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Resting-state
Major Depressive Disorder (MDD) is characterized by rumination. Prior research suggests that resting-state brain
activation reflects rumination when depressed individuals are not task engaged. However, no study has directly
tested this. Here we investigated whether resting-state epochs differ from induced ruminative states for healthy
and depressed individuals. Most previous research on resting-state networks comes from seed-based analyses
with the posterior cingulate cortex (PCC). By contrast, we examined resting state connectivity by using the
complete multivariate connectivity profile (i.e., connections across all brain nodes) and by comparing these
results to seeded analyses.Wefind that unconstrained resting-state intervals differ from active rumination states
in strength of connectivity and that overall connectivity was higher for healthy vs. depressed individuals. Rela-
tionships between connectivity and subjective mood (i.e., behavior) were strongly observed during induced
rumination epochs. Furthermore, connectivity patterns that related to subjective mood were strikingly different
for MDD and healthy control (HC) groups suggesting different mood regulation mechanisms.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Many researchers have found differences in brain connectivity dur-
ing unconstrained “resting-state” intervals between healthy persons
and individuals diagnosed with Major Depressive Disorder (Berman
et al., 2011; Bohr et al., 2012; Broyd et al., 2009; Greicius et al., 2007;
Sheline et al., 2010; Zeng et al., 2012; Zhang et al., 2011). These differ-
ences in brain connectivity are often interpreted as being a neural
mechanism reflecting depressive rumination (Berman et al., 2011;
Greicius et al., 2007; Hamilton et al., 2011; Whitfield-Gabrieli and
Ford, 2012), a negative repetitive thought process that characterizes
depression (Nolen-Hoeksema et al., 2008; Treynor et al., 2003). No re-
search, however, has directly tested whether the thinking during
“rest” is the same as that of directly induced rumination for participants
with depression compared to non-depressed participants. The first goal
of the present study was to investigate whether patterns of functional
connectivity during unconstrained resting-state epochs differed from ac-
tive rumination in depressed and healthy individuals. Uncovering this
would greatly aid our understanding of the neural processes associated
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with depressive rumination. To do so, we designed an experimental par-
adigm to assess baseline resting-states and compared those intervals to
induced ruminative states and resting-states that occurred after induced
rumination. The baseline resting-states were first tested so as not to be
contaminated by our induced-rumination procedure.

The second goal of the present studywas to investigate whether dif-
ferent results would be uncovered from seed-based analyses compared
to analyses of the full connectivity profile (i.e., how all brain areas are
connected to all other areas) for healthy controls (HCs) and individuals
diagnosed with depression. There has been some debate in the literature
wheremany studies report hyper-connectivity or hyper-activation in the
default-mode network in MDD (Berman et al., 2011; Broyd et al., 2009;
Greicius et al., 2007; Sheline et al., 2010), whereas other studies find de-
creased connectivity in MDD in a few different resting-state networks
(Veer et al., 2010). Recent studies have found that the full connectivity
profile was highly sensitive in discriminating healthy vs. depressed indi-
viduals at rest (Veer et al., 2010; Zeng et al., 2012). We sought to investi-
gate whether hyper- or hypo-connectivity results depended on whether
analyses were based on singular brain networks or all brain networks in
their totality. To this end,we implemented a seed-based analysiswith the
Posterior Cingulate Cortex (PCC) to focus our analysis on a single net-
work; the “default-mode” network and compared those results to an
analysis where we explored connectivity between all brain nodes.
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To identify global patterns of functional connectivity and how those
patterns differed across groups and cognitive states (resting states and
induced rumination states) we implemented a partial-least squares
analysis (PLS; Krishnan et al., 2011; McIntosh and Lobaugh, 2004;
McIntosh and Misic, 2013). As a multivariate statistical framework,
PLS determines the combination of groups and experimental conditions
that is optimally related to a spatiotemporal pattern of neural activity.
We used PLS in a novel way, by entering functional connections
between all possible pairs of brain regions as dependent variables,
rather than activation contrasts or singular seed correlations, which
are typically used. For the present study, this application of PLS offered
a few important advantages. First, we were able to capture patterns of
functional connections that covary together. Thus, these patterns are
naturally interpretable as coherent functional networks. Second, PLS
offers a framework to examine how these changes in functional connec-
tivity were related to changes in subjective mood, which is rarely per-
formed when examining functional connectivity. Lastly, we were able
to investigate the dominant functional connectivity patterns without
having to specify a priori hypotheses about the differentiation of groups
and experimental conditions. Thus, we used the analysis to determine
the similarities and differences between resting-states and induced ru-
mination in a completely data-driven way.

