
L: i
∥∥2

2

‖L: i‖2
2

=

∥∥P⊥
Us

L: i
∥∥2

2

‖L: i‖2
2

, (8.40)

where B = USVT is the singular value decomposition of the data, Us is a matrix with
the first ds left singular vectors that form the signal subspace, and L: i is the gain
vector for the dipole located at ri and with orientation θi (obtained from anatomy
or using the generalized eigenvalue decomposition). P⊥

Us
is an orthogonal projection

operator onto the data noise subspace. The MUSIC map is the reciprocal of the
cost function at all locations scanned. This map can be used to guide a recursive
parametric dipole fitting algorithm. The number ds is usually carefully provided by
an expert user.
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8.7.3 Linearly Constrained Minimum Variance (LCMV)
Beamforming

Beamformers, as used in the field of NSI, are spatial filtering algorithms that scan
each source point independently to pass source signals at a location of interest while
suppressing interference from other regions using only the local gain vectors and the
measured covariance matrix. One of the most basic and often used linear beamform-
ers is the linearly constrained minimum variance (LCMV) beamformer, which at-
tempts to minimize the beamformer output power subject to a unity gain constraint:

min
Ωi :

tr
(
Ωi :ΣBΩT

i :

)
subject to Ωi :L: i = I, (8.41)

where ΣB is the empirical data covariance matrix, L: i is the db by three gain matrix
of the ith source point, and Ωi : is the three by db spatial filtering matrix [95]. The
solution to this problem is given by

Ω(lcmv)
i : =

(
LT

: iΣB
−1L: i

)−1
LT

: iΣB
−1. (8.42)

The parametric source activity at the ith source point is given by Ŝ(lcmv)
i : =Ωi :B.

This can be performed at each source point of interest to yield a score map of ac-
tivity. Note that these maps, like those obtained by sLORETA and dSPM, are not
real current density estimates. This beamforming approach can be expanded to a
more general Bayesian graphical model that uses event timing information to model
evoked responses, while suppressing interference and noise sources [104]. This ap-
proach uses a variational Bayesian EM algorithm to compute the likelihood of a
dipole at each grid location.

8.7.4 Synthetic Aperture Magnetometry (SAM)

Synthetic aperture magnetometry (SAM) is a nonlinear beamformer in which an
optimization algorithm is used to the find the dipole orientation at each source point
that maximizes the ratio of the total source power over noise power, the pseudo-Z
deviate

z i =

√
Ωi :ΣBΩT

i :

Ωi :ΣϒΩT
i :

=
√

pi

ni
, (8.43)

where Σϒ is the noise covariance, usually based on some control recording or as-
sumed to be a multiple of the identity matrix [97]. This maximization generates a
scalar beamformer with optimal dipole orientations in terms of SNR. This improves
the spatial resolution of SAM relative to that of LCMV beamforming. To generate
statistical parametric maps between an active task period (a) and a control period
(c), the so-called pseudo-T statistic can be computed as
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t i=
pi(a)−pi(c)
ni(a)+ni(c)

. (8.44)

Such maps usually have more focal activities since they contrast the differences
between two states. Other scalar beamformers can be implemented. For example, an
anatomically constrained beamformer (ACB) can be obtained by simply constrain-
ing the dipole orientations to be orthogonal to the cortical surfaces [34].

8.7.5 Dynamic Imaging of Coherent Sources (DICS)

Beamforming can be performed in the frequency domain using the dynamic imaging
of coherent sources (DICS) algorithm, whose spatial filter matrix for frequency f is
given by

Ω(dics)
i : ( f ) =

(
LT

: iΣ̃B̃( f )−1L: i
)−1

LT
: iΣ̃B̃( f )−1, (8.45)

where Σ̃B̃( f ) is the cross-spectral density matrix for frequency f [29]. Note that the
covariance matrix has simply been replaced in (8.42) by the cross-spectral density
matrices. DICS can also be used to reveal which brain regions are coherent with
external reference signals (e.g., electromyogram), and to estimate cortico-cortical
coherence maps.

8.7.6 Other Spatial Filtering Methods

All the spatial filtering methods explained so far depend on the gain vectors asso-
ciated only with the region of interest (i.e., they do not depend on the gain vectors
associated with the rest of the source space). There are other more direct approaches
to spatial filtering that incorporate the gain vectors associated with both the region
of interest and the rest of the source space, and that do not necessarily use the mea-
sured covariance matrix. In the Backus–Gilbert method, a different spread matrix
is computed for each candidate source location [28, 27]. The goal is to penalize the
side lobes of the resolution kernels (i.e., the row vectors of the resolution matrix,
defined as R =ΩL, where L is the lead field matrix for the entire source space and
Ω is the optimized linear operator that gives the source estimates when multiplied
with the data). This usually results in a wider main lobe.

In the spatially optimal fast initial analysis (SOFIA) algorithm, virtual leadfields
are constructed that are well concentrated within a region of interest compared to
the rest of the source space [10]. The region of interest can be moved to every source
point. A similar approach is adopted in the local basis expansion (LBEX) algorithm,
which solves a generalized eigenvalue problem to maximize the concentration of
linear combinations of leadfields [51].

As a final remark, it should be emphasized that all of the spatial filtering algo-
rithms presented scan one source point or local region at a time, but can be expanded
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to multisource scanning protocols that search through combinations of sources. Al-
though multisource scanning methods can recover perfectly synchronized sources
(which are usually missed by single-source methods), there is no agreed protocol to
scan the immense space of possible multisource configurations.

8.8 Comparison of Methods

To compare some of the methods reviewed here, we performed a retinotopic map-
ping of the four visual quadrants of one subject using the Elekta MEG system,
which contains 204 planar gradiometers and 102 axial magnetometers. Data were
processed with SSS and bandpass filtered (2–55 Hz). One hundred epochs were av-
eraged for each quadrant. A BEM forward model was used and sources were con-
strained to the cortical surface of the subject.

A schematic of the black and white checkerboard visual stimuli used is shown
in Fig. 8.1a, where color is used only to code for the retinotopy maps shown on in-
flated cortical surfaces in Fig. 8.1c, d. Figure 8.1b shows an example of the weighted
minimum-l2-norm solution (thresholded at 0.1 of absolute maximum) of the event-
related field at 100 ms poststimulus onset (lower right visual quadrant). Note how
this activity is very distributed. To visualize the maps for different quadrants simul-
taneously and contrast them, we normalized these maps by their absolute maximum,
thresholded them at 0.9, and color-coded the activity based on which quadrant had
the maximal activity on each source point.

Figure 8.1c shows maps produced by distributed methods (from top to bottom):
(1) weighted minimum-l2-norm (κ = 0.5); (2) dSPM (κ = 0.8); (3) sLORETA
(κ = 0); and (4) matched filter. The first three had dipole orientation constraints,
but the matched filter did not. Figure 8.1d shows maps produced by sparse meth-
ods (from top to bottom): (1) SBL; (2) multiscale SBL; (3) MAP with p = 0; (4)
multiscale MAP with Laplacian prior. In contrast to the distributed estimates, the
sparse estimates were not changed much by thresholding, as expected. The maps
produced by the different methods show some minor differences (related to depth-
bias compensation and sparsity), but all maps show the basic expected pattern for
V1/V2 retinotopy. The fact that retinotopy was discriminated with the thresholded
maps suggests that thresholding can be very useful for distributed estimates since
these have maxima with little localization bias. Interestingly, the simple matched
filter showed a clear map consistent with the V1/V2 borders.

8.9 Conclusion

The relative strengths of different localization algorithms offer an opportunity to se-
lect the most appropriate algorithm, constraints, and priors for a given experiment.
If one expects only a few focal sources, then dipole fitting algorithms may be suffi-
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Fig. 8.1: Retinotopy of four visual quadrants. (a) Schematic of visual stimuli.
(b) Weighted minimum-l2-norm estimate thesholded only at 0.1 of maximum. (c)
Retinotopic maps produced by distributed methods thresholded at 0.9 of maximum
(colors code for visual quadrant that maximally activated that area). (d) Retinotopic
maps produced by sparse methods. See Section 8.8.

cient. If one expects distributed sources, then distributed MAP estimation methods
(e.g., using a Gaussian prior, as in MNE, dSPM, or sLORETA), spatial scans, or
beamforming algorithms are appropriate. If one expects sparse sources, then SBL
or MAP estimation with a Laplacian or more super-Gaussian prior may better reflect
the true sources. If one expects compact distributed sources with variable levels of
spatial extent, then SBL or MAP estimation (with p≤1) using a mixture model of
multiscale basis functions may be optimal.

It should be noted, however, that all of these methods are expected to reveal
somewhat similar functional brain maps for the same data set. If major discrepancies
in terms of the brain regions involved are evidenced, this should raise a warning flag
that some piece of the puzzle during source analysis has been misplaced higher up
in the long chain of treatments involved. Registration with MRI is a major source
of error, together with numerical errors in the computation of realistic head models
using the BEM or FEM.
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As in all experimental data analysis methods, one should bare in mind the balance
between the sophistication of the methods involved, that should include all the prior
information available to the scientist, and the robustness to deviations of the model
from reality (head position, conductivity of tissues, etc.).

Multiple commercial and academic software solutions are now available to the
scientist and clinician, which can help him/her grow confident of this exciting tech-
nique that images brain functions at high-temporal resolution.
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Chapter 9
Optimization in Brain? – Modeling Human
Behavior and Brain Activation Patterns with
Queuing Network and Reinforcement Learning
Algorithms

Changxu Wu, Marc Berman, and Yili Liu

Abstract Here we present a novel approach to model brain and behavioral phe-
nomena of multitask performance, which integrates queuing networks with re-
inforcement learning algorithms. Using the queuing network as the static plat-
form of brain structure and reinforcement learning as the dynamic algorithm to
quantify the learning process, this model successfully accounts for several behav-
ioral phenomena related to the learning process of transcription typing and the
psychological refractory period (PRP). This model also proposes brain changes
that may accompany the typing and PRP practice effects that could be tested
empirically with neuroimaging. All of the modeled phenomena emerged as out-
comes of the natural operations of the human information processing queuing
network.

9.1 Introduction

Elucidating the psychological and physiological processes that mediate cognitive
and behavioral performance has been an important topic for a long period of
time. This topic for many years was studied exclusively with behavioral tech-
niques, and models of behavioral performance had to be inferred exclusively from
behavioral data [13, 45]. Current researchers are now endowed with two addi-
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tional techniques to understand and to explain human behavioral performance: neu-
roimaging and computational modeling. With neuroimaging techniques, such as
functional magnetic resonance imaging (fMRI [8]), positron emission tomogra-
phy (PET [9]), and event-related potentials (ERP [29]), researchers can uncover
the neural substrates that mediate behavioral performance. These neuroimaging
techniques not only allow researchers to localize where cognitive processes re-
side in the brain, but also allow researchers to uncover commonalities and dis-
similarities between cognitive tasks, discover individual differences, and test psy-
chological theories and models in ways that behavioral techniques alone could not
uncover [3].

Computational modeling has also been a powerful technique to simulate and
compose models for how behavior is mediated. Computational models can be clas-
sified into a number of categories, including, e.g., connectionist [19, 30, 39], sym-
bolic [24, 31], and hybrid [4, 27, 59, 51, 48, 53, 55, 54, 56, 52, 60, 58, 57, 61, 62, 63].
With these computational models, researchers are able to validate, test, and up-
date psychological theories in ways that behavioral testing alone could not do
easily.

Here we utilize computational modeling to account for changes in performance
both behaviorally and neurally due to practice and learning in the context of tran-
scription typing and the psychological refractory period (PRP; the slowing of a sec-
ondary task when it is initiated during the response of a primary task). This novel
model unifies many disparate findings together into a single model without needing
to make many changes to model parameters.

We chose to model the practice and learning effects in transcription typing and
PRP due to the following reasons. First, transcription typing involves intricate and
complex interactions of perceptual, cognitive, and motoric processes, and modeling
its learning processes can help us understand the underlining quantitative mecha-
nisms in complex motor skill acquisition. Second, there exist brain imaging data
on typing and typing related behavior [17, 23] that could be modeled. In addition,
human behavioral performance data, such as typing speed and typing variability,
have been obtained via several experimental studies (please see the review of Salt-
house [44]).

We modeled the learning effect in PRP for similar reasons. First, PRP is the
simplest and one of the most basic paradigms to study multitask performance
and has been used extensively as a paradigm to study multitask performance.
The PRP effect has been applied in many real-world settings such as driving
[25] and has been used as a measure of dual-task competency [5, 11]. There-
fore, modeling the learning effects in PRP may allow us to account for the ba-
sic mechanisms in the acquisition of multitasking skills. Second, an experimen-
tal study has been conducted to study the learning effect in PRP [49], which
provides important human performance data for modeling. For these reasons we
found transcription typing and PRP tasks good candidates to model skill learning
behavior.
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9.2 Modeling Behavioral and Brain Imaging Phenomena
in Transcription Typing with Queuing Networks
and Reinforcement Learning Algorithms

9.2.1 Behavioral Phenomena

Salthouse [42] reviewed the major behavioral empirical results of transcription typ-
ing and summarized 29 phenomena in this area. John [22] summarized two addi-
tional behavioral phenomena found by Gentner [16] and [43]. These 31 behavioral
phenomena include 12 basic phenomena, 5 error phenomena, 6 phenomena in typ-
ing units, and 8 skill learning phenomena in transcription typing. We have devel-
oped a queuing network model that successfully modeled 32 behavioral phenomena
in transcription typing including 3 newly discovered eye movement phenomena and
29 of these 31 behavioral phenomena, with the exceptions being 2 phenomena re-
lated to reading and comprehension, whose modeling requires significant extensions
of our model to include production systems and is a current topic of our ongoing
research [48]. In this chapter we focus on modeling the learning aspects of the be-
havioral phenomena and brain imaging phenomena.

The first typing phenomenon that we modeled was changes in interkey response
time of transcription typing, which decreases accordingly to the power law of prac-
tice [16]. For example, typing speeds of an unskilled typist (about 30 words per
minute [21]) can be improved to that of a skilled typist (about 68 words per minute
[42]).

The second phenomenon involved the variability of interkey intervals which de-
creases with the increased skill of the typist. In addition, the interquartile range of in-
terkey intervals correlates significantly with typist’s net interkey intervals (p < 0.05
[41]). The third behavioral phenomenon that we modeled that we will describe in
this chapter was modeling the rate of repetitive tapping, which is greater among
more skilled typists and the correlation between repetitive tapping speed and net
typing speed is reliable (p < 0.05, [41]).

9.2.2 Brain Imaging Phenomena

Recently, brain imaging studies (fMRI and PET) have discovered two phenomena
related to transcription typing. First, it has been found that at the beginning stages of
learning a visuomotor control task, including transcription typing, the dorsal lateral
prefrontal cortex (DLPFC), the basal ganglia, and the pre-SMA are highly activated
[31,40]. After practice, activation of the DLPFC disappears and strong activation is
observed in the supplementary motor area (SMA), the basal ganglia, and the primary
motor cortex (M1) in addition to slight activation in the somatosensory cortex (S1)
[17].
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Second, in the well-learned stages of typing (skilled typist in [17]), when stim-
uli to be typed are repetitive letters (e.g., AAA...), M1 is strongly activated, how-
ever, when stimuli to be typed are multiletter sentences (e.g., JACK AND...), M1 is
strongly activated, but there is more robust activation in the SMA, the basal ganglia,
and S1.

9.2.3 A Queuing Network Model with Reinforcement Learning
Algorithms

9.2.3.1 The Static Portion of the Queuing Network Model

Queuing network is a mathematical discipline that is used to simulate and model a
wide array of phenomena and systems including manufacturing and computer net-
work performance. A queuing network is a network of servers that provide services
to customers that wait in queues before they are serviced. Queuing networks tend
to be quite flexible and can allow two or more servers to act in serial, in parallel,
or in any network configuration [26, 27]. Computational models based on queuing
networks have successfully integrated a large number of mathematical models of
response time [26] and multitask performance [27]. A queuing network modeling
architecture is called the queuing network. Model human processor (QN-MHP) has
been developed and used to generate behavior in real time [28], including simple and
choice reaction time [14] and driver performance [44]. The model in this chapter ex-
tends QN-MHP by integrating reinforcement learning algorithms and strengthening
its long-term memory and nine motor subnetwork servers. In addition, the queuing
network approach has also been used to quantify changes in brain activation for
different participant populations [4].

The brain, which is an enormously complex network of interconnected systems
and subsystems, acts in concert with one another to produce behavior. This idea is
supported by evidence from pathway tracing studies in nonhuman primates, which
revealed widely distributed networks of interconnected cortical areas, providing an
anatomical substrate for large-scale parallel processing in the cerebral cortex [6]. It
seems, then, that brain areas do not act in isolation from another and instead may
form complex neural networks that are the basis of behavior and thought.

In addition to the widely distributed nature of the brain, each brain area may also
have some level of functional specialization [9] and thus each major brain area may
have certain information processing capacities and certain processing time parame-
ters (see Table 9.1). Here we assume that the interconnections between major brain
areas form a queuing network with each major brain area composing a queuing
network server and that information processed at each server is a queuing network
entity. In addition, neuron pathways that connect major brain areas serve as routes
between our queuing network servers (see Fig. 9.1 for transcription typing routing
and Fig. 3.1 a for PRP routing. Note that both networks have the same servers and
overall network configurations). Therefore, it is assumed that the major brain areas
form a queuing network with brain areas as the servers, information processed as
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entities, and neuron pathways as routes (see Fig. 9.1). Within this general informa-
tion processing structure, the major brain areas activated in the transcription typing
task 10 were identified by the following fMRI and PET studies ( [23, 40, 17], see
Fig. 9.1).

Fig. 9.1: The general structure of the queuing network model (QN-MHP) with routes
and servers involved in transcription typing tasks highlighted (server names, brain
structures, and processing logic and time are shown in Table 9.1).

Processing logic and time is based on the literature [10, 27, 38, 14, 37]. If we
consider the network for transcription typing, as shown in Fig. 9.1, upon completing
service at the Pho server, entities have numerous possible routes to follow to traverse
the network: (1) At the Pho server, the entities can choose one of the three routes to
depart the Pho server to the CE, BG, or M1 servers. (2) At the CE server, entities
can choose to move to the BG, SMA, or M1. (3) At the BG server, entities can move
to the SMA or M1 servers. Therefore, there are a total of 3× 3× 2 = 18 possible
routes for the entities to be processed in the network in transcription typing. An
important question is, therefore, how the entities choose among these routes that
activate (utilize) different brain areas (servers) in different learning stages or when
processing different stimuli at well-learned stages? This question can be answered
by the dynamic part of the model.

9.2.3.2 The Dynamic Portion of the Queuing Network Model:
Self-Organization of the Queuing Network with Reinforcement
Learning Algorithms

Ungerleider et al. [47] found evidence for the reorganization of brain areas with
practice, which indicates that individual brain areas may change their information
processing speeds in learning. Moreover, some brain areas may have error detection
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Table 9.1: Server name, major function, and brain structure

Server Brain structure Major function (Processing logic)

Eye Eye, LGN, SC, Visual pathway Visual sampling and signal
transmission

VSen Distributed parallel area, superior
frontal sulcus, dorsal and ventral

system

Visual sensory memory and
perception

Pho Left posterior parietal cortex,
inferior parietal lobe

Phonological loop to store
auditoria

and textual information
CE Dorsal lateral prefrontal cortex and

ACC
Mental process and response

inhibition and selection
BG Basal ganglia Motor program retrieval

LTPM Striatal and cerebellar systems Long-term procedural knowledge
storage

SMA Supplementary motor area and
pre-SMA

Motor program assembly, error
detection, and bimanual

coordination
M1 Primary motor cortex Addressing spinal motorneourons
S1 Somatosensory cortex Sending the sensory information to

other areas
Hand – Execution of motor movement

functions but others may not (see Table 9.1). Because the routes of the queuing net-
work are composed of different brain areas (servers), different routes chosen by the
entities may lead to different information processing speeds or errors. If the entities
try to maximize response time performance, they may choose an optimal route that
maximizes speed, but may not minimize error. Some routes, however, may maxi-
mize both performance measures. Therefore, in different situations, different routes
may be chosen by the entities which activate different brain areas (servers). This
ability to have different routes becoming active forms the dynamic, self-organization
aspect of the queuing network. Consequently, there are two levels of learning within
the queuing network: (1) learning processes at the individual server level and (2)
self-organization or routes of the queuing network that change depending on the
stages of learning or the type of stimuli presented.

Learning Processes of the Individual Servers

In the motor learning process, the basal ganglia, striatal, and cerebellar systems
(BG and LTPM servers) play a major role in procedural knowledge acquisition [2].
Therefore, the current model focuses on the BG and the LTPM servers in quantifying
the learning processes of individual servers. It is assumed that the time for the BG
server to retrieve a motor program from the LTPM decreases exponentially as a
function of the number of practice trials (see Equation 9.1). Because the exponential
function fits learning processes of memory search, motor learning, visual search,
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mathematic operation tasks better than the power law [19] and has been applied in
modeling long-term memory retrieval [1] we used it to model our individual server
learning processes:

1/μBG = ABG +BBG exp−αBGNBG, (9.1)

1/μBG: motor program retrieving time; ABG: the minimal of processing time of
BG server after practice (314 ms, [35]); BBG: the change of expected value of pro-
cessing time from the beginning to the end of practice (2×314 = 628 ms, assumed).
αBG: the learning rate of server BG (0.00142, [18]); NBG: number of digraphs (letter
pairs excluding the space key) processed by server BG, which is implemented as a
matrix of diagraph frequency recorded in LTPM server.

Self-Organization of the Queuing Network

If the entities traversing the network try to maximize their information processing
speed and minimize error, it is appropriate to apply reinforcement learning algo-
rithms to quantify this dynamic process. Reinforcement learning is a computational
approach able to quantify how an agent tries to maximize the total amount of reward
it receives in interacting with a complex, uncertain environment [46]. Reinforcement
learning has also been applied in modeling motor learning in neuroscience [33] and,
therefore, may be appropriately applied to model brain network organization. To in-
tegrate the reinforcement learning algorithms with the queuing network approach,
it is necessary to define the state, transitions, and reward values of reinforcement
learning with the concepts of queuing networks. Below are the definitions:

1. State: the status that an entity is in server i.
2. Transition: An entity routed from server i to j.
3. Time-saving reward (r′t ): r′t = (1/wq)+μ j,t (2)

wq: time the entity spent waiting in the queuing of the server; μ j,t : processing
speed of the entity at that server.

4. Error-saving reward (r′′t ): r′′t = 1/(Nerror j,t +1) (3)

Nerror j,t : number of action errors of the previous entities made in the next server
j at tth transition. Q online learning algorithms in reinforcement learning are used
to quantify the processes that are used by entities to choose different routes based
on rewards of different routes.

1. Q online learning algorithm of time-saving reward

Qt+1
T Qt

T (i, j)+ ε{r′t + γmax
k

[Qt
T ( j,k)]−Qt

T (i, j)}, (9.2)

ε: learning rate of Q online learning (0 < ε < 1, ε = 0.99);
γ: discount parameter of routing to next server (0 < γ < 1,γ = 0.3);
Qt

T + 1(i, j): online Q value if entity routes from server i to server j in t + 1th
transition based on time-saving reward;
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maxk[Qt
T ( j,k)]: maximum Q value routing from server j to the next k server(s)

(k ≥ 1).
Equation (9.2) updates a Q value of a backup choice of routes (Qt

T (i, j)) based
on the Q value which maximizes over all those routes possible in the next state
(maxk[QtT ( j,k)]). In each transition, entities will choose the next server ac-
cording to the updated Qt

T (i, j).
2. Q online learning algorithm of error-saving reward

Qt+1
E Qt

E(i, j)+ ε{r′′t + γmax
k

[Qt
E( j,k)]−Qt

E(i, j)}. (9.3)

3. Trade-off of the two Q values

The choice of routes is determined by the trade-off between the two Q values. Cur-
rently, it is assumed that Qt+1

E (i, j) of error-saving reward has the higher priority
than the Qt+1

T (i, j) of time-saving reward: if Qt+1
E (i, j) > Qt+1

E (i,k), the entity will
choose the next server j whatever the value of Qt+1

T (i, j); if Qt+1
E (i, j) = Qt+1

E (i,k),
entity will choose the next server with greater Qt+1

T ; if Qt+1
E (i, j) = Qt+1

E (i,k) and
Qt+1

T (i, j) = Qt+1
T (i,k), entity will choose next server randomly. With these equa-

tions, we were able to successfully integrate queuing networks with reinforcement
learning algorithms.

9.2.4 Model Predictions of three Skill Learning Phenomena
and two Brain Imaging Phenomena

The three skill learning phenomena and the two brain imaging phenomena of tran-
scription typing described earlier in this chapter can be predicted by the queuing
network model with reinforcement learning.

9.2.4.1 Predictions of the three Skill Learning Phenomena

We assume that the processing times of the CE, BG, and SMA servers follow the
exponential distribution (see Table 9.1 and Fig. 9.1) and are independent from one
another. Therefore, if Y1 · · ·Yk are k independent exponential random variables rep-
resenting the processing times of the servers in our network, their sum X follows an
Erlang distribution. Based on features of Erlang distributions, we have

X =
k

∑
i=1

Yi, (9.4)

E[X ] = E

[
k

∑
i=1

Yi

]
=

k

∑
i=1

E[Yi] = k
1
λ

, (9.5)
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Var[X ] = Var

[
k

∑
i=1

Yi

]
=

k

∑
i=1

Var[Yi] = k
1
λ 2 . (9.6)

These mathematical results can be used to predict the skill learning phenomena,
together with the prediction described below that entities may learn to skip certain
server(s). First, because E[X ] = k(1/λ ), if k′ < k, then it follows that E[X ′] < E[X ].
This may be one of the reasons that the skipping of server(s) can explain a reduc-
tion in interkey time in typing normal text (the first skill learning phenomenon in
this chapter) and repetitive letters (the third skill learning phenomenon). Second,
skipping some of the servers will decrease the variance of the Erlang distribution
because if k′ < k, then Var[X ′] < Var[X ]. This is one possible reason why skipping
over server(s) can account for the reduction in the variability of interkey time in the
learning process (the second skill learning phenomenon).

9.2.4.2 Predictions of the First Brain Imaging Phenomenon

At the Pho server during the initial stages of learning, entities can go through the
CE server for eye movement control to locate the specific position of a target key on
the keyboard ( [12], see Fig. 9.1) and for response selection and inhibition. Entities
can also traverse the route from Pho to BG, but it takes longer than going through
the CE because the BG may not work effectively in retrieving the motor program
from LTPM [2] and its Q value of time-saving reward is smaller than that of CE.
Entities can also choose the route from Pho→ M1 directly. However, the occurrence
of typing errors will decrease the Q value of error-saving reward from 18 Pho→M1.
As the number of practice trials increases, the route Pho→BG is selected by the
majority of the entities because the functions of CE are gradually replaced by the
BG with less process time based on parallel cortico-basal ganglia mechanisms [33].

Second, at the CE server, entities can traverse one of the routes from CE to BG,
SMA, or M1. If entities select the first route, the correct motor program will be re-
trieved without decreasing the Qt+1

E (i, j) value. If the second or the third route is cho-
sen, its Qt+1

E (i, j) value will decrease because no correct motor program is retrieved.
The third prediction involves the BG server. Since stimuli keep changing in

typing multidigit sentences, entities can go from the BG directly to M1 skipping
SMA whose function is motor program assembling [36]. However, ensuring move-
ment accuracy for error detection [17] will decrease Qt+1

E (i, j) in route BG. . .M1.
In sum, at the beginning of the learning process, entities will go through Pho→
CE→BG→SMA→M1. After learning, the majority of entity will travel Pho→BG→
SMA→M1.

9.2.4.3 Predictions of the Second Brain Imaging Phenomenon

If stimuli change from repetitive letters to regular words in the same task, the enti-
ties will change routes from Pho→M1 to Pho→BG→SMA→M1 because the error-
saving reward decreases in route Pho. . .M1 without the motor program functions of
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BG and the sequencing functions of SMA. This is our second prediction of changes
in neural processing with learning.

9.2.5 Simulation of the three Skill Learning Phenomena
and the two Brain Imaging Phenomena

9.2.5.1 The First and the Second Skill Learning Phenomena

Simulation results showed that the simulated interkey interval in the learning pro-
cess followed the power law of practice (R square = 0.8, p < 0.001). The simulated
interkey interval also improved from 385 to 180 ms, which was consistent with exist-
ing experimental data about performance changes from the unskilled typist (interkey
time 400 ms) with estimation error 3.75% (estimation error = |Y X |/X × 100%, Y :
simulation result; X : experiment result) to the skilled typist (177 ms interkey time)
with estimation error 1.69% (see Fig. 9.1).

As shown in Fig. 9.2, the change of the quartile range (75% quartile–25% quar-
tile) is significantly correlated with the change of the simulated speed (p < 0.05),
which is consistent with the experimental results of Salthouse [41]. This was one of
the phenomena not covered by TYPIST [22].

Fig. 9.2: Simulated variability of interkey interval and interkey interval in the learn-
ing process. Each stage represents 352,125 keystrokes.

9.2.5.2 The Third Skill Learning Phenomena

The simulated tapping rate (interkey interval in typing repetitive letters) and typing
speed of text (interkey interval in typing multidigit sentence) during the learning
process were found to be strongly correlated (p < 0.05), which is consistent with
the experimental results of Salthouse [41] who found the significant correlation be-
tween the two variables (p < 0.01). Therefore, our model successfully modeled
these behavioral phenomena with very high accuracy.



9 Modeling Human Behavior with Reinforcement Learning 167

9.2.5.3 The First Brain Imaging Phenomena

As shown in Fig. 9.3, at the beginning of practice, the CE (including DLPFC) and
the BG servers are highly utilized, while the SMA server (including pre-SMA) (3%)
and M1 and two hand servers (15%) are less utilized. After 352,125× 8 trials of
practice, the CE server (DLPFC) decreased its utilization greatly to 0%. Percentage
of utilization of SMA server is increased by 47%. M1 and two hand servers and
S1 also increased their percentage of utilization during the learning process by 85%
and 22%, respectively. These simulation results are consistent with the experimental
results in PET and fMRI studies [23,40,17] who found similar patterns of increases
and decreases in brain activity.

Fig. 9.3: Server utilization at the beginning and end of practice in learning to type
multidigit sentence.

9.2.5.4 The Second Brain Imaging Phenomena

After the model finished its learning process, it was able to simulate the second brain
imaging phenomenon of the skilled typist in typing different stimuli. The 1,600
letters to be typed by the model changed following this pattern: 1st−800th letters:
repetitive letters; 801st – 1,600 letters: multidigit sentence.

Figure 9.4 shows the percentage of utilization of the major servers in the different
stimulus conditions. When the model is typing repetitive letters, mainly M1 and
two hand servers are utilized. When the stimuli changed from repetitive letters to
multidigit sentences the utilization of SMA, BG, and S1 increased by 49, 90, and

Fig. 9.4: Server utilization when stimuli presented changed in the well-learned tran-
scription typing situation.
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22%, respectively. The model demonstrated that fewer entities travel from Pho to
M1 directly when the stimuli presented changes from repetitive letters to multidigit
sentences. These results are consistent with the fMRI results of [17].

In practice, because our queuing network model was built with a general structure
with common brain regions, it can be easily transformed to model other task situa-
tions, e.g., PRP [50]. Moreover, the current model can generate behavioral results by
the interaction of the queuing network servers without drawing complex scheduling
charts. These unique features offer great potential of the model for learning and can
easily be used by researchers in cognitive modeling and human factors.

9.3 Modeling the Basic PRP and Practice Effect on PRP with
Queuing Networks and Reinforcement Learning Algorithms

PRP (Psychological Refractory Period) is one of the most basic and simple forms
of dual-task situations and has been studied extensively in the laboratory for half
a century [31]. In the basic PRP paradigm, two stimuli are presented to subjects
in rapid succession and each requires a quick response. Typically, responses to the
first stimulus (Task 1) are unimpaired, but responses to the second stimulus (Task 2)
are slowed by 300 ms or more . In the PRP paradigm of Selst et al. [44], task 1 re-
quired subjects to discriminate tones into high or low pitches with vocal responses
(audio-vocal responses); in task 2 subjects watched visually presented characters
and performed a choice reaction time task with manual responses (visual-motor re-
sponses). They found that practice dramatically reduced dual-task interference in
PRP.

The basic PRP effect has been modeled by several major computational cognitive
models based on production rules, notably EPIC [31] and ACT-R/PM [7]. Based on
its major assumption that production rules can fire in parallel, EPIC successfully
modeled the basic PRP effect by using complex lock and unlock strategies in cen-
tral processes to solve the time conflicts between perceptual, cognitive, and motor
processing [31]. However, neither EPIC nor ACT-R/PM modeled the practice effect
on PRP.

Here we modeled PRP effects with the same model that modeled typing phenom-
ena and integrated queuing network theory [26, 27] with reinforcement learning al-
gorithms [46]. Model simulation results were compared with experimental results of
both the basic PRP paradigm and the PRP practice effects [49]. All of the simulated
human performance data were derived from the natural interactions among servers
and entities in the queuing network without setting up lock and unlock strategies or
drawing complex scheduling charts.

9.3.1 Modeling the Basic PRP and the Practice Effect on PRP
with Queuing Networks

Figure 9.5 shows the queuing network model that was used to model PRP effects.
The model architecture is identical to the model that was used to model typing
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Fig. 9.5: The general structure of the queuing network model (QN-MHP) with
servers and routes involved in the PRP task highlighted (server names, brain struc-
tures, major functions, and processing time are shown in Table 9.1).

phenomena. However, entities traverse different routes while performing PRP tasks
than they traversed when performing typing tasks.

Because the PRP effect prior to or at the beginning of learning (the basic PRP)
is a special case of the PRP effect during the learning process, the two phenomena
of PRP (basic and learned) are modeled with the same mechanisms in our queuing
network model. The experimental tasks and data of Van Selst et al. [49] were used
to test the model.

Brain areas (servers) and their routes related to the two PRP tasks in Van Selste’s
study were identified within the general queuing network structure based on recent
neuroscience findings [32, 15, 2], see Fig. 9.5). When exploring Fig. 9.5 entities
of task 1 (audio-vocal responses) cannot bypass the Hicog server because the 26
phonological judgment function is mainly mediated by the Hicog server, and thus
there is only one possible route for the entities of task 1 (see the dotted thick line in
Fig. 9.5) to traverse. However, the function of movement selection in task 2 (visual-
motor responses) is located not only in the Hicog server but also in the PM server.
Therefore, there are two possible routes for the entities of task 2 starting at Visk
server (see the gray and black solid lines in Fig. 9.5).

However, how might the entities of task 2 choose one of the two alternative
routes in the network? What is the behavioral impact of this choice on PRP and the
practice effect on PRP? These questions can be answered by integrating queuing
networks with reinforcement learning algorithms. Before exploring the mechanism
with which entities of task 2 select from one of the two routes, it is necessary to un-
derstand the learning process of individual brain areas. It was discovered that each
individual brain area reorganizes itself during the learning process and increases its
processing speed [44]. For example, for the simplest network with two routes (see
Fig. 9.6), if servers 2 and 3 change their processing speeds, different routes chosen
by an entity (1→3→4 or 1→2→4) will lead to different performance. Without con-
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sidering the effect of error, entities will choose the optimal route with the shortest
processing time if they want to maximize the reward of performance.

Consequently, to model learning, it is first necessary to quantify the learning
process in individual servers. Based on that, the condition under which an entity
switches between the two routes shown in Fig. 9.6 can be established and proved by
integrating queuing network with reinforcement learning. Finally, this quantitative
condition of route switching can be applied to the more complex model of 18 servers
with two routes (see Fig. 9.5) to generate the basic PRP and the reduction of PRP
during the learning process.

Fig. 9.6: The simplest queuing network with two routes.

9.3.1.1 Learning Process in Individual Servers

Based on the functions of the servers in Table 9.1, the two long-term memory servers
(LTDSM and LTPM) play the major roles in learning phonological judgments (task
1) and choice reaction (task 2) [2]. Because the learning effects of long-term mem-
ory are represented as speed of retrieval of production rules and motor programs
from the two long-term memory servers at the Hicog and the BG servers, it is im-
portant to quantify the processing time of the Hicog and the BG servers. In addition,
because the premotor cortex (PM) server is activated in learning visuomotor associ-
ations [32], changes in the processing speed of the PM server is also to be considered
in the learning process of the model.

Because the exponential function fits the learning processes in memory search,
motor learning, visual search, and mathematic operation tasks better than the power
law [18], it was again applied to model the learning process in the individual servers
here

1/μi = Ai +BiExp(−αiNi), (9.7)

μi: processing speed of the server i; (1/μi) is its processing time; Ai: the minimal
of processing time of server i after intensive practice; Bi: the change of expected
value of processing time of server i from the beginning to the end of practice; αi:
learning rate of server i; Ni: number of customers processed by server i.

For the BG server, 1/μBG: motor program retrieving time; ABBGB: the minimal
of processing time of BG server after practice (314 ms, [35]); BBG: the change of
expected value of processing time from the beginning to the end of practice (2×
314 = 628 ms, assumed); αBG: the learning rate of server BG (0.00142, [18]); NBG:
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number of entities processed by server BG which is implemented as a matrix of
frequency recorded in LTPM server.

For the Hicog and PM servers, to avoid building an ad hoc model and using the
result of the experiment to be simulated directly, nine parameters in the Hicog and
the PM servers were calculated based on previous studies (see Appendix 1).

9.3.1.2 Learning Process in the Simplest Queuing Network with two Routes

Based on the learning process of individual servers, the condition under which an
entity switches between the two routes in the simplest form of queuing networks
with two routes (each capacity equals 1) (from route 1 . . .2 . . .4 to route 1 . . .3 . . .4,
see Fig. 9.6) was quantified and proved by the following mathematical deduction.

1. Q online learning equation [46]

Qt+1(i, j)Qt(i, j)+ ε{rt + γmax
k

[Qt( j,k)−Qt(i, j)], (9.8)

where Qt+1(i, j) is the online Q value if entity routes from server i to server j
in t + 1th transition; maxk[Q( j,k)] represents maximum Q value routing from
server j to the next k server(s) (k ≤ 1); rt = μ j,t is the reward and is the pro-
cessing speed of the server j if entity enters it at tth transition; Njt represents
number of entities go to server j at tth transition; ε is the learning rate of Q on-
line learning (0 < ε < 1); γ is the discount parameter of routing to next server
(0 < γ < 1); and p is the probability of entity routes from server 1 to server 3
does not follow the Q online learning rule if Q(1,3) > Q(1,2). For example,
if p = 0.1, then 10% of entity will go from server 1 to server 2 even though
Q(1,3) > Q(1,2).
State is the status that an entity is in server i; transition is defined as an entity
routed from server i to j. Equation (9.8) updates a Q value of a backup choice
of routes (Q(t+1)(i, j)) based on the Q value which maximizes over all those
routes possible in the next state (maxk[Q( j,k)]). In each transition, entities will
choose the next server according to the updated Qt(i, j). If Q(1,3) > Q(1,2),
more entity will go from server 1 to server 3 rather than go to server 2.

2. Assumption

• ε is a constant which does not change in the current learning process (0 <
ε < 1) .

• Processing speed of server 4 (μ4) is constant.

3. Lemma 9.1. At any transition state t (t �= 0), if 1/μ2,t < 1/μ3,t then Qt+1(1,2) >
Qt+1(1,3)
Proof of Lemma 9.1 (see Appendix 2).
Based on Lemma 9.1 and Equation (9.7), we got Lemma 9.2:

4. Lemma 9.2. At any transition state t (t �= 0), if A2 + B2Exp(α2N2t) < A3 +
B3Exp(−α3N3t) then Qt+1(1,2) > Qt+1(1,3).
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9.3.2 Predictions of the Basic PRP and the Practice Effect on PRP
with the Queuing Network Model

Based on Equation (9.7) and Lemmas 9.1 and 9.2, we can predict the simulation
results of the basic PRP effect and the PRP practice effect. For the entities in task 2
(see Fig. 9.5), at the beginning of the practice phrase, because the visual-motor map-
pings are not established in PM [32], PM takes a longer time to process the entities
than the CE and the Hicog servers. Thus, the Q value from Visk to PM (Q(1,3))
is lower than the Q value from Visk to CE (Q(1,2)). According to Lemma 9.1, the
majority of the entities will go to the CE and Hicog server at the beginning of the
learning process in dual tasks. Consequently, entities from task 1 also go through the
CE and Hicog server thus producing a bottleneck at the Hicog server which produces
the basic PRP effect. This bottleneck is similar in theory to that of Pashler [34].

During the learning process, the CE will send entities which increase the process-
ing speed of PM based on the parallel learning mechanisms between the visual loop
(including CE) and the motor loop (including PM) ( [33], see Table 9.1). Therefore,
when the Q value of the 2P and P route of task 2 increases, an increasing number
of entities of task 2 will travel on the 2nd route and form an automatic process,
which creates two parallel routes that could be traversed in this dual-task situation.
However, because the learning rate of PM server (1/16,000) is lower than that of the
Hicog server for the entities in task 2 (1/4,000), the majority of the entities will still
go through the Hicog server.

9.3.3 Simulation Results

Figure 9.7 shows the simulation results of the basic PRP effect compared to
the empirical results. The linear regression function relating the simulation and

Fig. 9.7: Comparison of simulation and experiment results at the beginning of
practice (basic PRP effect).
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experimental results 32 is: Y = 1.057X − 58 (Y : experiment result; X : simulated
result; R square = 0.984, p < 0.001;). Therefore, our model fits the data well.

Figure 9.8 compares of simulation and experiment results of the PRP effect at
the end of practice (after 7,200 fs trials). The linear regression function relating the
simulated results and experiment results is: Y = 1.03X + 105 (R square = 0.891,
p < 0.001), therefore, our model accurately captures learning effects related to the
PRP effect.

Fig. 9.8: Comparison of the simulation and experiment results at the end of practice.

Lastly, Fig. 9.9 shows the comparison of the simulation and experimental results
during the practice process (7,200 trials). The linear regression function relating the
simulated results and experiment results is: Y = 0.965X + 10 (R square = 0.781,
p < 0.001). Moreover, it was found that the Q value of the second route of task
2 never exceeded that of the first route of task 2 during the practice process as

Fig. 9.9: Comparison of simulation and experiment results during the practice pro-
cess (7,200 trials).
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the majority of entities of task second went through the first route rather than the
second route. In some ways this is supported by recent neuroimaging work on PRP
by [20]. Those authors found little 33 differences in activations/neural networks
in the PRP task when performance was assessed at long and short SOAs. Such
large activation differences between short and long SOAs would be predicted by
active monitoring theories of the PRP effect. However, Jiang et al. [20] contend
that their data suggest that the PRP effect reflects passive queuing and not active
monitoring. This is yet other evidence supporting the queuing network architecture
and structure of our model as we did not find much difference in performance in
the Hicog server before and after practice and at short and long SOAs. In addition,
routes are chosen passively with Q learning and are not subject to active monitoring
processes.

With the formation of an automatic process during learning, two parallel routes
were formed in the dual-task situation, which partially eliminated the bottleneck at
the Hicog server. The PRP effect is reduced greatly with the decrease in the pro-
cessing time in both the Hicog and the PM server. However, since the majority of
the entities of the two tasks still went through the Hicog server, the effect of the
automatic process on PRP reduction does not exceed the effect of the reduction of
RT 1 on the PRP effect. This is consistent with the result of Van Selst et al. [49] that
the automatic process does grow from weak to strong but only weakly contributes
to PRP reduction.