In summary, we set out to achieve two goals in this study. The first
was to examine whether resting-state epochs differed from induced
rumination states for participants diagnosed with major depression
compared to non-depressed controls. We assessed these potential dif-
ferences both behaviorally andwithmultivariatemeasures of functional
connectivity. The second goal of the study was to assess how different
measures of functional connectivity, i.e. seed-based vs. global connec-
tivity, could help to distinguish the groups during rest vs. induced
rumination.

Materials and methods

Note: These fMRI parameters, task parameters and analysis parame-
ters are similar to those fromMisic et al. (in press).

Participants

Seventeen participants diagnosed with clinical depression [mean
age=26.6 years, SD= 5.94; 12 female,meanBeckDepressive Invento-
ry (Beck et al., 1996) (BDI) = 29.8] and seventeen non-depressed con-
trols (mean age = 24.2 years, SD = 5.95; 12 female, mean BDI = 1.4)
participated in our study. Participants' diagnosis of MDD vs. a non-
diagnosis was determined by a trained clinician administering the
Structured Clinical Interview Diagnostic (SCID) IV (Williams et al.,
1992). Five MDD participants were taking antidepressants during scan-
ning. These medications included: Zoloft, Prozac, Levothyroxine,
Renlafaxin, Trazadone, Effexor and Wellbutrin. Three of the five partic-
ipants that were on medications were on more than one medication.
In addition, 14 of the 17 MDD participants were suffering a recurrent
episode. Seven of the 17 MDD participants had a co-morbid diagnosis
of anxiety, panic or social phobia, one participant had co-morbid
diagnosis of an eating disorder, one participant had co-morbid diag-
nosis of PTSD and one participant had co-morbid diagnosis of schizo-
phrenia. One MDD participant was excluded from the fMRI analysis
because of poor segmented normalization (i.e., part of cortex was
segmented off).

The Institutional Review Board of the University of Michigan
approved this study and all participants provided informed consent as
administered by the Institutional Review Board of the University of
Michigan. Participants had to refrain from marijuana use for at least
6 months prior to participation and had to refrain fromalcohol consump-
tion at least 24 h prior to participation. Participants were also excluded if
they had every used illicit drugs (i.e., cocaine, LSD). Participants were
compensated $25/h for their participation.
fMRI acquisition and preprocessing parameters

Images were acquired on a GE Signa 3-Tesla scanner equipped
with a standard quadrature head coil. Functional T2* weighted im-
ages were acquired using a spiral sequence with 40 contiguous slices
with 3.44 × 3.44 × 3mm voxels (repetition time (TR)= 2000ms; echo
time (TE) = 30 ms; flip angle = 90°; field of view (FOV) = 22 cm). A
T1-weighted gradient echo anatomical overlay was acquired using the
same FOV and slices (TR= 250 ms, TE= 5.7 ms, flip angle = 90°). Ad-
ditionally, a 124-slice high-resolution T1-weighted anatomical image
was collected using spoiled-gradient-recalled acquisition (SPGR) in
steady-state imaging (TR = 9 ms, TE = 1.8 ms, flip angle = 15°,
FOV = 25–26 cm, slice thickness = 1.2 mm).

Functional images were corrected for differences in slice timing
using 4-point sinc-interpolation (Oppenheim et al., 1999) and were
corrected for head movement using MCFLIRT (Jenkinson et al., 2002).
To reduce noise from spike artifacts, the data were winsorized prior to
normalization (Lazar et al., 2001) by exploring time courses for each
voxel and finding values that were 3 standard deviations (SDs) away
from the mean of that voxel's time course. Spikes that were above 3
SDs from the mean were made equal to the mean + 3 SDs and spikes
that were 3 SDs below themeanweremade equal to themean− 3 SDs.

Each SPGR anatomical imagewas corrected for signal in-homogeneity
and skull-stripped using FSL's Brain Extraction Tool (Smith et al., 2004).
These images were then segmented with SPM5 (Wellcome Department
of Cognitive Neurology, London) into graymatter, white matter and ce-
rebrospinal fluid and normalization parameters for warping into MNI
space were recorded. These normalization parameters were applied to
the functional images maintaining their original 3.44 × 3.44 × 3 mm
resolution, and then the functional images were spatially smoothed
with a Gaussian kernel of 8 mm.

To correct for physiological artifacts all of our functional data
underwent PHYCAA correction, which removes some known sources
of physiological noise from the data (Churchill et al., 2012). This
model estimates physiological noise components that originate from
consistent brain regions, and have strong temporal autocorrelations.
PHYCAA controls for both global sources of noise present in brain tissue
(e.g. gray and white matters), and noise that is concentrated in the
ventricles andmajor blood vessels (Churchill et al., 2012). This provides
a more conservative approach to removing global noise in the brain,
unlike standard mean regression (Fox et al., 2009), which may have a
partly neuronal basis (Schölvinck, et al., 2010) and can distort connec-
tivity patterns (Saad et al., 2012) particularly when comparing groups
(Gotts et al., 2013). Lastly, corrections based on physiological models
have been previously shown to reduce global confounds while simulta-
neously preserving functional connectivity relationships (Chang and
Glover, 2009).

Furthermore, 24 motion parameters were calculated, which includ-
ed the linear, squared, derivative, and squared derivative of the six
rigid-body movement parameters (Lund et al., 2005). A principal com-
ponent analysis was performed on these 24 motion parameters and
only the first principal component, which accounted for nearly 90% of
the motion variance, was covaried out from each voxel's time course
to remove any signal that could be attributed to motion. Lastly, func-
tional images were parceled into 116 different ROIs based on the AAL
template for analysis.

Task parameters

Participants initially performed two resting-state scans back-to-back
that were 8 min in length. Participants were instructed to look at a fix-
ation cross at the center of the screen and were told not to think
about anything in particular (i.e., they could think about whatever
they wanted to). After acquiring anatomical images of the brain, partic-
ipants were then taken out of the scanner and were asked to generate
four negative autobiographical memories. In order to facilitate the



Fig. 1. Schematic task diagram: This figure shows the order of conditions and when the
mood measurements were taken. Mood measurement 3 was not used in our analysis.
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generation of the memories, we provided four distinct prompts such as
“Please recall a specific time when you were rejected by someone you
loved or still love” or “Please recall a specific time when you were very
embarrassed.” Following such a prompt, participants had to indicate
whether they were able to think of a prompted event and if they were
successful in doing so they were asked to re-live the event for 30 s as
wells they could. Next, they had to rate how positively and negatively
they felt about that event using a visual-analog scale (VAS). The raw
VAS data was collected on a line of the length of 500 pixels. For the anal-
ysis these data were then converted into percentage values (0–100) for
easier interpretation.1 Finally, they were asked to describe the event in a
few sentences and to create a 2 to 3 word long cue that reminded them
of the event.

Following the creation of the events, participants went back into
scanner. Only considering the two most negatively rated events, we si-
multaneously showed the event description and its cue and instructed
participants to pair the two so that they were able to easily recall the
memory after seeing the corresponding cue. In a next step, participants
were asked to practice recalling the events after seeing the correspond-
ing cue. For that purpose, participants had to press a key as soon as they
were able to bring tomind the cued event. The cues were repeated until
participants were able to vividly recall the corresponding event in less
than 5 s.

Following this practice session, the induction period started. Partici-
pants were presented with a cue of one of the two memories that they
rated as beingmost negative. The cue stayed on the screen for 3min and
participants were instructed to re-live that experience as vividly as pos-
sible in their imagination and to go back to the time and place of the ex-
perience in their imagination and to re-experience it happening to them
all over again. After 3 min the cue of the second negatively rated event
was presented on the screen. After this negative mood induction,
participants again performed another resting-state scan where
they fixated centrally on a fixation cross for 8 min and were
instructed not to think about any particular memory. A schematic dia-
gram of this procedure is shown in Fig. 1.

fMRI analysis parameters

Whole-brain fMRI timeseries were parcellated into 116 brain areas
based on the automated anatomical labeling (AAL) template (Tzourio-
Mazoyer et al., 2002). These timeseries were then correlated together
to form a full correlation matrix for all regions correlated with all
other regions for each subject and condition.