9.4 Discussion

In the previous sections of this chapter, we described the modeling of brain ac-
tivation patterns as well as the behavioral phenomena in learning of two basic
perceptual-motor tasks (transcription typing and PRP). In modeling the phenom-
ena in typing, reinforcement algorithms guided how the entities traversed through
different routes before and after learning. The brain areas activated both before and
after learning are consistent with neuroimaging findings. In modeling PRP practice
effects, we used the same simulation model to quantify the formation of automatic
processes (reduction of the visual-motor task 2) during the learning processes in Van
Selst et al. [49] study.

There are several questions to be answered by future research utilizing our model.
First, neuroscience evidence has shown that many brain areas have overlapping
functionality which was not captured by the current model, which assumed discrete
brain areas with specific functions. This will increase the difficulty in modeling the
cooperation of information processes in the different brain areas. Second, the travel-
ing of entities from one server to another does not necessarily indicate the activation
of two brain areas. Brain area activation as uncovered with fMRI studies is based on
brain hemodynamics, which is an indirect measure of neural activity and thus has
poor temporal resolution. Therefore, using fMRI data to guide modeling of process-
ing times is somewhat tenuous. Therefore, 35 caution should be taken in comparing
the simulation results of the model with the results of fMRI studies.

We are currently developing a computational model of the human cognitive sys-
tem which is able to account for experimental findings in both neuroscience and
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behavioral science. It is one step further to understanding the quantitative mecha-
nisms of complex cognition and provides an alternative way to connect the brain’s
function with overt behavioral phenomena. We believe this current model is a firm
step in this direction.

Appendix 1

Parameters setting at Hicog and PM server

• AHicog-symbol: minimal value of the processing time of task 2 entity in Hicog
server. Since choice reaction time (RT) of four alternatives can be reduced to RT
of two alternatives with practice, after intensive practice, RT of eight alternative
choices in Van Selst’s experiment will reduce to RT of four alternatives with-
out intensive practice. AHicog-symbol equals the RT of four alternatives (Hick’s
Law, intercept:150 ms, slope:170 ms/bit, Schmidt, 1988) minus one average per-
ception cycle (100 ms), two cognitive cycles (2× 70 ms), and one motor cycle
(70 ms) [10]. Therefore, AHicog-symbol = 150 + 170 × Log2(4)− 100 − 2 ×
70−70 = 180 ms.

• BHicog-symbol: change of processing time of task 2 entity in Hicog server at the
beginning and end of practice. At the beginning of the practice in single task 2,
RT of the eight alternatives (Hick’s Law, intercept:150 ms, slope:170 ms/bit) is
composed of one perception cycle (100 ms), maximum processing time at Hicog
(AHicog-symbol + BHicog-symbol), and one motor cycle (70 ms) [10]. There-

fore, BHicog-symbol = 150 + 170 × Log2(8)− 100 − AHicog-symbol − 70 =
170 ms.

• αHicog-symbol,αHicog-tone: learning rate of Hicog server in processing the
task 2 and task 1 entities. Based on α = 0.001 approximately in Heathcote et al.’s
[18] study, learning difficulty increased four times because of the four incompat-
ible alternatives. Thus, αHicog-symbol = αHicog-tone = 0.001/4 = 1/4,000.

• AHicog-tone: minimal value of the processing time of task 1 entity in central
executive. After intensive practice, the discrimination task of the two classes of
tones in Van Selst’s (1999) experiment can be simplified into a choice reaction
time of two alternatives, requiring the minimum value of one cognitive cycle
(25 ms) [10].

• BHicog-tone: change of processing time of task 1 entity in Hicog at the beginning
and end of practice. At the beginning of the single task 1, the reaction time to dis-
criminate the two classes of tone is 642 ms, which is composed of one perception
cycle (100 ms), two cognitive cycles (70×2 ms), (AHicog-tone +BHicog-tone),
and one motor cycle (70 ms). Therefore, BHicog-tone = 642− 100− 2× 70−
AHicog-tone −70 = 307ms.

• APM-symbol: minimal value of the processing time of task 2 entity in PM. After
intensive practice, RT of the eight alternative choices in Van Selst’s experiment
will transform to RT of eight most compatible alternatives (RT = 217ms, Schmidt,
1988) which is composed of one perception cycle and one motor cycle. There-
fore, APM-symbol = 217−100−70 = 47ms.
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• BPM-symbol: change of processing time of task 2 entity in PM at the beginning
and end of practice. At the beginning of practice in single task 2, RT of eight
alternative choice reaction time (Hick’s law: 50 ms, slope: 170 ms/bit) is com-
posed of one average perception cycle (100 ms), (APM-symbol +BPM-symbol),

one motor cycle (70 ms). Thus, BPM-symbol = 150 + 170×Log2(8)− 100−
APM-symbol −70 = 443ms.

• αPM-symbol: learning rate of PM in processing the task 2 entity. The speed of
formation of the automatic process in PM is slower than Hicog because it receives
the entities from CE server via the indirect parallel learning mechanism with
the four incompatible alternatives [33]. Thus, αPM-symbol = (0.001/4)/4 =
1/16,000.

Appendix 2

Lemma 9.1. At any transition state t (t �= 0), if 1/μ2,t , t < 1/μ3,t , then Qt+1(1,2)>
Qt+1(1,3)

Proof. Using mathematic deduction method

(i) At t = 0: Q1(1,3) = Q1(1,2) = Q1(2,4) = Q1(3,4) = 0.
(ii)At t = 1: Using the online Q learning formula: Q2(1,3) = Q1(1,3) + ε[rt +
γQ1(3,4)−Q1(1,3)] = εμ3,1.

Note: because entity routes to only one server (server 4) maxb Qt(St + 1,b) =
Q(3,4),Q2(1,2) = εμ2,1,Q2(3,4) = εμ4,Q2(2,4) = εμ4; If 1/μ2,1 < 1/μ3,1 then
εμ3,1 < εμ2,1 (given 0 < ε < 1), i.e., Q2(1,2) > Q2(1,3). Thus, lemma is proved
at t = 1.

iii According to mathematic deduction method, Lemma 9.1 is correct: i.e., at tran-
sition state t = k: if 1/μ2,k < 1/μ3,k then Qk+1(1,2) > Qk+1(1,3). We want
to prove at transition state k + 1, lemma is still correct: i.e., At transition state
t = k +1:
if 1/μ2,k+1 < 1/μ3,k+1, then Qk+2(1,2) > Qk+2(1,3) At t = k +1: Qk+2(1,2) =
Qk+1(1,2)+ ε[μ2,k+1 + γεμ4 −Qk+1(1,2)]

Qk+2(1,3) = Qk+1(1,3)+ ε[μ3,k+1 + γεμ4 −Qk+1(1,3)], (9.9)

Qk+2(1,2)−Qk+2(1,3)
= Qk+1(1,2)+ ε[μ2,k+1 + γεμ4 −Qk+1(1,2)]

−Qk+1(1,3)+ ε[μ3,k+1 + γεμ4 −Qk+1(1,3)]

= (1− ε)[Qk+1(1,2)−Qk+1(1,3)]+(εμ2,k+1 − εμ3,k+1) (9.10)

With Equation (9.3) and 0 < ε < 1, we have

(1− ε)[Qk+1(1,2)−Qk+1(1,3)] > 0. (9.11)
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Given 1/μ2,k+1 < 1/μ3,k+1 and 0 < ε < 1, then (εμ2,k+1 − ε,μ3,k+1) > 0, i.e.,
Qk+2(1,3)−Qk+2(1,2) > 0

Thus, Lemma 9.1 is correct at t = k +1. Lemma 9.1 is proved.
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Chapter 10
Neural Network Modeling of Voluntary
Single-Joint Movement Organization I. Normal
Conditions

Vassilis Cutsuridis

Abstract Motor learning and motor control have been the focus of intense study
by researchers from various disciplines. The neural network model approach has
been very successful in providing theoretical frameworks on motor learning and
motor control by modeling neural and psychophysical data from multiple levels of
biological complexity. Two neural network models of voluntary single-joint move-
ment organization under normal conditions are summarized here. The models seek
to explain detailed electromyographic data of rapid single-joint arm movement and
identify their neural substrates. The models are successful in predicting several char-
acteristics of voluntary movement.

10.1 Introduction

Voluntary movements are goal-directed movements triggered either by internal or
external cues. Voluntary movements can be improved with practice as one learns
to anticipate and correct for environmental obstacles that perturb the body. Single-
joint rapid (ballistic) movements are goal-directed movements performed in a single
action, without the need for corrective adjustments during its course. They are char-
acterized by a symmetric bell-shaped velocity curve, where the acceleration (the
time from the start to the peak velocity) and deceleration (the time from the peak
velocity to the end of movement) times are equal [3]. Similar velocity profiles have
also been observed in multi-joint movements [11].

The electromyographic (EMG) pattern of single-joint rapid voluntary movements
in normal subjects is also very characteristic. It is characterized by alternating bursts
of agonist and antagonist muscles [28]. The first agonist burst provides the impulsive
force for the movement, whereas the antagonist activity provides the braking force
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to halt the limb. Sometimes a second agonist burst is needed to bring the limb to
the final position [1, 4, 5, 6, 23, 24, 25, 26, 27, 36]. The combination of the agonist–
antagonist–agonist bursts is known as the triphasic pattern of muscle activation [28].
An excellent review on the properties of the triphasic pattern of muscle activation
and the produced movement under different experimental conditions can be found
in Berardelli and colleagues [2].

The origin of the triphasic pattern and whether it is controlled by the nervous sys-
tem has been long debated [33]. In a review paper by Berardelli and colleagues [2],
three conclusions were made: (1) the basal ganglia output plays a role in the scaling
of the first agonist burst size, (2) the corticospinal tract has a role in determining
spatial and temporal recruitment of motor units, and (3) the proprioceptive feedback
is not necessary to the production of the triphasic pattern, but it contributes to the
accuracy of both the trajectory and the end point of ballistic movements. That means
that the origin of the triphasic pattern of muscle activation may be a central one, but
afferent inputs can also modulate the voluntary activity.

10.2 Models and Theories of Motor Control

Motor learning and motor control have been the focus of intense study by researchers
from various disciplines. The experimental researchers interested in motor learning
investigate how practice facilitates skill acquisition and improvement. The theoret-
ical/computational researchers interested in motor control have investigated which
movement variables are controlled during movement from the nervous system [33].
Many computational models of motor control have been advanced over the years
[14]. These models include the equilibrium point hypothesis [20], dynamical sys-
tem theory [32], the pulse-step model [22], the impulse-timing model [35], the dual-
strategy hypothesis [14], models about minimizing movement variables [34], and
neural network models [8, 9, 10, 13, 17, 15, 16, 18].

The neural network model approach has been very successful in providing
theoretical frameworks on motor learning and motor control by modeling neural
and psychophysical data from multiple levels of biological complexity. In partic-
ular, the vector integration to endpoint (VITE) and factorization of muscle length
and muscle tension (FLETE) neural network models of Bullock, Grossberg, and
colleagues [7,8,9,10,13] have provided qualitative answers to questions such as how
can a limb be rotated to and stabilized at a desired angle? How can movement speed
from an initial to a desired final angle be controlled under conditions of low joint
stiffness? How can launching and braking forces be generated to compensate from
inertial loads? The VITE model was capable of generating single-joint arm move-
ments, whereas the FLETE model afforded independent voluntary control of joint
stiffness and joint position, and incorporated second-order dynamics, which played
a large role in realistic limb movements. Variants of the FLETE model [9] have been
successful in producing realistic transient muscle activations, such as the triphasic
pattern of muscle activation observed during rapid, self-terminated movements.
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Despite their successes, the VITE and FLETE models have several limita-
tions. First, in an attempt to simulate the joint movement and joint stiffness,
Bullock and Grossberg speculated the presence of the two partly independent
cortical processes [30], a reciprocal signal of antagonist muscles responsible for
the joint rotation, and a co-contraction signal of antagonist muscle responsible
for joint stiffness. However, neither the VITE-FLETE model studies [9] nor the
Humphrey and Reed [30] experimental study has identified the exact neural corre-
lates (i.e., cell types) for the reciprocal activation and co-contraction of antagonist
muscles.

Second, they failed to provide functional roles of experimentally identified neu-
rons in primary motor cortex (area 4) and parietal cortex (area 5), such as the phasic
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Fig. 10.1: Extended VITE–FLETE models without dopamine (DA). (A and B) Top:
Extended-VITE model for variable-speed trajectory generation. Bottom: Extended-
FLETE model of the opponent processing spinomuscular system. Arrow lines: ex-
citatory projections; solid dot lines: inhibitory projections; dotted arrow lines: feed-
back pathways from sensors embedded in muscles. GO: basal ganglia output signal;
P: bidirectional co-contractive signal; T: target position command; V: DV activity;
GV: DVV activity; A: current position command; M: alpha motoneuronal (MN) ac-
tivity; R: renshaw cell activity; X, Y, Z: spinal inhibitory interneuron (IN) activities;
Ia: spinal type a inhibitory IN activity; S: static gamma MN activity; D: dynamic
gamma MN activity; 1,2: antagonist cell pair.
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Fig. 10.1: (continued)

cells, the tonic cells, the reciprocal cells, and the bidirectional cells known to play a
role in voluntary movement initiation and control [19, 21].

Third, they failed to identify the site of origin of the triphasic pattern of muscle
activation [2]. Is the triphasic pattern cortically or subcortically originated [2]? If
cortically originated, are the agonist and antagonist bursts generated from experi-
mentally identified cortical cell types? Does the afferent feedback from the muscle
spindles to the spinal cord play any role in maintenance of this pattern? Does the
feedback from the muscle spindles to the cortex play a role in the generation of the
second agonist burst?

These limitations were addressed successfully by the extended VITE–FLETE
with dopamine models of Cutsuridis and Perantonis [18] and Cutsuridis [15,16,17].
These models have answered issues concerning voluntary movement and proprio-
ception in normal and Parkinsonian conditions. The temporal development of these
models in normal conditions (i.e., without dopamine) is reviewed in detail in the
next section.

10.3 The Extended VITE–FLETE Models Without Dopamine

Figures 10.1a, b depict the extended VITE–FLETE models without dopamine of
voluntary movement and proprioception [15, 16, 17, 18]. Both models were based
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on known corticospinal neuroanatomical connectivity. Detailed description and
complete mathematical formalism of the models can be found in Cutsuridis and
Perantonis [18] and Cutsuridis [15, 17]. Both extended VITE–FLETE without
dopamine models, while they preserved the original VITE–FLETE model’s capa-
bility of generating rapid single-joint movements and affordance of independent
voluntary control of joint stiffness and joint movement, they were extended it in
three fundamental ways.

In a behavioral neurophysiology task, Doudet and colleagues [19] trained mon-
keys to perform fast flexion and extension elbow movements while they recorded
from their primary motor cortex. Three classes of movement-related neurons were
identified according to their activity during the movement: (1) neurons showing a
reciprocal discharge pattern for flexion and extension movements (reciprocal neu-
rons), (2) neurons whose activity changed for only one direction (unidirectional
neurons), and (3) neurons whose activity decreased or increased for both directions
of movement (bidirectional neurons). In the extended VITE–FLETE with dopamine
model of Figure 10.1a [15, 16, 18] functional roles to the cortically identified recip-
rocal [19], bidirectional [19], phasic MT and tonic neurons were assigned. An arm
movement difference vector (DV) was computed in parietal area 5 from a com-
parison of a target position vector (TPV) with a representation of the current posi-
tion called perceived position vector (PPV). The DV signal then projected to area
4, where a desired velocity vector (DVV) and a nonspecific co-contractive signal
(P) [30] were formed. A voluntarily scalable GO signal multiplied (i.e., gated) the
DV input to both the DVV and the P in area 4, and thus volitional sensitive veloc-
ity and nonspecific co-contractive commands were generated, which activated the
lower spinal centers. The DVV and P signals corresponded to two partly indepen-
dent neuronal systems with the motor cortex [30].

The output of the basal ganglia (BG) system, which represented the activity of
the GPi was modeled by a GO signal:

G(t) = G0(t − τi)2u[t − τi]/(β + γ(t − τi)2), (10.1)

where G0 amplified the G signal, i was the onset time of the ith volitional command,
β and γ are free parameters, and u[t] was a step function that jumped from 0 to 1 to
initiate movement. The difference vector (DV), which represented cortical area’s 5
phasic cell activity, was described by

dVi

dt
= 30(−Vi +Ti −Ai), (10.2)

where Ti was the target position command and Ai was the current limb position
command.

In contrast to the original VITE–FLETE model [9, 10], in the extended VITE–
FLETE models [15, 16, 17, 18], the desired velocity vector (DVV) represented the
activity of cortical area’s 4 phasically activated reciprocal neurons [19], and it was
organized for the reciprocal activation of antagonist muscles. It was defined by
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ui = [G(Vi −Vj)+Bu]+, (10.3)

where i, j designated opponent neural commands and Bu was the baseline activity
of the phasic-MT area 4 cell activity.

The co-contractive vector (P) represented area’s 4 phasic activity of bidirectional
neurons (i.e., neurons whose activity decreases or increases for both directions of
movement [19]), and it was organized for the co-contraction of antagonist muscles
(see columns 1 and 3 of Fig. 10.2). It was given by

P = [G(Vi −Vj)+BP]+. (10.4)

Fig. 10.2: Comparison of peristimulus time histograms (PSTH) of reciprocally or-
ganized neurons (column 1; reproduced with permission from [19, Fig. 4A, p. 182],
Copyright Springer-Verlag) in area 4, simulated area’s 4 reciprocally organized pha-
sic (DVV) cell activities (column 2), PSTH of area’s 4 bidirectional neurons (col-
umn 3; reproduced with permission from [19, Fig. 4A, p. 182], Copyright Springer-
Verlag) and simulated area’s 4 co-contractive (P) cells activities (column 4) for a
flexion (row 1) and extension (row 2) movements in normal monkey. The vertical
bars indicate the onset of movement. Note a clear triphasic AG1-ANT1-AG2 pattern
marked with arrows is evident in PSTH of reciprocally and bidirectionally organized
neurons. The second AG2 burst is absent in simulated DVV cell activities.

While the reciprocal pattern of muscle activation served to move the joint from
an initial to a final position, the antagonist co-contraction served to increase the
apparent mechanical stiffness of the joint, thus fixing its posture or stabilizing its
course of movement in the presence of external force perturbations. The Renshaw
population cell activity was modelled by

dRi

dt
= φ(λBi −Ri)zi max(Mi,0)−Ri(1.5+max(R j,0)), (10.5)
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Fig. 10.3: Comparison of peristimulus time histograms (PSTH) of reciprocally or-
ganized neurons (column 1; reproduced with permission from [19, Fig. 4A, p. 182],
Copyright Springer-Verlag) in area 4, simulated area’s 4 reciprocally organized pha-
sic (DVV) cell activities (column 2), PSTH of area’s 4 bidirectional neurons (col-
umn 3; reproduced with permission from [19, Fig. 4A, p. 182], Copyright Springer-
Verlag), and simulated area’s 4 co-contractive (P) cells activities (column 4) for a
flexion (row 1) and extension (row 2) movements in normal monkey. The vertical
bars indicate the onset of movement. Note a clear triphasic AG1-ANT1-AG2 pattern
marked with arrows is evident in PSTH of reciprocally and bidirectionally organized
neurons. The same triphasic pattern is evident in simulated DVV cell activities. The
second peak in simulated activities marked with an arrow arises from the spindle
feedback input to area’s 5 DV activity.

whereas the α−MN population activity was described by

dMi

dt
=φ(λBi −Mi) · (Ai +P+χ ·Ei)− (Mi +2) · (1+Ω ·max(Ri,0)

+ρ ·max(Xi,0)+max(I,
j0)), (10.6)

where Xi was the type Ib interneuron (IbIN) force feedback, Ei was the stretch feed-
back, and I j was the type Ia interneuron. The type Ia interneuron (IaIN) population
activity was defined as

dIi

dt
= φ · (15− Ii) · (Ai +P+χEi)− Ii(1+Ω ·max(Ri,0)+max(I,

j0)). (10.7)

The IbIN population activity without dopamine was given by

dXi

dt
= φ · (15−Xi)Fi −Xi · (0.8+2.2max(Xj,0)), (10.8)
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where Fi was the feedback activity of force-sensitive Golgi tendon organs.
While the extended model was successful in simulating the neuronal activity

of the reciprocal and bidirectional cells and proposed for the functional roles in
joint movement and stiffness, it failed to simulate the second agonist burst of both
the reciprocal and the bidirectional neurons (see columns 1 and 3 of figures 10.2
and 10.3). Due to this failure a biphasic (not triphasic) pattern of α-motorneuronal
activation is produced (see Fig. 10.4A). As mentioned earlier, the role of the second
agonist burst of the triphasic pattern is to clamp the limb to its final position [29].

To simulate the second observed burst in the reciprocal and bidirectional dis-
charge patterns as well as in the α-MN activities, the extended VITE–FLETE model
of Fig.10.1a [15, 16, 18] was further extended (see Fig. 10.1B) by incorporating the
effect of the neuroanatomically observed muscle spindle feedback to the cortex [17].
To model this effect, equation (10.2) was changed to

dVi

dt
= 30(−Vi +Ti −Ai +aw · (Wi(t − τ)−Wj(t − τ))), (10.9)

where Ti was the target position command, Ai was the current limb position com-
mand, aw was the gain of spindle feedback, and Wi, j were the spindle feedback
signals from the antagonist muscles. A clear triphasic AG1-ANT1-AG2 reciprocal
pattern of cellular activity is evident in figure (column 1 of figure 10.3). Similarly,
the activity of bidirectional neurons tuned to both directions of movement is also
shown (column 3 of figure 10.3). The simulated marked by an arrow first peak of
extension and second peak of flexion reciprocal cells is primarily due to spindle
feedback input to DV activity (a feature lacking in [18]). This cortical triphasic pat-
tern of neuronal activation then drives the antagonist α-MNs and produces at their
level a similar triphasic pattern of muscle activation (see Fig. 10.4B).

Fig. 10.4: (A) Simulated α-MN activity when the muscle spindle feedback is absent
from the cortex. Note a pronounced biphasic AG1-ANT1 pattern of muscle acti-
vation. The second AG2 bursts are absent. (B) Simulated α-MN activity when the
muscle spindle feedback is present in the cortex. Note a clear triphasic AG1-ANT1-
AG2 pattern of muscle activation.
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10.4 Conclusion

This chapter has focused on two neural network models of voluntary movement
and proprioception under normal conditions. The models seek to explain detailed
electromyographic data of rapid single-joint arm movement and identify their neu-
ral substrates. The models were successful in providing answers to the questions
detailed in the previous sections as well as predicting several characteristics of vol-
untary movement:

• The reciprocal and bidirectional neurons in primary motor cortex [19] are the
two partly independent cortical processes [30] for the reciprocal activation and
co-contraction of antagonist muscles in the control of joint rotation and joint
stiffness.

• The origin of the triphasic pattern of muscle activation in normal conditions is
predicted to be cortical.

• The neural substrates of the triphasic pattern of muscle activation in normal con-
ditions are predicted to be the neuronal discharge patterns of the reciprocal neu-
rons in primary motor cortex.

• The afferent feedback from the muscle spindles to the cortex is responsible for
the generation of second agonist burst in the neuronal and EMG activities that
clamp the limb to its final position.

Many more predictions regarding voluntary movement control under normal con-
ditions can be found in [18,15,16,17]. In the next chapter, issues regarding voluntary
movement disorganization in Parkinson’s disease will be addressed. In particular,
what role, if any, does dopamine depletion in key cortical and spinal cord sites play
in the initiation, execution, and control of voluntary movements in Parkinson’s dis-
ease patients? Does dopamine depletion in basal ganglia, cortex, and spinal cord
have any effect on the triphasic pattern of muscle activation? How do the neuronal
and EMG variables change when dopamine is depleted?
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Chapter 11
Neural Network Modeling of Voluntary
Single-Joint Movement Organization II.
Parkinson’s Disease

Vassilis Cutsuridis

Abstract The organization of voluntary movement is disrupted in Parkinson’s dis-
ease. The neural network models of voluntary movement preparation and execu-
tion presented in the previous chapter are extended here by studying the effects of
dopamine depletion in the output of the basal ganglia and in key neuronal types in
the cortex and spinal cord. The resulting extended DA–VITE–FLETE model offers
an integrative perspective on corticospinal control of Parkinsonian voluntary move-
ment. The model accounts for most of the known empirical signatures of Parkinso-
nian willful action.

11.1 Introduction

Parkinson’s disease (PD) is a disabling motor disorder that affects all kinds of
movements. In the early stages of PD, patients have difficulty with walking, speak-
ing, or getting in and out of chairs [33]. As the disease progresses, all move-
ments are affected resulting at the end of the disease a complete inability to
move. Patients require intense concentration to overcome the apparent inertia of the
limbs that exists even for the simplest motor tasks. Movement initiation is partic-
ularly impaired when novel movements or sequences of movements are attempted
[16, 3, 41].

The lack of understanding of the causes of PD and the problems associated with
its treatment have led to the search for appropriate animal models. Over the years,
two experimental methods have been employed to induce Parkinsonism in animals:
(1) application of reserpine, alpha-methyl-p-tyrosine (AMPT) [14], and 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [12] resulting in dopamine depletion
in the brain and (2) stereotaxic lesions with focal injections of 6-hydroxydopamine

V. Cutsuridis
Centre for Memory and Brain, Boston University, Boston, MA, USA,
e-mail: vcut@bu.edu

W. Chaovalitwongse et al. (eds.), Computational Neuroscience, 193
Springer Optimization and Its Applications 38, DOI 10.1007/978-0-387-88630-5 11,
c© Springer Science+Business Media, LLC 2010



194 V. Cutsuridis

(6-OHDA) into the substantia nigra or medial forebrain bundle to destroy the as-
cending dopamine tracts. Depending on the method used, the effects vary and can
be temporary or permanent.

MPTP administration in primates produces three distinct phases of altered motor
activity: acute phase, subacute phase, and chronic phase [12]. In the acute phase af-
ter administration, animals appear to go to sleep and fall slowly from their perches
to the floor of the cage; their eyes remain open, but with a vacant gaze [12]. Oc-
casionally, wild running or exaggerated startle response events are observed [12].
The acute effects of MPTP last approximately 0.5–1.0 h and then disappear until
subsequent administration [12].

During the subacute phase after MPTP administration, persistent motor deficits
develop. Animals become increasingly akinetic and show rigidity of the limbs,
freezing episodes, postural abnormalities, and loss of vocalization and blink re-
flex [12]. Compulsive climbing behavior can also occur at this stage, causing an-
imals to damage their heads and faces [12]. This spectrum of behavioral effects
lasts for some weeks, but the animals slowly recover. In subsequent weeks the mo-
tor deficits stabilize, and the animals enter the chronic phase of MPTP action. They
show less spontaneous movements, although when challenged, they can move freely
in the home cage [12]. Complex movements are poorly coordinated and clumsily
executed. Hesitation prior to movement is apparent, and the range of movements
observed appears limited [12].

Postmortem studies of PD in humans [22] and MPTP-treated rhesus monkeys
[44] have shown that the toxin destroys the cells of the substantia nigra pars com-
pacta, but not of the locus coereleus, dorsal raphe, and substantia nigra innomi-
nata [12]. Within the substantia nigra, the cells in the centrolateral area of the SNc
are damaged more extensively than those in the medial portion of the SNc [32]. Ad-
ministration of MPTP to young primates causes a profound (> 90%) persistent loss
of caudate-putamen dopamine content that is irreversible by any form of medication.
The ventral tegmental area (VTA) adjacent to the substantia nigra shows limited
and variable damage to tyrosine hydroxylase-containing cells in MPTP-induced
Parkinsonism [12].

11.2 Brain Anatomy in Parkinson’s Disease

The difficulty in understanding and treating Parkinson’s disease is because there are
multiple brain areas and pathways affected from the sites of neuronal degeneration
all the way to the muscles. Figure 11.1 depicts three of these pathways: (1) the
pathway from the substantia nigra pars compacta (SNc) and the ventral tegmental
area (VTA) to the striatum and from there to the thalamic nuclei and the frontal
cortex through the substantia nigra pars reticulata (SNr) and the globus pallidus
internal segment (GPi), (2) the pathway from the SNc and the VTA to the striatum
and from there to the brainstem through the SNr and GPi, and (3) the pathway from



11 Neural Network Modeling: Part II 195

Fig. 11.1: Brain anatomical pathways in Parkinson’s disease. (A) Pathways from
the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA)
to the striatum and from there to the thalamic nuclei and the frontal cortex through
the substantia nigra pars reticulata (SNr) and the globus pallidus internal segment
(GPi). (B) Pathway from the SNc and the VTA to the striatum and from there to
the brainstem through the SNr and GPi. (C) Pathway from the SNc/VTA to corti-
cal areas such as the supplementary motor area (SMA), the parietal cortex, and the
primary motor cortex (M1), and from there to the spinal cord.

the SNc/VTA to cortical areas such as the supplementary motor area (SMA), the
parietal cortex, and the primary motor cortex (M1), and from there to the spinal cord.

The most popular view is that cortical motor centers are inadequately activated
by excitatory circuits passing through the basal ganglia (BG) [1]. As a result, inad-
equate facilitation is provided to the otherwise normally functioning motor cortical
and spinal cord neuronal pools and hence movements are small and weak [1]. Re-
cently, a new view has been introduced by the modeling studies of Cutsuridis and
Perantonis [21] and Cutsuridis [18,19,20]. According to this view, the observed de-
layed movement initiation and execution in PD is due to altered activity of motor
cortical and spinal cord centers because of disruptions to their input from the basal
ganglia structures and to their dopamine (DA) modulation. The main hypothesis
is that depletion of DA modulation from the SNc disrupts, via several pathways,



196 V. Cutsuridis

the buildup of the pattern of movement-related responses in the primary motor
and parietal cortex and results in a loss of directional specificity of reciprocal
and bidirectional cells in the motor cortex as well as in a reduction in their ac-
tivities and their rates of change. These changes result in delays in recruiting the
appropriate level of muscle force sufficiently fast and in an inappropriate scaling
of the dynamic muscle force to the movement parameters. A repetitive triphasic
pattern of muscle activation is sometimes needed to complete the movement. All
of these disruptions result in an increase of mean reaction time and a slowness of
movement.

11.3 Empirical Signatures

The validity of the model’s hypothesis is based on the existence of a widespread
dopaminergic innervation in not only the basal ganglia, but also in cortex and spinal
cord as well as on its effects on movement, muscular, and neuronal parameters of
Parkinson’s disease patients and MPTP-lesioned animals.

11.4 Is There Dopaminergic Innervation of the Cortex
and Spinal Cord?

A widespread dopaminergic innervation from the substantia nigra (SN), the VTA,
and the retrorubral area (RRA) to the cortex and spinal cord exists [6, 54]. A
schematic diagram of the dopaminergic innervation of the neocortex is depicted
in Fig. 11.2. DA afferents are densest in cortical areas 24, 4, 6, and SMA, where
they display a trilaminar pattern of distribution, predominating in layers I, IIIa,
and V–VI [5, 54, 25, 27, 28]. In the granular prefrontal (areas 46, 9, 10, 11, 12),
parietal (areas 1, 2, 3, 5, 7), temporal (areas 21, 22), and posterior cingulate
(area 23) cortices, DA afferents are less dense and show a bilaminar pattern of
distribution in the depth of layers I and V–VI [5, 42, 43, 27, 28, 46]. Area 17
has the lowest DA density, where the DA afferents are mostly restricted to
layer I [5].

In addition to the DAergic innervation of the neocortex, the presence of dopamin-
ergic fibers in the dorsal and ventral horns of the spinal cord has been observed by
several groups [7, 8]. In the dorsal horn, DA fibers are localized in the superficial
layers and in the laminae III–V and X. In ventral horn, DA fibers are found in layers
VII, VIII, and laminae IX [51]. The sources of the dorsal DAergic innervation are
the posterior and dorsal hypothalamic areas and the periventricular gray matter of
the caudal thalamus, whereas of the ventral dopaminergic innervation is the cau-
dal hypothalamus A11 cell group [47]. Finally, an uncrossed nigrospinal DAergic
pathway has been documented by anatomical methods [15].
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Fig. 11.2: Dopaminergic laminar innervation of the prefrontal, motor, somatosen-
sory, and primary visual cortices from the substantia nigra pars compacta. Diamond
solid green lines: dopamine projection from the substantia nigra.

11.5 Effects of Dopamine Depletion on Neuronal,
Electromyographic, and Movement Parameters in PD
Humans and MPTP Animals

The effects of dopamine depletion on neuronal, electromyographic, and movement
parameters in PD humans and in MPTP-treated animals are briefly summarized below.

11.5.1 Cellular Disorganization in Cortex

Doudet and colleagues [23] trained monkeys to perform fast flexion and extension
elbow movements while they recorded from their primary motor cortex before and
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after 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) injection. A reduction
in the number of reciprocally organized cells (neurons showing a reciprocal dis-
charge pattern for flexion and extension movements; 49% in the pre-MPTP state and
18% in the post-MPTP state) and an increase in the number of unidirectional cells
(cells whose activities change in only one direction; 19% in the pre-MPTP state and
50% in the post-MPTP state) without an alteration of the overall excitation were re-
ported. It was suggested that there was a lift of inhibition from cells that are normally
inhibited during movement resulting in an extra-imposed load on the limb [23].

11.5.2 Reduction of Neuronal Intensity and of Rate
of Development of Neuronal Discharge in the Primary
Motor Cortex

Watts and Mandir [50] examined the effects of MPTP-induced Parkinsonism on the
primary motor cortex task-related neuronal activity and motor behavior of monkeys.
Two monkeys were trained in the pre-MPTP state with the help of visual cues, deliv-
ered via a panel of light-emitting diodes (LEDs), to make fast, wrist flexion move-
ments of 60. Once the animals were fully trained on the task and the M1 neuronal
and EMG activities were recorded, intracarotid injection of MPTP was administered
to induce a stable state of Parkinsonism. Single neuronal recordings were repeated
during the experimentally induced Parkinsonian state for many months. They re-
ported a decrease in the percentage of movement onset-related neurons and an in-
crease in the latency between the start of M1 neuronal activity and the movement
onset and in the duration of after-discharge following movement onset in the hemi-
Parkinsonian state.

Similarly, Gross and colleagues [36] trained monkeys to perform a rapid elbow
movement (> 30) of extension or flexion in response to an auditory signal. The
unit activity of the primary motor cortical cells was recorded 500 ms before and
1,500 ms after the beginning of the auditory signal, before and after an electrolytic
lesion of the substantia nigra pars compacta (SNc). They reported that the maximum
discharge frequency in lesioned animals was lower than in normal animals.

Doudet and colleagues [23] observed a similar change in discharge rate of pri-
mary motor cortical cells as well as a prolongation of their total response duration.
They reported that the time between the start of the alterations in the neuronal dis-
charge and the onset of movement was increased by 20%.

11.5.3 Significant Increase in Mean Duration of Neuronal
Discharge in Primary Motor Cortex Preceding and
Following Onset of Movement

In the experimental paradigm described earlier, Gross and colleagues [36] observed
that the latency between the onset of neuronal discharge and the beginning of fore-
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Fig. 11.3: Schematic representation of the neuronal, electromyographic, and kine-
matic variables. CRT: cellular reaction time; PMT: premotor time; EMT: electrome-
chanical time; RT: reaction time; MT: movement times; TA: time of neuronal dis-
charge prior to movement onset; TB: duration of neuronal discharge after movement
onset.

arm displacement and the duration of the neuronal activity from the onset of move-
ment and the time where the level of activity returned to resting levels (see Fig. 11.3
for a schematic description) were increased. Similarly, Doudet and colleagues [23]
reported that the mean duration of neuronal discharge in area 4 preceding the onset
of movement was slightly affected in the MPTP-treated animals, whereas the mean
duration of neuronal discharge following the onset of movement was significantly
increased.

11.5.4 Prolongation of Behavioral Simple Reaction Time

Benazzouz et al. [2] trained monkeys to perform a rapid elbow movement (> 40) of
extension or flexion in response to an auditory signal. EMG activity was recorded
with intramuscular electrodes 500 ms before and 1,500 ms after the beginning of
the auditory signal, before and after an MPTP lesion of the substantia nigra pars
compacta (SNc). They reported that the behavioral simple reaction time (cellular
reaction time + mean duration of neuronal discharge before movement onset (TA;
see Fig. 11.3) after a nigral MPTP lesion was significantly increased for both exten-
sion and flexion movements. Similarly, Doudet et al. [24, 23] and Gross et al. [36]
observed a significant change in the mean values of the simple reaction time (RT)
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for both flexion and extension movements in the MPTP-treated and electrolytical le-
sioned animals. Weiss et al. [52] investigated the kinematic organization of discrete
elbow movements of different amplitudes to targets of various sizes of young, el-
derly, and PD subjects. The investigators reported a significant increase in the simple
reaction time between young, elderly, and PD subjects over all conditions.

11.5.5 Repetitive Triphasic Pattern of Muscle Activation

Hallett and Khoshbin [37] asked healthy and Parkinson’s disease (PD) patients
to make rapid accurate elbow flexion movements of different angular distances
(10, 20, and 40) while they recorded their EMG activities and their elbow angles
with surface electrodes. They reported that healthy subjects exhibited a tripha-
sic (agonist–antagonist–agonist) EMG pattern. However, the EMG patterns in the
muscles of Parkinson’s disease patients differed from those of the healthy sub-
jects in that the bursts of EMG activity in the agonist muscle did not increase in
magnitude for the larger amplitude movements. Hallett and Khoshbin [37] inter-
preted their results indicating that patients with PD are unable to sufficiently acti-
vate agonist muscles during movements made as quickly as possible. They showed
that an apparent compensation for the decreased muscular activation was to evoke
more cycles of activity to complete the movement. Doudet et al. [23] reported
that in order for MPTP-treated animals to achieve the full amplitude of the re-
quired movement, additional successive bursts of lower amplitude and duration were
needed.

11.5.6 Electromechanical Delay Time Is Increased

Electromechanical delay time (EMT; time between the onset of modification of ag-
onist EMG activity and the onset of movement (OM); see Fig. 11.3) is significantly
increased in MPTP-treated animals. Benazzouz et al. [2] study showed that mon-
keys display a significant increase in the EMD time. Doudet et al. [24, 23] in the
exact same experimental paradigm observed a similar delay in EMT.

11.5.7 Depression of Rate of Development and Peak Amplitude
of the First Agonist Burst of EMG Activity

Godaux and colleagues [34] conducted experiments with control and PD patients
seated facing a target button. Subjects were instructed to switch off the target button
when it lit, by pressing it as rapidly as possible. The activities of anterior deltoid,
biceps brachii, triceps brachii, and extensor indicis muscles were recorded using sur-
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face electrodes as the subjects were performing the task. Godaux et al. [34] found
that the amplitudes of the peak EMG activity were reduced and the rates of de-
velopment of muscle activity in both flexors and extensors were depressed in PD
patients.

Corcos et al. [17] measured the maximum elbow flexor and extensor muscle
strength in patients with PD during on and off anti-PD medication. Patients were
tested in two maximally produced muscle isometric contractions and two flexion
contractions equal to 50% of their maximal voluntary contractions. In all four con-
ditions, the patients were seated on a table with fully supinated right forearm flexed
90◦ with respect to the arm and positioned vertically. The forearm was attached to a
stiff steel bar and changes in torque were measured by strain gauges. EMG signals
were recorded with surface electrodes. Corcos and colleagues reported a reduction
in the peak torque and in the rate of change of torque.

Watts and Mandir [50] trained PD patients and age-matched controls to perform a
rapid, wrist flexion task. Their hands were hidden from their view. Visual cues were
used to instruct the subjects where and when to move. The subjects were advised to
move as quickly and as accurately as possible once they were given the go-signal.
Their flexor and extensor electromyographic (EMG) activities were recorded us-
ing surface electrodes during the trials. They noted decreased average amplitude of
EMG activity for the patients with Parkinson’s disease. Doudet et al. [24, 23] re-
ported that the rate of development and peak amplitude of the first agonist burst
of EMG activity were depressed. Similarly, Hallett and Khoshbin [37] observed, in
patients with Parkinson’s disease, there was a similar reduction in the activity of the
first agonist burst as if it has reached a ceiling.

11.5.8 Movement Time Is Significantly Increased

Rand et al. [45] trained PD patients and age-matched controls to make rapid arm
movements with or without accuracy constraints. Subjects were seated in front of a
horizontal digitizer and held a stylus. The subject was required to move the stylus
from a home position to a target position after an auditory signal. In the spatial
accuracy condition, the subjects were required to move the stylus to the defined
target and stop on it, whereas in the n-spatial accuracy condition, the subjects were
asked to move toward the target without stopping precisely on it. The subjects were
asked to make their movements as fast and as accurate as possible. Rand et al. [45]
reported that the movements of patients were slower than those of the controls in
both the acceleration phase and the deceleration phase. The prolonged deceleration
phase for the patients was more pronounced in the target condition. In addition,
the kinematics of PD patients were abnormal, characterized by a higher number
of acceleration zero crossings indicating that their movements were segmented and
that the first zero crossing occurred much earlier in the movement. Weiss et al.
[52] trained and tested young, elderly, and PD subjects in making discrete elbow
movements with varying amplitudes to targets of varying sizes. They reported that
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both the acceleration and the deceleration times were increased. Doudet et al. [24,
23] and Benazzouz et al. [2] reported a 25–30% increase in movement duration
in monkeys treated with MPTP compared to normal monkeys. Watts and Mandir
[50] showed that both MPTP-treated animals and Parkinson’s disease patients take
longer time to complete the required movements.

11.5.9 Reduction of Peak Velocity

In the experimental study described earlier, one of Godaux et al. [34] findings was
a profound decrease in the peak velocity of movement of PD patients. Camarata et
al. [13] reported that in the MPTP-treated animals, the velocity profiles appeared
less smooth and the amplitude of the velocity profile decreased and delayed in time
at most distances and directions tested. Weiss et al. [52] observed a similar decrease
in the peak velocity of movement of PD patients. Further, Benazzouz et al. [2] and
Doudet et al. [24, 23] after treating monkeys with MPTP found a significant de-
crease in the amplitude of their velocity profiles. Rand et al. [45] reported a signif-
icant reduction of the peak velocity in both accuracy and no-accuracy movement
conditions.

11.5.10 Reduction of Peak Force and Rate of Force Production

Stelmach et al. [48] examined the preparation and the production of isometric force
in Parkinson’s disease. PD patients, elderly, and young subjects were asked to gen-
erate a percentage of their maximum force levels. PD patients showed a similar
progression of force variability and dispersion of peak forces to that of control sub-
jects. Force production impairments were seen at the within-trial level. PD patients
were substantially slower in initiating a force production and their peak forces were
reduced.