Partial Least Squares (PLS) analysis was then performed on these
correlation matrices. PLS is a multivariate statistical method that is
used to relate two sets of variables together. In the case of neuroimaging
one set of variables could be brain data (e.g., BOLD signal per voxel per
time point) while the other set of variables could be the experimental
study design (e.g., groups and experimental conditions). The first step
in PLS is to compute the covariance between the two sets of variables
(i.e., the “cross-block” covariance). The second step of PLS is to perform
a singular value decomposition on the “cross-block” covariance matrix
to determine the combination of variables in each set that are optimally
related to each other (i.e., that account for the greatest proportion of
“cross-block” covariance). This combination, termed a latent variable
(LV), is comprised of a linear combination (i.e., weighted) of variables
from both sets (i.e., the brain and the experimental sets), as well as
a scalar singular value. For the brain set this combination is a spatial–
temporal pattern (saliences) and for the design set this is a contrast
between groups and conditions. The mutually orthogonal LVs are ex-
tracted in order of magnitude, i.e., the first LV explains the most
“cross-block” covariance and the second LV explains the second most
“cross-block” covariance. In the present study the brain data were not
1 Note: Allmoodmeasureswere collectedwith the sameVAS scale for both positive and
negative affect.
activations (i.e., voxels in time), but were rather functional connections
between the 116 AAL parcels. This produced 6670 unique connections
(i.e., (116 ∗ 115) / 2). As a result, the latent variable represents aweight-
ed combination of functional connections that optimally relate to our
groups and conditions (i.e., depressed vs. control for the 4 different ex-
perimental conditions).

The significance of each LV is assessed with permutation testing. A
set of 500 permuted samples were created by randomly re-ordering
subjects and condition labels without replacement for the brain set
(note: groups and conditions are permuted because PLS is uncovering
the weighted pattern of groups and conditions that explains the most
covariance in the between the experimental conditions and brain con-
nectivity) while the labels for the design set are maintained resulting
in 500 new covariance matrices. These covariance matrices embody
the null hypothesis and are then each subjected to singular value de-
composition as before resulting in a null distribution of singular values.
The significance of the original LV is assessed with respect to this null
distribution and the p-value is calculated as the proportion of permuted
singular values that exceed the original singular value. Critically, the
permutation test involves the whole multivariate pattern, and only a
single test is performed. As a result, correction formultiple comparisons
is not needed (McIntosh and Lobaugh, 2004).

The reliability with which each functional connection expresses the
LV pattern is determined with bootstrapping. A set of 500 bootstrap
samples are created by re-sampling subjects with replacement within
each condition (i.e., preserving condition labels, but not subject labels).
Each new covariance matrix is subjected to singular value decomposi-
tion as before, and the saliences of the bootstrapped dataset are used
to build a sampling distribution of the saliences from the original
dataset. The purpose of a constructed bootstrapped sampling distribu-
tion is to determine the reliability of each salience; saliences that are
highly dependent on which participants are included in the analysis
will have wide distributions. A single index of reliability (“bootstrap”
ratio) is calculated by taking the ratio of the salience to its bootstrap
estimated standard error. A bootstrap ratio for a given functional
connection is large when that functional connection has a large and
stable salience. Importantly, bootstrap ratios are measures of reliability
and robustness, but they are not used for statistical inference and do not



2 These tests were conducted as a separate PLS analysis containing only the resting 1
and induced rumination conditions and only the MDD group.

270 M.G. Berman et al. / NeuroImage 103 (2014) 267–279
involve any hypothesis testing. Thus, correction for multiple compari-
sons is not necessary. Moreover, bootstrap ratios provide a natural
way of thresholding the final network maps, which show only those
connections that exceed the 95% confidence interval of the bootstrap
distribution.

To summarize, the design saliences are weights (analogous to load-
ings in principal component analysis) that index the contribution of
different groups and/or conditions to a latent variable. Thus, the design
saliences may be interpreted as the dominant, data-driven contrast in
the data. For instance, in Fig. 5A, the design saliences are essentially 1
1 1 1 −1 −1 −1 −1, indicating primarily a group difference in func-
tional connectivity. To interpret the contrast, and which group has
greater connectivity, one must reference the corresponding bootstrap
ratios. In Fig. 5B, all bootstrap ratios were positive, indicating that
those functional connections express the contrast in Fig. 5A in a positive
manner, i.e. greater functional connectivity for healthy controls relative
to patients with MDD. Had there been any connections with negative
bootstrap ratios, they would be interpreted as expressing the opposite
contrast, i.e. greater functional connectivity for patients withMDD rela-
tive to healthy controls.

Behavioral PLS is a variant of PLS to examine the relationship
between brain and behavior as a function of group and condition. In
behavioral PLS the “cross-block” covariance is between the design
variables and the correlation between brain and behavior. The LVs
then reflect how group and conditions modulate brain and behavior
relationships.

All of our analyses were performed on unthresholded correlation
matrices because we wanted to preserve as much information from
the correlation matrices as possible. In this way, it is definitely possible
that a functional connection with a low magnitude would still be asso-
ciated with a latent variable. Importantly however, the only way that
this could happen is if that functional connection changed in a robust
and reliable way, due to the experimental manipulations. Thus, a
weak functional connection could still contribute to a latent variable if
it was reliably stronger or weaker for one group versus another, or for
one condition versus another.

Thus, our choice to use the original correlationmatrices was primar-
ily driven by the assumption that all statistically reliable changes in
functional connectivity are meaningful, regardless of whether they
involve or do not involve connections greater than some arbitrary
threshold. Had we thresholded the correlation matrices, we would be
assuming that group and condition effects are only expressed by high-
magnitude, supra-threshold connections, eschewing the possibility
of detecting any connections which go from being sub-threshold to
supra-threshold, or vice versa.

Lastly, correlation distributions tend to be biased and therefore re-
quire a Fisher r-to-z transformation. However, this is only necessary
for parametric tests and since PLS runs on resampling statistics, distribu-
tional assumptions are not necessary. As such performing a Fisher r-to-z
transformationwould yield identical results and thereforewe chose not
to perform the transformation on our correlation values.

Results

Behavioral results

A 2 (MDD vs. HC) × 4 [conditions: resting 1, resting 2, induced
rumination and resting 3] ANOVA examined changes in positive and
negative affect during the experiment. As expected, over the entire ex-
periment, MDDs showed greater negative affect, F(1,33) = 19.44,
p b .001, partial-eta2 = .37, and less positive affect, F(1,33) = 11.98,
p b .005, partial-eta2= .27 than non-depressed controls. Interestingly,
we found a significant group ∗ condition interaction for negative
affect, F(3,99) = 6.37, p b .001, partial-eta2 = .16, and a non-
significant effect for positive affect, F(3,99) = 2.06, p = .11, partial-
eta2 = .06.
As shown in Fig. 2, this interaction was driven by changes in mood
following the generation of negative events and the negative rumina-
tion induction, where mood in non-depressed controls became similar
to individuals diagnosed with MDD.

When comparing the largest changes in mood (i.e., the difference
in mood between resting 1 and resting 3), mood was significantly
lowered (i.e., decreasing positive affect and increasing negative affect)
for both groups: for the MDD group, the drop in positive affect
F(1,17) = 20.17, p b .001, partial-eta2 = .54 and the increase in
negative affect F(1,17) = 14.20, p b .005, partial-eta2 = .46 were both
significant; and for the HC group the drop in positive affect F(1,17) =
32.67, p b .001, partial-eta2 = .67 and the increase in negative affect
F(1,17) = 64.29, p b .001, partial-eta2 = .80 were both highly
significant. HCs exhibited significantly larger changes in mood
compared to MDDs following the negative mood induction,
F(1,33) = 3.65, p = .06, partial-eta2 = .10 for changes in positive
mood and F(1,33) = 11.93, p b .005, partial-eta2 = .27 for changes in
negative mood. These behavioral results show that mood changes are
not the same during unconstrained resting-state intervals as
compared to induced ruminative state, which provides initial behav-
ioral evidence that the two intervals (unconstrained rest vs. induced
rumination) are not identical. More specifically, the ruminations that
occur during unconstrained resting-intervals do not have the same
impact on mood as explicitly induced ruminative states.

fMRI connectivity results from the seed analysis

To determinewhether functional connectivity during unconstrained
resting-state intervals was similar to active rumination, we conducted a
first analysis that focused on the “default-mode” network. We used
seeds from the left and right posterior cingulate cortex (PCC), a
known member of the default-mode network (Fox and Raichle, 2007;
Fox et al., 2005) and parcellated the brain into 116 areas with the Auto-
mated Anatomical Labeling (AAL) template (Tzourio-Mazoyer et al.,
2002). For both the left and right PCC seeds we examined connectivity
between each seed and the other 115 nodes in the network. We per-
formed a multivariate analysis for changes in functional connectivity
by group (MDD vs. HC) and condition (resting 1, resting 2, induced ru-
mination and resting 3) usingpartial least squares (PLS) (Krishnan et al.,
2011; McIntosh and Lobaugh, 2004; McIntosh and Misic, 2013), which
determines the contrast of groups and conditions that explains the
most covariance between functional connectivity and groups and
conditions.