11.5.11 Movement Variability

Camarata et al. [13] trained monkeys to make two-joint movements on a horizontal
plane by moving a manipulandum in six different directions (30, 90, 150, 210, 270,
and 330) at five distances from a central start box. Velocity and acceleration pro-
files were calculated for both pre- and post-MPTP states. They reported a marked
variability in the onset, peak velocity, and time course of the velocity profile of
MPTP-treated monkeys. Similarly, Stelmach et al. [48] reported variability in the
force profile of Parkinson’s disease patients.
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11.6 The Extended VITE–FLETE Models with Dopamine

Figure 11.4 depicts the extended VITE–FLETE with dopamine model of volun-
tary movement preparation and execution in Parkinson’s disease. In the previous
chapter, the temporal development of the model without dopamine was discussed.
The model under normal conditions successfully predicted the origin of the tripha-
sic pattern of muscle activation and its neural substrates. In this chapter and al-
though a much larger set of experimental data has been briefly described in the
previous section, I will describe how the triphasic pattern and its neural and EMG
substrates change when dopamine is depleted in basal ganglia, cortex, and spinal
cord. Detailed descriptions of the model and its complete mathematical formalism
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Fig. 11.4: Extended VITE–FLETE models with dopamine (DA). Top: DA–VITE
model for variable-speed trajectory generation. Bottom: DA–FLETE model of the
opponent processing spinomuscular system. Arrow lines: excitatory projections;
solid dot lines: inhibitory projections; diamond-dotted green lines: dopamine mod-
ulation; dotted arrow lines: feedback pathways from sensors embedded in muscles.
GO: basal ganglia output signal; P: bidirectional co-contractive signal; T: target po-
sition command; V: DV activity; GV: DVV activity; A: current position command;
M: alpha motoneuronal (MN) activity; R: renshaw cell activity; X, Y, Z: spinal in-
hibitory interneuron (IN) activities; Ia: spinal type a inhibitory IN activity; S: static
gamma MN activity; D: dynamic gamma MN activity; 1,2: antagonist cell pair.
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can be found in Cutsuridis and Perantonis [21] and Cutsuridis [18,19,20]. As in the
extended model without dopamine (see previous chapter), the GO signal was de-
fined by

G(t) = G0(t − τi)2u[t − τi]/(β + γ(t − τi)2), (11.1)

where G0 amplifies the G0 signal, i is the onset time of the ith volitional command,
β and γ are free parameters, and u[t] is a step function that jumps from 0 to 1 to
initiate movement. The difference vector (DV) with dopamine was described by

dVi

dt
= 30(−Vi +Ti −DA1Ai +DA1aw(Wi(t − τ)−Wj(t − τ))), (11.2)

where Ti is the target position command, Ai is the current limb position command,
aw is the gain of the spindle feedback, Wi, j are the spindle feedback signals from the
antagonist muscles, and DA1 is the modulatory effect of dopamine on area 4’s PPV
inputs to DV cell activity. Dopamine’s values ranged from 0 (lesioned) to 1 (nor-
mal). The desired velocity vector (DVV) with dopamine which represented area’s 4
reciprocally activated cell activity was defined by

ui =
[

G(DA2Vi −DA3Vj +
Bu

DA4

]+

, (11.3)

where i, j designate opponent neural commands, Bu is the baseline activity of
the phasic-MT area 4 cell activity, and DA2, DA3 are the modulatory effects of
dopamine on DV inputs to DVV cell activity and DA4 is the effect of dopamine
on DVV baseline activity. The reader can notice that parameter DA1 modulates the
PPV input to area’s 5 phasic (DV) cell activity (Equation 11.2), whereas parameters
DA2, DA3, and DA4 modulate the DV inputs to DVV and P cell activity (area’s 4
reciprocal and bidirectional activities) and to DVV baseline activity (Equations 11.3
and 11.4), respectively. This is, as we explained in a previous section, because DA
afferents are densest in area 4 than they are in area 5. So, the effect of DA depletion
would be stronger in area 4 than in area 5. Also, the DV flexion (Vi) cell is mod-
ulated by a different DA parameter DA2) from the DV extension (Vj) cell (DA3).
The latter is supported by the experimental findings of Doudet and colleagues [23]
(for comparison see Figs. 11.4 and 11.5, where the firing intensity of the flexion
cells is affected (reduced) more than the firing intensity of the extension cells). The
co-contractive vector (P) with dopamine which was represented by area’s 4 bidirec-
tional neuronal activity was given by

ui =
[

G(DA2Vi −DA3Vj +
BP

DA4

]+

, (11.4)

whereas the present position vector (PPV) dynamics was defined by

dAi

dt
= G[DA2.Vi]+ −G[DA3.Vj]+. (11.5)

The renshaw population cell activity with dopamine was modeled by
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Fig. 11.5: Comparison of peristimulus time histograms (PSTH) of reciprocally or-
ganized neurons (column 1; reproduced with permission from Doudet et al. [23,
Fig. 4A, p. 182], Copyright Springer-Verlag) in area 4, simulated area’s 4 recipro-
cally organized phasic (DVV) cell activities (column 2), PSTH of area’s 4 bidirec-
tional neurons (column 3; reproduced with permission from [23, Fig. 4A, p. 182],
Copyright Springer-Verlag) and simulated area’s 4 co-contractive (P) cells activi-
ties (column 4) for a flexion (row 1) and extension (row 2) movements in normal
monkey. The vertical bars indicate the onset of movement. Note a clear triphasic
AG1-ANT1-AG2 pattern marked with arrows is evident in PSTH of reciprocally
and bidirectionally organized neurons. The same triphasic pattern is evident in sim-
ulated DVV cell activities. The second peak in simulated activities marked with an
arrow arises from the spindle feedback input to area’s 5 DV activity.

dRi

dt
= φ(λBi −Ri)DA5zi max(Mi,0)−DA6Ri(1.5+max(R j,0)), (11.6)

whereas the α−MN population activity with dopamine was described by

Mi

dt
= φ (λBi −Mi)DA7(Ai +P+χEi)− (Mi +2)DA8(1+Ωmax(Ri,0)

+ ρmax(Xi,0)+max(I j,0)) (11.7)

where Xi is the type Ib interneuron (IbIN) force feedback, Ei is the stretch feedback,
and I j is the type Ia interneuron. The type Ia interneuron (IaIN) population activity
with dopamine was defined as

dIi

dt
= φ (15− Ii)DA9(Ai +P+χEi)−DA10Ii(1+Ωmax(Ri,0)

+ max(I j,0)). (11.8)
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The IbIN population activity with dopamine was given by

dXi

dt
= φA11(15−Xi)Fi −XiDA11(0.8+2.2max(Xj,0)), (11.9)

where Fi is the feedback activity of force-sensitive Golgi tendon organs.

11.7 Simulated Effects of Dopamine Depletion on the Cortical
Neural Activities

Figures 11.5 and 11.6 show qualitative comparisons of experimental and simu-
lated neuronal discharges of reciprocal and bidirectional neurons in normal and
dopamine-depleted conditions, respectively. It is clearly evident an overall reduction
of firing intensity [23, 36], a reduced rate of change of neuronal discharge [23, 36],
a disorganization of neuronal activity (neuronal direction specificity is markedly
reduced) [23], and an increase in baseline activity (in the normal case the base-
line activity was 0.05, whereas in dopamine depleted the baseline activity increased
to 0.07) [23]. Figure 11.8 shows a qualitative comparison of abnormal cellular re-
sponses of GPi neurons to striatal stimulation in MPTP-treated monkeys (column
1 of Fig. 11.8) and simulated GPi neuronal responses (column 2 of Figure 11.8).

A

B

C

D

Fig. 11.6: Comparison of peristimulus time histograms (PSTH) of reciprocally or-
ganized neurons (column 1; reproduced with permission from [23, Fig. 4A, p. 182],
Copyright Springer-Verlag) in area 4, simulated area’s 4 reciprocally organized
phasic (DVV) cell activities (column 2), PSTH of area’s 4 bidirectional neurons
(column 3; reproduced with permission from [23], Fig. 4A, p. 182, Copyright
Springer-Verlag) and simulated area’s 4 co-contractive (P) cells activities (column
4) for a flexion (A and C) and extension (B and D) movements in MPTP-treated
monkey. The vertical bars indicate the onset of movement. Note that the triphasic
pattern is disrupted: Peak AG1 and AG2 bursts have decreased, and ANT pause is
shortened.
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In their study, Tremblay and colleagues [49] observed an abnormal oscillatory GPi
response, but failed to offer a functional role for it oscillatory responses. We propose
that such GPi oscillatory responses (repetitive GO signal), comprising of at least two
inhibitory–excitatory sequences, gate (multiply) the DV signal and generate repeti-
tive volitional motor commands (DVV signals; not shown), which in turn generate
repetitive agonist–antagonist muscle bursts (see row 2, column 3 of Figure 11.8)
needed sometimes by PD patients to complete the full amplitude of the movement.

11.8 Simulated Effects of Dopamine Depletion on EMG
Activities

As mentioned in the previous chapter, single ballistic movements at a joint in normal
individuals are made with a single biphasic (sometimes triphasic) pattern of EMG
activity in agonist and antagonist muscles [39, 4, 9, 10, 11, 35, 29, 30, 31, 53, 38].
In PD patients, the size of the first agonist burst is reduced. Up to a certain size,
movements might be performed by a single agonist-antagonist pattern of muscle ac-
tivation [26], but there are times that movements would require additional bursts of
EMG activity [37, 2, 23] in order for the limb to reach the target. The extended
DA–VITE–FLETE model has offered a plausible hypothesis of why PD EMG
agonist burst activity is reduced and why sometimes multiple bursts of AG-ANT-
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Fig. 11.7: Comparison of simulated GO signals (row 1) and α-MN activities (row 2)
in normal (column 1) and dopamine-depleted (column 2) conditions. (Row 2) Blue
solid curve: agonist α-MN activity; Red-dashed curve: antagonist α-MN activity.
Note in PD case, the triphasic pattern is disrupted and it is replaced by a biphasic
pattern of muscle activation. Also, the peaks of agonist and antagonist bursts are
decreased.
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AG are needed to complete the movement. According to the model, disruptions of
the GO signal and dopamine depletion in the cortex and spinal cord disrupt the
reciprocal organization of M1 neurons, reduce their activity, increase their rate of
change, and hence result in the downscaling of the size of the first agonist burst
and in the increase of its rate of change. So, in order for the subject to complete
the movement and reach the target, additional EMG bursts are required. Figure 11.7
shows a qualitative comparison of the normal (column 1) and dopamine-depleted
(column 2) simulated alpha motoneuronal (MN) activities of the agonist and antag-
onist muscles. A significant reduction in the peak agonist and antagonist amplitude
as well as of their rate of development is evident [50,23,37,17]. In contrast to some
PD studies [2, 24, 40], a single and non co-contractive agonist-antagonist pattern of
muscle activation is observed (column 2 of figure 11.7). Figure 11.8 shows a qual-
itative comparison of the experimental (column 1) and simulated (column 2) GPi
discharge patterns (GO signal) and α-MN activity (column 3) in normal (row 1)
and PD (row 2) large amplitude movement conditions. An abnormal oscillatory GO
signal and DA depletion in the cortex and spinal cord result in a repetitive bipha-
sic pattern of muscle activation (indicated by the arrows) necessary to complete the
movement [37]. In the model, the generation of such repetitive biphasic pattern of

Fig. 11.8: Comparison of the experimental GPi PSTH (column 1), GO signals (col-
umn 2), and α-MN activities (column 3) in normal (row 1) and dopamine-depleted
(row 2) conditions. (Column 3, rows 1 and 2) Blue-colored solid curve: agonist
α-MN unit; Red-colored dashed curve: antagonist α-MN unit. Note in dopamine-
depleted case the α-MN activity is disrupted and replaced by repetitive and co-
contractive agonist–antagonist bursts (row 2, column 3). (Column 1, row 1) GPi
PSTH in intact monkey reproduced with permission from Tremblay et al. [49, Fig. 4,
p. 6], Copyright Elsevier. (Column1, row 2) GPi PSTH in MPTP monkey reproduced
with permission from [49, Fig. 2, p. 23], Copyright Elsevier.
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muscle activation is the result of the gating of the DV signal by multiple inhibition–
excitation sequences of abnormal GO signal for the generation of multiple volitional
motor cortical commands sent down to the spinal cord for the completion of the
movement.

11.9 Conclusion

This chapter has focused on how the smooth organization of voluntary movement
observed in normal individuals is disrupted in Parkinson’s disease. The neural net-
work model of voluntary movement preparation and execution presented in the pre-
vious chapter was extended by studying the effects of dopamine depletion in the
output of the basal ganglia and in key neuronal types in cortex and spinal cord. The
resulting extended DA–VITE–FLETE model offered an integrative perspective on
corticospinal control of Parkinsonian voluntary movement. The model accounted
for some of the known empirical signatures of Parkinsonian willful action:

• Cellular disorganization in cortex
• Increases in neuronal baseline activity
• Reduction of firing intensity and firing rate of cells in primary motor cortex
• Abnormal oscillatory GPi response
• Disinhibition of reciprocally tuned cells
• Repetitive bursts of muscle activation
• Reduction in the size and rate of development of the first agonist burst of EMG

activity
• Repetitive triphasic pattern of muscle activation
• Non co-contraction of antagonist MN units in small amplitude movements
• Co-contraction of antagonist MN units in large amplitude movements

The interested reader should refer to the modeling studies of Cutsuridis and
Perantonis [21] and Cutsuridis [18, 19, 20], where additional empirical signatures
of PD kinematics have been successfully simulated:

• Increased duration of neuronal discharge in area 4 preceding and following onset
of movement

• Prolongation of premotor and electromechanical delay times
• Asymmetric increase in the time-to-peak and deceleration time
• Decrease in the peak value of the velocity trace
• Increase in movement duration
• Movement variability

All these results provided sufficient evidence to support the main hypothesis of
the model, which stated that “elimination of DA modulation from the SNc disrupts,
via several pathways, the buildup of the pattern of movement-related responses in
the primary motor and parietal cortex, and results in a loss of directional specificity
of reciprocal and bidirectional cells in the motor cortex as well as in a reduction in
their activities and their rates of change. These changes result in delays in recruiting
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the appropriate level of muscle force sufficiently fast and in an inappropriate scaling
of the dynamic muscle force to the movement parameters. A repetitive triphasic
pattern of muscle activation is sometimes needed to complete the movement. All of
these result in an increase of mean reaction time and a slowness of movement” [21].
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Chapter 12
Parametric Modeling Analysis of Optical
Imaging Data on Neuronal Activities
in the Brain

Shigeharu Kawai, Yositaka Oku, Yasumasa Okada, Fumikazu Miwakeichi,
Makio Ishiguro, and Yoshiyasu Tamura

Abstract An optical imaging technique using a voltage-sensitive dye (voltage imag-
ing) has been widely applied to the analyses of various brain functions. Because
optical signals in voltage imaging are small and require several kinds of preprocess-
ing, researchers who use voltage imaging often conduct signal averaging of multiple
trials and correction of signals by cutting the noise near the baseline in order to im-
prove the apparent signal–noise ratio. However, a noise cutting threshold level that
is usually set arbitrarily largely affects the analyzed results. Therefore, we aimed to
develop a new method to objectively evaluate optical imaging data on neuronal ac-
tivities. We constructed a parametric model to analyze optical time series data. We
have chosen the respiratory neuronal network in the brainstem as a representative
system to test our method. In our parametric model we assumed an optical signal of
each pixel as the input and the inspiratory motor nerve activity of the spinal cord as
the output. The model consisted of a threshold function and a delay transfer func-
tion. Although it was a simple nonlinear dynamic model, it could provide precise
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estimation of the respiratory motor output. By classifying each pixel into five types
based on our model parameter values and the estimation error ratio, we obtained
detailed classification of neuronal activities. The parametric modeling approach can
be effectively employed for the evaluation of voltage-imaging data and thus for the
analysis of the brain function.

12.1 Introduction

Electrical neuronal activity in the brain, on the scale of tissue or multiple cellular
levels, has been investigated classically with a multielectrode technique. Although
this technique enables us to analyze spatiotemporal profiles of neuronal activities
as multiple spike trains [25, 16, 2], the spatial resolution is generally low (e.g., 20
recording points/200 mm2) due to the limited number and density of microelec-
trodes. Further, because a multielectrode technique requires insertion of multiple
microelectrodes into brain tissue, it could cause mechanical tissue damage espe-
cially in the brain of small animals.

On the contrary, optical recording techniques do not have such drawbacks.
Optical recording techniques were first reported in 1968 [3, 28], have been steadily
improved, and have now become more popular than a multielectrode technique in
the analysis of neuronal activity of the brain. Among various optical recording meth-
ods, a technique using a voltage-sensitive dye (voltage imaging) enables us to non-
invasively analyze membrane potential changes of multiple neurons in a region of
interest (ROI) [29,17,23,11,10,18,19,22,21]. Although the temporal resolution of
voltage imaging is generally lower than that of a multielectrode technique, voltage
imaging provides much higher spatial resolution than a multielectrode technique
(e.g., 10,000 recording points/10 mm2).

Optical imaging data give us copious information especially in the spatial do-
main. However, the data obtained with this technique must be cautiously evaluated.
This is because optical signals are small and thus usually require cycle triggered sig-
nal averaging (e.g., 50 times) and noise cutting near the baseline using an arbitrarily
set threshold in order to improve the apparent signal-to-noise ratio. Further, opti-
cal signals can be affected by photobleaching and thus may need correction of the
deviated baseline. Through such preprocessing, the timing of activity occurrence in
different regions cannot be directly compared, as an example indicates in Fig. 12.1.

Several researchers have developed more sophisticated analytical methods, which
have fled from such threshold problems. Fukunish and Murai [12] were pioneers of
statistical analysis of voltage-imaging data. They analyzed the spatiotemporal pat-
terns of neuronal activities and oscillatory neural activity transfer by applying a
multivariable autoregressive model to the voltage-imaging signals of the guinea pig
primary auditory cortex. Fisher et al. [9] conducted voltage-imaging experiments
in the intra-arterially perfused in situ rat preparation and applied a correlation co-
efficient imaging technique to extract and classify respiratory related signals from
optical images. They calculated the correlation for each pixel with a given corre-
lation function; they used five different functions that approximated activities of
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Fig. 12.1: Examples of cases with arbitrarily set threshold that may mislead the
timing of the onset of optical signals. a: Respiratory related optical signals on the
ventral surface of the medulla in a rat brainstem–spinal cord preparation. Region of
interests (ROIs) were set in the pFRG area and the pre-BötC area. The anterior infe-
rior cerebellar artery, the basilar artery, and the vertebral artery are demarcated with
white dotted lines. IX/X, XII, cranial nerves. b: Integrated C4VR activity (

∫
C4VR)

and optical signal waveforms in the pFRG area and the pre-BötC area, which cor-
respond to the ROI on the photograph on panel A. The vertical line indicates the
timing at which the voltage image was computed. Horizontal dotted lines represent
different thresholds. If the threshold level is the horizontal dotted line a, then optical
signals in both pFRG and pre-BötC areas appear simultaneously at the preinspira-
tory period. If the threshold level is b, then only optical signals in the pFRG area
appear at the preinspiratory period. If the threshold level is c, then optical signals
first appear in the pre-BötC area at the onset of inspiration, and subsequently signals
appear in the pFRG area. Therefore, images could mislead the timing of the onset
of optical signals.

basic types of respiratory neurons. Oku et al. [22] have developed a method to iden-
tify respiratory related pixel areas by calculating the cross-correlation between the
forth cervical spinal cord (C4) ventral root (C4VR) inspiratory output activity and
the optical time series data in each pixel in the neonatal rat brainstem–spinal cord
preparation. In this method, by estimating the maximum correlation coefficient and
the lag at which the maximum correlation coefficient is given, functional charac-
teristics of the neurons in the two respiratory rhythm generators (RRGs) could be
clearly discriminated. Recently, Yoshida et al. [30] applied an independent com-
ponent analysis and correlation analysis to voltage-imaging data obtained from the
guinea pig brain, and found that ongoing and spontaneous activities in the auditory
cortex exhibit anisotropic spatial coherence extending along the isofrequency bands.

Although optical imaging with cycle triggered signal averaging has been widely
used as explained above, the ability of such evaluation is limited within grasping
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qualitative characteristics as power distribution ratios or correlation coefficients.
So far, the quantitative analysis, e.g., estimation of respiratory output using opti-
cal imaging data, has not been reported. In the present study, we aimed to develop
a new method to objectively and quantitatively evaluate voltage-imaging data. For
this purpose, we intended to construct a parametric model to analyze optical time
series data.

We have chosen the respiratory neuronal network in the brainstem as a represen-
tative system to test our method. Because the respiratory neuronal network in the
brainstem consists of functionally and anatomically distinct neuronal groups and
also forms motor nerve activity as the neural output, the respiratory neuronal net-
work is ideal as a model system for our analysis. The essential current knowledge
on the respiratory neuronal network in the brainstem is as follows. The respiratory
rhythm and motor patterns are generated by neuronal aggregates that are distributed
bilaterally in a columnar manner in the ventrolateral and dorsolateral reticular for-
mation (for review see [24, 7, 6, 8]). In neonatal animals, two respiratory related
ventrolateral medullary regions, the parafacial respiratory group (pFRG) [23] and
the pre-Bötzinger complex (pre-BötC) [26], have been identified as putative RRGs.
However, the detailed function and anatomy of these RRGs have not been clarified.

12.2 Methods

12.2.1 Recording of Optical Signals and Preprocessing

We recorded respiratory neuronal activities in the brainstem by voltage imaging in
isolated brainstem–spinal cord preparations. For principles and general techniques
of voltage imaging, refer to the reviews by Cohen and Salzberg [4], Kamino [15],
Ebner and Chen [5], and Baker et al. [1]. Briefly, preparations were made of neona-
tal Sprague-Dawley rats (n = 19, 0–1 day old) under deep anesthesia as described
elsewhere [27,20,18,19,22]. Experimental protocols were approved by the Animal
Research Committee of Hyogo College of Medicine. Preparations were stained with
a voltage-sensitive dye (di-2-ANEPEQ) [19,22]. Inspiratory burst activity was mon-
itored from C4VR using a glass suction electrode. Activity of respiratory neurons in
the ventral medulla was analyzed using an optical recording system (MiCAM Ul-
tima, BrainVision, Tokyo). Preparations were illuminated with a tungsten–halogen
lamp (150 W) through a band-pass excitation filter (λ = 480–550 nm). Epifluores-
cence through a long-pass barrier filter (λ >590 nm) was detected with a CMOS
sensor array. Magnification of the microscope was adjusted to 2.8×3.3× depending
on the size of the brainstem. One pixel corresponded to 30×30−35×35μm, and
the image sensor covered a total of 3×3−3.5×3.5mm2. A total of 256 frames, 50
frames/s, were recorded starting at 1.28 s before the onset of C4VR activity.

As shown in Fig. 12.2b, c, raw optical signals had poor signal-to-noise ratios
and respiratory related signals were not obvious. The correlation coefficient values
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Fig. 12.2: Comparison between raw data and data after preprocessing. a: Time series
of C4VR output raw data and integrated data of C4VR (raw data). b: Time series of
imaging data in two pixels (raw data). c: Spatial distribution of imaging data value
(raw data). d: Correlation coefficient (raw data). e: Time series of C4VR output
raw data and integrated data of C4VR (data after preprocessing). f: Time series
of imaging data in two pixels (data after preprocessing). g: Spatial distribution of
imaging data value (data after preprocessing). h: Correlation coefficient (data after
preprocessing).
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between integrated C4VR output and each imaging data were plotted on the photo
image of the ventral medullary surface (Fig. 12.2d), and there were few pixels whose
values were over 0.4. In contrast, when signals were moving time averaged (bin
width = 7) and spatially averaged by 3 × 3 pixels, respiratory related activities
became visible (Fig. 12.2f, g). Many pixels whose correlation coefficient values
were more than 0.5 were seen widely (Fig. 12.2h).

12.2.2 Modeling

Let us consider a model which estimates the respiratory motor output from respira-
tory related optical signals. It is natural to assume that the respiratory motor output
is the sum of an estimation function of optical signals derived from pixels involved
in respiratory neuronal activities:

y∗(t) =
N

∑
i=1

gi(xi(t)). (12.1)

Here, y∗,gi,x j, and N represent the estimated C4VR motor output, the estimation
function, optical time series data in pixel i, and the number of respiratory related
pixels, respectively. However, the number of respiratory related pixels is several
hundreds, and it is not practical to deal with (12.1) because too many numbers of
parameters must be determined. Instead, we consider a model where we estimate
the respiratory motor output from optical signals derived from a specific set of res-
piratory related pixels. The number of pixels taken into account N0 is very small as
compared to N, and in the extreme case, N0 can be 1.

y∗(t) =
N0

∑
j=1

f j(x j(t)). (12.2)

In this case, it is essential to develop methods to determine the estimation func-
tion and to select the specific set of pixels. First, let us consider the case where N0

is 1, i.e., a single-input single-output (SISO) model. The model must satisfy the
following conditions:

(1) The respiratory motor output is not activated unless the optical signal within
the pre-BöC exceeds a certain threshold.

(2) The pre-BötC region is activated earlier and deactivated later than the respi-
ratory motor output.

To satisfy these conditions, we consider a nonlinear dynamic model consisting of
a sigmoid function and a delayed first-order transfer function (STF model; sigmoid
and transfer function model),

y∗(s) =
Ke−Ls

1+T s
× 1

1+ e−(x(s)−a) , (12.3)



12 Parametric Modeling Analysis of Optical Imaging Data 219

where a, K, L, and T represent threshold, gain, dead time (delay) and time constant,
respectively. The parameter values were determined so that the variance of estima-
tion error was minimized. Given that the sampling interval is Δ t, the dead time L
is an integer multiple of Δ t, i.e., where l is an integer. For (12.3) is rewritten in a
discrete form:

y∗(n) = eΔ t/T y∗ (n−1)+(1− eΔ t/T )
K

1+ e−(x(n−l−1)−a) . (12.4)

For a given l, the variance of estimation error σ(e)2 is expressed as

σ2
l (e) =

1
N

N

∑
k=1

(y(n)−y∗(n))2. (12.5)

Then, alCTl and Kl that minimize σ2
l (e) are estimated by one of the nonlinear

optimization method, the sequential quadratic programing method [14,13]. Finding
l∗ that minimizes σ2

l gives the optimal set of parameter values for a, K, L, and T as
aΛl , KΛl , TΛl , Δ t ∗ l∗ .

Next, we consider a multi-input single-output (MISO) model where the output
is estimated by the weighted sum of STF model estimates applied to optical time
series data at each pixel, expecting the improvement of the estimation.

y∗ =
I

∑
i=1

wi
1

1+ e−(xi−ai)
× Kie−Lis

1+Tis
xi(s). (12.6)

Here we estimate wi, the weight coefficient, using the same nonlinear optimiza-
tion method so that the estimation error variance is minimized.

12.2.3 Classification of Optical Signals Based on Activation
Timing

We classified optical signals into five categories based on the timing of the onset
of activation, the timing when the activation reached its peak, the timing when the
activation subsided to the resting state, and the magnitude of variation (Fig. 12.3a).
The timings were evaluated relative to the respiratory motor activity. Figure 12.3b
exemplifies the five activation patterns with relation to the respiratory motor activity.
Note that the respiratory motor activity and optical time series data were artificially
composed in these examples. Type-1 pixels correspond to pixels within the pFRG,
whereas Type-2 pixels correspond to those within the pre-BötC, which more directly
contribute to the respiratory motor output. Type-3 and Type-4 are also respiratory
related pixels, but are assumed to poorly contribute to the respiratory motor activity.
Type-5 is pixels that show by chance behaviors similar to the respiratory motor
activity.



220 S. Kawai et al.

Fig. 12.3: Types of activity patterns for C4VR output. a: Characteristics of the res-
piratory related activities of imaging data. b: Artificial signals of imaging data for
C4VR output.

Fig. 12.4: Model parameters and estimation results for artificial data. a: Table of
the estimation error standard deviation and the model parameters. b: Comparison
between the estimation values and the true values.

We then applied STF model to artificially composed time series data that exem-
plifies each activation patterns. Figure 12.4a shows parameter values and the esti-
mation error ratio for each category datum and Fig. 12.4b indicates the comparison
between the estimated and the actual values for each category data. The estimation
error is small when we estimate the respiratory motor activity using Type-1, Type-2,
or Type-5 pixels, whereas it becomes bigger when we estimate it using Type-3 or
Type-4 pixels. The dead time L of Type-1 pixel is large, and the gain K of Type-5
pixel is large. The results suggest that respiratory related pixels can be characterized
by applying the STF model to optical time series data in each pixel. The conven-
tional cross-correlation technique can only discriminate Type-1 from other activity
patterns based on the maximum lag. Therefore, the present model provides a more
sophisticated method to characterize dynamics of respiratory related optical signals.
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12.3 Results

12.3.1 Estimation of STF Model Parameters

We applied the STF model to actual optical signals that were preprocessed by the
method described in the previous section. Figure 12.5 shows the spatial distribution
of the model parameters and the estimation error ratio.

Fig. 12.5: Spatial distribution of the model parameters and the estimation error ratio.

To evaluate the variability of the dynamic characteristics of each pixel among
breaths, we applied the STF model to optical signals of each pixel in each breath-
ing epoch within consecutive 17 breaths and calculated the mean and the stan-
dard deviation of estimation error ratio in each pixel (Fig. 12.6a, b). We found that
both the mean and the variance of estimation error ratio were small, and variances
of model parameter were also small in the pre-BötC region, suggesting that the
dynamics of neuronal activities in this region are robust and stable. In contrast in
the pFRG region, although the mean of estimation error ratio was small, the vari-
ance was large. These results suggest that the dynamics of neuronal activities in the
pFRG are more variable than those in the pre-BötC, which might be a reflection of
loose synchronization within the preinspiratory neuron network in the pFRG [10].
Pixels on the outskirts of the pre-BötC area had larger mean and variance, suggesting
that neurons in this area do not directly contribute to the respiratory motor pattern
formation.
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Fig. 12.6: Distribution of the mean values and the standard deviation values of the
model parameters and the estimation error ratio. a: Mean value b: Standard devia-
tion values.

12.3.2 Classification of Pixel Activity Patterns

We then categorized respiratory related pixels according to the criteria described in
the previous section. The values of the criteria are shown in Fig. 12.7a. We next
compared the estimated and the actual values for a representative pixel in each cat-
egory. As shown in Fig. 12.7b, we obtained a good estimate using Type-1 or Type-2
pixels, even in the case of the SISO model. The dead time of Type-1 pixel was large,
whereas the dead time and the gain were both small in Type-2 pixels. We did not
obtain a good estimate using Type-3 pixels. The estimation precision became even
worse when we use a Type-4 pixel. Type-5 pixels gave a good estimate, but the gain
was high.

Figure 12.8 shows the spatial distribution of activity patterns of respiratory re-
lated pixels. Type-1 pixels were mostly distributed in the pFRG region, and Type-2
pixels were mainly distributed in the pre-BötC. These results are consistent with
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Fig. 12.7: Model parameters and estimation results of C4VR output. a: Model pa-
rameters and the estimation error ratio criteria for categorization. b: Comparison
between the measured values (true line) and the estimated values (dotted line) of
C4VR output.

Fig. 12.8: Spatial distribution of activities pattern of imaging data.
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the conventional cross-correlation analysis [22]. In addition, Type-3 pixels were ob-
served in the vicinity of Type-2 pixel aggregates, and Type-4 pixels were found
caudal to the pre-BötC.

12.4 Discussion

In this study, we developed a novel parametric modeling approach to objectively
evaluate voltage-imaging signals recorded from the brain. We applied our model to
voltage-imaging signals of the rat brainstem within a single breath without per-
forming cycle triggered averaging. The union set of the detected area, which is
predominated by each type in the model, corresponded to the extracted respira-
tory related areas reported by cross-correlation analysis [22]. In fact, our parametric
model could decompose the known respiratory related area into substructures, each
of which has a distinct functional property. In other words, by classifying each pixel
into five types based on our model parameter values and the estimation error ratio,
we could obtain more detailed categorization of neuronal activity patterns than by
cross-correlation analysis. Although our STF model was simple, it could precisely
estimate the respiratory motor output at least when the output pattern was unimodal.
Further study is needed to test whether the model can estimate more complicated
one such as a bimodal or a trimodal output pattern. We conclude that the paramet-
ric modeling approach can be effectively employed for the objective evaluation of
voltage-imaging data of the brain and is expected to be universally applied to anal-
yses of other types of imaging data.
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Chapter 13
Advances Toward Closed-Loop Deep Brain
Stimulation

Stathis S. Leondopulos and Evangelia Micheli-Tzanakou

Abstract A common treatment for advanced stage Parkinsonism is the application
of a periodic pulse stimulus to specific regions in the brain, also known as deep brain
stimulation (or DBS). Almost immediately following this discovery, the idea of dy-
namically controlling the apparatus in a “closed-loop” or neuromodulatory capacity
using neural activity patterns obtained in “real-time” became a fascination for many
researchers in the field. However, the problems associated with the reliability of sig-
nal detection criteria, robustness across particular cases, as well as computational
aspects, have delayed the practical realization of such a system. This review seeks
to present many of the advances made toward closed-loop deep brain stimulation
and hopefully provides some insight to further avenues of study toward this end.

13.1 Introduction

The uses of electrical stimulation and recording in medicine have a history dat-
ing back to the first century AD [95, 139, 121, 153, 76, 85, 21, 97, 138, 37, 30, 47].
However, since the first advances in microelectronics began to appear [7], med-
ical electro-stimulation and recording equipment became portable and even im-
plantable [23]. Soon after that, with the invention of the integrated circuit [84,115],
an ever-increasing number of components became available on a silicon chip of
millimeter or even micron dimensions [107]. As a consequence, the availability and
sophistication of electronic bio-implants began to greatly increase starting with the
work of House [68] on the cochlear implant in 1969, the work of Humayun and
de Juan [69] on the retinal implant in 1996, and the cortical implant reported by
Donoghue [35] and Nicolelis [111] in 2002 and 2003.
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Electrical stimulation of nuclei in the basal ganglia of the brain as a treatment for
Parkinson’s disease, also known as deep brain stimulation (or DBS), was approved
by the US Food and Drug Administration and became commercially available in
1997 [151]. The apparatus consists of a stimulus generator implanted under the
collar bone and a subcutaneous lead connecting the stimulator to an electrode fixed
at the cranium and reaching the basal ganglia in the center of the human brain.
Following implantation, a wireless link facilitates communication with the implant
for the routine adjustment of the stimulus waveform by medical staff. In this manner,
the treatment can be tuned or optimized over time while avoiding side effects. The
neural signals emanating from the basal ganglia during DBS have been recorded and
analyzed by Dostrovsky et al. [36], Wu et al. [162], Wingeier et al. [158], and Rossi
et al. [130]. Moreover, there have been studies regarding the use of information
contained in the neural activity of the basal ganglia as a control signal or regulator
of the stimulus apparatus [106, 146, 134, 78, 39, 90, 12].

13.2 Nerve Stimulation

The simplest model of electrical nerve stimulation was introduced by Arvanitaki and
uses the passive membrane model with membrane resistance Rm and capacitance
Cm [4, 95]. In this scenario, assuming the stimulus current applied across the cell
membrane is a constant Is, then the change in transmembrane voltage becomes

Vm(t) = IsRm

(
1− e−t/RmCm

)
. (13.1)

Moreover, given a threshold voltage ΔVth, then the minimum stimulus current
needed for the transmembrane voltage to reach ΔVth is found for t =∞ and is called
the rheobase current:

Irh =
ΔVth

Rm
. (13.2)

Also, another useful measure of stimuli is the time required to reach ΔVth when
Is = 2Irh. This is called chronaxy or chronaxie [95, 154] and is calculated as

tc = RmCmln2. (13.3)

As an example, Fig. 13.1 illustrates the decay of the minimum amplitude needed for
stimulating a neuron as pulse width increases [99].

More sophisticated distributed models such as the core conductor model incor-
porate the shape of the neuron axon and conductivity of external media [24, 95].
Moreover, the shape and timing of stimuli are also influential as shown in detailed
studies by Warman, McIntyre, Grill, and others [154,99,100,54]. However, the pas-
sive membrane model with appropriate effective values for Rm and Cm remains a
useful approximation for many applications [125, 74].
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Fig. 13.1: Firing threshold of the external urethral sphincter motoneuron (EUS), the
neuron innervating the bladder (BLA), and the fiber of passage in the white matter
(FOP) stimulated with bipolar stimulation as predicted by simulation techniques and
reported by McIntyre and Grill [99]. τCH represents the calculated chronaxie of the
particular neuron).

13.3 Local Field Potentials

Measurable electrical phenomena that occur in the human body are due primarily to
the transport of charged ions across the membrane of neurons as they relay and pro-
cess information governing movement and perception. In particular, rapid changes
in membrane permeability occurring on a millisecond scale produce current spikes
or “action potentials” [9,65]. At the same time, thousands of synaptic junctions con-
tribute to the “postsynaptic potential” or subthreshold changes in the transmembrane
potential. Furthermore, random processes within the neuron membrane may cause
spontaneous events to occur in addition to synaptic stimuli [81].

The local field potential (LFP) is related to the aggregate of the electric fields
produced by individual neurons in the vicinity of the electrode within the dielectric
medium of brain tissue. Furthermore, it is known that the recorded signal is influ-
enced by a frequency filtering characteristic, so that only low-frequency elements of
neural activity such as postsynaptic potentials propagate beyond the immediate cel-
lular environment to produce measurable signals [11,10]. Also, characteristics of the
analog front-end recording apparatus performing DC bias stability and prefiltering
further modify the frequency band of the signal.

Bedard et al. [11, 10] have shown that the frequency-dependent attenuation
with distance can be explained by using a nonhomogeneous model of extracel-
lular dielectric properties that take into consideration the properties of neighbor-
ing neuron membranes. Also, at the macroscopic level, a comprehensive study
of dielectric properties of tissues in the range of 10 Hz–20 GHz was prepared by
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Gabriel et al. [45], including an empirical parametric model that fits well to the
experimental data.

A more practical model for describing the dielectric properties at the neuroelec-
trode interface was developed by Johnson et al. [79]. In that study, an equivalent
circuit model is used for explaining voltage-biasing effects of the recorded signal.

13.4 Parkinson’s Disease

Parkinson’s disease is due to the death or alteration of cells that produce the neu-
rotransmitter dopamine in a region of the brain called substantia nigra pars com-
pacta (SNc). In turn, the lack of dopamine weakens synaptic pathways between the
SNc and the region called the striatum resulting in a general imbalance of activity
within a group of brain nuclei collectively known as the basal ganglia [31]. As a
result, the spike patterns of neurons in the external globus pallidus (GPe) become
sparse, while the neurons in the subthalamic nucleus (STN) and internal globus
pallidus (GPi) exhibit pronounced activity that is often in the form of synchro-
nized oscillatory bursting [16, 92, 156, 71, 126]. Figures 13.2 and 13.3 show neural
pathways of the basal ganglia as well as activity of key nuclei under normal phys-
iological conditions and Parkinsonism, respectively. Moreover, dark arrows repre-
sent inhibitory synaptic pathways, gray arrows excitatory, and perforated arrows are
pathways associated with dopamine. Externally, these processes are manifested as
the Parkinsonian symptoms of essential tremor, muscle rigidity, bradykinesia (slow-
ness of movement), and postural imbalance.

Fig. 13.2: Basal ganglia under normal conditions. This figure shows the nuclei in the
basal ganglia and their synaptic paths including excitatory (gray line), inhibitory
(dark line), and dopaminergic paths (gray perforated line, dark perforated line).
A feedback loop between the STN and the GPe can be seen. This figure is mod-
ified from the figures reported by Gurney et al. [56] to emphasize changes due to
dopamine depletion as described by Delong [31].
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Fig. 13.3: Basal ganglia during a lack of dopamine (Parkinson’s disease). Key nu-
clei and their synaptic paths including excitatory (gray line), inhibitory (dark line),
and dopaminergic (gray perforated line, dark perforated line) paths are shown.
Dark-colored nuclei signify diminished activity while bright-colored regions sig-
nify heightened activity. This figure is modified from the figures reported by Gur-
ney et al. [56] to emphasize changes due to dopamine depletion as described by
Delong [31].

13.4.1 Treatments

The treatment for early stage Parkinson’s disease typically consists of the admin-
istration of levodopa (L-DOPA) orally. L-DOPA crosses the blood–brain barrier
where it is converted into dopamine, thus restoring some of the movement capabili-
ties to the patient. However, side effects that may emerge are dyskinesia (difficulty
performing voluntary movements), depression, and psychotic episodes in some pa-
tients [28, 110].

Surgical procedures that have been used in the past as a treatment for advanced
stage Parkinson’s disease include pallidotomy, thalamotomy, and subthalamotomy
[55]. In these procedures, functional MRI imaging techniques detect the location
of specific nuclei in the brain of the patient. Following this, stereotactic surgical
techniques are employed for the placement of electrodes at the target location. Next,
electrode recordings are analyzed to achieve a more precise placement [59]. Finally,
high temperatures (80oC) or electric currents are applied to cause destruction of
cells (known as lesioning) in the STN or GPi.

The success of pallidotomies is hypothesized to be due to a reduction of activity
in the GPi that is caused by the administrated (or artificially placed) lesions [84].
Furthermore, lesioning the STN with a subthalamotomy has a similar effect in the
GPi because of the excitatory neuronal paths from the STN to the GPi [3]. Thus,
lesions in the GPi simulate the inhibitory input to the STN and GPi that would
otherwise be present under physiological conditions (see Figs. 13.2 and 13.3).
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13.5 Deep Brain Stimulation

Electrical stimulation of the brain as a treatment for Parkinson’s disease was first re-
ported by Benabid et al. [13] in 1987. In particular, during stereotactic neurosurgery
it was observed that stimulating the ventral intermediate nucleus (VIM) of the brain
with a sequence of 1–2 V 0.5 ms pulses at 100 Hz blocked symptoms of the disease.
Eventually, the lesioning procedures mentioned previously were replaced by the
implantation of electrodes connected to a pulse generator. Moreover, the physician
could tune the signal generator through a wireless link, thus adjusting the stimulus
parameters.

13.5.1 DBS Mechanism

A primary contributing factor to the inhibitory effect of DBS on the STN and
GPi is likely the release of adenosine by astrocytes as they are electrically stim-
ulated [12]. Also, the same study reports how the inhibition is likely a combination
of adenosine-related and “axonal” effects. That is, there are a number of hypothe-
ses that attempt to explain the inhibitory effect of DBS on the STN and GPi. In
particular, these are: (1) the blocking of action potentials by affecting properties
of ion conductance in the neuron membrane, (2) the preferential stimulation of ax-
ons that terminate at inhibitory synapses rather than neurons themselves, and (3)
the desynchronization of mechanisms occurring in the network as a whole. Out of
these hypotheses, desynchronization seems to be the least refuted and least under-
stood [101].

In practice, the effect of DBS on neural activity can be seen in recordings using
extracellular electrodes that have been taken from patients during surgical implan-
tation of DBS systems, as shown in Fig. 13.4. In particular, the work of Dostrovsky
et al. [36] shows how the activity of pallidal neurons displays a period of quiescence
after each stimulating pulse of DBS. Furthermore, the quiescent period increases
with respect to the DBS pulse amplitude as can be seen in Fig. 13.5. Also, as the
pulses become more dense at higher frequency stimulation, the quiescent periods
seem to overlap, thus causing the inhibitory effect. A more macroscopic view of the
effect of pulse amplitude is provided in Fig. 13.6 [162].

Figure 13.7 shows the neuron activity rate following a stimulus pulse measured
as a percentage of the activity preceding the pulse (baseline activity). As can be seen
in Fig. 13.7, neural activity is nearly 0 after the DBS pulse, but returns to normal
firing after some time (between 50 and 100 ms).

13.5.2 Apparatus

All commercially available DBS systems are currently designed and manufactured
by the Medtronic corporation. By name, the neurostimulators commonly used for
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Fig. 13.4: Effects of DBS pulses on neural activity in the GPi as observed experi-
mentally and reported by Dostrovsky et al. [36]. The larger vertical line segments
are stimulus artifacts while the shorter line segments can be attributed to neuronal
spike activity. A quiescent or inhibitory period during which there is no neuronal
activity can be observed after each stimulus.

DBS are the “Itrel II Soletra,” “Kinetra,” and “Extrel” units (with Extrel used less
frequently than the former two). Moreover, the specifications of the apparatus have
been described in a number of publications [59, 101, 5, 89, 152]. Specifically, a
1.27 mm diameter probe with four 1.5 mm long contacts spaced 0.5 mm or 1.5 mm
apart (depending on the version) is in contact with the target area of the brain and
secured to the cranium at its base. Furthermore, a subcutaneous lead connects the
base of the probe to a 53×60×10mm3 neurostimulator implanted in the chest area
under the collarbone of the patient [101].

The Extrel unit differs from the Soletra and Kinetra units in that an external stim-
ulus generator communicates with the implant. In particular, the external apparatus
generates the pulse waveform and then modulates it using a carrier frequency in the
RF range. In turn, an implanted receiver demodulates the signal using passive circuit
components including a capacitor [89, 137, 102].

13.5.3 Stimulus Specifications

The DBS units are capable of applying stimulus waveforms that consist of a train of
pulses with the following specifications [152, 101]:
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Fig. 13.5: Detail of the effects of a 50 and 5μA DBS pulse of duration 150μs
on a single GPi neuron of a Parkinson’s patient as observed experimentally and
reported by Wu et al. [162]. The tallest thin vertical line segments are the stimulus
artifacts, while the shorter line segments can be attributed to neuronal spike activity.
A large pulse immediately followed by an inhibitory period is observed following
the stimulus. Moreover, the smaller stimulus (5μA) is followed by a short inhibitory
period (roughly 30 ms), while the larger stimulus is followed by a longer inhibitory
period (roughly 60 ms).

Pulse amplitude: 0–10.5 V (in steps of 0.1 V), and assuming a 1 kΩ load as re-
ported, this means a 0–10.5 mA stimulation current.1

Pulse duration: 60–450μs (1,000μs maximum in the case of Extrel).
Pulse frequency: 2–185 Hz in the Soletra, 2–250 Hz in the Kinetra, and 2–1,000 Hz

in the Extrel.
Pulse polarity: both monopolar and bipolar modes are available (only bipolar in

the Extrel).

1 The amplitude used in commercial DBS units (0–10.5 mA) is obviously much larger than what is
reported in the experiments of Dostrovsky et al. [36], Hamilton et al. [60], and Lehman et al. [91],
namely 5–100μA. However, the current density turns out to be similar because of the differences
in electrode diameter. In particular, the experimental work sited uses 25μm (length) by 25–100μm
(diameter) electrodes, while commercial devices use a 1.5-mm (length) by 1.27-mm (diameter)
electrodes.
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Fig. 13.6: Effects of DBS pulses (at 10 Hz) on a single GPi neuron in the GPi as
observed experimentally and reported by Dostrovsky et al. [36]. The larger vertical
line segments are stimulus artifacts, while the shorter line segments can be attributed
to neuronal spike activity. It can be seen that as stimulus energy increases from 8 to
80μA, the neural activity becomes more sparse.

13.5.4 DBS Programming

The typical procedure for programming DBS apparatus postoperatively begins with
the determination of the “therapeutic window” of stimulation for each electrode
[5, 152]. That is, using monopolar stimulus, keeping the pulse width at 60μs and
the frequency at 130 Hz, the pulse amplitude is increased from 0 V at increments of
0.2–0.5 V. Furthermore, the therapeutic window or range for a particular electrode
is the set of amplitude values between the smallest therapeutic amplitude and the
onset of undesirable side effects such as rigidity and dystonia (sustained muscle
contractions). Next, the electrode with the largest therapeutic range is selected as
the stimulus electrode [152].

Over the months following implantation, DBS parameters are modified according
to the side effects and therapeutic results observed. Typically, the amplitude or fre-
quency is increased as the patient develops a tolerance to the stimulus effect. More-
over, it is believed that a higher impedance or displacement of the electrodes due to
glial tissue scarring is responsible for the diminishing effectiveness of DBS over the
first postoperative months [40, 108]. In addition, long-term physiological processes
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Fig. 13.7: Spike-rate in 10 ms bins, smoothed with a 20 ms sliding window, as per-
centage of baseline (no stimulus) and a function of time (stimulus at time 0) as
observed experimentally and reported by Dostrovsky et al. [36]. A period of qui-
escence or inhibition can be seen immediately following a stimulus. Then, normal
neural firing rates gradually resume.

influenced by neural activity cause the modification of synapses, thus strengthening
or weakening the influence of one neuron on the behavior of another [140].

Increasing the pulse width is avoided due to the recruitment of and possible dam-
age to adjacent brain centers and the resulting side effects such as dysarthria (a
speech disorder) and ataxia (loss of movement coordination) [152, 99, 100]. For ex-
ample, Fig. 13.8 shows curves of the minimum pulse width–amplitude combinations
that cause tremor suppression and onset of adverse side effects as found through ex-
perimentation on human subjects. Moreover, this is a verification of the response of
the theoretical lumped parameter model shown previously in Fig. 13.1.

In DBS, bipolar stimulation is avoided due to the higher power dissipation that
it requires. Only if side effects persist, the bipolar mode turned on because of the
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Fig. 13.8: Minimum pulse width–amplitude combinations causing tremor suppres-
sion and onset of adverse side effects as found experimentally and reported by Volk-
mann et al. [152]. The asterisk shows the pulse width suggested by Volkmann, while
the voltage-doubling limit is a property of the Itrel II and Soletra stimulus generators
reported by Volkmann.

more localized stimulation that it provides [5, 14]. At 6 months postoperatively, the
stimulation parameters require only minor adjustments, as reported by Ashkan [5].

13.5.5 Side Effects

The undesirable side effects of DBS are primarily due to excess current leakage
into adjacent brain centers and include cognitive degradation and severe emotional
disturbances. However, other ill side effects may occur when DBS therapy is ad-
ministered in conjunction with unrelated methods of diagnosis or treatment. For
example, electrodes may be displaced by intense electromagnetic fields during MRI
sessions, thus causing damage to brain tissue and displacing the location of the ap-
plied stimulus. Also, temperatures may become dangerously high during the admin-
istration of therapeutic diathermy (tissue heating), thus resulting in massive trauma
or death [115, 131].

13.6 Biosignal Processing

All biological processes associated with perception and limb movement involve
measurable electrical phenomena. Moreover, depending on where and how a mea-
surement is taken, the recorded signal will exhibit particular characteristics [65,
144]. Typically, biosignal processing involves the analysis and classification of
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recorded biosignals using any combination of signal processing techniques that are
suitable for the particular application at hand [25]. In particular, the signal process-
ing reduces the dimensionality of the data space by extracting useful information or
“features” of the signal [29]. Thus, the high-dimensional recorded data is mapped
to a lower dimensional “feature space.” Moreover, the feature space is divided into
regions or “classes” in order to categorize each measured signal.

13.6.1 Features

Biosignals can be analyzed using a large set of signal processing methods. However,
some features are relatively simple to calculate while others are computationally
demanding. Moreover, the issue of computational complexity becomes particularly
important for integrated circuit implementations. Accordingly, Table 13.1 shows the
computational complexities of various useful features in terms of signal sample size
N, filter order n, decomposition levels L (for wavelets), number of signals m (PCA),
lag q in terms of clock cycles, and the number of ALOPEX iterations c [29] (a blank
“–” where present indicates that no studies were found).

Table 13.1: Feature extraction methods

Method Complexity Parallel and/or pipelined

Mean O(N) O(log(N))
Variance O(2N) O(2log(N))
FFT [124, 26] O(Nlog(N)) O(log(N))
LPC (Levinson) [33, 87] O(nN +n2) 169 cycles/iteration
Wavelets (lifting) [93] O

(
4+2N

(
1−1/2L

))
–

Karhunen–Loeve with ALOPEX [29] O(2cN) O(2clogN)
PCA – SGA [32] Onm O(n2)
Third-order cumulant (skewness) [1] O(Nq2 +3qN) O(N +q)
Fourth-order cumulant (kurtosis) [96] O(N6) –

a The 169 clock cycles (actually 3,378 per 20 iterations) for a pipelined multiplier implementation
of the Levinson algorithm are reported in [136], however, there is no explicit mention of
complexity in that paper. It seems evident, however, that for p multipliers in parallel, a pipelined

implementation of the Levinson algorithm would be O
(

N
p +n2

)
. Also, O(L4) is mentioned

in [141] for fourth-order moments.

13.6.2 Classifiers

When some features of measured neural activity contain useful information that can
be applied in regulating a stimulus generator, a method for automated classifica-
tion may be in order. To this end, there are various methods that can be employed
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broadly categorized as probability density estimation, nearest neighbor search, and
neural networks [88,66,2]. In particular, probability density estimation or Bayes es-
timation categorizes the measurement in order to minimize the probability of error,
nearest neighbor search finds the class that is associated with the nearest neighbors
of the measurement, while neural networks consist of simple interconnected compu-
tational elements that have the end result of dividing the feature space into specific
regions [59, 60, 58].

Among these classifiers, neural networks seem to be the most widely used meth-
ods in biomedical applications. However, choosing the best classifier as well as a
feature set for a particular case is often an empirical task. Thus, a set or “ensemble”
of different classifiers is often used for a single classification task [116].

13.6.3 Feature Selection

Selecting the features that minimize a cost function, such as the probability of
misclassification, can be done exhaustively by examining each subset. However,

this process is of complexity

(
N
n

)
and may become intractable for large feature

sets. Alternatively, there are a number of methods that reduce the complexity of the
task, including “branch and bound,” “sequential forward and backward selection,”
“Plus-l-take-away-r algorithm,” and “max–min feature selection” [122, 19, 118].

13.7 Closed-Loop DBS

Following the discovery of the effects of electrical brain stimulation on the symp-
toms of Parkinson’s disease [13] in 1987, investigations were initiated to explain
how the stimulus achieved the desired result [101, 54]. Also, methods for admin-
istrating the newfound treatment as an implantable “brain pacemaker” were being
explored [106, 146, 134, 54, 127, 78, 39]. In particular, the first disclosure of such
an apparatus was the original patent on DBS filed by Rise and King [127] of the
Medtronic corporation in 1996, where a system consisting of an electrode sensor,
a microprocessor, stimulus generator, and additional peripheral circuitry was pro-
posed for the purpose of measuring tremor-related symptoms in the arm and adjust-
ing stimulus parameters based on the measurements. Subsequently, another patent
was filed by John [78] in 2000, elaborating on the original proposal by including
provisions for multiple sensors such as electrodes implanted in the brain and/or
surface electrodes on the scalp and limbs. In addition, John proposed particular sig-
nal processing methods for assessing the measured data including the computation
of signal variance, correlation, discrete Fourier transform, peak detection, and Ma-
halanobis distance or Z-scores. Also, provisions for wireless data telemetry to an
external PC or handheld processor were included in that patent.



240 S.S. Leondopulos and E. Micheli-Tzanakou

In the scientific literature, improvements to DBS have been suggested by a num-
ber of authors [106, 146, 134, 39]. In particular, Montgomery and Baker [106]
suggested that a future direction of DBS would be to incorporate the ability of
acquiring and decoding neurophysiological information “to compute the desired
action.” Also, using results from a mathematical model of interconnected phase os-
cillators, Tass [146] proposes a method of demand-controlled double-pulse stimu-
lation that would hypothetically enhance the effectiveness of DBS while reducing
the power consumption of a stimulator in the long term. In addition, Sanghavi [134]
and Feng et al. [39] propose methods for adaptively modifying stimulus param-
eters while seeking to minimize measures of brain activity in the vicinity of the
implant.

13.7.1 Demand-Controlled DBS

From a theoretical perspective, Tass established a stimulus methodology based on
a model of Parkinsonian brain activity [146, 147]. In particular, Tass simulated the
synchronized oscillatory behavior of the basal ganglia using a network of phase
oscillators. This method is as follows: given N oscillators with global coupling
strength K > 0 where the phase, stimulus intensity, and noise associated with the
jth oscillator areΨj, I j, and Fj(t), respectively, the behavior of the jth oscillator and
its relation to other oscillators as well as the stimulus is shown in Equations (13.4),
(13.5), and (13.6). In particular, defining factors S j(Ψj) and Xj(t) as

S j(Ψj) = I jcos(Ψj) and (13.4)

Xj(t) =
(

1: neuron j is stimulated
0: otherwise

)
, (13.5)

the rate of change of the jth phase oscillator is given by

ψ̇ =Ω − K
N

N

∑
k=1

sin(ψ j −ψk)+Xj(t)S j(ψ j)+Fj(t). (13.6)

Tass showed that the model in Equations (13.4), (13.5), and (13.6) is able to
generate patterns of both synchronized oscillatory firing and random nonoscillatory
behavior. Moreover, the network tends to remain in a synchronized oscillation until
a global stimulus is applied at time t0 so that Xj(t0) = 1 for all j.

Effective stimulation methods for suppression of abnormal burst activity in this
model, as reported by Tass, include low-amplitude high-frequency stimulation (20
times the burst frequency), low-frequency stimulation (equal to the burst frequency),
or a single high-amplitude pulse, with the high-amplitude pulse being the most ef-
fective when it is applied at the appropriate phase of each neuron. Furthermore, Tass
proposes a demand-controlled stimulation technique whereby the synchronicity
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among individual oscillators is measured, and when passing a predefined threshold,
it activates a stimulation pulse.

In order to detect synchronicity among neurons, Tass proposes the calculation
of cluster variables – the center of gravity in phase space of all oscillators. Specif-
ically, if Rm(t) and φm(t) are the magnitude and phase respectively of the center
of gravity of m clusters, and Ψj is the phase of the jth oscillator, then the cluster
variable is

Zm(t) = Rm(t)eiφm(t) =
1
N

N

∑
j=1

eimψ j(t). (13.7)

Thus, if the magnitude of the cluster variable is close to 0, there is very little
synchronicity, but when it is close to unity, there is high synchronicity.

13.7.2 ALOPEX and DBS

Sanghavi [134] proposed an integrated circuit (IC) design of an adaptive DBS sys-
tem where power estimation of recorded neural activity is used as a global “error
measure” that drives the modification of stimulus pulse width, amplitude, and fre-
quency of multiple signal generators. Furthermore, the modification is accomplished
in simulation with minimal power requirements (roughly 0.8 mW) using an analog
design of the stochastic optimization algorithm ALOPEX.

Since its application to BCI [150, 62, 105, 38], the ALOPEX algorithm was ap-
plied to numerous studies involving image pattern recognition and artificial neural
networks [29]. The algorithm itself is based on the principle of Hebbian learn-
ing wherein the synaptic strength between two neurons increases in proportion
to the correlation between the activities of those neurons [140]. Similarly, given
a set of modifiable variables at iteration k, bk = {b1,k,b2,k, ,bN,k}, and a global
response estimate Rk, ALOPEX recursively modifies each b j,k by using correla-
tion measures between previous changes in b j,k and changes in Rk. Moreover, to
keep the algorithm from falling into an infinite loop, stochastic noise r j,k is in-
cluded. Finally, given stochastic and deterministic step sizes σ j,k and σ j,k, a re-
formulation of the algorithm in its most simplified “parity” form, as it is described
in [62], is

d j,k =
(Rk−1 −Rk−2)
|Rk−1 −Rk−2|

· (b j,k−1 −b j,k−2)
|b j,k−1 −b j,k−2|

, (13.8)

b j,k = b j,k−1 + γ j,k ·d j,k +σ j,k · r j,k. (13.9)

Subsequently, new versions were developed including the 2T-ALOPEX algo-
rithm contributed by Sastry et al. [135] and the ALOPEX-B algorithm contributed
by Bia [18]. In particular, 2T-ALOPEX incorporates explicit probability distri-
butions into the calculation of each iteration, while ALOPEX-B is a similar but
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simplified version of 2T-ALOPEX. Finally, Haykin et al. [63] improved conver-
gence by combining the original formulation with that of Bia. Moreover, Haykin
et al. provide a good contextual introduction and derivation of ALOPEX, while
Sastry et al. prove that 2T-ALOPEX behaves asymptotically as a gradient-descent
method. Also, Meissimilly et al. [103] introduced parallel and pipelined implemen-
tations of ALOPEX applied to template matching with corresponding computational
and temporal complexities of calculating the global response function Rk.

13.7.3 Genetic Algorithms and DBS

Feng et al. [39] use a model by Terman et al. [149] to test a method of stimulus
administration where each stimulus parameter is obtained from a distribution of such
measures, thus incorporating a degree of randomness in the stimulus waveform.
Moreover, in this method, the shape of each distribution curve is a piecewise linear
model where the model parameters are modified by a genetic algorithm that seeks
to reduce the cross-correlation and/or autocorrelation of measurements taken from
multiple sensors. Figure 13.9 shows a diagram of the method proposed by Feng
et al.

Fig. 13.9: The method proposed by Feng et al. [39] to draw deep brain stimula-
tion parameters (Ii

DBS) from distributions whose shape descriptors (ai) are selected
by a genetic algorithm that seeks to minimize correlations in measured data (xi).
Constraints (R) on the genetic algorithm may be imposed externally.

13.7.4 Hardware Implementations

Various components of a closed-loop system have been implemented as a
microelectronic design, including power and telemetry components [159], and
stimulus/recording circuits interfacing with an external computing platform [90].
A typical setup for the real-time transmission of biosignals from a neural implant is
shown in Fig. 13.10 [159].
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Fig. 13.10: A system for recording and decoding neuron activity. Power and data
are transmitted through wireless telemetry [159].

13.8 Related Advances in Other Neuroprosthetic Research

Real-time biosignal processing has also advanced in other applications of neu-
ral prostheses in addition to DBS, such as cardiac pacemakers [133], retinal and
cochlear implants [123, 69, 144], and brain-to-computer interfaces (BCI) [150, 62,
48, 91, 132, 161, 155, 49, 46]. In particular, pattern recognition systems for detect-
ing abnormal heart activity have been proposed for cardiac pacemaker technol-
ogy [133, 86]. Also, the decoding of neural activity in the premotor cortex of the
brain to control robotic limbs has been successfully implemented in experiments
with primates [111, 35]. Moreover, wireless telemetry and power transfer to im-
planted circuitry have been successful for cochlear and retinal implants [109]. There
has also been research on detecting epileptic seizures and building an artificial
hypocampus [72, 15].

Retinal and cochlear implants are relevant to DBS because of their wireless
power transfer and data telemetry capabilities [123, 69, 144], while real-time sig-
nal processing of biosignals seems to have advanced more in cardiac pacemak-
ing [6,103,128,42] and especially BCI systems [150,62,48,91,132,161,155,49,46].

A typical setup for the real-time transmission of biosignals from a neural im-
plant includes sensors (chemical or electrode) for detecting neural activity, signal
processing for coding the activity, and communications circuitry for transmitting
the information as shown in Fig. 13.10. In addition, the need for analog ampli-
fiers, filters, and stimulus generators is ubiquitous among these designs [159]. Thus,
methods included in the preprocessing and stimulus pulse generation stages have
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also been proposed including amplifier designs [50, 117, 52], analog-to-digital con-
version (A/D) [51], and voltage multiplier designs [113].

13.8.1 Closed-Loop Cardiac Pacemaker Technology

Some research in cardiac pacemaker technology has sought to modify stimulus
parameters in response to measured neural activity. Moreover, this notion of au-
tonomous regulation is similar in principal to adaptive, autonomous, or closed-loop
deep brain stimulation (DBS).

The current standard for signal processing in cardiac pacemaking still consists
of a simple band-pass filter with adaptive threshold detection [6, 103, 128]. How-
ever, new methods have been proposed that also include nonlinear filtering, wavelet
analysis, and linear regression as well as threshold detection [86,128,42]. For exam-
ple, Rodrigues et al. [128] implement filter banks (wavelets) with linear regression
and threshold techniques in an IC design for detecting “R-waves” in cardiograms.
In particular, given an input waveform x(n) and wavelet filter H, the output of the
wavelet decomposition is

y(n) = x(n)T H. (13.10)

Next, the “decision signal” is computed as

T (n) = x(n)T H(HT H)−1HT x(n). (13.11)

Finally, the detection of the R-wave is considered positive if for some β > 0
and maximum decision signal Tmax, T (n) ≥ βTmax. Furthermore, complexity of the
algorithm is O(N), while the circuit design reported in [128] requires 6 multiplica-
tions and 45 summations per iteration and achieves a performance of roughly 99%
correct detection and less than 1% false alarm.

13.8.2 Brain-to-Computer Interface

The first reported brain-to-computer interface (BCI) employing an adaptive algo-
rithm and feedback was reported by Tzanakou et al. [150, 105, 38] where pixels on
a screen were modified by the ALOPEX algorithm [62] to excite particular neurons
(or receptive fields) in the visual pathway of a frog brain. Recently, BCI methods
have been reported for detecting intended movements of primates. These include
linear methods such as the “population vector” algorithm [48], finite impulse re-
sponse (FIR) filters [132], Kalman filtering [161], nonlinear methods such as neural
networks (NN) including time-delay NN’s (TDNN) [155], gamma models [49] and
recurrent NN’s [132], and probabilistic approaches such as Bayesian inference [46].
Moreover, the nonlinear methods tend to achieve more accurate results at the ex-
pense of computational complexity.
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In the case of linear methods, a typical formulation consists of sampling neuron
spike-counts at intervals of 50 ms from multiple (15) recording sites. Moreover, the
training stage consists of sampling roughly 1 s of data (20 intervals) and storing this
information into a matrix R(20×15) while storing the resulting hand position in terms
of x−y coordinates into a vector k. Next, the filter is constructed as f = (RT R)−1RT k
and the reconstruction of movement for a history of neural activity R is obtained as
u = R× f .2 In addition, there are more sophisticated formulations that take into
account the velocity and acceleration of the movement as well as prior information
about the behavior of neurons in the cortex [82].

Almost all reported BCI methods utilize the same preprocessing stage that con-
sists of spike detection, sorting, and counting over an interval typically in the range
of 50–100 ms. Moreover, correlation methods and principal component analysis
(PCA) with threshold detection are reported as methodologies for the spike detec-
tion [22, 80]. However, Wessberg et al. [155] report using straight linear regression
with no spike detection.

13.9 Neural Network Modeling and the Basal Ganglia

The neurocomputational aspects of Parkinson’s disease and DBS have been ex-
amined using neural network models. Aside from their usefulness as classifiers
[129, 98, 67], static neural networks have been used to model the basal ganglia and
the outcome of pallidotomies [60, 58, 104]. In addition, the temporal characteristics
of neurons in these areas and the effects of DBS on neural activity have been inves-
tigated using dynamic, pulsed, or spiking neural networks [56, 57, 53, 17, 43, 44, 70,
149, 54, 8]. The models employed typically include Hodgkin–Huxley formulations
as well as larger networks of simpler integrate-and-fire units [70]. However, there is
a plethora of models that range in complexity and accuracy that may be used to this
end, such as the Noble [112] and Fitzhugh-Nagumo [41] models, as well as many
others [136, 61, 64, 160, 157, 143, 141, 27, 73, 75].

Three general methods of modeling nuclei of the basal ganglia can be found in
the scientific literature. These can be broadly categorized into “functional” models
that are designed to provide insight into the computational function of the basal
ganglia [56, 57, 53, 17, 43, 44, 142, 8], “physiological” models that incorporate more
details of ion transport [70, 149, 54], and “conceptual” models [20, 77, 145, 34, 148]
that provide a description of the synaptic connectivity. Moreover, the physiological
models have been used in simulations of applied deep brain simulation (DBS). In
particular, Grill et al. [54] show that extrinsic high frequency stimulation “masks” or

2 The formulation is included here as it appears in the literature. However, there are some unre-
solved questions. In particular, it would seem that a separate filter would be required for each move-
ment element so that given a history of 20 positions, there are corresponding x and y-coordinate
vectors x and y of 20 elements each. In that case, two filters would be derived as fx = (RT R)−1RT x
and fy = (RT R)−1RT y. Then, given a set of new data S in the testing phase, the corresponding hand
positions would be given as xnew = S× fx and ynew = S× fy.
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prevents internal activity of single neurons from being expressed at the output, thus
causing an “informational lesion,” while Feng et al. [39] use a model by Terman
et al. [149] to test a novel method of stimulus administration. Also, in response to
in vitro studies of the rat GPe and STN [120], Humphries and Gurney [70] design
models that reproduce the oscillatory and bursting modality of the neural circuits.
In addition, an analog CMOS model of Parkinsonian activity has been investigated
by Sridhar [142].

13.10 Summary

Overall, various methods for implementing a closed-loop neuromodulator have been
presented including conceptual schemes in simulation as well as hardware designs
facilitating the goal. Also, both experimental and simulation studies have provided
some insight into the neural mechanisms involved in the success of DBS. However,
there remains a need for some performance criteria in deciding which method of
closed-loop DBS will be the most successful. To this end, some preliminary com-
parisons of computational complexity are merely a starting point. What is needed
is a rigorous test on animal and human subjects including quantitative measures of
success in reducing symptoms while avoiding side effects. Ultimately, the progress
will depend on what is (or is not) approved by organizations such as the United
States (US) Food and Drug Administration (FDA) [119].
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Chapter 14
Molecule-Inspired Methods for Coarse-Grain
Multi-System Optimization

Max H. Garzon and Andrew J. Neel

Abstract A major goal in multi-objective optimization is to strike a compromise
among various objective functions subject to diverse sets of conflicting constraints.
It is a reality, however, that we must face optimization of entire systems in which
multiple objective sets make it practically impossible to even formulate objective
functions and constraints in the standard closed form. We present a new approach
techniques inspired by biomolecular interactions such as embodied in DNA. The ad-
vantages are more comprehensive and integrated understanding of complex chains
of local interactions that affect an entire system, such as the chemical interaction of
biomolecules in vitro, a living cell, or a mammalian brain, even if done in simula-
tion. We briefly describe a system of this type, EdnaCo (a high-fidelity simulation
in silico of chemical reactions in a test tube in vitro), that can be used to under-
stand systems such as living cells and large neuronal assemblies. With large-scale
applications of this prototype in sight, we propose three basic optimization prin-
ciples critical to the successful development of robust synthetic models of these
complex systems: physical–chemical, computational, and biological optimization.
We conclude with evidence for and discussion of the emerging hypothesis that
multi-system optimization problems can indeed be solved, at least approximately,
by so-called coarsely optimal models of the type discussed above, in the context of
a biomolecule-based asynchronous model of the human brain.
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14.1 Introduction

Optimization is an important branch in many scientific domains, particularly in
mathematics, physics, and biology. Several branches of these sciences have devel-
oped a great variety of methods to solve optimization problems, including original
calculus and mathematical analysis (for numerical functions), calculus of variations
(for functionals in a function space), and energy minimization (for physical prob-
lems.) These developments have added a great deal of understanding and power to
the wide range of optimization techniques available now. More recently, the com-
putational complexity (NP-hardness) of important and difficult problems, such as
the many variations of TSP (traveling salesperson problems) [10], have given rise
to search-based techniques such as genetic algorithms [20] and genetic program-
ming [22]. The recent success stories of these techniques, even at the level of multi-
objective optimization [9], flesh out the optimizing power of randomization.

At the larger scale of entire systems, however, the picture is radically different.
Despite the fact that physical and biological systems exhibit function and opera-
tion at optimal tuning of their components and through minimal usage of energy
and time, optimization techniques have been underdeveloped at best. Even physi-
cal problems such as the n-body problem (i.e., finding the stable equilibrium of a
number of masses endowed with initial position and momenta and subject to New-
tonian gravitation) remains a difficult and unresolved problem [37]. In biology, the
principle of natural selection can be construed as an optimization technique, both
in terms of feedback communication from environments to organic genomes and as
an overall optimization of the adaptation of a species to a given environment. The
underlying mechanisms of this principle, in the form of crossover and mutation op-
erations, have inspired the computational methods of genetic algorithms mentioned
above. Few other general principles that afford deep understanding of the operation
of complex physical or biological systems, such as brains, or even the optimization
of some man-made systems, have been unveiled. Of these, most make assumptions
about the system, equilibrium, for example, which usually fail to hold in most sys-
tems of practical interest, especially in biology, society, and economics, where op-
timization becomes perennial fitness changes, or “optimal energy flow” [2, p. 534],
or even intelligence [25].

Nonetheless, system optimization is not only meaningful, but also required in
many contexts, varying from biological entities (cells, organs, organisms) through
all degrees of complexity in larger systems. The main stumbling block with com-
plex system optimization is twofold: (a) there does not seem to exist a natural de-
finition of optimality, let alone a formal specification in the standard terms of math-
ematical programming or standard methods in operations research; and (b) there is
no universally accepted scientific metric even to quantify the efficiency of a complex
system, even in business/political contexts where profit or military power might be
strong candidates. For example, Daly [6] discusses optimality of nations as systems.
The result is that system optimization remains an art and its methods are generally
developed for or applicable only to specialized niches.
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In this chapter, we describe several recent results that illustrate the power of sim-
ulation as the basis of an optimization technique for design of complex systems. In
Section 14.2, we describe the prototype phenomenon being used, DNA and their
molecular interactions, the theme of study in the new field of biomolecular comput-
ing (BMC), also known as DNA computing [17, 1]. In Section 14.3, we describe a
high-fidelity simulation of this phenomenon that has produced comparable results,
using in a fundamental manner once again the resource of massive randomization,
here provided by RNGs (random number generators.) In Section 14.4, we show how
recent developments in BMC provide the basic ingredients to implement large neu-
ronal systems with complex interactions among them. Finally, in Section 14.5 we
discuss some of the challenges in the implementation of the design and discuss some
of the possible applications of the model. We assume that the reader is familiar with
basic facts about molecular biology – see one of several surveys of the field (for
example, [36]) for background details. We also assume that the reader is familiar
with artificial neural networks [19].

14.2 Biomolecular Computing In Vitro

For several millions of years, DNA has demonstrated itself capable of reliably stor-
ing instructions for the makeup of living organisms. Only recently, however, did a
more formal inquiry of DNA begin for its own sake, as an entity of its own, pi-
oneered by [1], where the first successful demonstration of DNA’s potential use
for nonbiological purposes, more specifically, a solution to the Hamiltonian path
problem (HPP), was demonstrated. HPP is a computational equivalent of the well-
known traveling salesman problem (TSP). An instance of HPP is a directed graph
(vertices and edges) with two singled out as source and destination vertices. The
problem calls for a Boolean decision whether there exists a Hamiltonian path join-
ing the source to the destination (i.e., a path passing through every vertex exactly
once). Adleman [1] reduces the problem to 1012 recently available biotechnology by
mapping vertices and edges to DNA oligonucleotides with vertices designed to par-
tially stick to edges so that molecules representing paths in the graph would form
by ligation/ concatenation of smaller edges or chains into longer DNA oligonu-
cleotides. One such chain of the appropriate length and composition would wit-
ness a positive answer to a Hamiltonian graph. Since DNA oligonucleotides can
be synthesized in lengths up to 200 base pairs at low cost for picomoles of the
same species (about copies of a given molecule), edges and vertices are present
in several millions of copies so that the protocol would fully explore all possible
solutions. Extracting the nanoscopic answer has been made possible by the extraor-
dinary advances witnessed in biotechnology in the course of the last two decades.
The seemingly unlimited scalability of this approach to solve these difficult NP-hard
problems of large sizes gave rise to the field of DNA computing, also called BMC
(biomolecular computing). In the last decade, researchers in this field have emerged
with DNA computers capable of solving simple games like TIC-TAC-TOE [24] or
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implementing programmable and autonomous computing machines with biomole-
cules [39, 3, 32, 38].

14.3 Biomolecular Computing In Silico

Inspired by Adleman’s approach and the relatively high cost of molecular proto-
cols, we have developed a computational environment to reproduce in simulation
essentially equivalent chemistry in silico [13, 12]. Software of this type, called vir-
tual test tube (VTT) EdnaCo, was developed to understand biochemical reactions
with DNA oligonucleotides for computational purposes [15]. We next provide a
high-level description of the software involved in the simulation. Further details can
be found in [13]

EdnaCo follows the complex systems paradigm [2] of entities (objects) and in-
teractions, i.e., instead of programming their entire behavior over time; only enti-
ties (originally DNA molecules) and individual interactions between pairs of them
are programmed by the user. Conceptually, the VTT is spatially arranged as a 3D
coordinate system in which molecules can move about. The tube moves molecules
by simulating three different types of motion: Brownian, according to a predeter-
mined schedule, or no motion at all. The entities are allowed to interact freely in
a predetermined manner specified by the experimenter. Entities could be homoge-
nous (all of the same type) or heterogenous (different types) and may represent any
complex biomolecules, herein referred to as DNA complexes. Each molecule is lo-
cated at a unique spatial coordinate at any given time. The VTT can also code for
physical–chemical properties such as temperature, pressure, salinity, and pH that
may vary across space and time and affect the way structures interact therein. Inter-
actions between entities are programmed by the experimenter depending on the na-
ture of the molecules being simulated. Multiple instances of an entity behave in the
same manner as a function of environmental factors such as temperature, pH, and
the like.

All entities are capable of sensing the position of other entities up to a specified
distance defined by a radius of interaction, a parameter in the simulation common
to all entities. If two or more entities come within the interaction distance, an en-
counter is triggered between them. An encounter is resolved by appropriate soft-
ware that may not affect the molecules at all (e.g., DNA molecules may not form a
duplex if the temperature is too high) or may reflect an appropriate chemical reac-
tion (e.g., formation of a DNA duplex and disappearance of the encountering single
strands.) An interaction between two entities may be viewed as a chemical or me-
chanical reaction between them. As a result of an interaction, existing entities may
get consumed, their status may get changed, and/or new entities may, or may not,
get created. Moreover, the concentration of entities may be manipulated externally
by adding or removing entities to or from the VTT at any point of time. The run-
ning time of a simulation is divided into discrete time steps or iterations. At every
iteration, the state of the objects and the tube may change recursively, based on the
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current state resulting from previous changes, in order to reflect the interaction rules
of the objects themselves and/or with their environment.

In the actual implementation of this conceptual model, EdnaCo is implemented
by dividing the computer’s memory into a number of discrete segments, each run-
ning on a different processor. This allows multiple interactions to take place at once.
When entities move, they either change positions within a segment, or they may
migrate across processor boundaries. Thus, the container of the VTT is a discrete
3D space residing inside a digital computer, the entities are instantiated as objects
in classes in a programming language (C++), and the interactions are appropriate
functions and methods associated with these objects. These methods either leave
the objects unperturbed or make the appropriate deletions and insertions to reflect
the reactions they simulate. The communication between processors is implemented
using a message-passing interface, such as MPI, on a cluster of personal comput-
ers or a high-performance cluster (in our case, an IBM cluster containing 112 dual
processors). The architecture of EdnaCo allows it to be scaled to an arbitrarily large
number of processors and to be portable to any other cluster supporting C++ and
MPI. The results of these simulations are thus guaranteed to be reproducible on any
other systems running the same software as the original simulation. Further details
of this simulation environment can be found in [11].

The striking property of the VTT is that the programming stops at the level of
local interactions. Nothing else is programmed, every other observable is an emer-
gent property of the simulation. In particular, if the equivalent molecules in Adle-
man’s original experiment are placed in the tube, they will seem to be moved about
randomly by Brownian motion. Nevertheless, encounter between vertex and edge
molecules may create longer and longer paths, and eventually a Hamiltonian one if
one is possible. This is indeed the case with a very high probability (reliability of
99.6% with no false negatives has been reported [12]). In other words, the solution
to an optimization problem has been captured in silico by a simple simulation of the
most relevant properties of the natural phenomena occurring inside a test tube con-
taining DNA oligonucleotides with the appropriate characteristics. The scalability
of this solution is clear in two different directions. First, the parallelism of EdnaCo
provides parallelism of the type inherent in chemistry. Second, the size of problems
solvable by this method is only limited by our ability to find sets of oligonucleotides
large enough to code for the vertices and edges without causing any undesirable in-
teractions between them. Although it was initially suggested that random encodings
would provide sufficient stock of oligonucleotides [1], further work had determined
that care must be exercised in selecting oligonucleotides that are inert to cross-
hybridization due to the uncertain and thermodynamic nature of DNA hybridization.
Although this problem has proven to be in itself NP-complete [29], similar methods
can be used to provide nearly optimal solutions, both in vivo by the PCR selection
protocol of [5, 4, 7], based on an extension of the polymerase chain reaction, and
in silico by its simulation [16]. So-called DNA code sets, i.e., noncross-hybridizing
(nxh) molecules are now readily available to solve large problems systematically,
of the order of tens to hundreds of thousands of noncrosshybriding 20-mers, for
example, as seen in Fig. 14.1 [16, 14].
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Fig. 14.1: Size of the PCR selection product obtained from the filtered input sets
(left bars) based on the polymerase chain reaction. The size of the resulting set
(middle bars) can be estimated by the subpower law (1.9n+0.6)4 (light bars on the
right) [16].

14.4 Neural Nets in Biomolecules

In this section we use the results described in the previous sections to show how to
implement large sets of neuronal ensembles in DNA molecules. Although we will
use artificial neural nets as the prototype of such ensembles, we note that similar
techniques can be used to implement higher order structures of the type exemplified
by more complex ensembles known as brains (more in the discussion in the next
section). For a review of neural networks, the reader is referred to [19]. Hopfield
networks [21] will be used as a prototype to describe the design, but the techniques
readily extend to other types of neural nets and associative memories [19, 18]. We
will also omit technical details of the biotechnical implementation in a wet lab and
concentrate only on the simulation in silico.

Turberfield et al. [35] describe the first attempt to implement a specific type
of neural network in DNA, specifically, recurrent Hopfield nets. Their approach
showed the experimental possibility of using DNA as an almost direct replacement
of neurons with the hybridization affinity as the critical component to capture synap-
tic connections for associative retrieval. The model required the use of restriction
enzymes and high-quality nxh DNA codewords (unavailable at the time). The ex-
perimental implementation proved to have low reliability and speed in activation
updates of the neuronal units due to the use of restriction enzymes in many cycles of
PCR amplification [27] and the uncertainty of hybridization reactions, which we can
a posteriori recognize as due to cross-hybridization. Moreover, their work remained
untested for scalability since implementing large networks required the use of large
sets of nxh codewords, which were not readily available at the time. However, this
attempt provides a very good description and test of the experimental requirements
for their implementation, and much of it can be used in an appropriately updated
form in this implementation.
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Our model addresses most of these problems because of the modifications de-
scribed next and the inherent high quality of the code sets now in our possession.
A neuronal unit i is represented by a codeword Ci from a DNA code; these code-
words only cross-hybridize to their own complements Di, not to any other code-
words or their complements. These single strands can be permanently affixed to a
solid medium (such as those used for DNA microarrays) so as to form a DNA chip
A, by what is now standard biotechnology [8,26]. The chip A contains two spots for
each neuron i (one spot for positive activation and one spot for negative activation,
located far apart enough to avoid cross-hybridization), each with as many single
strands (Ci or Di) as necessary for a given resolution on the activation levels (for
example, three decimal digits will require M = 1,000 copies of the corresponding
oligonucleotide attached at each spot). A positive activation level of the unit i is
given at any time t by the concentration of the particular double stranded DNA
species Ci–Di, whereas a negative activation is given by the concentration of its
complementary labeled word Di–Ci. An optical census of double-stranded DNA (or
their Watson–Crick complements) can be taken on this chip by using fluorescent
tags (e.g., SYBR green attached to the double-stranded pair Ci–Di) [8, 36] that will
reveal the current activation levels of the various units xi(t) at a given time t, if
normalized to M. We will denote by m the length of the m-mer oligonucleotides Ci
in the code set. Note that a complementary copy of the activation vector x(t) at a
given time t can be made by simply heating the chip to an appropriate temperature
exceeding the maximum melting temperature of all pairs Ci–Di, then washing the
complementary single-stranded representation x ′ into a temporary tube T.

The transition from an activation state x(t) to another state x(t +1) stipulated by
the Hopfield model requires longer strands representing the synaptic weights Wij
from neuron j into neuron i to be attached to the oligonucleotide Ci that represents
it. For this design, we will assume that the weights are integer valued for simplicity
(similar designs could be used for rational values to approximate any other values).
The weights are themselves copies of the complementary DNA oligomers Di for
neuron i extended by – Wij – copies of Di separated by a restriction site r, so they
can be eventually separated into their original pieces. For example, a weight Wi j = 3
would be expressed in DNA as Wi j = circjrcj rcj. Zero weights are not represented,
i.e., the absence of any molecular representation containing Ci and Cj means that
Wi j = 0. These weights will likewise be permanently affixed to another chip W in
a similar manner to chip A. (We will use the same symbol Wij to denote the weight
and its molecular representation for simplicity. The context makes clear which one
is being referred to.)

A Hopfield network transitions from total activation vector x(t) to activation vec-
tor x(t + 1) = s(Wx(t)), where s is a saturation function (typically a sigmoid, but
here assumed to be just a linear approximation as the identity map squashed to 0
for negative values and 1 otherwise) and Wx(t) is the product of matrix W = [Wi j]
and activation vector x(t), i.e., each unit i computes its weighted net input by the
scalar product of row i and column x(t) and saturates it using s (i.e., activation
values outside a unit’s range are squashed down within the activation range). The
matrix product is here realized by a two-step process, first make a complementary
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copy of current activation x’ into a tube T, pour it over the weight chip W and allow
enough time and reaction conditions for hybridization of Di to Ci to occur; next,
PCR extension is used on the weight template, now primed by Di, to obtain a com-
plementary product Vi j = di r′dj r′dj r′dj attached to Wij in a double strand. This
copy Vij is first detached by heating, then primed with copies of all Ci’s, extended,
and digested separately by the restriction enzyme in a clean separate tube T, which
now contains a molecular representation of the net input (i.e., the product Wx(t), but
in complementary form). In order to produce the next activation vector, the satura-
tion function is now computed as in [35], by pouring the net input back on recently
washed chip A, allowing time for hybridization, and flushing the chip in order to
eliminate any excess strands beyond saturation levels and to preserve the accuracy
of the process in successive reuse/iterations. The concentration of double-stranded
remaining oligonucleotides is the new activation x(t + 1) of the neural network at
the next step (at time t + 1). Figure 14.2 illustrates the saturation function. Step 1
creates the DNA of the net input. In Step 2, the DNA is poured over the chip A.
The remaining DNA is then passed over chip W for saturation in Step 3. The entire
procedure is then repeated as many times as desired to iterate the Hopfield network
until a stable activation state is reached. Several variants of this design are possible,
taking care of preserving the basic ideas presented above.

In order to verify the reliability of this design experimentally, the discrete Hop-
field net example 14.4.2 from [19, p. 690], with three units and three memories was
seeded with three sets of inputs and allowed to run for 10 rounds or 10 transitions
beginning at state x(0) and ending at state x(10). The total state of the Hopfield
memory was recorded at the end of each round. The experiment was performed sev-
eral times for each of the three inputs. The first input was ideal and should cause
the network to instantly recognize the memory and converge to the same stable state
immediately (in one round). The second input contained one mismatch and should
converge toward the same stable as the first input after several rounds. The last input
contained nothing but errors and should converge to the complementary fixed point
of the ideal input.

Figure 14.3 shows the Hopfield memory with ideal input. This memory con-
verges within one round to the fixed point of (–1, 1, –1), as expected for this mem-
ory. Figure 14.4 further shows that the same memory with one mismatch converges
to the ideal output in the fourth round. Again, this behavior is entirely consistent
with the behavior of Hopfield memories implemented in silico. Figure 14.5 shows
that the Hopfield memory converges away from the correct output when the input is
totally corrupted. This behavior is again consistent with Hopfield memories imple-
mented in silico.

The noncross-hybridizing property of the code set of neuron guarantees that a
similar behavior will be observed with much larger set of neuronal ensembles in a
parallel computing environment, either in vitro or in silico. Note that only a mod-
est amount of hardware (two DNA chips) are required, they are reusable, and the
updates can be automated easily, even in microscales using microfluidics [28], in a
parallel fashion that is to a large extent independent of the number of neurons. This
is a particularly interesting property for potential applications of these systems.
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Fig. 14.2: The saturation function is implemented by pouring the Hopfield network’s
net input over a DNA chip with enough DNA at each spot to express as much as the
maximum possible activation. Excess DNA is washed from the chip to obtain the
exact next activation.

Fig. 14.3: The DNA Hopfield memory was seeded with ideal input. The Hopfield
memory converged immediately to the same expected fixed point.
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Fig. 14.4: The DNA Hopfield memory was seeded with nearly ideal input contain-
ing one error (essentially mild corruption). The Hopfield memory converged to the
correct fixed point after some four iterations.

Fig. 14.5: Totally corrupted input results in local minimum of the neural network, as
expected, i.e., the complement of the ideal input retrieves the complement result of
the ideal input. This behavior corresponds exactly to that of the Hopfield memories
implemented on conventional media (in silico).

14.5 Conclusions and Future Work

We have shown that DNA oligonucleotides can be effectively manipulated by cur-
rently available biotechnology in order to produce good (perhaps nearly
optimal) models of complex systems such as neuronal ensembles, in such a way
that the optimality criteria embedded in the phenomenon inherited by the corre-
sponding system. These criteria may include fault tolerance, both in experimental
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contamination as well as input data, as illustrated by Hopfield networks. Further-
more, we have shown how simulation of such phenomena in silico can also exhibit
similar characteristics while affording a digital implementation, when desired. In
summary, a Hopfield net with n neuronal units can be implemented as a DNA Hop-
field memory with up to 4n2+2n = 2n(2n+1) noncross-hybridizing (nxh) oligonu-
cleotides. The requirements on codewords increase linearly with the number of neu-
rons n (not of weights, which increase quadratically). The overall conclusion is that
Hopfield nets can be implemented in DNA in ways that preserve their fault tolerance
by mapping their energy landscapes to Gibbs landscapes using nxh sets [16], while
their implementation is very feasible and becoming easier with currently available
biotechnology.

The resulting neuronal ensembles can also be implemented on high-performance
digital clusters in silico, or in test tubes in vitro, in scales and densities fairly large in
comparison to other implementations. For example, we are in possession of the code
sets necessary to implement networks of order up to 100 K neurons on a standard
DNA chip of small dimensions (the order of a square inch) with current biotechnol-
ogy. The rapid progress in microarray design and manufacturing will make feasible
much larger arrays at relatively small prices. Other network architectures can be
implemented by similar methods. Furthermore, the technique can be easily general-
ized to other recurrent networks and it can be automated easily, even in microscales
using microfluidics [28]. This is a particularly interesting property for potential ap-
plications of the networks.

This type of models presented here can be called coarse grained because they
only capture critical aspects of the target phenomenon while ignoring most others
in order to preserve physical simulations of DNA chemistry. They offer a sharp
contrast to systems developed using more traditional methods that aim at physical
realism in the simulation of natural phenomena [31]. Thus, the advantages of fea-
sible implementation (both in vitro and in silico, as desired) on the one hand, and
the robustness and fault tolerance of neural networks and the optimality inherent in
DNA reactions, on the other, can be guaranteed in the design of these systems, at
least to a close degree of approximation. The universality properties of neural nets
as function approximators ( [19], Chapter 4), as well as their ability to even learn
certain dynamical systems [30], make them a promising tool in the design of robust
and nearly optimal complex systems. Similar efforts are underway to model other
complex systems such as biological cells, see, for example, [33, 34, 23].
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Chapter 15
A Robust Estimation of Information Flow
in Coupled Nonlinear Systems

Shivkumar Sabesan, Konstantinos Tsakalis, Andreas Spanias, and Leon Iasemidis

Abstract Transfer entropy (TE) is a recently proposed measure of the information
flow between coupled linear or nonlinear systems. In this study, we first suggest im-
provements in the selection of parameters for the estimation of TE that significantly
enhance its accuracy and robustness in identifying the direction and the level of
information flow between observed data series generated by coupled complex sys-
tems. Second, a new measure, the net transfer of entropy (NTE), is defined based on
TE. Third, we employ surrogate analysis to show the statistical significance of the
measures. Fourth, the effect of measurement noise on the measures’ performance
is investigated up to S/N = 3 dB. We demonstrate the usefulness of the improved
method by analyzing data series from coupled nonlinear chaotic oscillators. Our
findings suggest that TE and NTE may play a critical role in elucidating the func-
tional connectivity of complex networks of nonlinear systems.

15.1 Introduction

Recent advances in information theory and nonlinear dynamics have facilitated
novel approaches for the study of the functional interactions between coupled

Shivkumar Sabesan
The Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287, USA;
Barrow Neurological Institute, Phoenix, AZ 85013, USA, e-mail: ssabesa@asu.edu

Konstantinos Tsakalis
Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287, USA, e-mail:
tsakalis@asu.edu

Andreas Spanias
Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287, USA, e-mail:
spanias@asu.edu

Leon Iasemidis
The Harrington Department of Bioengineering, Arizona State University, Tempe, AZ 85287, USA;
Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287, USA; Mayo
Clinic, Phoenix, AZ 85054, USA, e-mail: leon.iasemidis@asu.edu

W. Chaovalitwongse et al. (eds.), Computational Neuroscience, 271
Springer Optimization and Its Applications 38, DOI 10.1007/978-0-387-88630-5 15,
c© Springer Science+Business Media, LLC 2010



272 S. Sabesan et al.

linear and nonlinear systems. The estimation of these interactions, especially when
the systems’ structure is unknown, holds promise for the understanding of the
mechanisms of their interactions and for a subsequent design and implementation
of appropriate schemes to control their behavior. Traditionally, cross-correlation
and coherence measures have been the mainstay of assessing statistical interde-
pendence among coupled systems. These measures, however, do not provide reli-
able information about directional interdependence, i.e., if one system drives the
other.

To study the directional aspect of interactions, many other approaches have been
employed [24,22,11,18,19]. One of these approaches is based on the improvement
of the prediction of a series’ future values by incorporating information from an-
other time series. Such an approach was originally proposed by Wiener [24] and
later formalized by Granger in the context of linear regression models of stochas-
tic processes. Granger causality was initially formulated for linear models, and it
was then extended to nonlinear systems by (a) applying to local linear models in
reduced neighborhoods, estimating the resulting statistical quantity and then aver-
aging it over the entire dataset [20] or (b) considering an error reduction that is
triggered by added variables in global nonlinear models [2].

Despite the relative success of the above approaches in detecting the direction
of interactions, they essentially are model-based (parametric) methods (linear or
nonlinear), i.e., these approaches either make assumptions about the structure of the
interacting systems or the nature of their interactions, and as such they may suffer
from the shortcomings of modeling systems/signals of unknown structure. For a
detailed review of parametric and nonparametric (linear and nonlinear) measures of
causality, we refer the reader to [9, 15]. To overcome this problem, an information
theoretic approach that identifies the direction of information flow and quantifies the
strength of coupling between complex systems/signals has recently been suggested
[22]. This method was based on the study of transitional probabilities of the states
of systems under consideration. The resulted measure was termed transfer entropy
(TE).

We have shown [18, 19] that the direct application of the method as proposed
in [22] may not always give the expected results. We show that tuning of certain
parameters involved in the TE estimation plays a critical role in detecting the correct
direction of the information flow between time series. We propose a methodology
to also test the significance of the TE values using surrogate data analysis and we
demonstrate its robustness to measurement noise. We then employ the improved TE
method to define a new measure, the net transfer entropy (NTE). Results from the
application of the improved T E and NT E show that these measures are robust in
detecting the direction and strength of coupling under noisy conditions.

The organization of the rest of this chapter is as follows. The measure of
TE and the estimation problems we identified, as well as the improvements and
practical adjustments that we introduced, are described in Section 15.2. In Sec-
tion 15.3, results from the application of this method to a system of coupled Rössler
oscillators are shown. These results are discussed and conclusions are drawn in
Section 15.4.
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15.2 Methodology

15.2.1 Transfer Entropy (T E)

Consider a kth order Markov process [10] described by

P(xn+1|xn,xn−1, · · · ,xn−k+1) =
P(xn+1|xn,xn−1, · · · ,xn−k),

(15.1)

where P represents the conditional probability of state xn+1 of a random process X
at time n+1. Equation (15.1) implies that the probability of occurrence of a particu-

lar state xn+1 depends only on the past k states [xn, · · · ,xn−k+1] ≡ x(k)
n of the system.

The definition given in Equation (15.1) can be extended to the case of Markov in-
terdependence of two random processes X and Y as

P(xn+1|x(k)
n ) = P(xn+1|(x(k)

n ,y(l)
n )), (15.2)

where x(k)
n are the past k states of the first random process X and y(l)

n are the past
l states of the second random process Y. This generalized Markov property implies
that the state xn+1 of the process X depends only on the past k states of the process X
and not on the past l states of the process Y . However, if the process X also depends
on the past states (values) of process Y , the divergence of the hypothesized transition

probability P(xn+1|x(k)
n ) (L.H.S. of Equation (15.2)), from the true underlying tran-

sition probability of the system P(xn+1|(x(k)
n ,y(l)

n )) (R.H.S of Equation (15.2)), can
be quantified using the Kullback–Leibler measure [11]. Then, the Kullback–Leibler
measure quantifies the transfer of entropy from the driving process Y to the driven
process X , and if it is denoted by TE(Y→X), we have

TE(Y → X) =
N

∑
n=1

P(xn+1,x
(k)
n ,y(l)

n ) log2
P(xn+1|x(k)

n ,y(l)
n )

P(xn+1|x(k)
n )

. (15.3)

The values of the parameters k and l are the orders of the Markov process for the two
coupled processes X and Y , respectively. The value of N denotes the total number
of the available points per process in the state space.

In search of optimal k, it would generally be desirable to choose the parameter k
as large as possible in order to find an invariant value (e.g., for conditional entropies
to converge as k increases), but in practice the finite size of any real data set im-
poses the need to find a reasonable compromise between finite sample effects and
approximation of the actual value of probabilities. Therefore, the selection of k and
l plays a critical role in obtaining reliable values for the transfer of entropy from real
data. The estimation of TE as suggested in [22] also depends on the neighborhood
size (radius r) used in the state space for the calculation of the involved joint and
conditional probabilities. The value of radius r in the state space defines the max-
imum norm distance in the search for neighboring state space points. Intuitively,
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different radius values in the estimation of the multidimensional probabilities in the
state space correspond to different probability bins. The values of radius for which
the probabilities are not accurately estimated (typically large r values) may eventu-
ally lead to an erroneous estimate of TE.

15.2.2 Improved Computation of Transfer Entropy

15.2.2.1 Selection of k

The value of k (order of the driven process) used in the calculation of TE (Y → X)
(see Equation (15.3)) represents the dependence of the state xn+1 of the system on
its past k states. A classical linear approach to autoregressive (AR) model order
selection, namely the Akaike information criterion (AIC), has been applied to the
selection of the order of Markov processes. Evidently, AIC suffers from substan-
tial overestimation of the order of the Markov process order in nonlinear systems
and, therefore, is not a consistent estimator [12]. Arguably, a method to estimate
this parameter is the delayed mutual information [13]. The delay d at which the mu-
tual information of X reaches its first minimum can be taken as the estimate of the
interval within which two states of X are dynamically correlated with each other.
In essence, this value of d minimizes the Kullback–Leibler divergence between the
dth and higher order corresponding probabilities of the driven process X (see Equa-
tion (15.1)), i.e., there is minimum information gain about the future state of X by
using its values that are more than d steps in the past. Thus, in units of the sampling
period, d would be equal to the order k of the Markov process.

If the value of k is severely underestimated, the information gained about xn+1

will erroneously increase due to the presence of yn and would result to an incorrect
estimation of TE. A straightforward extension of this method for estimation of k
from real-world data may not be possible, especially when the selected value of k
is large (i.e., the embedding dimension of state space would be too large for finite
duration data in the time domain). This may thus lead to an erroneous calculation of
TE. From a practical point of view, a statistic that may be used is the correlation time
constant te, which is defined as the time required for the autocorrelation function
(AF) to decrease to 1/e of its maximum value (maximum value of AF is 1) (see
Fig. 15.1d) [13]. AF is an easy metric to compute over time, has been found to be
robust in many simulations, but detects only linear dependencies in the data. As we
show below and elsewhere [18, 19], the derived results from the detection of the
direction and level of interactions justify such a compromise in the estimation of k.

15.2.2.2 Selection of l

The value of l (order of the driving system) was chosen to be equal to 1. The jus-
tification for the selection of this value of l is the assumption that the current state
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Fig. 15.1: (a) Unidirectionally coupled oscillators with ε21 = 0.05. (b) Mutual in-
formation MI vs. k (the first minimum of the mutual information between the X
variables of the oscillators is denoted by a downward arrow at k = 16). (c) ln C vs.
ln r with k = 16, l = 1, where C and r denote average joint probability and radius,
respectively (dotted line for direction of flow 1→2; solid line for direction of flow
2→1). (d) Autocorrelation function (AF) vs. k (the delay at which the AF decreases
to 1/e of its maximum value is denoted by a downward arrow at k = 14).

of the driving system is sufficient to produce a considerable change in the dynamics
of the driven system within one time step (and hence only immediate interactions
between X and Y are assumed to be detected in the analysis herein). When larger
values for l were employed (i.e., a delayed influence of Y on X), detection of infor-
mation flow from Y to X was also possible. These results are not presented in this
chapter.

15.2.2.3 Selection of Radius r

The multi-dimensional transitional probabilities involved in the definition of transfer
entropy (Equation (15.3)) are calculated by joint probabilities using the conditional
probability formula P(A|B) = P(A,B)/P(B). One can then reformulate the transfer
entropy as

TE(Y → X) =

∑N
n=1 P(xn+1,x

(k)
n ,y(l)

n ) log2
P(xn+1,x(k)

n ,y(l)
n )P(x(k)

n

P(xn+1,x(k)
n )P(x(k)

n ,y(l)
n )

.
(15.4)
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From the above formulation, it is clear that probabilities of a vector in the state
space at the nth time step are compared with ones of vectors in the state space at the
(n+1)th time step, and, therefore, the units of TE are in bits/time step, where time
step in simulation studies is the algorithm’s (e.g., Runge–Kutta) iteration step (or
a multiple of it if one downsamples the generated raw data before the calculation
of TE). In real life applications (like in electroencephalographic (EEG) data), the
time step corresponds to the sampling period of the sampled (digital) data. In this
sense, the units of TE denote that TE actually estimates the rate of the flow of infor-
mation. The multidimensional joint probabilities in Equation (15.4) are estimated
through the generalized correlation integrals Cn(r) in the state space of embedding
dimension p = k + l +1 [14] as

Pr(xn+1,x
(k)
n ,y(l)

n ) =

1
N ∑

N−1
m=0 Θ

⎛⎜⎝r−

∣∣∣∣∣∣∣
xn+1 − xm+1

x(k)
n − x(k)

m

y(l)
n − y(l)

m

∣∣∣∣∣∣∣
⎞⎟⎠

= Cn+1(r),

(15.5)

where Θ(x > 0) = 1; Θ(x = 0) = 0, | · | is the maximum distance norm, and the
subscript (n + 1) is included in C to signify the dependence of C on the time index
n (note that averaging over n is performed in the estimation of TE, using Equa-
tion (15.5) into Equation (15.3)). In the rest of the chapter we use the notation Cn(r)
or Cn+1(r) interchangeably. Equation (15.5) is in fact a simple form of a kernel den-
sity estimator, where the kernel is the Heaviside functionΘ . It has been shown that
this approach may present some practical advantages over the box-counting meth-
ods for estimating probabilities in a higher dimensional space. We also found that
the use of a more elaborate kernel (e.g., a Gaussian or one which takes into account
the local density of the states in the state space) than the Heaviside function does
not necessarily improve the ability of the measure to detect direction and strength
of coupling. Distance metrics other than the maximum norm, such as the Euclidean
norm, may also be considered, however, at the cost of increased computation time.
In order to avoid a bias in the estimation of the multidimensional probabilities, tem-
porally correlated pairs of points are excluded from the computation of Cn(r) by
means of the Theiler correction and a window of (p− 1) ∗ l = k points in dura-
tion [23].

The estimation of joint probabilities between two different time series requires
concurrent calculation of distances in both state spaces (see Equation (15.4)). There-
fore, in the computation of Cn(r), the use of a common value of radius r in both state
spaces is desirable. In order to establish a common radius r in the state space of X
and Y , the data are first normalized to zero mean (μ = 0) and unit variance (σ = 1).
In previous publications [18, 19], using simulation examples (unidirectional as well
as bidirectional coupling in two and three coupled oscillator model configurations),
we have found that the TE values obtained for only a certain range of r accurately
detect the direction and strength of coupling. In general, when any of the joint prob-
abilities (Cn(r)) in log scale is plotted against the corresponding radius r in log scale,
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it initially increases with increase in the value of the radius (linear increase for small
values of r) and then saturates (for large values of r) [3]. It was found that using a
value of r∗ within the quasilinear region of the ln Cn(r) vs. ln r curve produces
consistent changes in TE with changes in directional coupling.

Although such an estimation of r∗ is possible in noiseless simulation data, for
physiological data sets that are always noisy, and the underlying functional descrip-
tion is unknown, it is difficult to estimate an optimal value r∗ simply because a
linear region of ln Cn(r) vs. ln r may not be apparent or even exist. It is known that
the presence of noise in the data will be predominant for small r values [10, 8] and
over the entire space (high dimensional). This causes the distance between neigh-
borhood points to increase. Consequently, the number of neighbors available to es-
timate the multidimensional probabilities at the smaller scales may decrease and it
would lead to a severely biased estimate of TE. On the other hand, at large values
of r, a flat region in ln Cn(r) may be observed (saturation). In order to avoid the
above shortcomings in the practical application of this method (e.g., in simulation
models with added noise or in the EEG), we approximated TE as the average of TEs
estimated over an intermediate range of r values (from σ /5 to 2σ /5). The decision
to use this range for r was made on the practical basis that r less than σ /2 typically
(well-behaved data) avoids saturation and r larger than σ /10 typically filters a large
portion of A/D-generated noise (simulation examples offer corroborative evidence
for such a claim). Even though these criteria are soft for r (no exhaustive testing of
the influence of the range of r on the final results), it appears that the proposed range
constitutes a very good compromise (sensitivity and specificity-wise) for the subse-
quent detection of the direction and magnitude of flow of entropy (see Section 15.3).
Finally, to either a larger or lesser degree, all existing measures of causality suffer
from the finite sample effect. Therefore, it is important to always test their statistical
significance using surrogate techniques (see next subsection).

15.2.3 Statistical Significance of Transfer Entropy

Since TE calculates the direction of information transfer between systems by quan-
tifying their conditional statistical dependence, a random shuffling applied to the
original driver data series Y destroys the temporal correlation and significantly re-
duces the information flow TE(Y → X). Thus, in order to estimate the statistically
significant values of TE(Y → X), the null hypothesis that the current state of the
driver process Y does not contain any additional information about the future state
of the driven process X was tested against the alternate hypothesis of a signifi-
cant time dependence between the future state of X and the current state of Y .
One way to achieve this is to compare the estimated values of TE(Y → X) (i.e.,

the TE(xn+1|x(k)
n ,y(l)

n )), thereafter denoted by TEo, with the TE values estimated by
studying the dependence of future state of X on the values of Y at randomly shuffled

time instants (i.e., TE(xn+1|x(k)
n ,y(l)

p )), thereafter denoted by TEs, where p∈ 1, . . . ,N
is selected from the shuffled time instants of Y . The above described surrogate



278 S. Sabesan et al.

analysis is valid when l = 1; for l >1, tuples from original Y, each of length l,
should be shuffled instead.

The shuffling was based on generation of white Gaussian noise and reordering of
the original data samples of the driver data series according to the order indicated
by the generated noise values (i.e., random permutation of all indices 1, . . . ,N and
reordering of the Y time series accordingly). Transfer entropy TEs values of the
shuffled datasets were calculated at the optimal radius r∗ from the original data.
If the TE values obtained from the original time series (TEo) were greater than
T th standard deviations from the mean of the TEs values, the null hypothesis was
rejected at the α = 0.01 level (The value of T th depends on the desired level of
confidence 1–α and the number of the shuffled data segments generated, i.e., the
degrees of freedom of the test). Similar surrogate methods have been employed to
assess uncertainty in other empirical distributions [4, 21, 16].

15.2.4 Detecting Causality Using Transfer Entropy

Since it is difficult to expect a truly unidirectional flow of information in real-world
data (where flow is typically bidirectional), we have defined the causality measure
net transfer entropy (NTE) that quantifies the driving of X by Y as

NTE(Y → X) = TE(Y → X)−TE(X → Y ). (15.6)

Positive values of NTE(Y → X) denote that Y drives (causes) X , while negative
values denote the reverse case. Values of NTE close to 0 may imply either equal
bidirectional flow or no flow of information (then, the values of TE will help decide
between these two plausible scenarios). Since NTE is based on the difference be-
tween the TEs per direction, we expect this metric to generally be less biased than
TE in the detection of the driver. In the next section, we test the ability of TE and
NTE to detect direction and causality in coupled nonlinear systems and also test
their performance against measurement (observation) noise.

15.3 Simulation Example

In this section, we show the application of the method of TE to nonlinear data gen-
erated from two coupled, nonidentical, Rössler-type oscillators i and j [7], each
governed by the following general differential equations:

ẋi = −ωiyi − zi +∑2
j=1,i �= j ε jix j − εiixi,

ẏi = ωixi +αiyi,
żi = βixi + zi(xi − γi),

(15.7)
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where i, j = 1, 2, and αi = 0.38, βi = 0.3, γi = 4.5 are the standard parameters used
for the oscillators to be in the chaotic regime, while we introduce a mismatch in their
parameter ω (i.e., ω1 = 1 and ω2 = 0.9) to make them nonidentical, ε ji denotes
the strength of the diffusive coupling from oscillator j to oscillator i; εii denotes
self-coupling in the ith oscillator (it is taken to be 0 in this example). Also, in this
example, ε12 = 0 (unidirectional coupling) so that the direction of information flow
is from oscillator 2→1 (see Fig. 15.1a for the coupling configuration). The data
were generated using an integration step of 0.01 and a fourth-order Runge–Kutta
integration method. The coupling strength ε21 is progressively increased in steps
of 0.01 from a value of 0 (where the two systems are uncoupled) to a value of
0.25 (where the systems become highly synchronized). Per value of ε21, a total
of 10,000 points from the x time series of each oscillator were considered for the
estimation of each value of the TE after downsampling the data produced by Runge–
Kutta by a factor of 10 (common practice to speed up calculations after making
sure the integration of the differential equations involved is made at a high enough
precision). The last data point generated at one value of ε21 was used as the initial
condition to generate data at a higher value of ε21. Results from the application of
the TE method to this system, with and without our improvements, are shown next.

Figure 15.1b shows the time-delayed mutual information MI of oscillator 1
(driven oscillator) at one value of ε21 (ε21 = 0.05) and for different values of k. The
first minimum of MI occurs at k=16 (see the downward arrow in Fig. 15.1b). The
state spaces were reconstructed from the x time series of each oscillator with em-
bedding dimension p = k+ l +1. Figure 15.1c shows the ln C2→1(r) vs. ln r (dotted
line), and ln C1→2(r) vs. ln r (solid line), estimated according to Equation (15.5). TE
was then estimated according to Equation (15.4) at this value of ε21. The same pro-
cedure was followed for the estimation of TE at the other values of ε21 in the range
[0, 0.25]. Figure 15.1d shows the lags of the autocorrelation function AF of oscilla-
tor 1 (driven oscillator – see Figure 15.1a) at one value of ε21 (that is, ε21 = 0.05)
and for different values of k. The value of k at which AF drops to 1/e of its max-
imum value was found equal to 14 (see the downward arrow in Fig. 15.1b), that is
close to 16 that MI provides us with. Thus, it appears that AF could be used instead
of MI in the estimation of k, an approximation that can speed up calculations, as
well as end up with an accurate estimate for the direction of information flow.

15.3.1 Statistical Significance of T E and NT E

A total of 50 surrogate data series for each original data series at each ε21 coupling
value were produced. The null hypothesis that the obtained values of TEo are not
statistically significant was then tested at α = 0.005 for each value of ε21. For every
ε21, if the TEo values were greater than 2.68 standard deviations from the mean
of the TEs values, the null hypothesis was rejected (one-tailed t-test; α = 0.005).
Figure 15.2a depicts the TEo and the corresponding mean of 50 surrogate TEs values
along with 99% confidence interval error bars in the directions 1→2 and 2→1 (using
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Fig. 15.2: Transfer entropy TE and net transfer of entropy NTE between coupled
oscillators 1 and 2 (1→2 black line, 2→1 blue line) and mean ± 99.5% error bars
of their corresponding 50 surrogate values as a function of the systems’ underly-
ing unidirectional coupling ε21 (from 0 to 0.25). Each TE value was estimated from
N = 10,000 data points at each ε21. The value of ε21 was increased by a step of
0.01. (a) TEo (original data), mean, and 99.5% error bars from the distribution of
TEs (surrogate data). With k = 16, l = 1 (i.e., the suggested values by our method-
ology), TE is estimated at radius r∗ within the linear region of ln C(r) vs. ln r
from the original data (see Fig. 15.1c). TEo(2→1) (solid blue line) is statistically
significant (p <0.01) and progressively increases in value with an increase in ε21,
whereas TEo(1→2) (solid black line) is only locally statistically significant and re-
mains constant and very close to 0 despite the increase in ε21. (b) TEs estimated
with k = 5, l = 5 as an average of the TEs at intermediate values of the radius r
[σ/5 <ln r < 2σ /5]. Neither TEo(2→1) nor TEo(1→ 2) is statistically significant
(p >0.01) and does not progressively increase in value with an increase in ε21. (c)
TE estimated with the optimal values k = 16, l = 1. The picture is very similar to
the one in (a) above, suggesting that use of r∗ is not critical in the estimation of TEs.
(d) NTEo(2→1) and their corresponding NTEs(2→1) estimated from the TE values
in (c). (e) As in (d) above with noise of SNR = 10 dB added to the data. (f) As in
(d) above with more noise (SNR = 3 dB) added to the data. Detection of direction
of information flow is possible at all ε21 values (p <0.01), except at very small ε21

values (ε21 <0.02). Units of the estimated measures TE and NTE are in bits per it-
eration (time step was 0.1, i.e., Runge’s time step 0.01 times 10, because of the 10:1
decimation we applied on the generated data before analysis).
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a black and blue lines respectively) estimated over ε21 at a value of r∗ chosen in the
linear region of the ln Cn(r) vs. ln r of the original data, using MI-suggested k values
(k values decrease from 16 to 14 as ε21 increases) and with l = 1. (The corresponding
values for k through the use of AF changed from 14 to 12 with the increase of
ε21.) From this figure, it is clear that the TEo(2→1) is significantly greater than
μ(TEs)+2.68×σ(TEs) almost over the entire range of coupling, where μ(TEs) is
the mean of TEs over 50 surrogate values and 2.68×σ(TEs) is the error bar on the
distribution of TEs (49 degrees of freedom) at the α = 0.005 level. [For very small
values of coupling (ε21 < 0.02), detection of the direction of information flow is not
possible (p > 0.05).] Also, TEo shows a progressive increase in the direction 2→1,
proportional to the increase of coupling in that direction, and no significant change
in the direction 1→2. In Fig. 15.2b, the TEo(ε21) and the mean and 99.5% error bars
on the distribution of TEs(ε21) are illustrated for a pair of arbitrary chosen values
for k and l (e.g., k = l = 5). Neither a statistically significant preferential direction of
information flow (1→2 or 2→1) nor a statistically significant progressive increase
in TEo values with the increase of coupling ε21 were observed, due to erroneous
selection of k and l for the estimation of TE.

In Fig. 15.2c, we present the same quantities as in Fig. 15.2a, but they now are
estimated as averages of TEs over an intermediate range of values of r [σ /5<ln r <
2σ /5] (that is, not at r∗). We also observe that the TE values in Fig. 15.2c are larger
than the ones in Fig. 15.2a with r = r∗ and that it is possible from Fig. 15.2c to detect
the correct direction of flow and its significant changes with the strength of coupling.
This result is very important for the estimation of TE in practical applications, where
an optimal r∗ is difficult to obtain. In Fig. 15.2d, we show the values of the measure
of causality NTE and its statistical significance for the detection of direction and
strength of coupling in the two coupled oscillator system over a range of ε21. NTE
was also estimated as an average of NTEs over intermediate values of r [σ /5<ln
r < 2σ /5]. From the statistically significant values of NTE, it is clear that oscillator
2 drives oscillator 1 and the degree of driving increases proportional to the increase
in their coupling.

15.3.2 Robustness to Noise

In order to assess the practical usefulness of this methodology for the detection
of causality in noise-corrupted data, Gaussian noise with variance corresponding
to a 10 or 3 dB signal-to-noise ratio (SNR) was added independently to the X se-
ries of the original data from each of the two coupled Rössler systems. The noisy
data were then processed in the same way as the noise-free data, including testing
against the null hypothesis that an obtained value of TE at each coupling value ε21

is not statistically significant. The corresponding TEo and TEs values are illustrated
in Fig. 15.2e, f for each of the two SNR values, respectively. It is noteworthy that
only at extremely low values of coupling (ε21 <0.02) NTE cannot detect the direc-
tion of information flow. Thus, it appears that the NTE, along with the suggested
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improvements and modifications for the estimation of TE, is a robust measure for
detecting the direction and the rate of the net information flow in coupled nonlinear
systems even under severe noise conditions (e.g., SNR = 3 dB).

15.4 Discussion and Conclusion

In this study, we suggested and implemented improvements for the estimation of
transfer entropy (TE), a measure of the direction and the level of information flow
between coupled subsystems, built upon it to introduce a new measure of informa-
tion flow, and showed their application to a simulation example. The two innovations
we introduced in the TE estimation were: (a) the distance in the state space at which
the required probabilities should be estimated and (b) the use of surrogate data to
evaluate the statistical significance of the estimated TE values. The new estimator
for TE was shown to be consistent and reliable when applied to complex signals gen-
erated by systems in their chaotic regime. A more practical estimator of TE, that av-
erages the values of TE produced in an intermediate range of distances r in the state
space, was shown to be robust to additive noise up to S/N=3 dB, and could reliably
and significantly detect the direction of information flow for a wide range of cou-
pling strengths, even for coupling strengths close to 0. Our analysis in this chapter
dealt with only pairwise (bivariate) interactions between subsystems and as such,
it does not detect both direct and indirect interactions among multiple subsystems
at the time resolution of the sampling period of the data involved. A multivariate
extension of TE to detect information flow between more than two subsystems is
straightforward. Such an extension could also be proven useful in distinguishing be-
tween direct and indirect interactions [6,5], and thus further enhance TE’s capability
to detect causal interactions from experimental data.

A new measure of causality, namely net transfer of entropy [NTE(i → j)], was
then introduced for a system i driving a system j (see Equation (15.6)). NTE of the
system i measures the outgoing net flow of information from the driving i to the
driven j system, that is, it takes into consideration both incoming TE to and outgo-
ing TE from the driving system i. Our simulation example herein also showed the
importance of NTE for the identification of the driving system in a pair of coupled
systems for a range of coupling strengths and noise levels. We believe that our ap-
proach to estimating information flow between coupled systems can have several
potential applications to coupled complex systems in diverse scientific fields, from
medicine and biology, to physics and engineering.
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Chapter 16
An Optimization Approach for Finding
a Spectrum of Lyapunov Exponents

Panos M. Pardalos, Vitaliy A. Yatsenko, Alexandre Messo, Altannar Chinchuluun,
and Petros Xanthopoulos

Abstract In this chapter, we consider an optimization technique for estimating the
Lyapunov exponents from nonlinear chaotic systems. We then describe an algo-
rithm for solving the optimization model and discuss the computational aspects of
the proposed algorithm. To show the efficiency of the algorithm, we apply it to some
well-known data sets. Numerical tests show that the algorithm is robust and quite ef-
fective, and its performance is comparable with that of other well-known algorithms.

16.1 Introduction

Brain electrical activity can be recorded from electrodes placed on the scalp or intra-
cranial. It is now possible to record from relatively large areas with macro-electrodes
(EEG) or from more localized regions, using microelectrodes. Such recordings, per-
formed in awake, moving animals, and humans have advanced our understanding of
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many normal physiological processes, such as the sleep–wake cycle and motor con-
trol, as well as pathological conditions such as epilepsy, Parkinson’s disease and
other movement disorders, and sleep disorders such as sleep apnea and narcolepsy.
Traditionally, neurophysiologists analyze such signals using visual inspection or
through statistical analysis of linear signal properties such as the spectrogram and
coherence. More recently, investigators have begun to investigate the spatiotempo-
ral dynamical features of neurological signals. However, many of these techniques
have been applied to mathematical models or to dynamical systems that are much
less complex than the brain. Therefore, there is need to develop and evaluate math-
ematical techniques that provide robust results in higher dimensional, nonstationary
and noisy biological systems such as the brain. Although difficult or even impossi-
ble to prove, there has been little debate that brain activities should be modeled as
nonlinear systems. As a result, during the last decade, a variety of nonlinear time
series analysis techniques have been applied repeatedly to EEG recordings during
physiologic and pathologic conditions. Among those, the algorithms based on the
Lyapunov exponents appears promising for characterizing the spatiotemporal dy-
namics in electroencephalogram (EEGs) time series recorded from patients with
temporal lobe epilepsy. Nevertheless, there are many improvements can be made in
algorithms for finding Lyapunov exponents so that the estimation can be more ro-
bust, especially with respect to the presence of noise in the EEG. As the complexity
of the algorithms for finding Lyapunov exponents with the noise and nonstationarity
of EEG, this task requires development of novel techniques and numerous compu-
tational experiments.

This chapter is organized as follows. In the next section, we describe Lyapunov
exponents and discuss some of the algorithms for finding them. In Section 16.3,
an optimization model for estimating Lyapunov exponents is presented and a solu-
tion technique for the model is proposed. Brief descriptions of the models used for
computational experiments and a comparison of performance, including sensitivity
analysis, between the proposed algorithm and the two well-known algorithms are
given in Sections 16.4 and 16.5, respectively. The details of the numerical compu-
tations are also given in Section 16.5.

16.2 Lyapunov Exponents

Chaos is one type of behavior exhibited by nonlinear dynamical systems, which
are systems whose time evolution equations are nonlinear, that is, the dynamical
variables describing the properties of the systems (for example, position, veloc-
ity, acceleration, pressure) appear in the equations in a nonlinear form. There are
several techniques to measure chaos, depending on what one wants to character-
ize in the chaotic trajectory. Some of the techniques include: simple visual in-
spection of either the time series represented by a time plot of the trajectory, or
the bounded strange attractor reconstructed from the time series; spectral analy-
sis of the time series; Lyapunov exponents; and entropy analysis. Here, we focus
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on Lyapunov exponents, as this metric has many important characteristics such as
invariance to transformations and computability directly from data, without solv-
ing the differential or difference equations describing the corresponding dynamical
system.

Let us consider any two nearby divergent trajectories originating from a 1D flow
(i.e., trajectories in continuous time as described by differential equations). The
growth of the difference δt between the two nearby trajectories over a time period
Δ t = t1 − t0 can be described by

δt ∼ δ0eλΔ t , (16.1)

where λ denotes the systems Lyapunov exponent.
An important reason for using the Lyapunov exponent as a characteristic mea-

sure of a dynamical system is its invariance1 to rescaling, shifts and other transfor-
mations of data such as the imprecise reconstruction of a strange attractor from a
time series. The fact that trajectories diverge over the course of time would not in
itself be very dramatic if it was only very slow, thus we speak of chaos only if this
separation is exponentially fast. There are n different Lyapunov exponents for an n-
dimensional system, defined as follows: Consider the evolution of an infinitesimal
sphere of perturbed initial conditions. During its evolution along the reference tra-
jectory, the sphere will become deformed into an infinitesimal ellipsoid. Let δk(t),
k = 1,2,3, . . . ,n, denote the length of the kth principal axis of the ellipsoid. Thus, the
deformation of the sphere corresponds to the stretching, contraction, and rotation of
the principal directions. For large t, the diameter of the ellipsoid is controlled by the
most positive λk. As we shall see later on, λ depends slightly on which trajectory
we study, so we should average over many different points on the same trajectory to
get the true value of λ (see Table 16.1).

In dissipative systems one can also find a negative maximal Lyapunov exponent
which reflects the existence of a stable fixed point. Two trajectories which approach
the fixed point also approach each other exponentially fast. If the motion settles
down onto a limit cycle, two trajectories can only separate or approach each other
slower than exponentially. In this case the maximal Lyapunov exponent is 0 and the
motion is called marginally stable. If a deterministic system is perturbed by random
noise, on the small scales it can be characterized by a diffusion process, with δt

growing as
√

t. Thus the maximal Lyapunov exponent is infinite. According to the

Table 16.1: Possible types of motion and the corresponding Lyapunov exponents
Type of motion Maximal Lyapunov exponent

Stable fixed point λ < 0
Stable limit cycle λ = 0

Chaos 0 < λ < ∞
Noise λ = ∞

1 See Oseledec’s theorem in [12].
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mathematical definition, this is true no matter how small the noise component is,
however, we will show later on that Lyapunov exponents of an underlying deter-
ministic system can in fact be measured.

When a system has a positive Lyapunov exponent, there is a time horizon beyond
which prediction breaks down.

Wolf et al. [34] proposed the first algorithm for calculating the largest Lyapunov
exponent. First, the phase space is reconstructed and the nearest neighbor is searched
for one of the first embedding vectors. A restriction must be made when searching
for the neighbor: it must be sufficiently separated in time in order not to compute
as nearest neighbors successive vectors of the same trajectory. Without considering
this correction, Lyapunov exponents could be spurious due to temporal correlation
of the neighbors. Once the neighbor and the initial distance L is determined, the
system is evolved forward some fixed time (evolution time) and the new distance L′

is calculated. This evolution is repeated, calculating the successive distances, until
the separation is greater than a certain threshold. Then a new vector (replacement
vector) is searched as close as possible to the first one, having approximately the
same orientation of the first neighbor. Finally, Lyapunov exponents can be estimated
using the following formula:

λ1 =
1

(tM − t0)

M

∑
k=1

ln
L′(tk)

L(tk −1)
, (16.2)

where k is the number of time propagation steps.
The Wolf algorithm only estimates the largest Lyapunov exponent and not the

whole spectrum of exponents. It is said to be sensitive to the number of observa-
tions as well as to the degree of measurement or system noise in the observations.
This discovery motivated a search for new algorithm designs with improved finite-
sample properties. Sano and Sawada [28], Eckmann et al. [5], Abarbanel et al. [1],
Rosenstein et al. [27], and Pardalos and Yatsenko [24], among others, came up
with improved algorithms for calculating the Lyapunov exponents from observed
data.

16.3 An Optimization Approach

In the previous section, we mentioned a number of algorithms that have been pro-
posed for estimating the Lyapunov exponents from a scalar time series. The problem
of calculating these exponents can be reformulated as an optimization problem (see
Pardalos and Yatsenko [24]), and in these following sections we present an algo-
rithm for its solution which is globally and quadratically convergent. Here, we use
well-established techniques from numerical methods for dealing with the optimiza-
tion problem. We also discuss the computational aspects of this method and the
difficulties which inevitably arises when estimating the Lyapunov exponents based
on the use of time-delay embedding. Using numerically generated data sets, we
consider the influence of the system parameters and the optimization algorithm on
the quality of the estimates.



16 An Optimization Approach for Lyapunov Exponents 289

16.3.1 Theory

Let us consider a vector x in the phase space R
n which can be considered as a

solution of a certain dynamical system

ẋ = f (x, t), x(t0) = x0, (16.3)

where f (x, t) is a smooth vector field on a manifold M. The vector field f yields a
flow φ = {φ(t)} on the phase space, where φ(t) is a map,

x �→ φ(x, t), t ∈ R, x ∈ R
n. (16.4)

The observed trajectory, starting at x0, is

{φ(x0, t)|t ∈ R
+}. (16.5)

To get an information about the time evolution of arbitrarily small perturbed
initial conditions, consider the evolution of tangent vectors in the tangent space
T M. It is given by the linearization of Equation (16.3).

The Taylor expansion of f (φ(x0, t)) for small Δx is

f (φ(x0, t))+D f (φ(x0, t))Δx+ · · · . (16.6)

Here D f (φ(x0, t)) is the local Jacobian matrix of the vector field f at φ(x0, t):

D f (φ(x0, t)) = J(x0, t) = [(∂ fi/∂x j)|φ(x0,t)]. (16.7)

For Δx → 0, the following first-order approximation holds:

δ̇x = J(x0, t)δx. (16.8)

The solution of the linear nonautonomous variational equation (16.8) can be ob-
tained as

δx(t) = Dφ(x0, t)δx0, (16.9)

where Dφ(x0, t) = A(x0, t) ∈ R
n×n is the linear operator which maps tangent vector

δx0 to δx(t).
The spectrum of the Lyapunov exponents is the set of logarithms of the eigenval-

ues of the self-adjoint matrix

Λx0 = lim
t→∞

[A(x0, t)�A(x0, t)]1/2t , (16.10)

where A(x0, t)� is the transpose of the matrix A(x0, t). The existence of the limit in
Equation (16.10) is proved by Oseledec’s theorem in [12].

Let E = (e1, . . . ,en) be an n×n matrix, where the column vectors are a basis of
the tangent space. If the following limit exists:
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λi = lim
t→∞

1
t

log‖A(x0, t)ei‖, (16.11)

then λi, i = 1, . . . ,n, are the Lyapunov exponents. They are ordered by their mag-
nitudes λ1 ≥ λ2 ≥ ·· · ≥ λn, and if they are independent of x0, the system is called
ergodic.

Therefore, one can write A(x0, t) as the product of n×n matrices A(x j,Δ t), where
each one maps x j = φ(x0, jΔ t) to x j+1:

A(x0,kΔ t) =
k−1

∏
j=0

A(x j,Δ t), (16.12)

with kΔ t = t.

16.3.2 Implementation Details

We often have no knowledge of the nonlinear equations of the system which pro-
duce the observed time series. But there is a possibility of estimating the linearized
flow map AΔ t = Dφ(x j,Δ t) from a single trajectory by using the recurrent structure
of strange attractors. Let {x j}, j = 1,2, . . ., denote a time series of some physical
quantity measured at the discrete time interval Δ t, i.e., x j = x(t0 +( j−1)Δ t). Con-
sider a small ball of radius ε centered at the orbital point x j, and find a set of N
difference vectors included in this ball, i.e.,

{yi} = {x j − xi| ‖x j − xi‖ ≤ ε}, i = 1,2, . . . ,N2, (16.13)

where yi is the displacement vector between x j and xi. Here, ‖· · ·‖ denotes a usual
Euclidean norm defined as follows: ‖w‖ = (w2

1 + w2
2 + . . .+ w2

n)
1/2 for some vec-

tor w = (w1,w2, . . . ,wn). After the evolution of a time interval kΔ t, yi = x j − xi is
mapped to the set

{zi} = {x j+k − xi+k}, i = 1,2, . . . ,N. (16.14)

If the radius ε and the evolution time Δ t are small enough for the displacement
vectors {yi} and {zi} to be regarded as a good approximation of tangent vectors in
the tangent space T M, the evolution of yi to zi can be represented by some matrix
A j as

zi = A jyi. (16.15)

The matrix A j should be a good approximation of the matrix of linearized flow in
Equation (16.9). A plausible procedure for optimal estimation is the least-square

2 In the implementation, among the N displacement vectors found inside the sphere of radius ε ,
only five to seven vectors with the smallest norm are chosen. N is often chosen as dE ≤N ≤ 20 [28]
and is kept at a low value to optimize the efficiency of the algorithm.



16 An Optimization Approach for Lyapunov Exponents 291

algorithm, which minimizes the average of the squared error norm between zi and
A jyi with respect to all components of A j as follows:

min
A j

S =
1
N

N

∑
i=1

‖zi −A jyi‖2, (16.16)

subject to a j
kl ∈ R, (16.17)

where a j
kl denotes the (k, l) component of matrix A j. The evolution times Δ t in the

renormalization and the approximation process do not necessarily have to be the
same, but are chosen equal for convenience.

Each invertible n× n matrix can be split uniquely into the product of an upper
triangular matrix R and an orthogonal matrix Q, such that

A jE j = Q jR j = E j+1R j, (16.18)

with E j = (e1
j , . . . ,e

n
j). The matrix Q j serves as the new basis E j+1 and the loga-

rithms of the diagonal elements of R j are local expanding coefficients, whose time-
averaged values are the Lyapunov exponents. Using

A(x0,kΔ t)E0 =
k−1

∏
j=0

A(x j,Δ t)E0 = Qk−1

k−1

∏
j=0

R j (16.19)

in Equation (16.10), we obtain

λi = lim
k→∞

1
kΔ t

k−1

∑
j=0

logr j
ii, (16.20)

where r j
ii are the diagonal elements of the matrix R j.

In the numerical procedure, we let A j operate on an arbitrary chosen set {e j
i },

and then renormalize A je
j
i to have unit length. Mutual orthogonality of the basis is

maintained by using the Gram–Schmidt renormalization procedure. This is repeated
for n iterations where Equation (16.20) is computed each time [25].

16.3.2.1 Phase Space Reconstruction

One important reason for using the above approach to computing λ is that the sta-
bility of the dynamical system can be determined without actually knowing and
solving the underlying differential equations explicitly. This occurs when we obtain
a chaotic time series from a dynamical system, reconstruct its strange attractor in
the corresponding phase space, and then compute the Lyapunov exponents from the
reconstructed strange attractor directly, without its explicit mathematical model.

The most important phase space reconstruction technique is the method of de-
lays. The basic idea is very simple. We use the time series data of a single variable
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to create a multidimensional reconstruction (embedding) space. If the embedding
space is generated properly, the behavior of trajectories in this embedding space
will have the same geometric and dynamical properties that characterize the actual
trajectories in the full multidimensional phase space of the system. The method of
delays was suggested by Packard et al. [17] in 1980 and was put on a firm theoretical
basis by Takens [32] in 1981.

From the set of observations x(t0 + nΔ t) = x(n), multivariate vectors in d-
dimensional space

y(n) = (x(n),x(n+ τ), . . . ,x(n+(d −1)τ)) (16.21)

are used to trace out the orbit of the system. The observations, x(n), are a projection
of the multivariate phase space of the system onto the 1D axis of the x(n)’s. The
purpose of time-delay embedding technique is to unfold the projection back to a
multivariate phase space that is representative of the original system. In practice,
the natural questions of what time delay τ and what embedding dimension d to use
in this reconstruction have had a variety of answers. The following sections present
the methods used in this chapter for determining τ and d.

The time-delay parameter τ: The choice of time delay is not a straightforward
problem. If it is taken too small, there is almost no difference between the different
elements of the delay vectors. If on the other hand τ is very large, the different co-
ordinates may be almost uncorrelated. In this case the reconstructed attractor may
become very complicated, even if the true underlying attractor is simple. This is
typical of chaotic systems, where the autocorrelation function decays fast. Unfor-
tunately, since τ has no relevance in the mathematical framework, there exists no
rigorous way of determining its optimal value. At least a dozen different methods
have been suggested for the estimation of τ , and since all these methods yield val-
ues of similar magnitude, we should estimate τ just by a single preferred tool and
work with this estimate [11]. Past studies have made use of the autocorrelation func-
tion, but a quite reasonable objection to this procedure is that it is based on linear
statistics, not taking into account nonlinear dynamical correlations. Therefore, it is
sometimes recommended that one look for the first minimum of the time-delayed
mutual information. This is the information we already possess about the value of
x(t + τ) if we know x(t).

On the interval explored by the data, we create a histogram for the probability
distribution of the data. We denote by pi the probability that the signal assumes a
value inside the ith bin of the histogram, and let pi j(τ) be the probability that x(t) is
in bin i and x(t + τ) is in bin j. Then the mutual information for time delay τ reads

I(τ) =∑
i, j

pi j(τ) ln pi j(τ)−2∑
i

pi ln pi. (16.22)

The value of the mutual information is independent of the particular choice of
histogram, as long as it is fine enough.3 The first minimum of I(τ) marks the time

3 Throughout this chapter 512 bins have been used.
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delay where x(t +τ) adds maximal information to the knowledge we have from x(t).
This is the time delay used in this chapter.

Embedding dimension: What is the appropriate value of d to use as the em-
bedding dimension? The procedure used here identifies the number of false near-
est neighbors, points that appear to be nearest neighbors because the embedding
space is too small, of every point on the attractor associated with the orbit y(n),
n = 1,2, . . . ,N. When the number of false nearest neighbors drops to 0, we have
unfolded or embedded the attractor in R

d , a d-dimensional Euclidean space.
If we are in d dimensions and we denote the rth nearest neighbor of y(n) by

y(r)(n), then from Equation (16.21), the square of the Euclidean distance between
the point y(n) and this neighbor is

R2
d(n,r) =

d−1

∑
k=0

[x(n+ kτ)− x(r)(n+ kτ)]2. (16.23)

In going from dimension d to dimension d +1 by time-delay embedding we add
a (d + 1)th coordinate onto each of the vectors y(n). This new coordinate is just
x(n + τd). The Euclidean distance, as measured in dimension d + 1, between y(n)
and the same rth neighbor as determined in dimension d is given by

R2
d+1(n,r) = R2

d(n,r)+ [x(n+ τd)− x(r)(n+ τd)]2. (16.24)

A natural criterion for catching embedding errors is that the increase in distance
between y(n) and y(r)(n) is large when going from dimension d to d + 1. The in-
crease in distance can be stated quite simply from Equations (16.23) and (16.24).
We state this criterion by designating as a false neighbor any neighbor for which

√
R2

d+1(n,r)−R2
d(n,r)

R2
d(n,r)

=
|x(n+ τd)− x(r)(n+ τd)|

Rd(n,r)
> Rtol, (16.25)

where Rtol is some threshold. In practical settings the number of data points is often
not large, and the following criterion handles the issue of limited data set size: If the
nearest neighbor to y(n) is not close (Rd(n) ≈ RA) and it is a false neighbor, then
the distance Rd+1(n) resulting from adding on a (d + 1)th component to the data
vectors will be Rd+1(n) ≈ 2RA [13]. That is, even distant but nearest neighbors will
be stretched to the extremities of the attractor when they are unfolded from each
other, if they are false nearest neighbors. We write this second criterion as

Rd+1(n)
RA

> Atol, (16.26)

where RA denotes the size of the attractor. Both criterions in Equations (16.25) and
(16.26) are used jointly throughout the determination of dE (also see Fig. 16.1). As
a measure of RA we have chosen the standard deviation σ(x) of the observed data
x according to [12]. This source also gives us the recommended values Rtol = 15.0
and Atol = 2.0.
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Fig. 16.1: The percentage of false nearest neighbors for 10,000 data points from the
Lorenz equations (see Section 2.2.2). The data were output at Δ t = 0.01 during the
integration. A time lag τ = 12Δ t = 0.12, which is the location of the first minimum
in the average mutual information for this system, was used in forming the time-
delayed vectors.

From the point of view of the mathematics of the embedding process it does not
matter whether one uses the minimum embedding dimension dE or any d ≥ dE , since
once the attractor is unfolded, the theorem’s work is done. For a physicist the story is
quite different. Working in any dimension larger than the minimum required by the
data leads to excessive computation when investigating the Lyapunov exponents.
It also enhances the problem of contamination by roundoff or instrumental error
since this noise will populate and dominate the additional d − dE dimensions of
the embedding space where no dynamics is operating. We should add that in going
through the data set and determining which points are near neighbors of the point
y(n) we use the sorting method of a k-dimensional tree to reduce the computation
time from O(n2) to O(N log10(N)).

16.4 Models Used in the Computational Experiments

We evaluate the algorithm performance using the signals simulated from four
well-known dynamical mathematical models: Lorenz, Rössler, Hénon, and
Hénon–Heilers. Brief descriptions of the models are given below.

16.4.1 Lorenz Attractor

We begin our study of Lyapunov exponents with the Lorenz equations:

ẋ = σ(y− x),
ẏ = Rx− y− xz,

ż = xy−bz.
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Here σ , R, b > 0 are parameters. Edward Lorenz derived this 3D system from a
simplified model of convection rolls in the atmosphere. Roughly one can say that
the equations describe the flow of a fluid in a box which is heated along the bottom.
This simple-looking deterministic system can have extremely erratic dynamics, the
solutions oscillate irregularly over a wide range of parameters. In his original ex-
periments he fixed the values of the parameters to σ = 10, R = 28, and b = 8/3
for which the system has chaotic behavior. These are the parameter values we will
be using in the comparative study between the optimization approach described
in [25] and the algorithms in [28, 34]. Figure 16.2a shows a 3D view of the Lorenz
system.

Fig. 16.2: The algorithm has been tested on the (a) Lorenz attractor, (b) Rössler
attractor, (c) Hénon map and (d) Hénon–Heiles system (plotted in the x–y
plane).

16.4.2 Rössler Attractor

In 1976, the Swiss mathematician Otto Rössler was studying oscillations in chemi-
cal reactions and discovered another set of equations with a chaotic attractor:
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ẋ = −y− z

ẏ = x+ay

ż = b+ z(x− c).

Both the Lorenz and Rössler equations are involved with the study of
Navier–Stokes equations. Rössler is acclaimed to have used the parameter values
a = 0.2, b = 0.2, and c = 5.7, which we will also use. This system of equations
looks easier than the Lorenz system, with only one nonlinearity xz, but it is harder
to analyze. Figure 16.2b shows the Rössler attractor.

16.4.3 Hénon Map

The Hénon map was devised by the theoretical astronomer Michel Hénon to illu-
minate the microstructure of strange attractors in 1976. Previous scientists had en-
countered numerical difficulties when tackling the Lorenz system, so instead Hénon
sought a mapping that captured its essential features but which also had an ad-
justable amount of dissipation. Hénon chose to study mappings rather than dif-
ferential equations because maps are faster to simulate and their solutions can be
followed more accurately and for a longer time. The Hénon map is given by

xn+1 = yn +1−ax2
n

yn+1 = bxn,

where a and b are adjustable parameters which are chosen as a = 1.4, b = 0.3.

16.4.4 The Hénon–Heiles Equations

The Hénon–Heiles model was introduced in 1964 by Michel Hénon and Carl Heiles
as a model for the motion of a star inside a galaxy. With the Hamiltonian

H =
1
2

(
p2

1 +q2
1 + p2

2 +q2
2

)
+q2

1q2 −
1
3

q3
2,

and if we let q1 = x, q2 = y, p1 = px, and p2 = py, then the Hamiltonian can
be interpreted as a model for a single particle moving in two dimensions under the
action of a force described by a potential energy function V (x,y) [9]. Hamilton’s
equations for this system lead to the following equations for the dynamics of the
system:

ẋ =
∂H
∂ px

= px ṗx = −∂H
∂x

= −x−2xy

ẏ =
∂H
∂ py

= py ṗy = −∂H
∂y

= −y− x2 + y2.
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It can be shown that the potential supports bounded motion for the particle for
H< 1/6. Thus, to fulfill this condition, the initial values are chosen as x0 = 0, y0 =
−0.15, px,0 = 0.50, and py,0 = 0.

16.5 Computational Experiments

This section presents the main results of the implemented algorithm and compares
these with two other algorithms described in [28,34]. Some enhancements are made
to the algorithm, which is finally tested for robustness against change in parameter
values and noise.

16.5.1 Numerical Computations

The differential equations are integrated with the Runge–Kutta (RK4) method using
a fixed step δ t. This method is reasonably simple and robust, even without the adap-
tive step-size routine. The RK4 method is a fourth-order method, meaning that the
error per step is O((δ t)5), while the total accumulated error has order O((δ t)4).

Table 16.2 summarizes the values for the computed Lyapunov exponents, which
has been estimated using three different implemented algorithms described in

Table 16.2: Results of the preliminary computational experiments for n = 2,000. For the Lorenz
attractor, the parameter values have been chosen as: τ = 9, Δ t = 5, δ t = 0.01, ε = 1.20. The
parameter values for the Rössler attractor are: τ = 6, Δ t = 5, δ t = 0.12, ε = 0.28
System with n = 2,000 n = 4,000
initial condition Pardalos Sano Wolf Pardalos Sano Wolf

Lorenz
x0 = 0 λ1 1.08547 1.08546 0.86241 1.15313 1.15312 0.92140
y0 = 1.0 λ2 −0.30421 −0.30421 −0.31226 −0.31232
z0 = 0 λ3 −10.61753 −10.61754 −10.57328 −10.57319

Rössler
x0 = 0.1 λ1 0.06928 0.06924 0.06642 0.06891 0.06881 0.06593
y0 = 0.1 λ2 0.00132 0.00156 0.00122 0.00131
z0 = 0.1 λ3 −1.27202 −1.27183 −1.28908 −1.28849

Hénon
x0 = 0.1 λ1 0.41672 0.41672 0.40445 0.41669 0.41672 0.41547
y0 = 0.1 λ2 −1.57647 −1.57647 −1.57765 −1.57773

Hénon–Heiles
x0 = 0 λ1 0.15207 0.15209 0.16012 0.14875 0.14874 0.15493
y0 = −0.15 λ2 0.01950 0.01949 0.01382 0.01385
px,0 = 0.50 λ3 −0.04242 −0.04245 −0.04874 −0.04871
py,0 = 0 λ4 −0.23309 −0.23395 −0.22142 −0.22141
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[24, 28, 34]. The rows show the Lyapunov exponents in a decreasing manner, i.e.,
λ1 > λ2 > .. . > λn, for given initial conditions. The algorithm by Wolf et al. [34]
only gives us an estimate of the largest exponent. As mentioned earlier, a positive
Lyapunov exponent measures sensitive dependence on initial conditions, or how
much our forecasts can diverge based upon different estimates of starting condi-
tions. Another way to view Lyapunov exponents is the loss of predictability as we
look forward in time. Thus, it is interesting to know a measure of information loss
for avoiding possible misinterpretations.

If we assume that the true starting point x0 of a time series is possibly displaced
by an ε , we know only the information area I0 about the starting point. After some
steps the time series is in the information area at time t, It . The information about the
true position of the data decreases due to the increase of the information area. Con-
sequently, we get a bad predictability. The largest Lyapunov exponent can be used
for the description of the average information loss; λ1 > 0 leads to bad predictability.
Therefore, the exponent values in Table 16.2 are given in units of nats/s.4

Of all the N displacement vectors found inside the sphere of radius ε , only five to
seven vectors with the smallest norm are chosen. This has practically no noticeable
effect on the exponent values, but speeds up the algorithm. It is further enhanced by
introducing another constraint which enables us to search for displacement vectors
close in phase space (Equation (16.13)), but far away in time

|t j − ti| >
ε
δ t

, ∀i, j, i �= j. (16.27)

The Gauss–Newton algorithm is used to solve the nonlinear least-squares prob-
lem in Equation (16.16), while Sano [28] uses a linear approach to solve the same
problem. By examining Table 16.2 we see that there is hardly any difference in the
estimated exponent values between Pardalos’s algorithm and the one described by
Sano. This behavior is due to the small values of the evolution time Δ t. During this
short evolution, the mapping between t j and t j +Δ t does not show any stronger non-
linear properties, therefore, the results are similar. The value Δ t should be kept small
enough so that orbital divergence is monitored at least a few times5 per (mean) orbit.
A larger Δ t has been shown to increase the difference between these two algorithms,
as expected.

The displacement vectors yi have been chosen to lie inside a sphere of radius
ε � 0.02LA, where LA is the horizontal extent of the attractor. The choice of ε is
good as long as we fulfill the condition of finding a minimum of five vectors inside
the sphere. Though theory says this value should be infinitesimal, the optimization
algorithm described in Section 16.2 is robust against small increase in ε . Figure 16.3
shows how the Lyapunov exponents for the examined systems converge.

The results from Pardalos’s and Sano’s algorithms, though different from the
estimated values computed by the Wolf algorithm, are in good agreement with other
numerical experiments performed in [30, 27, 4, 26, 8].

4 1 nat/s ≈ 1.44 bits/s.
5 We have computed Equation (16.16) between 30 and 40 times per mean orbit.
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Fig. 16.3: Convergence of the spectrum of Lyapunov exponents for (a) the Lorenz
attractor, (b) Rössler attractor, (c) Hénon map, and (d) the Hénon–Heiles system.
The graphs show the results of the algorithm described in Section 16.2.

16.5.2 Sensitivity Analysis

Two parameters, namely the evolution time Δ t and the time delay τ , have been
chosen for further investigation for robustness. We mentioned in Section 2.2.2 that
τ is determined as the lag which gives us the first minimum for the mutual average
information for our observed data. Figure 16.4 shows how the spectrum of Lyapunov
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Fig. 16.4: The Lyapunov exponents as a function of (a) τ and (b) Δ t for the Lorenz
attractor.
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exponent values depend on Δ t and τ . The two largest Lyapunov exponents, λ1 and
λ2, seem to be rather stable in the vicinity of the chosen values Δ t = 5 and τ = 9
while λ3 is unstable for all values in the interval 1 < Δ t < 30, 1 < τ < 40. What
is important to be reminded of here is that the systems are extremely sensitive due
to their chaotic nature, and the observed “errors” due to perturbations of parameter
values do not have to be entirely blamed on this specific algorithm. The science of
choosing the right parameter values for these kind of problems is not general and
depends on which system you are examining.

Figure 16.5 shows how the Lyapunov exponents for the Rössler attractor depend
on τ and Δ t. Again, λ1 and λ2 are stable in the neighborhood of the chosen values
τ = 6 and Δ t = 5, while λ3 is very irregular throughout the interval. This behavior
is given a deeper theoretical explanation in [28].
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Fig. 16.5: The Lyapunov exponents as a function of (a) τ and (b) Δ t for the Rössler
attractor.

The algorithm has also been tested for noise contaminated data. We have added
Gaussian white noise w(t) to the solutions of the Lorenz and Rössler systems ac-
cording to

xnoise = xclean +w(t)σ(x)s
ynoise = yclean +w(t)σ(y)s
znoise = zclean +w(t)σ(z)s,

where s is a scaling factor for the standard deviation σ .
Figure 16.6 shows the dependence between the Lyapunov exponents and the scal-

ing factor within the interval 0 ≤ s ≤ 0.1. We see that the exponents λ1 and λ2 for
both systems are quite stable within the interval 0 < s < 0.01, i.e., they are not sen-
sitive to data contaminated with up to 0.01σ of Gaussian white noise. Once again
we can confirm the sensitive nature of the smallest Lyapunov exponent λ3 of the
Lorenz attractor.

Many physical signals, including the time series studied in this chapter, are fun-
damentally different from linear time-invariant signals in that they are invariant to
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Fig. 16.6: The Lyapunov exponent values as a function of the scaling factor s for (a)
the Lorenz attractor and (b) the Rössler attractor.

scale rather than to translation. The signals are often mixed with noise, and the sep-
aration may be very difficult if both the signal and the noise are broadband. The
problem becomes inherently difficult when the signal is chaotic because its power
spectrum is indistinguishable from a broadband noise, as in our case. Since there
is a strong relationship between these fractal signals and the wavelet transform,
the latter appears to be the natural signal processing technique, just as the Fourier
transform is natural for the linear time-invariant signals [14]. Many new filtering
techniques to handle these problems are still under development.

16.6 Summary and Conclusion

The Lyapunov exponents are conceptually the most basic indicators of determinis-
tic chaos of dynamical systems. For the analysis of such dynamics, many numer-
ical algorithms to determine the spectrum of the Lyapunov exponents have been
proposed. In this chapter, we considered an optimization technique for calculating
tangent maps with the aim of developing a robust algorithm. We have described
a method which is shown to behave well in the perturbation of certain parameter
values, but slightly sensitive in the presence of noise. This method uses the Gauss–
Newton algorithm to solve the least-squares problem that arises, which is no more
complicated to implement than the linear method. By using the new optimization
method, we could obtain good estimates of the Lyapunov spectrum from the ob-
served time series in a very systematic way.
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Chapter 17
Dynamical Analysis of the EEG and Treatment
of Human Status Epilepticus by Antiepileptic
Drugs

Aaron Faith, Shivkumar Sabesan, Norman Wang, David Treiman, Joseph Sirven,
Konstantinos Tsakalis, and Leon Iasemidis

Abstract An estimated 42,000 epileptic patients die from status epilepticus (SE)
every year in the United States alone. Evaluation of antiepileptic drugs and pro-
tocols for SE treatment, in terms of the dynamics of concurrently monitored elec-
troencephalogram (EEG), may lead to the design of new, more effective treatment
paradigms for successfully controlling SE. Such monitoring techniques may have
a profound effect in the treatment of SE in the emergency department (ED) and
intensive care unit (ICU), where antiepileptic drugs (AEDs) are given in rapid suc-
cession in the hope of patient recovery, or even in the epilepsy monitoring unit
(EMU), where occasionally a patient may progress to SE. In the past, using tech-
niques from nonlinear dynamics and synchronization theory, we have shown that
successful treatment with AEDs results in dynamical disentrainment (desynchro-
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nization) of entrained brain sites in SE, a phenomenon we have called dynam-
ical resetting. We herein apply this nonlinear dynamical analysis to scalp EEG
recordings from two patients, one admitted to the EMU and the other to the ED
and ICU and both treated with AEDs, to show that successful administration of
AEDs dynamically disentrains the brain and correlates well with the patients’ re-
covery. This result further supports our hypothesis of dynamical resetting of the
brain by AEDs into the recovery regime, and indicates that the proposed mea-
sures/methodology may assist in an objective evaluation of the efficacy of current
and the design of future AEDs for the treatment of SE.

17.1 Introduction

Status epilepticus (SE) is a life-threatening neurological emergency. SE is charac-
terized by recurrent epileptic seizures without recovery of normal brain function
between seizures. Out of the 200,000 cases of SE diagnosed each year in the United
States, the 30-day and 60-day mortality rate in the adult cases are well into the 40%
range [2]. It is estimated that SE accounts for more than $4B annual health-care
costs in USA alone. SE affects all age groups, with higher morbidity and mortality
in older aged adults.

The most perplexing aspect about clinical management of SE is that SE can be-
come refractory to initial, or sometimes any, treatment. In such cases, prompt treat-
ment is the key to preventing catastrophic outcomes. It has been shown that mortal-
ity in children and adults is minimized when SE lasts less than 1 h; however, there-
after, the odds of mortality jump dramatically to close to 38% [19]. Therefore, the
goal of SE treatment is to stop the seizure activity as quickly as possible. The clini-
cal standard for deciding a successful clinical response of SE to AED treatment is by
visual inspection of EEG to determine complete cessation of all seizure (ictal) activ-
ity. Typically, in SE patients who respond to AED medication, successful cessation
of ictal EEG activity occurs within 20 min following AED treatment. On the other
hand, in SE patients who do not respond to AED treatment, patterns of ictal EEG
activity continue or reappear within 60 min following AED treatment [18]. Unfortu-
nately, all too frequently, it is extremely difficult to differentiate such EEG patterns
from those associated with other abnormalities, such as metabolic encephalopathy.
Moreover, it is also difficult to distinguish the relapse of SE ictal activity due to
wearing away of a treatment from other abnormal non-SE EEG patterns. Therefore,
an independent measure of “ictalness,” that could help differentiate morphological
patterns on the EEG that appear ictal is needed. If a brain dynamical analysis corre-
lates well with the electroencephalographer’s assessment of the presence or absence
of ictal patterns on the EEG, it could lead to the development of a clinically useful
tool that might independently from the visual analysis of the EEG determine the
presence or absence of SE.

In the last decade, substantial progress has been made toward the study of the hu-
man brain by utilizing concepts and measures from nonlinear dynamics [6]. Within
this framework, a significant amount of effort has been made toward understanding
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the mechanisms underlying the spontaneous initiation and termination of epileptic
seizures. The central concept is that seizures represent transitions of the epileptic
brain from its “normal” (less ordered/chaotic) state to an abnormal (more ordered)
state and back to a “normal” state, along the lines of spatiotemporal chaos-to-order-
to-chaos transitions. The hallmark of this research is the ability to predict epileptic
seizures, in the order of tens of minutes prior to their clinical or electrographic on-
set. This research has provided useful insights into the progressive preictal (before
a seizure) entrainment, and the subsequent post-ictal (after a seizure) disentrain-
ment of the epileptic brain’s spatiotemporal EEG activity, under the hypothesis of
“dynamical resetting of the epileptic brain” [12, 16]. According to this hypothesis,
seizures do not occur as long as there is no need for the brain to reset. In status
epilepticus though, seizures may continue to occur as the entrainment of normal
brain sites with the focus persists and the internal seizure resetting mechanism is
not effective enough to disrupt it. Thus, the brain typically resets its dynamics after
the occurrence of a seizure except when it is confined in status epilepticus.

In this study, we further validate that SE is due to the non-resetting of the pathol-
ogy of the dynamics of epileptic brain’s electrical activity. This pathology of dy-
namics is characterized by an intense and long-term entrainment (the term synchro-
nization may be used selectively herein instead of entrainment) of the dynamics of
normal brain sites with the ones of the epileptogenic focus (foci) and could be re-
set by successful external intervention. Our preliminary results from mathematical
analysis of the available “almost continuous” and “relatively short” scalp EEG, in
two patients with SE, one from each of two participating medical centers, show that
the above described pathology of epileptic brain dynamics can be reset by external
successful intervention, such as administration of antiepileptic drugs (AEDs).

The organization of the rest of this chapter is as follows. The EEG data and
the measures of brain dynamics utilized for the analysis of EEG are described in
Section 17.2. In Section 17.3, results from the application of this analysis to scalp
EEG data from two patients with SE are presented. Discussion of these results and
conclusions are given in Section 17.4.

17.2 Materials and Methods

17.2.1 Recording Procedure and EEG Data

We test our dynamical resetting hypothesis on EEG data from two epilepsy centers,
namely the Barrow Neurological Institute in Phoenix Arizona, and the Mayo Clinic
Hospital in Scottsdale, Arizona. Two patients (one from each center), who had an
episode of SE and were subsequently treated successfully via AEDs, were chosen
for dynamical analysis of their stored, “almost continuous,” scalp EEG recordings.
The available recordings were of duration of about 2 h in one patient and 14 h in the
other. The EEGs were analyzed with the methodology described in the next section.
We have shown in the past [9,8,7], that EEG segments of 10.24 s in duration would
be sufficient for the estimation of measures of dynamics from the nonstationary
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EEG in epilepsy. By choosing such apparently “long” segments we have been able
to detect spatiotemporal changes of dynamics over time that lead to prediction of
epileptic seizures tens of minutes ahead of their onset, at a respectable degree of
sensitivity and specificity [10, 11].

17.2.1.1 EEG from Barrow Neurological Institute, Phoenix, Arizona

Patient 1 was a 6-year-old patient admitted to the Epilepsy Monitoring Unit at
Barrow Neurological Institute, St. Joseph’s Hospital, Phoenix, AZ. The EEG was
recorded with a standard International 10–20 scalp electrode montage (see Fig. 17.1)
at an A/D rate of 400 Hz. At the beginning of the recording, the EEG was charac-
terized by continuous ictal discharges associated with SE stage III and progressed
into ictal discharges punctuated by periods of flattening characteristic of SE stage
IV. During the EEG recording of SE, the attending physicians administered two
AEDs. The first AED (diazepam 10 mg) was administered rectally at 18 min into the
recording; the second AED (lorazepam 0.1 mg/kg) was administered intravenously
at 54 min into the recording. The proprietary EEG data were converted into 16-bit
signed binary format for further off-line nonlinear dynamical analysis.

Fig. 17.1: Schematic diagram showing a standard scalp electrode placement, ac-
cording to the international 10–20 system as seen from above the head. A = Ear
lobe, C = central, P = parietal, F = frontal, Fp = frontal polar, O = occipital.

17.2.1.2 EEG from Mayo Clinic Hospital, Scottsdale, Arizona

The patient from this medical center (Patient 2) was a 75-year-old male with no his-
tory of seizures, brought to the emergency department after he was found unrespon-
sive at home with his right arm twitching and his head deviated to his right. When
the patient arrived at the emergency department he was observed having rhythmic
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contractions in his right thigh adductor muscles, followed by tonic–clonic move-
ments on his right side and right gaze deviation and nystagmus. The patient was
initially given 2 mg of Ativan IV followed by 20 mg/kg of phenytoin equivalence
IV and a second fosphenytoin bolus of 5 mg/kg. Approximately half an hour after
the beginning of the EEG recording, the patient was transferred to the ICU. The
patient did not respond to the fosphenytoin, so he was intubated and placed on a
propofol drip. Soon after, the EEG showed a burst suppression pattern. The last
EEG file was recorded when the patient remained off propofol. The etiology of the
patient’s seizures was noted as encephalomalacia in the left frontal cortex likely
due to a prior stroke. The EEG was recorded using 24 scalp electrodes that were
placed according to the standard international 10–20 montage (see Fig. 17.1) at a
sampling rate of 200 Hz. Due to the emergency nature of the clinical situation, the
recorded EEG data were available in five separate files (A through E) with some
gaps (e.g., when recording was stopped in order to transport the patient) between
the recordings. These files were of 1.10, 3.54, 3.03, 3.03, and 2.81 h in duration re-
spectively (i.e., total duration of 13.51 h). The proprietary EEG data were converted
into 16-bit signed binary format for further off-line nonlinear dynamical analysis.
Each file was first analyzed separately using the measures of brain dynamics that
are described next.

17.2.2 Measures of Brain Dynamics

17.2.2.1 Measure of Chaos(STLmax)

Under certain conditions, through the method of delays described by Packard et
al. [14] and Takens [17], sampling of a single variable of a system over time can de-
termine all state variables of the system that are related to an observed state variable.
In the case of the EEG, this method can be used to reconstruct a multidimensional
state space of the brain’s electrical activity from a single EEG electrode that refer-
entially records from a brain site. Thus, in such an embedding, each state in the state
space is represented by a vector X(t), whose components are the delayed versions
of the original single-channel EEG time series x(t), that is:

X(t) = (x(t),x(t + τ), . . . ,x(t +(d −1)τ)), (17.1)

where τ is the time delay between successive components of X(t), and d is a pos-
itive integer denoting the embedding dimension of the reconstructed state space.
Plotting X(t) in the created state space produces the state portrait of a spatially dis-
tributed system using the subsystem (brain’s portion) where x(t) is recorded from.
The most complicated steady state a nonlinear deterministic system can exhibit is a
strange and chaotic attractor, whose complexity is measured by its dimension D, and
its chaoticity by its Kolmogorov entropy (K) and Lyapunov exponents (Ls) [4, 3].
A steady state is chaotic if at least the maximum of these Lyapunov exponents
(Lmax) is positive.
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According to Takens, in order to properly embed a signal in the state space, the
embedding dimension d should at least be equal to (2D+1). Of the many different
methods used to estimate D of an object in the state space, each has its own prac-
tical problems [13]. The measure most often used to estimate D is the state space
correlation dimension ν . Methods for calculating ν from experimental data have
been described in [1] and were employed in our work to approximate D in the ictal
state. The brain, being nonstationary, is not expected to be in a steady state in the
strict dynamical sense at any location. Arguably, activity at brain sites is constantly
moving through steady states, which are functions of certain parameter values at
a given time. According to bifurcation theory [5], when these parameters change
slowly over time (e.g., when the system is close to a bifurcation), dynamics slow
down and conditions of stationarity are better satisfied. In the ictal state, temporally
ordered and spatially synchronized oscillations in the EEG usually persist for a rela-
tively long period of time (in the range of minutes). Dividing the ictal EEG into short
segments ranging from 10.24 to 50 s in duration, estimation of ν from ictal EEG has
produced values between 2 and 3 [7], implying the existence of a low-dimensional
manifold in the ictal state, which we have called “epileptic attractor.” Therefore,
an embedding dimension d of at least 7 has to be used to properly reconstruct this
epileptic attractor.

Although d of interictal (between seizures) EEG data is expected to be higher
than that of the ictal state, a constant embedding dimension d = 7 has been used
to reconstruct all relevant state spaces over the ictal and interictal periods at differ-
ent brain locations. The advantages of this approach are: (a) existence of irrelevant
information in dimensions higher than 7 might not influence much the estimated dy-
namical measures, and (b) reconstruction with high d requires longer data segments,
which may interfere with the nonstationary nature of the EEG. The disadvantage is
that possibly existing relevant information about the transition to seizures in higher
than d = 7 dimensions may not be captured.

The Lyapunov exponents measure the information flow (bits/s) along local eigen-
vectors as the system moves through such attractors. Theoretically, if the state space
is of d dimensions, we can estimate up to d Lyapunov exponents. However, as ex-
pected, only D + 1 of these will be real. The others are spurious [15]. Methods for
calculating these dynamical measures from experimental data have been published
in [8]. The estimation of the largest Lyapunov exponent (Lmax) in a chaotic sys-
tem has been shown to be more reliable and reproducible than the estimation of the
remaining exponents [20], especially when D is unknown and changes over time,
as in the case of high-dimensional and nonstationary data (e.g., interictal EEG).
A method to estimate an approximation of Lmax from nonstationary data, called
STL (short-term Lyapunov) [8, 7], has been developed via a modification of the
Wolf’s algorithm used to estimate Lmax from stationary data [21]. The STLmax

algorithm is applied to sequential EEG segments recorded from electrodes in mul-
tiple brain sites to create a set of STLmax profiles over time (one STLmax profile per
recording site) that characterize the spatiotemporal chaotic signature of the epileptic
brain. The consistent observation across seizures and patients is the convergence of
STLmax values between electrode sites prior to seizures. We have called this phe-
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nomenon dynamical entrainment (synchronization), and it has constituted the basis
for the development of epileptic seizure prediction algorithms.

17.2.2.2 Measure of Dynamical Entrainment

A statistical measure of synchronization of the dynamics between two electrodes i
and j has been developed in the past. Specifically, the Ti j between electrode sites i
and j for a measure of dynamics (e.g., STLmax) at time t is defined as

T t
i j =

|Dt
i j|

σ̂ t
i j/

√
m

, (17.2)

where D
t
i j and σ̂ t

i j denote the sample mean and standard deviation respectively of
all m differences between a measure’s values at electrodes i and j within a window
wt = [t, t −m∗10.24s] moving over the measure’s profiles. If the true mean μ t

i j of
the differences Dt

i j is equal to 0, and σ t
i j are independent and normally distributed,

T t
i j is asymptotically distributed as the t-distribution with (m− 1) degrees of free-

dom. We have shown that these independence and normality conditions are satisfied
for STLmax [10]. Therefore, we define desynchronization between electrode sites i
and j when Ti j is significantly different from 0 at a significance level α . The desyn-
chronization condition between the electrode sites i and j, as detected by the paired
t-test, is

Tt
i j > tα/2,m−1 = Tth, (17.3)

where tα/2,m−1=Tth is the 100(1−α/2) critical value of the t-distribution with m−1
degrees of freedom. If Tt

i j ≤ tα/2,m−1 (which means that we do not have satisfactory
statistical evidence at the α level for the differences of values of a measure between
electrode sites i and j be nonzero within the time window wt ), we consider sites i
and j be synchronized with each other at time t. Using α = 0.01 and m = 60, the
threshold Tth = 2.662.

We then estimate the average level of synchronization, as measured by the av-
erage T-index across all possible entrained (synchronized) pairs of electrode sites
within a predefined time period over time. This average T-index is followed over
time to monitor the response of SE to AED treatment. In the following sections, for
simplicity, we denote these spatially averaged T-index values by “T-index.” Results
from this analysis in SE patients are presented next.

17.3 Results

From the EEG data per SE patient, the STLmax profiles per recording site and the
T-index profiles over time per pair of recording sites were estimated. All synchro-
nized pairs of electrode sites within 10 min prior to administration of the first drug
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Fig. 17.2: AED resetting of brain dynamics in SE (Patient 1 – child). The average
T-index profile of all entrained pairs of electrode sites, selected prior to SE on-
set, over time (80 min scalp EEG record). The patient developed SE while he was
in the EMU at BNI undergoing presurgical evaluation. The patient was adminis-
tered diazepam rectally 24 min into the recording, and 0.1 mg/kg of lorezepam in-
travenously 61 min into the recording (times of AEDs administration are denoted by
the vertical arrows). Both drugs desynchronized the brain in the short term. How-
ever, the one administered intravenously had the maximum and most enduring ef-
fect on the desynchronization of the brain. The patient recovered by the end of this
record.

were selected for the estimation of the average T-index and followed over time.
For Patient 2, due to the discontinuity of the available EEG data, the STLmax and
the T-index profiles were first estimated separately per available file using the ap-
proach given in Section 17.2; the results were then concatenated. Figure 17.2 shows
resetting of brain dynamics (from low to high T-index values) after a successful
administration of AEDs in Patient 1. Figure 17.3 illustrates a successful treatment
and resetting of the EEG dynamics by AEDs in Patient 2 over a considerably longer
period than the one in Patient 1.

During SE, and prior to the administration of the first AED, the average T-index
was lower than the statistical threshold of entrainment, suggesting that the corre-
sponding critical brain sites were entrained. Within minutes of the first AED treat-
ment (diazepam in the first patient and fosphenytoin in the second patient), signs
of disentrainment of the brain dynamics were observed in both patients. Within
10–20 min after the administration of the first AED, in both patients the brain be-
came entrained again (T-index reversed its route toward above the statistical thresh-
old of entrainment and started to assume lower values). The administration of sub-
sequent AED(s) (lorazepam in the first patient, fentanyl and propofol in the second
patient) dynamically disentrained the brain (statistically high T-index values were
attained and sustained). Both patients recovered. Once the patients progressed out
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Fig. 17.3: Long-term AED resetting of the brain dynamics in SE (Patient 2 – adult).
The effectiveness of AEDs on the patient’s recovery is correlated well with the ex-
hibited trends of the average T-index of all entrained pairs of brain sites, selected
10 min before the beginning of the treatment of the patient with the first AED
(a scalp EEG dynamical analysis). The file vertical lines A through E mark the
beginning of these five available EEG segments for the dynamical analysis (the ex-
isting gaps in time between the files are not shown – the results from the dynamical
analysis of the files are concatenated in time). The dynamical analysis shows that
the patient was safe (high T-index values) and stable (high T-index values for a long
time) approximately 1 day following admission to the emergency room (beginning
of the record). The vertical green lines 1 through 5 denote the times of AED admin-
istration. Line 1 marks the completion of fosphenytoin infusion. Line 2 marks the
administration of fentanyl and etomidate. Line 3 marks administration of 50 mg of
propofol and the beginning of a 30 mcg/kg/min propofol infusion. Line 4 marks
a fosphenytoin 350 mg infusion and propofol administration at 50 mcg/kg/min.
Finally, line 5 marks where propofol is running at 35 mcg/kg/min. In the last EEG
recording available to us (file E), the patient remained off propofol.

of SE, the average T-index values remained high, denoting that the involved brain
sites remained disentrained. The correspondence of the T-index values and trends to
the changing medical condition of these patients over time is remarkable; T-index
values were low when AEDs failed, and high when they succeeded in getting the
patients out of SE.

17.4 Conclusion

We have shown a very good correlation of the measures derived by mathematical
analysis of EEG with the treatment efficacy of AEDs in stopping status epilepti-
cus. The above results indicate that the proposed measure/methodology, as well as



314 A. Faith et al.

possibly other measures within the framework of nonlinear dynamics and chaos
theory, may assist in an objective evaluation of the efficacy of current and future
AEDs for the treatment of SE. While larger scale studies are contemplated for fur-
ther validation of these results, it appears that this methodology could be clinically
valuable as an independent online and real-time monitoring of the state of the brain
and evaluation of the efficacy of the administered AEDs in SE.
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Chapter 18
Analysis of Multichannel EEG Recordings
Based on Generalized Phase Synchronization
and Cointegrated VAR

Alla R. Kammerdiner and Panos M. Pardalos

Abstract Synchronization is shown to be a characteristic feature of electroen-
cephalogram data collected from patients affected by neurological diseases, such
as epilepsy. Phase synchronization has been applied successfully to investigate syn-
chrony in neurophysiological signal. The classical approach to phase synchroniza-
tion is inherently bivariate. We propose a novel multivariate approach to phase syn-
chronization, by extending the bivariate case via cointegrated vector autoregression,
and then apply the new concept to absence epilepsy data.

keywords Electroencephalogram, Phase synchronization, Cointegrated vector au-
toregressive processes

18.1 Introduction

The temporal integration of various functional areas in different parts of the brain
is believed to be essential for normal cognitive processes. Many studies stress a
significant role of neural synchrony in such large-scale integration [6, 42, 41, 43].
Specifically, it was discovered that oscillation of various neuronal groups in given
frequency bands leads to temporary phase-locking between such groups of neu-
rons. This discovery prompted the development of robust approaches that allow one
to measure the phase synchrony in a given frequency band from experimentally
recorded biomedical signals such as EEG.
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In particular, the importance of synchronization of neuronal discharges has been
shown by a variety of animal studies using microelectrode recordings of brain
activity [38, 33], and even at coarser levels of resolution by other studies in ani-
mals and humans [9]. The phase synchronization in the brain extracted from EEG
data using Hilbert or wavelet transforms has recently been shown to be an especially
promising tool in analysis of EEG data recorded from patients with various types of
epilepsy [35].

In this chapter, we introduce a novel concept of generalized phase synchroniza-
tion, which is based on vector autoregressive modeling. This new notion of phase
synchronization is constructed as an extension of the classical definition of phase
synchronization between two systems. Indeed, the phase synchronization is usu-
ally defined by imposing the condition that some integer combination of the instan-
taneous phases of two signals is constant. Often this condition is further relaxed
by allowing for a bounded linear combination of two phases, in order to account
for noise in the measurements. This classical approach to phase synchronization is
clearly bivariate. Since we are interested in investigating synchrony among several
areas in the brain, we would like to generalize the bivariate phase synchronization
to a multivariate case.

To construct a more general multivariate notion of phase synchronization, we
extend the classical definition by considering such a linear combination of phases
for a finite number of signals that represent a stationary process. All the individual
signals together form a common system described by some multivariate process. We
note that a vector process, such that a linear combination of its individual compo-
nents is a stationary process, can be modeled as a cointegrated vector autoregressive
time series.

Furthermore, we show that the cointegrated rank of the regression determines
how restricted the behavior of such system is. This means that the rank r of cointe-
grated autoregressive model, estimated from the multiple time series of the instanta-
neous phases, measures how large the vector subspace, which generates the changes
in the phase values, is.

This new measure of cointegration is also applied to absence epilepsy EEG data.
The data sets collected from the patients with other types of epilepsy are currently
being investigated.

This chapter is organized as follows. Section 18.2 introduces cointegrated vector
autoregressive processes, and various related testing procedures. In Section 18.3,
we discuss role of synchronization in brain dynamics, and give a definition of clas-
sical phase synchronization. Section 18.4 presents the Hilbert transform method
for extracting instantaneous phases from time series. To develop our multivariate
approach to studying phase synchrony in a complex system, such as brain, we ex-
tend the classical bivariate concept of phase synchronization based on cointegrated
vector autoregression in Section 18.5, and test our method on absence epilepsy
data.
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18.2 Integrated and Cointegrated VAR

Let p be a positive integer, and let yt denote the K-variate time series (i.e., real-
izations of K-dimensional process Y (t)). A vector autoregressive model of order p,
denoted VAR(p), is formally defined as follows:

yt = ν+A1yt−1 + . . .+Apyt−p + εt , t = 0,±1,±2, . . . , (18.1)

where yt = (y1t , . . . ,yKt)′ is a (K × 1) random vector, ν = (ν1, . . . ,νK)′ is a fixed
(K × 1) vector representing a nonzero mean EY (t), the Ai, i = 1, . . . , p are fixed
(K×K)-dimensional coefficient matrices, and εt = (ε1t , . . . ,εKt)′ is a K-dimensional
white noise process (i.e., E [εt ] = 0, E [εsε ′t ] = 0, for s �= t, and E [εsε ′t ] = Σε ).

It is assumed that the covariance matrix Σε is nonsingular. In addition, the fol-
lowing three important conditions are imposed on the time series in the VAR model:

• Y (t) is a stable process;
• Y (t) is stationary;
• the underlying white noise process εt is Gaussian.

However, in practice, many time series data are fit better by unstable non-
stationary processes. For instance, integrated and cointegrated processes are found
especially useful in econometric studies, and for such processes the stability and
stationarity conditions are violated.

Note that the VAR(p) process (18.1) satisfies the stability condition when its re-
verse characteristic polynomial det(IK −A1z− . . .Apzp) has no roots on and inside
a complex unit circle. If an unstable process has a single unit root and all the other
roots outside of the complex unit circle, then such process exhibits a behavior simi-
lar to that of a random walk. In other words, the variance of such process increases
linearly to infinity, and the correlation between the variables Y (t) and Y (t±h) tends
to 1 as t →∞. On the other hand, when the root of reverse characteristic polynomial
lies inside the unit circle, the process becomes explosive, i.e., its variance increases
exponentially. In real-life applications, the former case is of the most practical
interest.

This renders the following definition of an integrated process.
A 1D process with d roots on the unit circle is said to be integrated of order d

(denoted as I(d)).
It can be shown [17] that the integrated I(d) process Y (t) of order d with all

roots of its reverse characteristic polynomial being equal to 1 can be made stable by
differencing the original process d times. For example, the integrated I(1) process
Y (t) becomes stable after taking the first differences (1−L)Y (t) = Y (t)−Y (t −1),
where L represents the lag operator. More generally, for the I(d) process Y (t),
its transformation (1 − L)dY (t) is stable. An example of an integrated I(d) pro-
cess in the univariate case is an autoregressive integrated moving average process
ARIMA(p, d, q).

It is noteworthy to point out that taking differences may distort the relationship
among the variables (i.e., 1D components) in some VAR(p) models. In particular,
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this is the case for systems with cointegrated variables. It turns out that fitting
VAR(p) model after differencing the original cointegrated process produces inade-
quate results.

Suppose that sampled values yit of K different variables of interest Yi(t) are com-
bined into the K-dimensional vectors yt = (y1t , . . . ,yKt)

′. In addition, suppose that
the variables are in a long-run equilibrium relation:

c Y (t) := c1 ·Y1(t)+ . . .+ cK ·YK(t) = 0, (18.2)

where c = (c1, . . . ,cK)′ is a K-dimensional real vector. During any given time inter-
val, the relation (18.2) may not necessarily be satisfied precisely by the sample yt ,
instead we may have

c yt := c1 · y1t + . . .+ cK · yKt = εt , (18.3)

where εt is a stochastic process that denotes the deviation from the equilibrium
relation at time t. If our assumption about the long-run equilibrium among individual
variables Yi(t), i = 1, . . . ,K is valid then it is reasonable to expect that the variables
Yi(t) move together, i.e., the stochastic process εt is stable. On the other hand, this
does not contradict the possibility that the variables deviate substantially as a group.
Therefore, it is possible that although each individual component Yi(t) is integrated,
there is a linear combination of Yi(t), i = 1, . . . ,K, which is stationary. Integrated
processes with such property are called cointegrated.

Without loss of generality, we assume that all individual 1D components Yi(t)
(i = 1, . . . ,K) are either I(1) or I(0) processes. Then the combined K-dimensional
VAR(p) process

Y (t) = ν+A1Y (t −1)+ . . .+ApY (t − p)+ εt (18.4)

is said to be cointegrated of rank r, when the correspondent matrix

Π = IK −A1 − . . .−Ap (18.5)

has rank r.
Since some 1D components of the cointegrated VAR(p) process are integrated

processes, one may be interested in testing the presence of a unit root in the uni-
variate series. In the following section, we present a commonly used unit root test,
which was derived by Dickey and Fuller [7].

18.2.1 Augmented Dickey–Fuller Test for Testing the Null
Hypothesis of a Unit Root

The augmented Dickey–Fuller (or ADF) test is a widely used statistical test for
detecting the existence of a unit root of the reverse characteristic polynomial in a
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univariate time series. The limiting distribution of the ADF test for p ≤ k− 1 was
derived by Dickey and Fuller [7], and it can be shown that this distribution is the
same for k > 1 and for k = 1. Fuller tabulated the approximate critical values for the
ADF test with k ≥ 1 and p ≤ k−1 for specific sample sizes.

Finite-sample critical values for the ADF test for any sample size were obtained
by means of response surface analysis by MacKinnon [18], who also showed that an
approximate asymptotic distribution function for the test can be derived via response
surface estimation of quantiles [19].

Although the asymptotic distribution of the ADF test statistic does not depend on
the lag order, it is noted by Cheung et al. [5] that empirical applications must deal
with finite samples, in which case the distribution of the ADF test statistic can be
sensitive to the lag order. Taking this into account, they closely examined the roles
of the sample size and the lag order in finding the finite-sample critical values of the
ADF test.

As we noted above, the limiting distribution of the ADF test statistic is the same
for k > 1 and k = 1. Hence, for simplicity, we consider the case of k = 1. In fact, let
Y denote the autoregressive AR(1) model:

Y (t) = c Y (t −1)+ εt , t = 1,2, . . . , (18.6)

where Y (0) = 0, c is a real number, and εt ∼ N(0,σ2) (i.e., εt is normally distributed
with zero mean and variance σ2 for all t = 1,2, . . .).

From the AR(1) model (18.6), one can see that the condition c = 1 in (18.6) is
equivalent to the requirement that the reverse characteristic polynomial
det(1− cz) = 1− z of AR(1) has a unit root. In other words, to determine whether
an autoregressive time series AR(1) has a unit root, we must test the null hypothesis
H0 : c = 1.

Let y1,y2, . . . ,yT denote a sample of T consecutive observations of the AR(1)
process Y (t), then the maximum likelihood estimator of c is the least squares esti-
mator:

ĉ = ∑T
t=1 ytyt−1

∑T
t=1 y2

t−1

. (18.7)

Note that ĉ is a consistent estimator of the regression coefficient c.
Then the ADF statistic is given by

T (ĉ− c) =
1
T ∑

T
t=1 yt−1εt

1
T 2 ∑T

t=1 y2
t−1

. (18.8)

Dickey and Fuller [7] derived the following representation of the limiting distribu-
tion for statistic T (ĉ− c):

T (ĉ− c) ⇒ 1
2
Γ−1(W 2 −1), as T → ∞, (18.9)
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where

Γ =
∞

∑
i=1

d2
i X2

i , (18.10)

W =
∞

∑
i=1

√
2 diXi, (18.11)

di =
2(−1)i+1

π(2i−1)
, (18.12)

random variables Xi, i = 1,2, . . ., are independent and identically distributed ac-
cording to the normal distribution with zero mean and variance σ2, and ⇒ denotes
convergence in distribution.

In [7], Dickey and Fuller considered the following “Studentized” statistic based
on the likelihood ratio test of the hypothesis H0: c = 1:

τ̂ =
ĉ−1

S

(
T

∑
t=2

y2
t−1

) 1
2

, (18.13)

where

S2 =
1

T −2

(
T

∑
t=2

(yt − ĉyt−1)
2

)
, (18.14)

and ĉ is computed from (18.7).
Tables of the critical values for the asymptotic distributions of the ADF test statis-

tic T (ĉ−1) and the statistic τ̂ can be found in Fuller [10].

18.2.2 Estimation of Cointegrated VAR(p) Processes

Several methods can be employed to estimate the parameters of a cointegrated
VAR(p) model, including modifications of the approaches used for estimation of
the standard VAR(p) processes.

In this section we present the maximum likelihood approach to estimating a
Gaussian cointegrated VAR(p) process. Suppose yt is a realization of a
K-dimensional VAR(p) process with cointegration rank r, such that 0 < r < K.
Without loss of generality, we assume that Y (t) has zero mean, i.e., the intercept
ν = 0 in (18.4).

Given a realization yt , t = 1,2, . . ., of Y (t), one seeks to determine the coefficients
of the following model:

yt = A1yt−1 + . . .+Apyt+p + εt , t = 1,2, . . . , (18.15)
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subject to the constraint

rank(Π) = rank(IK −A1 − . . .−Ap) = r. (18.16)

Note that εt is assumed to be a Gaussian white noise with a nonsingular covariance
matrix Σε . Furthermore, the initial conditions y−p+1, . . . ,y0 are supposed to be fixed.

In order to impose the cointegration constraint, the model (18.15) is reparame-
terized in the following fashion [17]:

Δyt = D1Δyt−1 + . . .+Dp−1Δyt−p+1 +Πyt−p + εt , t = 1,2, . . . , (18.17)

where Δyt = yt − yt−1, and matrix Π can be represented as a product Π = HC of
matrices of rank r, i.e., H is (K × r) and C is (r×K).

Consider

ΔY := [Δy1, . . . ,ΔyT ],

ΔXt :=

⎡⎢⎣ Δyt
...

Δyt−p+2

⎤⎥⎦ , (18.18)

ΔX := [ΔX0, . . . ,ΔXT−1] ,
D := [D1, . . . ,Dp−1],

Y−p := [y1−p, . . . ,yT−p].

Then the log-likelihood function for a sample of size T can be written as

ln l = −KT
2

ln[2π]− T
2

ln [detΣε ]

−1
2

trace
(
(ΔY −DΔX +HCY−p)

′Σ−1
ε (ΔY −DΔX +HCY−p)

)
. (18.19)

The proof of the following theorem on the maximum likelihood estimators of a
cointegrated VAR process can be found in [17] (Proposition 11.1).

Theorem 18.1. (reproduced from [17])
Define

M := I −ΔX ′(ΔXΔX ′)−1ΔX ,

R0 := ΔY M,

R1 := Y−pM,

Si j :=
1
T

RiR j′, i = 0,1.

Let G be the lower triangular matrix with positive diagonal such that GS11G′ = IK.
Denote λ1 ≥ . . . ≥ λK to be the eigenvalues of GS10S−1

00 S01G′,
and
v1, . . . ,v2 be the corresponding orthonormal eigenvectors.
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Then the log-likelihood function in (18.19) is maximized for

C := [v1, . . . ,vr]
′ G,

H := −ΔY MY−p′C
′ (CY−pMY−p′C

′)−1

= −S01C′ (CS11C′)−1
,

D := (ΔY +HCY−p)ΔX
(
ΔXΔX ′)−1

,

Σ :=
1
T

(ΔY −DΔX +HCY−p)(ΔY −DΔX +HCY−p)
′ .

The maximum is

max[ln l] = −KT
2

ln[2π]− T
2

(
ln [detS00]+

r

∑
i=1

ln(1−λi)

)
− KT

2
. (18.20)

18.2.3 Testing for the Rank of Cointegration

Based on Theorem 18.1, one can easily derive the likelihood ratio statistic for testing
a candidate value r0 of the cointegration rank r of a VAR(p) process against a larger
cointegration rank r1.

Given a VAR(p) process y(t) defined by (18.4), suppose we wish to test a hy-
pothesis H0 against an alternative H1, where

H0 : r = r0 against H1 : r0 < r ≤ r1. (18.21)

Under assumption that the noise εt is a Gaussian process, the maximum of the
likelihood function for a cointegrated VAR(p) model with cointegration rank r is
computed in Theorem 18.1. From that result, the value of the LR statistic for test-
ing (18.21) can be determined in the following manner:

λLR(r0,r1) = 2 [lnLmax(r1)− lnLmax(r0)] (18.22)

= T

[
−

r1

∑
i=1

ln(1−λi)+
r0

∑
i=1

ln(1−λi)

]

= −T
r1

∑
i=r0+1

ln(1−λi),

where Lmax(ri), i = 0,1, denotes the maximum of the Gaussian likelihood function
for cointegration rank ri. The advantage of this test is in the simplicity with which
the LR statistic can be computed. On the other hand, the asymptotic distribution of
the LR statistic (18.22) is nonstandard. Specifically, the LR statistic is not asymp-
totically distributed according to χ2-distribution. Nevertheless, the asymptotic dis-
tribution of the cointegration rank test statistic λLR depends only on two factors:
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• the difference K − r between the process dimensionality and the cointegration
rank; and

• the alternative hypothesis.

As a result, the selected percentage points of the asymptotic distribution of the test
statistic λLR were tabulated by Johansen and Juselius in [13].

18.3 The Role of Phase Synchronization in Neural Dynamics

The word “synchrony” originates from a combination of two Greek words συν
(syn, meaning common) and χρoνoς (chronos, meaning time), and it can be trans-
lated as “happening at the same time.” A concept of synchronization can be de-
fined as a process of active adjustment between the rhythms of different oscillating
systems due to some kind of interaction or coupling between them [28]. Synchro-
nization phenomena were discovered in the late seventeenth century by C. Huygens
who first observed synchronization between two pendulum clocks hanging from a
common support [12]. Since then, the study of synchronization between dynamical
systems became an active field of research in many scientific and technical disci-
plines, including solid state physics [24], plasma physics [34], communication [3],
electronics [27, 22], laser dynamics [8, 36, 39], and control [30, 37].

Complex physiological systems, such as heart and brain, also display synchro-
nization. The presence of synchronization processes in physiological systems was
discovered by B. van der Pol in the beginning of the twentieth century. In particular,
he first applied oscillation theory to the human heart [29]. The role of synchro-
nization in neural dynamics is an important area of research in neuroscience. Much
effort is given to investigation of synchronization phenomena on all different levels
of organization of brain tissue, starting with pairs of individual neurons to larger
scales, such as within a given area of the brain or between distinct parts of the brain.
Recent findings indicate that long-range synchronization can be detected not only in
microelectrode studies [38,33], but also in the studies using surface recordings [32].

It has been shown that synchronization is a significant attribute of the signal
recorded from the patients affected by several neurological disorders. In particular,
researchers have found that epilepsy [20] and Parkinson’s disease [40] manifest as
a pathological form of the synchronization process.

Several studies in neuroscience emphasize major difference between synchrony
as an appropriate estimate of phase relation, and the classical measures of coherence
or spectral covariance [2,1]. Le Van Quyen et al. discuss two important limitations of
coherence [31]. The first limitation arises because the standard approaches for mea-
suring coherence [4] based on Fourier analysis are known to be highly dependent
on the stationarity of the measured signal, whereas the signals recorded from the
brain, such as EEG, appear to be clearly nonstationary. The second limitation stems
from the fact that classical coherence is a measure of spectral covariance. Hence, it
is not able to separate the effects of amplitude and phase in the relations between
two signals. Thus, coherence gives only an indirect and approximate indication of
phase synchrony.
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Classical concept of the synchronization of two oscillators is described as an
active adjustment of their rhythmicity that manifests in phase locking between the
synchronized oscillators. Specifically, given two signals X1(t) and X2(t), and their
corresponding instantaneous phases φ1(t) and φ2(t), the basic definition of the phase
locking states that

nφ1(t)−mφ2(t) = C ≡ const, (18.23)

where integers n and m specify the phase locking ratio.
When investigating phase synchrony in neurophysiological signals, one must as-

sume that the constant phase locking ratio is valid within a limited time interval
T , which usually means a few hundreds of milliseconds. As noted in [31], as a
consequence of volume conduction effects in brain tissues, the activity of a single
neuronal population can be recorded by two distant electrodes, which results in spu-
rious phase locking between their signals. Furthermore, in noninvasive EEG, the
true synchronies are hidden in a significant background noise. Hence, in the syn-
chronous state, the phase shifts back and forth around some constant value, and so
the signals can be viewed as synchronous or not synchronous only in a statistical
sense. Therefore, the condition (18.23) must be adjusted to account for the noise as
follows:

C− ε ≤ nφ1(t)−mφ2(t) ≤C + ε, (18.24)

where n,m,C are constants from (18.23), and ε denotes a small positive constant.
To investigate phase synchrony, first the instantaneous phases need to be

extracted from the data, and then statistical approaches are applied to evaluate the
degree of phase synchronization. The following two methods for estimating the
phases applied to neuronal signals have recently been considered in the literature.
Tass and colleagues [40] extracted the instantaneous phases from original signals
by means of the Hilbert transform, and then applied to magnetoencephalographic
(MEG) motor data in patients affected by Parkinson’s disease [40]. On the other
hand, Lachaux et al. [16] estimated the phases from the original signals by means
of convolution with a complex wavelet, and then applied it to EEG and intracranial
data recorded during cognitive tasks [32, 15].

The first step in quantifying phase synchronization between two time series X
and Y is the determination of their instantaneous phases φX (t) and φY (t). This is
achieved either via the Hilbert transform or via the wavelet transform. Next, we
present phase estimation approach based on Hilbert transform.

18.4 Phase Estimation Using Hilbert Transform

The first method used to extract the instantaneous phase from the time series is based
on the analytic signal approach, which was first introduced by D. Gabor [11] and
later extended for model systems and experimental data [35].

The Hilbert transform of a given real-valued function f (t) with domain T is
defined as a real-valued function f̂ (t) on T as follows:
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f̂ (t) = CPV
∫ +∞

−∞
f (τ)g(t − τ)dτ = CPV

∫ +∞

−∞
g(τ)h(t − τ)dτ, (18.25)

where

g(t) :=
1
πt

, t ∈ T,

and symbol CPV signifies that the integral is taken in the sense of Cauchy principal
value.

Notice that f̂ (t) can be viewed as a convolution g(t)× f (t) of the original func-
tion f (t) with the function g(t). This means that the Hilbert transform can be per-
formed by applying an ideal filter, whose amplitude response equals to 1, and phase
response is a constant π/2 lag at all frequencies.

Given an arbitrary continuous real-valued time series X(t), the corresponding
analytic signal is defined as the following complex-valued function:

ξX (t) = X(t)+ ı · X̂(t) = aX (t) · exp{ı ·φX (t)}, (18.26)

where t denotes time, ı is a unit on the complex axis, X̂(t) denotes the Hilbert trans-
form of the time series X(t), aX (t) is the corresponding instantaneous amplitude,
and φX (t) represents the instantaneous phase of the signal via Hilbert convolution.

It follows from (18.26) that the instantaneous phase φX (t) of X(t) can be com-
puted as

φX (t) = arctan

{
X̂(t)
X(t)

}
. (18.27)

A key advantage of the analytic approach is that the phase can be easily computed
for an arbitrary broadband signal. On the other hand, instantaneous amplitude and
phase have a clear physical meaning only if X(t) is a narrowband signal. Therefore,
filtration is required in order to separate the frequency band of interest from the
background brain activity.

Various measures of phase synchrony between two signals are proposed based on
the phases extracted via the Hilbert and the wavelet transforms, including standard
deviation, mutual information, and Shannon entropy [31, 14]. However, most of the
currently used measures of phase synchronization are based on bivariate indexes. In
the next section, we propose a novel multivariate approach to detecting phase syn-
chronization in the phases extracted from multiple time series, such as multichannel
EEG.

18.5 Multivariate Approach to Phase Synchrony via
Cointegrated VAR

We develop a new method for measuring the synchrony among the instantaneous
phases extracted from multivariate time series. Our technique is based on the coin-
tegrated VAR modeling of time series.
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Given the signal represented formally as a multiple time series X(t), one can
extract the instantaneous phases φXi(t) from each 1D component Xi(t) of the signal
as shown in Section 18.4 (either via a convolution with the Morlet wavelet or by
applying the Hilbert transform). The phase extraction procedure produces a new
multiple time series φX (t) of the correspondent phases.

Next, we derive new measures of phase synchrony of the signal based on the
concepts introduced in Section 18.3. Let us observe that the left-hand side of Equa-
tion (18.23) represents the linear combination of the respective phases φX1(t) and
φX2(t) with integer coefficients. Also recall that condition (18.23), which defines
phase locking between two signals X1(t) and X2(t), needs to be modified in practice
to account for the noise in the signal. Taking into account presence of the stochastic
noise in the phase series, let us introduce a modified concept of the phase synchrony
between two signals by relaxing the integrality condition on the coefficients in the
linear combination as follows.

Two signals X1(t) and X2(t) are considered to be generally phase synchronized,
if the correspondent instantaneous phases φX1(t) and φX2(t) satisfy the condition
below:

∃ c1,c2 : c1φX1(t)+ c2φX2(t) = zt , (18.28)

where zt ∼ N(C,σ ′) is a stochastic variable that represents the deviation from
the constant level C as a result of the noise. Notice that in the contrast to condi-
tion (18.23) in the classic definition of phase synchronization, the coefficients c1

and c2 in the definition of generalized phase synchrony (18.28) do not need to be
integer.

Furthermore, it is straightforward that the new condition (18.28) means that a
2D process X(t) = (X1(t),X2(t))

′ is cointegrated. Based on this observation, we can
extend our modified concept of phase synchronization between two signals to the
multivariate case in the following manner.

The multichannel signal X(t) = (X1(t), . . . ,XK(t)) is considered to be phase-
synchronized of rank r, if the process φX (t) composed of the correspondent instan-
taneous phases φXi(t), i = 1, . . . ,K is cointegrated of rank r.

In the subsequent subsections, we first discuss the role of the cointegration rank
in the framework of multivariate phase synchronization, and then apply this ap-
proach to multichannel EEG data collected from the patients with absence epilepsy.

18.5.1 Cointegration Rank as a Measure of Synchronization
among Different EEG Channels

Note that integrated autoregressive processes I(d) are shown to exhibit behavior
similar to that of a random walk. In a short paper [21], Michael Murray used an
example of drunkard and her dog to illustrate the concept of the cointegration. To
explain our reasoning behind the rank of cointegration as a measure of synchrony,
we briefly summarize and then further extend his analogy.



18 Generalized Phase Synchronization and Cointegrated VAR 329

Random walk process is often described to students using an example of the
drunkard’s walk. The drunkard wonders aimlessly, so that the direction of each step
is random and completely independent of her previous steps. In other words, the
meandering of the drunkard is described by a random walk:

xt − xt−1 = εt , t = 1,2, . . . , (18.29)

where xt represents the position of the drunk at time t, and εt is a stationary white-
noise, which models the drunk’s step at time t.

As Murray noticed [21], an unleashed puppy is another creature, whose behav-
ior reminds a random walk. Indeed, each new scent that puppy’s nose comes upon
dictates a direction for the pup’s next step so strongly that the last scent along with
its direction is forgotten as soon as the new scent appears. Having shown that the
puppies follow the random walk yt , t = 1,2, . . ., let us represent the puppy’s walk
as:

yt − yt−1 = εt , t = 1,2, . . . , (18.30)

where εt is a stationary white noise (i.e., puppy’s step at time t).
For a random walk, the best predictor of the future value is the most recently

observed one. In other words, the longer it has been since we had seen the drunk, or
the dog, the further away from the initial place, on average, they are at the moment.
As a result, even if the drunk and the dog crossed their walks at some location, as
the time goes on, they tend to wander further away from each other.

However, if the puppy belongs to the drunkard, then they will remain relatively
close to each other at all the time, similarly to the individual integrated processes that
together form a cointegrated process. Indeed, the drunk would still wonder aimlessly
in a random walk fashion, as would her puppy. However, from time to time she
would remember about her dog and call for it, the puppy would recognize her voice
and bark. They would hear each other and make their next step in each other’s
direction.

The paths of the drunk and her dog are still nonstationary, but they are no longer
independent from each other. As a matter of fact, at each time, the puppy and its
master are likely to be found not far from each other. If this is true, then the distance
between two paths is stationary, and the walks of the drunk xt and her dog yt are said
to be cointegrated, i.e., xt and yt are integrated I(1), and there is a linear combination
of xt and yt (with nonzero weights) that is I(0), i.e., stationary.

Mathematically, the cointegrating relationship between a lady and her puppy can
be written as

xt − xt−1 = εt + c(yt−1 − xt−1), (18.31)

yt − yt−1 = εt +d(xt−1 − yt−1), (18.32)

at time t = 1,2, . . .. Note that εt , as before, represent the stationary white noise steps
of the drunk and her dog.

Since Equation (18.31) can be easily rewritten in form of (18.17) as follows:
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Δ
[

xt

yt

]
=
[

εt

εt

]
−
[

c −c
−d d

][
xt−1

yt−1

]
, (18.33)

then

Π =
[

c −c
−d d

]
,

and so, rank(Π) = 1. This shows that the cointegrating relationship between the
drunk lady and her puppy has the cointegration rank 1.

Note that rank(Π) = 0, if and only if c = d = 0. In such case, (18.31) becomes
simply a system of Equations (18.29) and (18.30), which models two independent
random walks driven by independent white noise process ε . On the other hand, when
at least one of the coefficients c and d is nonzero, then by multiplying system (18.33)
by a vector [d,c]′, we have

dΔxt + cΔyt = dεt + cεt , t = 1,2, . . . , (18.34)

which means that the model is driven by a single common stochastic trend dεt +cεt .
Although the example described by Murray is clearly a bivariate cointegrated

VAR(1), it can be extended to an illustration of the multivariate cointegrated pro-
cess. Consider, for example, a herd of sheep guarded by two dogs, where the sheep
wonder aimlessly in the field, while the dogs run around and bring the sheep that
have strayed too far back into the flock. Say, for example, a faster dog guards sheep
from the east, south, and west, whereas a slower dog – from the north, then the coin-
tegrated process appears to have the cointegration rank of 2. Clearly, two dogs are
able to keep a flock of sheep closer together, than a single dog can. In other words,
the higher cointegration rank the more restrictive it is.

In fact, let us consider a K-dimensional cointegrated vector autoregressive pro-
cess, and let r denote the cointegration rank of the process. Similarly to the bivariate
example above, we can see that when the rank is zero (r = 0), the univariate com-
ponents of the process are independent, and the model is driven by K independent
white noise processes (i.e., there is no cointegration). In the case of r = 1, we can
decompose the multivariate process onto K − 2 independent components, and two
dependent components that form a common stochastic trend. Hence, in the case
r = 1, the cointegrated model is driven by (K−2)+1 = K−1 independent stochas-
tic processes. By induction, we can show that for a cointegrated VAR process with
the cointegration rank r, 0 < r < K −1, the VAR model is generated by K − r inde-
pendent stochastic trends.

Therefore, the smaller is the cointegration rank r, the larger is the number K−r of
the underlying independent stochastic trends, and so (the larger) is the vector space
in which our cointegrated model can travel. And the other way around, increasing
the cointegration rank of the model shrinks the underlying domain of the process,
i.e., makes it bounded to a smaller hyperplane. For r = K, the VAR(p) is a stable
process, which clearly has the most constrained domain. For r = 0, the VAR process
is not cointegrated and unrestricted.
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Thus, in the framework of generalized phase synchronization introduced above,
the cointegration rank represents a fundamental measure of synchrony in the multi-
channel signal, such as EEG. In particular, we say that the signal is completely asyn-
chronous, if the cointegration rank r is 0. On the other hand, when the multivariate
process is stable (i.e., the rank coincides with the dimension of the process, r = K),
the signal is said to be perfectly synchronous.

18.5.2 Absence Seizures

Absence seizures (or petit mal seizures) are known to occur in several forms of
epilepsy, whereas absence epilepsy refers to a type of epilepsy in which only the
absence seizures occur. Absence epilepsy is usually characterized by age of onset,
and often affects teenage population. Absence seizures usually begin in childhood
or adolescence, and often run in families, which may suggest a genetic predisposi-
tion. Absence seizures are marked by momentary lapses of consciousness. Absence
seizures often have no visible symptoms, although some patients may have purpose-
less movements during a seizure, such as rapidly blinking eyes. Absence seizures
often have a brief duration, and a person may resume the previous activity imme-
diately after the seizure [23]. These brief seizures can happen several times during
a day, but in some patients, the frequency of absence seizures can be as high as
hundred of times a day, which interferes with the daily activities of a child such as
school. In some cases of childhood absence epilepsy, the seizures stop when a child
reaches puberty. Absence seizures exhibit a characteristic spike-and-wave EEG pat-
tern at a 3 Hz frequency [23].

Figure 18.1 displays a multichannel EEG recording that includes an absence
seizure. The duration of the seizure is approximately 4 s. The figure vividly illus-
trates a characteristic spike-and-wave activity during the seizure.

18.5.3 Numerical Study of Synchrony in Multichannel EEG
Recordings from Patients with Absence Epilepsy

The proposed approach to studying synchronization among multiple channels was
applied to analysis of EEG data recorded from the patience with absence epilepsy.

First, the multiple time series of the instantaneous phases were extracted from the
raw EEG data using the Hilbert transform approach as described in Section 18.4.
In particular, we took advantage of the functions hilbert and angle readily
available in the MATLAB R 2006a environment.

The VAR modeling and testing were implemented using the R 2.6.1 statisti-
cal software. In our analysis of the instantaneous phases, we incorporated ar,
adf.test, po.test, cajolst and other functions found in packages tseries
and urca.
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Next, we illustrate our approach on the example of the EEG data file that in-
cludes three seizure intervals. The file contains a 16-channel recording of scalp
EEG sampled at the 200 Hz frequency as well as two auxiliary channels, which
were discarded. The instantaneous phase values were estimated from the EEG time
series by means of Hilbert transform, and the resulting phase series were tested
using the ADF test introduced in Section 18.2.1. Specifically, we applied the aug-
mented Dickey–Fuller procedure to test the presence of a unit root in the individual
univariate components of the multiple time series of estimated phases.

The results of our experiments for three consecutive seizures are presented in
Tables 18.1, 18.2, and 18.3, where each table, respectively, summarizes results for
one of the following types of EEG segments:

• during approximately 2 s immediately preceding a seizure;
• during a seizure;
• during approximately 2 s immediately after a seizure.

The channels, for which the ADF unit root test has detected a presence of a unit root
at the significance level α = 0.025, are listed as integrated. Whereas the channels,
for which the null hypothesis of a unit root has been rejected by the ADF at the
2.5% level, are denoted by stationary. Interestingly, when the ADF is applied at a
0.025 significance level, all three seizure segments are considered stable.

Table 18.1: Pre-ictal: Results of the ADF unit root tests for each channel during
the segments 2 s immediately before a seizure for three consecutive seizures. (The
significance level is set at 2.5%)

Seizure # Stationary Integrated

Seizure 1 3,4,5,7,9,10,11,15 1,2,6,8,12,13,14,16
Seizure 2 3,4,6,7,9,10,11,13,15,16 1,2,5,8,12,14
Seizure 3 3,7,9,11,12,13,14,15 1,2,4,5,6,8,10,16

Table 18.2: Ictal: Results of the ADF unit root tests for each channel during a seizure
for three consecutive seizures. (The significance level is set at 2.5%)

Seizure # Stationary Integrated

Seizure 1 1–16 none
Seizure 2 1–16 none
Seizure 3 1–16 none

Next, we fit vector autoregression to the multiple time series of phase estimates,
for each of three different segments (before, during, and after a seizure) in order
to determine appropriate lag length parameter p. To find appropriate lags p, the
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Table 18.3: Post-ictal: Results of the ADF unit root tests for each channel during
the segments 2 s immediately after each seizure for three consecutive seizures. (The
significance level is set at 2.5%)

Seizure # Stationary Integrated

Seizure 1 1,3,5,6,7,8,9,10,12,14,15 2,4,13,16
Seizure 2 2,3,5,7,8,10,11,12,13,14,15,16 1,4,6,9
Seizure 3 1,2,4,5,7,8,11,12,13,15,16 3,6,9,10,14

Akaike information criteria (AIC) was used. This led us to choose several lag length
for each segment and each seizure. Finally, Johansen cointegration rank procedure
was applied to determine the values of cointegration rank r for each case. The results
are summarized in Tables 18.4, 18.5, and 18.6.

Table 18.4: Pre-ictal cointegration rank: Results of the Johansen procedure for the
multiple series during 2 s immediately before seizure for three consecutive seizures.
Significance level is 1%. Full rank is denoted by †
Seizure # Short lag Long lag

p r p r

Seizure 1 p = 2,r = 13 p = 22,r = 12
Seizure 2 p = 2,r = 16† p = 21,r = 14
Seizure 3 p = 2,r = 9 p = 24,r = 13

Table 18.5: Ictal cointegration rank: Results of the Johansen procedure for the mul-
tiple series during a seizure. Significance level is 1%. Full rank is denoted by †
Seizure # Short lag Long lag

p r p r

Seizure 1 p = 2,r = 16† p = 23,r = 11,
p = 20,r = 13

Seizure 2 p = 3,r = 16† p = 26,r = 12,
p = 20,r = 9

Seizure 3 p = 2,r = 16† p = 26,r = 16†,
p = 20,r = 16†

Notice that during the seizure the system becomes stable, especially when mod-
eled using a short estimate of the lag parameter. Since the durations of the seizure 1
and seizure 2 are rather short, and only include 440–500 sample points, the models



18 Generalized Phase Synchronization and Cointegrated VAR 335

Table 18.6: Post-ictal cointegration rank: Results of the Johansen procedure for the
multiple series during 2 s after seizure for three consecutive seizures. Significance
level is 1%. Full rank is denoted by †
Seizure # Short lag Long lag

p r p r

Seizure 1 p = 2,r = 10 p = 20,r = 12
Seizure 2 p = 2,r = 13 p = 20,r = 10
Seizure 3 p = 2,r = 16† p = 20,r = 13

estimated under a long lag parameter may not adequately represent the underlying
processes in seizures 1 and 2. On the other hand, seizure 3 is estimated based on
almost 1,200 sample values, and therefore, the long lag model of a longer seizure 3
may be more realistic, than the long lag models for shorter seizures 1 and 2. Overall,
the models based on a short lag p for all three seizures provide an evidence of abso-
lute synchronization among the channels. Whereas, the preseizure and postseizure
models are more likely to be less restricted, and seem to exhibit a cointegration rank
between 9 and 16.

18.6 Conclusion

Recent success in application of phase synchronization to analysis of dynamic pro-
cesses in epileptic brain motivated us to develop a concept of generalized synchro-
nization. This new concept based on our original idea to extend the condition of
classical synchronization from the classical bivariate case to a more general multi-
variate case by studying a cointegrating relationship in the multiple time series. The
proposed approach allows one to analyze the synchrony among different parts of
the common interrelated system (such as a human brain), by modeling the phases
extracted from a finite number of signals in the systems by means of cointegrated
vector autoregression. Interestingly, the cointegration rank in the cointegrated VAR
model of the phase time series can be viewed as a measure of synchrony among
the phases of different components of the EEG signal. We applied our multivariate
approach to phase synchronization on the EEG data recorded from the patients with
absence epilepsy. The results of our experiments indicate that the new method is
capable of capturing phase synchronization in multivariate EEG during seizures.

Not only this new measure of multivariate phase synchrony can be tested on var-
ious biomedical data, such as multichannel EEG recorded from an epileptic brain,
but also the new multiple phase synchronization can be employed in different areas
of applied and theoretic research (including physics, communication, electronics,
laser dynamics, and control) for studying synchronization among several dynamical
systems or a system that consists of several parts.
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18.6.1 Phillips–Ouliaris Cointegration Test

The unit root tests based on analysis of residuals were introduced by Phillips [25].
In particular, in his study Phillips first considered two statistics Zα and Zt for testing
the null of no cointegration in time series.

Because many unit root tests, constructed before 1987, were founded on the as-
sumption that the errors in the regression are independent with common variance
(which is rarely met in practice), Phillips wanted to relax the rather strict condition
that the time series are driven by independent identically distributed innovations. In
other words, he wanted to develop the testing procedures based on the least squares
regression estimation and the associated regression t statistic, which would allow
for rather general weakly dependent and heterogeneously distributed sequence of
error terms.

The properties of asymptotic distributions of residual-based tests for the presence
of cointegration in multiple time series were thoroughly investigated by Phillips and
Ouliaris [26]. The characteristic feature of these tests is that they utilize the residuals
computed from regressions among the univariate components of multivariate series.
The residual-based procedures developed by Phillips and Ouliaris are designed to
test the null of no cointegration by means of testing the null hypothesis of the unit
root presence in the residuals against the alternative of a root that lies inside the
complex unit circle. The hypothesis H0 of the absence of cointegration is rejected,
if the null of a unit root in the residuals is rejected. In the nutshell, the procedures
are simply residual-based unit root tests.

As noted in [26], the residual-based unit root tests are asymptotically similar, and
can be represented via the standard Brownian motion. Moreover, the ADF and Zt

tests are proved to be asymptotically equivalent. However, these two tests are not
as powerful as the test based on statistic Zα , because it was shown by Phillips and
Ouliaris [26] that the rate of divergence under cointegration assumption is slower
for the ADF and Zt than other tests, such as the Zα -statistic test. The later test (i.e.,
the cointegration test based on Zα ) is also widely known as the Phillips–Ouliaris
cointegration test.

It is noteworthy that the null hypothesis for the Phillips–Ouliaris test is that of
no cointegration (instead of cointegration). This formulation is chosen because of
some major pitfalls found in procedures that are designed to test the null of cointe-
gration in multiple time series. These defects (discussed in more detail in [26]) are
significant enough to be a strong argument against the indiscriminate use of the test
formulations based on the null of cointegration, and to support the continuing use
of residual based unit root tests.

Consider the K-dimensional vector autoregressive process Y (t). Let us parti-
tion Y (t) = (Ut ,Vt ′)′ into the univariate component Ut = Y1(t) and the (K − 1)-
dimensional Vt = (Y2(t), . . . ,YK(t))′.

The residuals are determined by fitting linear cointegrating regression:

U(t) = c V (t)+ξt , t = 1,2, . . . . (18.35)
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Residual-based tests are formulated to test the null hypothesis that the multiple time
series Y (t) are not cointegrated using the scalar unit root tests, such as the ADF test,
which are applied to the residuals ξt , t = 1,2, . . . in (18.35)

In [26], the ADF test as well as two additional tests Zα and Zt , developed earlier
by Phillips [25], were applied to check for the presence of a unit root in the residuals
ξt . In order to perform the unit root test, we fit an AR(1) model to ξt , t = 1,2, . . .
according to

ξt = α̂ ξt−1 +ρt , t = 1,2, . . . . (18.36)

Then the statistic Zα in Phillips–Ouliaris test is defined as follows:

Zα = T (α̂ −1) − 1
2
·

s2
T l − s2

ρ
1

T 2 ∑T
t=2 ξ 2

t−1

, (18.37)

whereas the Zt statistic is given by the following formula:
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where
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1
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ρ2
t , (18.39)
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wsl = 1− s
l +1

. (18.41)

Note that s2
ρ and sT l are consistent estimators for the variance σ2

ρ of ρt and the partial

sum variance σ2 = limT→∞ E
(

1
T S2

T

)
, where ST = ∑T

t=1 ξt is the partial sum of the
error terms in (18.36).

The critical values for Zα and Zt statistics can be found in [26] (Tables I and II).
Phillips and Ouliaris tabulated the values for cointegrating regressions with at most 5
explanatory variables. Some estimates of the critical values for the Phillips–Ouliaris
test (Zα ) are listed in Table 18.7.

Table 18.7: Critical values of the asymptotic distributions of the Zα statistic for test-
ing the null of no cointegration (Phillips–Ouliaris demeaned, reproduced from [26]).
Parameter n (n = K −1) represents the number of explanatory variables

n 90% 95% 99%
1 −17.0390 −20.4935 −28.3218
2 −22.1948 −26.0943 −34.1686
3 −27.5846 −32.0615 −41.1348
4 −32.7382 −37.1508 −47.5118
5 −37.0074 −41.9388 −52.1723
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Table 18.8: Percentage points of the asymptotic distributions of the λLR(r,K) for
testing the cointegration rank (reproduced from [13])

K − r 90% 95% 99%
1 6.69 8.08 11.58
2 15.58 17.84 21.96
3 28.44 31.26 37.29

Table 18.9: Percentage points of the asymptotic distributions of the λLR(r,r +1) for
testing the cointegration rank (reproduced from [13])

K − r 90% 95% 99%
1 6.69 8.08 11.58
2 12.78 14.60 18.78
3 18.96 21.28 26.15
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Chapter 19
Antiepileptic Therapy Reduces Coupling
Strength Among Brain Cortical Regions
in Patients with Unverricht–Lundborg Disease:
A Pilot Study

Chang-Chia Liu, Petros Xanthopoulos, Vera Tomaino, Kazutaka Kobayashi, Basim
M. Uthman, and Panos M. Pardalos

Abstract The unified myoclonus rating scale (UMRS) has been utilized to assess
the severity of myoclonus and the efficacy of antiepileptic drug (AED) treatment in
patients with Unverricht–Lundborg disease (ULD). Electroencephalographic (EEG)
recordings are normally used as a supplemental tool for the diagnosis of epilepsy
disorders. In this study, mutual information and nonlinear interdependence measures
were applied to the EEG recordings in an attempt to identify the effect of treatment
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on the coupling strength and directionality of mutual information and nonlinear in-
terdependences between different brain cortical regions. Two 1-h EEG recordings
were acquired from four ULD subjects; one prior and one after a minimum of 2
months treatment with an add-on AED. Subjects in this study were siblings of same
parents and suffered from ULD for approximately 37 years. Our results indicated
that the coupling strength was low between different brain cortical regions in the pa-
tients with disease of less severity. Adjunctive AED treatment was associated with
significant decrease of the coupling strength in all subjects. The mutual informa-
tion between different brain cortical regions was also reduced after treatment. These
findings could provide a new insight for developing a novel surrogate outcome mea-
sure for patients with epilepsy when clinical tools or observations could potentially
fail to detect a significant difference.

keywords Nonlinear interdependence, Mutual information, Electroencephalogram,
epilepsy, Unverricht–Lundborg disease, Progressive myoclonic epilepsy

19.1 Introduction

The EEG is an essential tool used to corroborate the diagnosis of epilepsy and other
neurological disorders. Changes in the frequency and amplitude of EEG activity
arise from spontaneous interactions between excitatory and inhibitory neurons in
the brain. The underlying mechanism of brain function, studied by researchers, sug-
gested the importance of the EEG coupling strength between different brain cortical
regions. For example, it has been shown that the synchronization of EEG activ-
ity is important for the memory [12, 13] and the learning processes [30] of brain.
In one study, different brain synchronization/desynchronization of EEG patterns
were reportedly induced by hippocampal atrophy in subjects with mild cognitive
impairment [18].

Several authors have suggested a direct relationship between changes in synchro-
nization of EEG and the onset of epileptic seizures. Using intracranial EEG record-
ings, Iasemidis et al. reported that the nonlinear dynamical entrainment of cortical
regions is a necessary condition for onset of seizures in patients with temporal lobe
epilepsy [10, 11, 22]. Le Van Quyen et al. showed that epileptic seizures might be
predicted by nonlinear analysis of dynamical similarity between EEG channels [28].
Mormann et al. claimed that a preictal (before a seizure) state could be character-
ized by a decrease in synchronization between some EEG channels [20, 19]. A nor-
mal brain state is associated with a higher degree of complexity in EEG; transition
into a lower degree of complexity may suggest pathology in the brain. In a recent
study, using linear and nonlinear synchronization measures, Aarabi et al. indicated
that during the interictal state, the degree of interdependence between EEG chan-
nels was significantly less than that observed in the ictal state in typical absence
seizure EEG recordings. In some cases, the authors reported that they could identify
preictal states by a significant decrease in the synchronization level with respect to
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interictal states [1]. Synchronization patterns were also found to depend on epileptic
syndromes with primary generalized absence seizures displaying more long-range
synchrony in frequency bands (3–5 Hz) than generalized tonic motor seizures of
secondary (symptomatic) generalized epilepsy or frontal lobe epilepsy [6]. In ad-
dition, we hypothesize that coupling strength and amount of mutual information
between different brain cortical regions exit in the patients with higher severity of
ULD. In addition, the coupling strength and amount of mutual information in brain
cortical regions are positively correlated with the degree of severity (higher UMRS
scores).

Unverricht–Lundborg disease is one type of progressive myoclonic epilepsy
(PME); a rare epilepsy disorder with complex inheritance. It was first described
by Unverricht in 1891 and Lundborg in 1903 [36, 17].

AEDs are the mainstay treatments of ULD with overall unsatisfactory efficacy.
Due to the progression of the severity of myoclonus, the efficacy of AED treat-
ment is difficult to clinically measure especially in the later stages of the disease.
EEG recordings of ULD subjects usually demonstrate abnormal slow background
rhythms and frequent generalized high-amplitude 3–5 Hz spike waves or poly spike
and wave complexes. Sometimes, normal background EEG can be observed be-
tween generalized spike and wave discharges (see Figs. 19.1 and 19.2 for EEG ex-
amples). Studies have shown increased background slowing of EEG or no change
in patients with more advanced ULD stages [4, 9]. Generalized slowing of EEG

Fig. 19.1: Five-second baseline EEG recording.



344 C.-C. Liu et al.

Fp1
Fp2
F3
F4
C3
C4
1
2
P3
P4
O1
O2
F7
F8
T3
T4
T5
T6
Fz
Cz
Pz

PG1
PG2
EKG
30
Ph

00:01:48 00:01:49 00:01:50 00:01:51 00:01:52

Fig. 19.2: Ten-second EEG recoding with spike and wave discharges.

background rhythms induced by AED treatment has been reported with highly vari-
ability from patient to patient [29]. Furthermore, it has been difficult to determine if
and how the strength of correlation between EEG slowing and disease progression
since the intensification of drug treatment during the later stages of illness may also
contribute to the EEG slowing [4]. Clinical observations have been the most com-
mon method for evaluating the influence and effectiveness of AED interventions in
patients with epilepsy and other neurological disorders. More specifically, efficacy
of treatment is usually measured by comparing seizure frequency during treatment
to a finite baseline period. EEG recordings are mainly used as supplemental diag-
nostic tools in management of seizure disorders. Other than counting the frequency
of occurrence of seizures as a measure for treatment effect, there is currently no
reliable tool for evaluating treatment effects in patients with seizure disorders. A
quantitative surrogate outcome measure using EEG recordings for patients with
epilepsy is desired, especially when it is difficult to count seizures reliably, such
as the case in ULD. ULD is characterized by severe myoclonus (usually triggered
by some stimulus), generalized tonic-clonic seizures and the aforementioned EEG
patterns [16]. In this chapter, we propose that the coupling strength between cortical
regions may be used as a surrogate measure of drug efficacy in patients suffering
from ULD.

The rest of this chapter is organized as follows. Background information on the
patients and parameters of EEG recordings are given in Section 19.2. The methods
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for identifying the coupling strength and directionality between different brain cor-
tical regions are described in Section 19.3. The quantitative analysis, statistical tests,
and results are presented in Section 19.4. The conclusion and discussion are given
in Section 19.5.

19.2 Data Information

EEG recordings were acquired using a Nicolet BMSI recording system and the in-
ternational 10–20 electrode placement system (Fp1, Fp2, F3, F4, C3, C4, A1, A2,
P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz). The EEG recordings
were band-pass filtered at 0.1–70 Hz. The sample frequency was set to 250 Hz. An
additional 60 Hz notch filter was applied to reduce the artifact induced by city alter-
nating current. One hour EEG recordings were obtained before and after an add-on
AED treatment. All the EEG recordings were reviewed by a board certified elec-
troencephalographer and artifact-free baseline EEG segments were selected for the
quantitative analysis. The clinical information about the ULD patients in this study
is summarized in Table 19.1. One set of EEG recordings was acquired before treat-
ment started and the other set was acquired after at least 8 weeks of treatment with
an adjunctive AED. All EEG recordings were recorded approximately at the same
time of day after the first dose of treatment with subjects lying supine in a relaxed
state.

Table 19.1: Patient information and UMRS scores
Patient Gender Age ULD UMRS UMRS

Onset age Score (before) Score (after)
1 Female 47 9 98 48
2 Male 45 10 80 65
3 Male 50 12 50 66
4 Male 51 11 68 54

In this study, the severity of the ULD patients was clinically evaluated by per-
forming the unified myoclonus rating scale (UMRS), a statistically validated clini-
cal rating instrument for evaluating individuals with myoclonus. Low UMRS score
indicates less severity of ULD and vice versa. UMRS in patient 2 to patient 4 was
bed ridden and no points for arising, standing, or walking was included in their
UMRS scores. Baseline UMRS scores suggested that patient 1 had the highest dis-
ease severity followed by patient 2, patient 4, and patient 3, respectively. After
treatment, the UMRS scores indicated that severity was highest in patient 3 fol-
lowed by patient 4, patient 2, and patient 1. However, clinical observations indi-
cated that patient 1 had the mildest severity of disease before and after the treat-
ment in this study. We speculated that EEG dynamical analysis might reconcile this
discrepancy too.
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19.3 Synchronization Measures

19.3.1 Mutual Information

Mutual information and nonlinear interdependence measures were applied on the
EEG recordings to identify the effect of treatment on the coupling strength between
different brain cortical regions [26, 27, 7, 21, 25].

In this section, we first describe the approach for estimating mutual informa-
tion [15]. Let us denote the time series of two observable variables as X = {xi}N

i=1
and Y = {y j}N

j=1, where N is the fixed length of the discrete time, and the time
between consecutive observations (i.e., sampling period) is fixed. Then the mutual
information is given by

I(X ;Y ) = ∑
i

∑
j

Px,y(xi,y j) log

(
Px,y(xi,y j)

Px(xi)Py(y j)

)
. (19.1)

One can obtain the mutual information between X and Y using the following
equation [5]:

I(X ;Y ) = H(X)+H(Y )−H(X ,Y ), (19.2)

where H(X),H(Y ) are the entropies of X ,Y and H(X ,Y ) is the joint entropy of X
and Y . Entropy for X is defined by

H(X) = −∑
i

p(xi) log p(xi). (19.3)

The units of the mutual information depends on the choice on the base of logarithm.
The natural logarithm (base e) is used in the study, therefore, the unit of the mutual

information is nat. For X and Y time series we define d(x)
i j = ‖xi − x j‖,d(y)

i j = ‖yi −
y j‖ as the distances between xi and yi and every other point in matrix spaces X and
Y. One can rank these distances and find the k-nearest neighbor (knn) for every xi

and yi. In the space spanned by X ,Y , similar distance rank method can be applied

for Z = (X ,Y ) and for every zi = (xi,yi) one can also compute the distances d(z)
i j =

‖zi−z j‖ and determine the knn according to some distance measure. The maximum
norm is used in this study:

d(z)
i j = max{‖xi − x j‖,‖yi − y j‖}, d(x)

i j = |xi − x j|. (19.4)

Next, let ε(i)
2 be the distance between zi and its kth neighbor. In order to estimate the

joint probability density function (p.d. f .), we consider the probability Pk(ε) which

is the probability that for each zi the kth nearest neighbor is at a distance ε(i)
2 ± dε

from zi. This Pk(ε) represents the probability for k− 1 points to have the distance

less than the kth nearest neighbor and N−k−1 points have distance greater than ε(i)
2

and k−1 points have distance less than ε(i)
2 . Pk(ε) is obtained using the multinomial

distribution:
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Pk(ε) = k

(
N −1

k

)(
d pi(ε)

dε

)
pk−1

i (1− pi)N−k−1, (19.5)

where pi is the mass of the ε-ball. Then the expected value of log pi will be

E(log pi) = ψ(k)−ψ(N), (19.6)

where ψ(·) is the digamma function:

ψ(t) = Γ (t)−1 dΓ (t)
dt

, (19.7)

where Γ (·) is the gamma function. It holds when ψ(1) = C where C is the Euler –
Mascheroni constant (C ≈ 0.57721). The mass of the ε-ball can be approximated if
the p.d. f inside the ε-ball is uniform (epsilon is chosen sufficiently small so that
the uniform distribution is valid) by

pi(ε) ≈ cdx εd
x P(X = xi), (19.8)

where cdx is the number of points within the unit ball in the dx-dimensional space.
From Equation (19.8) we can find an estimator for P(X = xi) :

log[P(X = xi)] ≈ ψ(k)−ψ(N)−dE(logε(i))− logcdx . (19.9)

Finally we obtain the entropy estimator for X [14]:

Ĥ(X) = ψ(N)−ψ(k)+ logcdx +
dx

N

N

∑
i=1

logε(i), (19.10)

where ε(i) is twice the distance from xi to its k-th neighbor in the dx-dimensional
space. For the joint entropy we have

Ĥ(X ,Y ) = ψ(N)−ψ(k)+ log(cdx cdy)+
(

dx +dy

N

) N

∑
i=1

log(ε(i)). (19.11)

The I(X ;Y ) is now ready to be estimated by Equation (19.2). The problem with this
estimation is that a fixed number k is used in all estimators but the distance metric
in different scaled spaces (marginal and joint) are not comparable . To avoid this
problem, instead of using a fixed k, nx(i) + 1 and ny(i) + 1 are used in obtaining
the distances (where nx(i) and ny(i) are the number of samples contained in the bin

[x(i)− ε(i)
2 ,x(i) + ε(i)

2 ] and [y(i)− ε(i)
2 ,y(i) + ε(i)

2 ], respectively) in the x–y scatter
diagram. Equation (19.10) becomes

Ĥ(X) = ψ(N)−ψ(nx(i)+1)+ logcdx +
dx

N

N

∑
i=1

logε(i). (19.12)

Finally the Equation (19.2) is rewritten as
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Iknnr(X ;Y ) = ψ(k)+ψ(N)− 1
N

N

∑
i=1

[ψ(nx(i)+1)+ψ(ny(i)+1)]. (19.13)

19.3.2 Nonlinear Interdependencies

Arnhold et al. [2] introduced the nonlinear interdependence measures for charac-
terizing directional relationships (i.e., driver and response) between two time se-
quences [2]. Given two time series x and y, using the method of delay we obtain the
delay vectors xn = (xn, ...,xn−(m−1)τ) and yn = (xn, ...,xn−(m−1)τ), where n = 1, ...N,
m is the embedding dimension and τ denotes the time delay [34]. Let rn, j and sn, j,
j = 1, ...,k denote the time indices of the k nearest neighbors of xn and yn. For each
xn, the mean Euclidean distance to its k neighbors is defined as

Rk
n(X) =

1
k

k

∑
j=1

(xn − xrn, j)
2, (19.14)

and the Y -conditioned mean squared Euclidean distance is defined by replacing the
nearest neighbors by the equal time partners of the closest neighbors of yn:

R(k)
n (X |Y ) =

1
k

k

∑
j=1

(xn − xsn, j)
2. (19.15)

For EEG, the delay τ = 5 is estimated using auto mutual information function,
the embedding dimension m = 10 is obtained using Cao’s method and the Theiler
correction is set to T = 50 (Theiler correction corresponds to the T first sample
points omitted from our analysis) [3, 35]. If xn has an average Euclidean radius

R(X) = (1/N)∑N
n=1 R(N−1)

n (X), then R(k)
n (X |Y )≈ R(k)

n (X) < R(X) if the systems are

strongly correlated, while R(k)
n (X |Y )≈ R(X) > R(k)

n (X) if they are independent [24].
Accordingly, the interdependence measure S(k)(X |Y ) can be defined as

S(k)(X |Y ) =
1
N

N

∑
n=1

R(k)
n (X)

R(k)
n (X |Y )

. (19.16)

Since R(k)
n (X |Y ) ≥ R(k)

n (X) by construction,

0 < S(k)(X |Y ) ≤ 1. (19.17)

Low values of Sk(X |Y ) indicate independence between X and Y , while high values
indicate synchronization. Arnhold et al. [2] introduced another nonlinear interde-
pendence measure H(k)(X |Y ) as

H(k)(X |Y ) =
1
N

N

∑
n=1

log
Rn(X)

R(k)
n (X |Y )

. (19.18)

H(k)(X |Y ) = 0 if X and Y are completely independent, while it is possible if closest
that closest in Y implies also closest in X for equal time indexes. H(k)(X |Y ) would be
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negative if close pairs in Y would correspond mainly to distant pairs in X . H(k)(X |Y )
is a linear measure thus it is more sensitive to weak dependencies compared to
mutual information. Arnhold et al. [2] also showed H was more robust against noise
and easier to interpret than S. Since H is not normalized Quian Quiroga et al. [26]
introduced another N(X |Y ):

N(k)(X |Y ) =
1
N

N

∑
n=1

Rn(X)−R(k)
n (X |Y )

Rn(X)
, (19.19)

which is normalized between 0 and 1. The opposite interdependencies S(Y |X),
H(Y |X), and N(Y |X) are defined in complete analogy and they are in general not
equal to S(X |Y ), H(X |Y ), and N(X |Y ), respectively. Using nonlinear interdepen-
dencies on several chaotic models (Lorenz, Roessler, and Hénon models) Quian
Quiroga et al. [24] showed the measure H is more robust than S.

The asymmetry of above nonlinear interdependencies is the main advantage over
other synchronization measures. This asymmetry property can give directionality of
nonlinear interdependence between different cortical regions, and reflects different
properties of brain functions when it is important to detect causal relationships. It
should be clear that the above nonlinear interdependencies measures were bivari-
ate measures. Finally, although directional measures quantify the “driver-response”
relationship for a given input, the system under study might be driven by other un-
observed sources.

19.4 Statistical Tests and Data Analysis

All mutual informations between all pairs of electrodes were computed (exclud-
ing reference channels and channels with themselves). In Fig. 19.3, we present the
amount of mutual information for every patient before and after treatment. For ev-
ery heatmap figure, every axis corresponds to the channels and the intensity of each
pixel correspond to the amount of mutual information (in nats). Qualitatively, we
can see that the first column plots are darker than the second column plots, implying
that a mutual information decoupling occurs. In order to statistically validate this
assumption we performed a paired t-test with replacement.

For this we used bootstrap resampling technique [8] to investigate the variability
of the strength of interdependence among different brain cortical areas. In boot-
strap resampling, we randomly sample, with replacement, 10.24 s continuous EEG
recordings. We emphasize that resample should be performed on the parts of EEG
where no SWD is presented.

The reference A1 and A2 channels (inactive regions) were excluded from the
analysis. Two sample t-test (N = 30, α = 0.05) was used to test the statistical
differences on mutual information and nonlinear interdependence during, before,
and after treatment. Low mutual information between different cortex regions were
observed in our subjects with less severity of ULD. Furthermore, for each patient
both mutual information between different brain cortical regions decreased after 2
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Fig. 19.3: Pairwise mutual information between for all electrodes: Before v.s. After
Treatment. The reference electrodes A1, A2 are excluded from the above plot. For
every heatmap each axis corresponds to the electrodes and the intensity of each pixel
is associated with the amount of the mutual information (in nats) with reference
to the colorbar. Correspondence between numbers (in axes) and electrodes can be
found in the first column of Table 19.2.

months of adjunctive AED treatment. In Table 19.2, we present all the electrode
pairs that were decoupled (mutual information after treatment was statistically sig-
nificant lower than before treatment).

Also in order to visualize the topological distribution of the decoupled chan-
nels we divided (F-Frontal, C-central, T-temporal, P-pariental, O-occipital) and we
counted the number of pairs that were decoupled between each of these regions.
Results are presented in Table 19.3.

The significant “driver–response” relationship is revealed by t-test. After t-test
the significant coupling strengths between Fp1 and other brain cortical regions are
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Table 19.2: In this table we present all the electrode pairs that were decoupled for
each one of the four patients (columns 2–4). One electrode pair is decoupled when
mutual information after treatment is statistically lower (based on paired t-test) than
mutual information before treatment. For example, electrodes of the first line and
fourth column indicate the decoupled electrodes between electrode Fp1 (first line)
for the third patient (fourth column)

Electrode DE for P1 DE for P2 DE for P3 DE for P4
(1) Fp1 F3, C4, P4, F7 Fp2, F3, F8, T5 F3, F7 F3, P3, Fz, T5

T4, T5, O1 F8, T4, Fz
(2) Fp2 C3, C4, F8, T4 Fp1, F4, T6, O2 F8 C3, C4, T5, P4

T5, Pz Cz
(3) F3 Fp1, C4, P4, O2 Fp1, C3, P3, Pz Fp1 Fp1, F7
(4) F4 C4, P4 O2 Fp2, P4, O2, Fz Cz C4, Fz
(5) C3 Fp2, C4, P3, O1 F3, P3, O1 P3, O1 Fp2, P3, O1
(6) C4 Fp1, Fp2, F3, F4, C3 P4, T6, O2 P4, O2 Fp1, Fp2, F3

A1 N/A N/A N/A N/A
A2 N/A N/A N/A N/A

(7) P3 C3, O2 F3, C3, T3, Pz O1 Fp1, C3, Cz
(8) P4 Fp1, F3, F4 F4, C4 C4 Fp2,
(9) O1 Fp1, C3 C3, T5, T3, F7 P3, Pz C3
(10) O2 F3, F4, P3 Fp2, F4, C4 C4 Pz
(11) F7 Fp1, Fz, Pz C3, T5, O1 Fp1 F3
(12) F8 Fp2 Fp1, C4, P4 Fp2 Fp2,
(13) T3 None P3, O1 None None
(14) T4 Fp1, Fp2, Cz Fp2, O1 None Fp2,
(15) T5 Fp1, Fp2 Fp2, C4 None Fp2, Cz
(16) T6 None C4 None None
(17) Fz F7 Fp1, F4 Cz Fp1, Fp2, F3
(18) Pz Fp2, F7, Cz F3, P3, Cz O2 O2
(19) Cz T4, Pz Pz F4, Fz Fp2, T5, P3

Table 19.3: Number of channels per patient per site that were decoupled after treat-
ment. F, T, C, P, O correspond to the frontal, temporal, central, pariental, and occip-
ital channels correspondingly. It is easy to see that for patient 1 we have the most
decoupled channels

Patient 1 Patient 2 Patient 3 Patient 4
F 20 20 7 18
T 5 7 0 3
C 11 7 6 9
P 9 9 3 5
O 5 7 3 2

Total 50 32 19 37

shown in Fig. 19.4. The edges with an arrow starting from Fp1 to other channels
denote N(X |Y ), which is significant larger then N(Y |X), therefore, Fp1 is the driver,
and vice versa. The above results suggest the existing treatment effects on the cou-
pling strength and the directionality between different cortex regions.
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Fig. 19.4: This is the connectivity plots for the four patients derived from the
nonlinear interdependence metrics that involve the channel Fp1.

19.5 Conclusion and Discussion

Effectiveness of an add-on AED in treatment of ULD was measured by the de-
gree of reduction of UMRS after treatment. Patients with 25% or greater in UMRS
were considered responders to the add-on AED treatment. As mentioned above, it is
not easy to precisely perform such evaluation scheme especially in the later stages
of the disease. Furthermore, the UMRS is a skewed measure that may not detect
functional changes in a patient when these changes may be clinically important. In
fact, changes in the UMRS scores after treatment were significant (≥25%) only in
patient 1, then patient 2, patient 3, and patient 4 had clinically meaningful improve-
ment. Furthermore, the patient with least disease severity (patient 1) had paradoxi-
cally the higher baseline UMRS score only because patient 2–patient 4 were bed rid-
den and their UMRS did not include arising, standing, and walking. For this reason
the UMRS scores for patient 2–patient 4 could be artificially lowered by 48 points
(4× 4 = 16 points per test, 3 tests = 48 points). We believe that the UMRS may
not be the appropriate tool for measuring AED improvements in myoclonus in ULD
patients and maybe misleading at times. The present study objectively measures the
mutual information and nonlinear interdependencies in the cortical network before
and after an add-on AED treatment.
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Results from our study agreed with clinical observations that patient 1 had the
least severe ULD and patient 3 had the most severe one. The highest coupling
strength in brain cortical networks was found in patient 3 before and after treat-
ment. However, patient 3 received 50 points on the UMRS before treatment and 66
after treatment due to the fact that patient 3 was able to engage in more testing after
treatment.

Although the results indicate that the mutual information and nonlinear interde-
pendencies measures could be useful in determining the treatment effects for pa-
tients with ULD, their limitations must be mentioned. It has been reported that it
is necessary to take into account the interdependence between thalamus and cor-
tex [33, 32]. By applying Granger causality in animal studies, Sitnikova et al. sug-
gested that onset of spike and wave discharges was associated with a rapid and sig-
nificant increase of coupling strength between frontal cortex and thalamus in both
directions. Furthermore, the strength of the thalamus to cortex coupling remained
constantly high during seizures [31]. The decoupling between frontal and occipital
cortical regions of our data after AED treatment may also be caused by decrease of
a driving force deep inside the brain. The effect of the treatment may thus reduce
the coupling strength between thalamus and cortex in ULD subjects.

It has been pointed out by several authors that nonlinear interdependence mea-
sures need to be applied with care [23]. For example, the embedding parameters
often play important roles for nonlinear analysis involving with state space recon-
struction. In this study, we used a false nearest neighbor algorithm and the mutual
information function for finding the embedding dimension m and delay τ . However,
it is also known that there is no guarantee that these embedding parameters are the
optimal choices. Besides the intrinsic nonlinear properties, there are other sources
of noise underlying the real-world EEG recordings. Our strategy, in dealing with the
above potential drawbacks, is to fix the embedding parameters for the same set of
EEG recordings. By fixing the embedding parameters the underlying dynamics for
10.24 s SWD-free EEG recording, and therefore attractor, can consistently quantify.

At this point we would like to point out as a future research direction the need
to reproduce the same study using sleep EEG recordings and confirm if the number
and the distribution of decoupled electrode sites are the same and independent of
the state of vigilance. Also to prove the usefulness of the proposed study, a larger
patient population is needed.
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Chapter 20
Seizure Monitoring and Alert System for Brain
Monitoring in an Intensive Care Unit

J. Chris Sackellares, Deng-Shan Shiau, Alla R. Kammerdiner,
and Panos M. Pardalos

Abstract Although monitoring for most organ systems is commonly used in in-
tensive care units (ICU), brain function monitoring relies almost exclusively upon
bedside clinical observations. As a result, a large number of nonconvulsive seizures
go undiagnosed every day. Recent clinical studies have demonstrated the clinical
utility of continuous EEG monitoring in ICU settings. Continuous EEG is a well-
established tool for detecting nonconvulsive seizures, cerebral ischemia, cerebral
hypoxia, and other reversible brain disturbances in the ICU. However, the utility of
EEG monitoring currently depends on the availability of expert medical profession-
als, and interpretation is labor intensive. Such experts are available only in tertiary
care centers. We have designed a seizure monitoring and alert system (SMAS) that
utilizes a seizure susceptibility index (SSI) and seizure detection algorithms based
on measures that characterize the spatiotemporal dynamical properties of the EEG
signal. The SMAS allows distinguishing the organized seizure patterns from more
irregular and less organized background EEG activity. The algorithms and initial
results in human long-term EEG recordings are described.
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20.1 Introduction

Although automatic monitoring for most organ systems, including heart, lungs,
blood, etc., is common place in general and intensive care units, brain function
monitoring relies almost entirely upon bedside clinical observation by medical and
nursing staff. As a result, a large number of nonconvulsive seizures, with only sub-
tle or nonspecific behavioral changes, go undiagnosed every day. Recent clinical
studies have demonstrated the clinical utility of continuous EEG monitoring in such
inpatient settings as emergency department (ED), intensive care unit (ICU), and
epilepsy monitoring unit (EMU) [16,17,18,5]. EEG-video monitoring is a standard
diagnostic procedure in the EMU for pre-surgical evaluation. Continuous EEG is
also well-established tool for detecting nonconvulsive seizures, cerebral ischemia,
cerebral hypoxia, and other reversible brain disturbances in the ICU and the ED.
Nevertheless, the utility of EEG monitoring currently depends on the availability of
expert technical and medical professionals, and the task of interpreting EEG is labor
intensive. Such experts are only available in tertiary care centers.

Automatic EEG monitoring has several potential practical applications, including
diagnosis and monitoring of patients with epilepsy and other neurological diseases,
monitoring of patients under general anesthesia, etc. An epileptic attack is usually
characterized by dramatic changes in electrical recordings of the brain activity by
multichannel EEG, whereas in the interictal state the EEG recording may appear
completely normal or may exhibit only brief rare abnormalities. Generally, the in-
terictal EEG often provides sufficient information to diagnose epilepsy and may
even contain evidence about the possible type of epilepsy [1].

The role of long-term continuous EEG recordings in clinical practice cannot
be underestimated. Although the main clinical application of continuous EEG in-
volves differential diagnosis between non-epileptic and epileptic seizures [1], there
are other useful applications (e.g., localization of site of onset of epileptic seizures,
detection of seizures with subtle clinical manifestations, finding the frequency of
inconspicuous seizures which may otherwise be overlooked) Development, testing,
and implementation of efficient methods for automatic EEG monitoring can be ex-
tremely useful in application to monitoring brain functions in clinical settings such
as ICU.

In the literature, various combinations of data mining techniques and data pre-
processing methods have been applied to EEG monitoring. For instance, an ap-
proach for extracting information from the video signal in video/EEG monitoring
is presented in [25]. That approach utilizes image compression method to develop
a domain change detection algorithm for automatic tracking of patient’s move-
ments. Some popular preprocessing techniques applied to EEG involve such fea-
ture extraction methods as fast Fourier transform (FFT) [4, 19], wavelet transform
(WT) [20, 32], computation of fractal dimensions (FD) [22], calculating different
amplitude and frequency features (e.g., the average dynamic range, and frequency
vector, respectively) [6], symbolic representation of spike events [23], deviation ra-
tio topography [19], and others. The data mining methods include fuzzy classifi-
cation [23], regression of transformed data [4], segmentation (ictal, interictal) [22],
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event detection and classification [6], patient classification (diagnosis), neural net-
works [19,20,32]. In many studies, EEG monitoring is aimed at detection of epilep-
tic seizures [32, 22, 6], or at detection of spike events [20, 23].

This chapter introduces the approach for automatic EEG monitoring that is based
on nonlinear dynamic theory, statistics, and optimization. Based on this approach,
a seizure monitoring and alert system (SMAS) is designed as an online system for
generating warnings for impeding seizures by the analysis of patient’s EEG record-
ings. The SMAS also incorporates a seizure susceptibility index (SSI) that is based
on the seizure warning algorithm. The SMAS is developed with a purpose of pro-
viding medical staff information as to the likelihood of ensuing seizure and alerting
the staff when seizure occurs.

The remainder of the chapter is organized as follows. Section 20.2 discusses
seizure prediction and warning. Section 20.3 presents the methods involved analysis
of EEG data. In particular, the methods include application of chaos theory to mea-
sure dynamical transitions in the epileptic brain via Lyapunov exponents, statistical
approach to quantifying similarity between pairs of measurements, and application
of quadratic optimization methods to detect the critical channels in multichannel
EEG. In Section 20.4, we propose the SMAS based on an algorithm for generat-
ing automatic warnings about impending seizure from EEG, which incorporates the
above methods. Finally, the conclusion follows.

20.2 Preictal Transition and Seizure Prediction

The studies investigating the possibilities for prediction of epileptic seizures date
back to the late 1970s. During the 1970s and the 1980s, the linear approaches, in-
cluding linear autoregression, spectral analysis, and pattern recognition techniques,
were mostly applied to analysis of epileptic seizures. Some studies conducted at
that time reported changes in EEG characteristic of epileptic seizures, which could
only be detected a few minutes before the seizure onset. Later, beginning in the
late 1980s, various nonlinear approaches based on Lyapunov exponents, correlation
dimension, and different entropy measures were introduced to study the dynami-
cal changes in the brain before, during, and after epileptic seizures. Introduction of
the nonlinear methods resulted in the findings that showed characteristic changes in
EEG minutes to hours before seizure onset. These results were reported in a num-
ber of papers in the 1990s, and interpreted as an evidence of existence of interictal
state. Beginning in the early 2000s, the multivariate approaches become especially
current in analysis of epileptic seizures. Various studies show particular importance
of spatiotemporal relations in multichannel EEG data with respect to the transitions
in epileptic brain. Another developing research area includes assessment of perfor-
mance of different algorithms of seizure prediction. The two different techniques
are proposed, namely a bootstrap based approach proposed by Andrzejak et al. and
a seizure prediction characteristic method introduced by Winterhalder et al.
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Beginning in 1988, techniques for analyzing nonlinear chaotic systems were ap-
plied by Iasemidis and Sackellares toward the study of the dynamical characteristics
of EEG signals from patients with medically refractory epilepsy [15,14]. Later, they
showed that, from a dynamical perspective, seizures evolve in a distinctive way over
minutes to hours [11, 9]. Specifically, seizures are preceded by a preictal transition,
detectable in the EEG, which has characteristic spatiotemporal dynamical proper-
ties. The seizure onset represents an abrupt phase transition from a complex to a
less complex (more ordered) state. The spontaneous formation of organized spatial,
temporal, or spatiotemporal patterns is often present in various physical, chemical,
or biological systems, and the study of these dynamical changes represents one of
the most fascinating and challenging areas of scientific investigation [21]. The pri-
mary common denominator in such abrupt changes of the state of a deterministic
system as above lies in the nonlinear nature of the system.

From analysis of the spatiotemporal dynamics of invasive EEG recordings in
patients with medically intractable temporal lobe epilepsy, Sackellares, Iasemidis,
and others first discovered and characterized a preictal transition process [10,8]. The
onset of this transition precedes the seizure for periods ranging from 0.5 to 1.5 h. In
their observations, the preictal dynamical transition was characterized by

1. progressive convergence of the mean short-term Lyapunov exponents (STL-
max) among specific anatomical areas (mean value entrainment), and

2. progressive phase locking of the STLmax profiles among various electrode sites
(phase entrainment).

In initial studies, preictal entrainment of EEG dynamics among electrode sites
was detected by visual inspection of STLmax versus time plots. More recently,
methods have been developed that provide objective criteria for dynamical entrain-
ment among electrode pairs [11, 9]. Based on these findings, an approach is devel-
oped for the automatic detection of the preictal state and prediction of impending
seizures.

The discovery of the preictal dynamical transition in temporal lobe epilepsy has
also been reported by other researchers. Using a modification of the correlation di-
mension, Elger and Lehnertz reported long-lasting and marked transitions toward
low-dimensional states up to 25 min before the occurrence of epileptic seizures [2].
These findings were interpreted by them as evidence for a continual increase in
the degree of synchronicity preceding the occurrence of an epileptic seizure. Mar-
tinerie et al. also found evidence for a reduction in the correlation dimension cal-
culated from intracranial EEG recordings, beginning 2–6 min prior to seizures [26].
Both studies analyzed intracranial EEG recordings in patients with unilateral mesial
temporal epilepsy. The investigators utilized an estimate of the signal complexity
(integral correlation dimension). However, we have found that this measure is not
reliable when applied to continuous, real-time EEG recordings.

Motivated by the studies of synchrony in communication among various brain
structures [36, 37], synchronization measures have recently been applied to EEG
data from epilepsy patients [28, 29, 30, 24]. In particular, Mormann et al. used a
measure of phase synchronization called mean phase coherence, which is based on



20 Seizure Monitoring in ICU 361

circular variance computed via Hilbert transform, and reported a decease in syn-
chronization preceding epileptic seizures [28, 29]. Whereas in [24], Kraskov et al.
introduced phase synchronization with the phase based on the wavelet transform for
localization of interictal focus in temporal lobe epilepsy.

20.3 Methods

20.3.1 Chaos Theory and Epilepsy

Several studies applied chaos theory to analysis of EEG data [10, 33, 3]. In chaotic
systems, trajectories originating from very close initial conditions diverge exponen-
tially. The system dynamics can be characterized by the rate of the divergence of the
trajectories, which is measured by Lyapunov exponents and dynamical phase.

First, using the method of delays [31], the embedding phase space is constructed
from a data segment x(t) with t ∈ [0,T ] so that the vector Xi of the phase space is
given by

Xi = (x(ti),x(ti + τ), · · · ,x(ti +(p−1)τ), (20.1)

where ti ∈ [1,T −(p−1)τ] , p is a chosen dimension of the embedding phase space,
and τ denotes the time delay between the components of each phase space vector.
Next, the estimate L of the short-term largest Lyapunov exponent STLmax is com-
puted as follows:

L =
1

Nα

Na

∑
i=1

log2
X(ti +Δ t)−X(t j +Δ t)

X(ti)−X(t j)
, (20.2)

where Na is the total number of local maximum Lyapunov exponents that are esti-
mated during the time interval [0,T ]; Δ t is the evolution time for the displacement
vector X(ti)−X(t j); X(ti) represents the point of the fiducial trajectory such that
t = ti, X(t0) = (x(t0),x(t0 + τ), · · · ,x(t0 +(p− 1)τ)), and X(t j) is an appropriately
selected vector that is adjacent to in the embedding phase space. In [8], Iasemidis
et al. suggested a method of estimating STLmax in the EEG data based on the Wolf’s
algorithm for time series [38].

The short term largest Lyapunov exponent STLmax is proved to be an espe-
cially useful EEG feature for studying the dynamics of the epileptic brain [10,33,3].
Figure 20.1 shows an example of the STLmax curve derived from an EEG channel
over a 140 min time window that includes a seizure. In this example, the STLmax
values gradually decreases before the seizure and drops to the lowest point dur-
ing the ictal state. It immediately reverses to the highest point after the seizure
stops, a phenomenon that we called “seizure resetting” [12]. In addition, transi-
tions among interictal, preictal, ictal, and postictal states can be characterized by the
spatiotemporal changes in STLmax profiles among EEG channels [34]. Figure 20.2
shows a typical spatiotemporal pattern of STLmax profiles.



362 J. C. Sackellares et al.

Fig. 20.1: STLmax curve derived from an EEG channel over a 140-min time window
that includes a seizure.

Fig. 20.2: Spatiotemporal pattern of five STLmax curves over a 140-min time win-
dow that includes a seizure.
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20.3.2 Statistical Method for Pairwise Comparison of ST LMAX

One of the statistical measures of similarity between two different channels was
introduced via T-index. It quantifies the statistical mean difference between two
EEG channels with respect to their dynamics such as STLmax. As shown in [33],
although the critical electrode sites involved in transition into the seizure state vary
from patient to patient, the conditions for an impending seizure can be characterized
by the fall in the average T-index for pairs of critical electrodes, signifying that on
average, all critical electrode sites exhibit convergence in STLmax values, as shown
in Fig. 20.3.

Fig. 20.3: T-index curve that quantifies the spatiotemporal pattern of five STLmax
curves over a 140-min time window that includes a seizure.

Mathematically, the value of the T-index statistic at time t for the STLmax values
between a pair of electrode sites i and j in a moving window Wt with n points of
STLmax is given by the following formula:

T i j =
√η |μ̂ i j(t)|

σ̂ i j(t)
, (20.3)

where μ̂ i j and σ̂ i j(t), respectively, denote the sample mean and the sample stan-
dard deviation of the differences STLi

MAX −STL j
MAX in the values of STLmax for

channels i and j estimated successively at times t, t +1, · · · , t +(n−1) .
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It is proved in [13] that the T-index statistic T i j(t) is asymptotically distributed
according to the t-distribution with (d − 1) degrees of freedom, where d denotes
the total number of STLmax values per channel contained in a moving window Wi.
Let T i j(t) > tα/2,d−1 denote (1−α/2)× 100% critical value of the t-distribution
with (d − 1) degrees of freedom. Then using the paired t-test, the sites i and j are
considered disentrained, if T i j(t) > tα/2,d −1; otherwise, the sites are entrained.

20.3.3 Finding Critical Sites by Quadratic Optimization Approach

An interesting application of optimization theory to the problem of determining
critical cortical sites involved in the preictal transition into the seizure state is given
by an analog of the Ising spin glass model [13]. The Ising model is defined via
the Sherrington–Kirkpatrick Hamiltonian, which is used to introduce the mean-field
theory of the spin glasses. The spin glass is represented by a regular lattice, with
the elements at the vertices of the lattice. Furthermore, the magnetic interactions
among the elements hold only for the nearest neighbors, and each element has only
two possible states [27]. The Ising spin glass model is widely utilized to examine
phase transitions in the field of statistical physics. More specifically, the ground state
problem in the Ising model of finding the spin glass configurations of the minimal
energy can be applied to determine phase transitions in dynamical systems.

Since the Ising model is defined on a regular lattice, it admits the following nat-
ural representation in terms of graph theory. Given a graph G(V,E) with the vertex
set V = {v1, · · · ,vn} of size n , and the edge set E, let us assign a weight ω i j to every
edge (vi,v j) ∈ E. Here the weights ω i j represent the interaction energy between the
elements (vertices) vi and v j of the spin glass (graph G(V,E)). Let σ ∈ {+1,−1}
denote a magnetic spin variable associated with a given vertex vi of the spin glass
graph. Then the spin glass configuration σmin with the minimum energy of magnetic
interactions is found by minimizing the Hamiltonian H:

H(σ) = − ∑
1≤i, j≤n

ω i jσiσ j, (20.4)

over all possible configurations σ = (σ1, · · · ,σn) ∈ {−1,+1} .
This problem (20.4) is equivalent to combinatorial formulation of the quadratic

bivalent programming problem [7]. Analogously to the quadratic programming for-
mulation (20.4) for the Ising spin glass model, the problem of finding the cortical
sites critical with respect to the transition of the epileptic brain into the seizure state
is formulated as a quadratic 0–1 programming problem.

Let x∈{0,1} denote the choice between selecting (xi = 1) and disregarding
(xi = 0) the information from the channel i, then by introducing a T-index that
represents a statistical measure of the similarity in the STLmax values between a
pair of EEG channels, the problem is formulated as finding critical electrodes that
minimize the average value of T-index statistic.
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Suppose that the T-index values T i j between a pair (i, j) of electrode sites are
given by the elements of an nxn real-valued matrix Q, and let the selection of the crit-
ical electrodes be represented by an n-dimensional vector x = (x1, · · · ,xn) ∈ {0,1}n

, where the selection of the cortical site i corresponds to xi = 1 , while xi = 0 indi-
cates that the channel i is not selected. By adding a linear constraint on the number
k(1 ≤ k ≤ n) of selected channels,

∑
1≤i, j≤n

xi = k, (20.5)

the problem of determining k critical electrodes sites involved in transition into the
ictal state based on the matrix of T-index values Q can be formulated as the follow-
ing quadratic 0–1 knapsack problem:

minxT Qx, s.t ∑
∑1≤i, j≤n

xi = k,x ∈ {0,1}n. (20.6)

By introducing the penalty term to guarantee that the optimal solution satis-
fies the constraint (20.5) the problem (20.6) can be equivalently reformulated as
a quadratic 0–1 programming problem:

minxT Qx+ c

(
∑

1≤i, j≤n

xi − k

)2

, s.t x ∈ {0,1}n, (20.7)

where the penalty constant c is computed from Q = (qi j)n
i, j=1 as

c = 2

(
∑

1≤i, j≤n

|qi j|
)

+1. (20.8)

There are several computational approaches to solving problem (20.7), including
a branch and bound procedure (B&B) with dynamical rule for fixing variables, a lin-
earization approach to reformulate (20.7) as an integer programming (IP) problem
by introducing additional variables to represent xi ×x j, and utilizing Karush–Khun-
Tucker optimality conditions to obtain mixed integer linear programming (MILP)
reformulation.

20.4 Two Main Components of the Seizure Monitoring and Alert
System

The proposed seizure monitoring and alert system (SMAS) consists of two main
components, the algorithm for generating automatic seizure warnings, and the
seizure susceptibility index (SSI).
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20.4.1 Algorithm for Generating Automatic Warnings about
Impending Seizure from EEG

Based on the methodology, presented in the previous section, the algorithm for gen-
erating automatic warnings about possible seizure from multichannel EEG record-
ing can be outlined as follows. The algorithm consists of two key phases, namely the
training and the seizure detection. During the first stage, the EEG data are recorded
and analyzed to determine the critical sites with respect to the brain’s transition
into seizure, which are individual to each patient. The sites found during the train-
ing phase are used to automatically detect the conditions signalizing of impending
seizures. The algorithm for generating automatic warnings includes the following
steps:

• Training phase:

1. Collect EEG data for a given number m ≥ 1 of the first seizures detected with
manual assistance of a qualified person;

2. For each seizure, determine a given number k of critical electrode sites by
following steps:
– estimate the STLmax values for all electrodes in a 10-min window imme-

diately before the seizure
– compute matrix Q = (T i j)i, j of T-indices of the STLmax values between a

pair (i, j) of electrode sites
– solve the corresponding quadratic 0–1 problem (20.7)

3. Among m different Ci,1 ≤ i ≤ m sets of critical sites, select:
– either the sites that are common to all m seizures, i.e.,

⋂
1≤i≤m Ci

– or electrode sites that can be found in most seizures

• Seizure alert phase:

1. Compute the critical threshold value tα/2,d−1, where d is the total number of
the STLmax values per channel in 10-min window

2. Sequentially analyze the EEG from the electrode sites selected in Step 3 of
the training phase as follows:
– calculate STLmax values
– compute corresponding T-indices T i j(t) between pairs of selected critical

sites
– go to the next step (Step 3 below) when the T-indices T i j(t) drops below

the threshold tα/2,d−1 , i.e., T i j(t) > tα/2,d−1
– otherwise continue sequentially analyzing the data

3. If the threshold-drop time t lies within some fixed prediction horizon h of the
previous warning, then go back to the previous step (Step 2 of the seizure alert
phase); otherwise generate a warning.

The proposed algorithm is a version of the adaptive threshold seizure warning
algorithm (ATSWA) introduced by Sackellares et al. in [35]. In particular, the main
difference between the new version and ATSWA is that the proposed version utilizes
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information from several manually identified seizures instead of a single seizure as
in ATSWA.

Analyses of sensitivity, specificity, and predictive power of ATSWA with respect
to various seizure warning horizons as compared to periodic and random warning
schemes has shown that ATSWA performs significantly better.

One disadvantage of SMAS is that the seizure warnings only provide long-term
anticipation of impending seizures in a fixed time interval (i.e., seizure warning
horizon). Although this is valuable information to epileptic patients and clinicians,
there is no information within the warning horizon. Therefore, we are developing
seizure susceptibility indices, probability measures (between 0 and 1) that represent
the likelihood of an impending seizure. Since our seizure algorithms are based on
the dynamical descriptors of EEG, SSI should be generated in real time in a form of
probability index by analyzing the distribution of dynamical descriptors.

20.5 Conclusions

A useful seizure monitoring and alert system is capable of not only generating au-
tomatic warnings of impending seizures from EEG recordings, but also quantifying
and outputting the information on the likelihood of a seizure occurrence. The tech-
niques described in this study appear to be potentially useful in wide range of appli-
cations for brain monitoring, including the ICU, and could potentially revolutionize
the care for patients with neurological disorders.
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