The results from this seeded PLS analysis are shown in Fig. 3. Fig. 3A
displays the strongest effect in the data (i.e., latent variable), where the
weightings on the groups and conditions explain themost covariance in
functional connectivity. A high or low bar signifies a strong relationship
between functional connectivity and that task condition and group. The
first latent variable was highly significant for both the right-PCC seed,
p b .001, and the left-PCC seed, p b .005, and explained over 57% of
the covariance in the data (over 65% for the right-PCC seed and over
57% for the left-PCC seed).

This analysis revealed three salient effects. First, the participants di-
agnosedwith depression aremuchmore sensitive (in terms of function-
al connectivity) to the different conditions in the experiment, whereas
the non-depressed participants are not as affected by the different con-
ditions (i.e., highly overlapping error bars). This is interesting given that
both groups showed large changes in mood for the different conditions.

Second, the induced rumination phase is different from the first
resting-state interval for the participants' diagnosed with depression
where the participant's with depression show reliable heightened con-
nectivity when analyzed using the left-PCC seed (p = 0.014) and the
right-PCC seed (p = 0.022). These results suggest that the neural



Fig. 2. Behavioral mood effects: Howpositive affect (top) and negative affect (bottom) changewith the different experimental conditions forMDDs andHCs. Thefirst moodmeasurement
was taken before the first resting-state scan, the secondmoodmeasurement was taken after the second resting-state scan, the thirdmoodmeasurementwas taken after participants gen-
erated their negative autobiographical memories (but was not analyzed because this measurement was confounded by relief from being out of the scanner), the fourth mood measure-
mentwas taken after participants learned to associate cuewordswith their negativememories, and thefifthmoodmeasurementwas taken after participants actively recalled thenegative
memories. *** indicates a significant difference p b .001; ** indicates a significant difference p b .01; *indicates a significant difference p b .05.
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processes of depressive rumination are not identical to the uncon-
strained resting-state intervals. Third, the results were nearly identical
whether the left or right PCC was used as the seed.

Lastly, the first resting-state interval when participants first enter
the fMRI scanner does not show the same connectivity as the next
resting-state scan for participants diagnosedwith depression.We tested
the significance of this effect by performing a seeded-PLS analysis (with
the left PCC seed) for the MDD group and included only the first two
resting-state scans; the effect was highly significant, p b .0001. When
the same analysis was performed for the healthy group there was no
statistical difference in connectivity for the first two scans, p N .17. The
same results are also found when using the right-PCC seed: significant
differences for resting 1 vs. resting 2 for MDD group p b .05, and no
significant differences for the control group p N .27. In addition,
when we included both groups in the seeded PLS analysis and exam-
ined only the first two resting-state scans we found a significant LV.
Namely, there were greater differences in the first two resting-state
scans for MDDs compared to controls (p = .008, cross-block covari-
ance = 91%). The same results are found with the right-PCC seed
(p = .004, cross-block covariance = 87%).

However, when testing this interaction effect more directly, we
subtracted the connectivity for resting 1 vs. resting 2 for each
group and ran PLS on the difference matrices. When doing so we
did not find a significant interaction. It seems that for the MDD
group, first entering the fMRI environment has an effect, which sug-
gests that in patients with depression, patterns of resting-state con-
nectivity may change considerably during a scanning session. This
effect may also be driven by past cognitive states before participants
entered the scanner, as past cognitive states have been found to
impact functional connectivity at “rest” (Waites et al., 2005). Impor-
tantly, these results must be interpreted with some caution, as the
interaction effect was not significant, largely because the direction
of the effect was similar for the healthy group, but with larger variance
(see Fig. 3).

With PLS, we can also uncover the connections that exhibit this ef-
fect most reliably. Fig. 3B shows the connections that reliably express
the effect demonstrated in Fig. 3A. Participants with depression show
increased connectivity between the PCC and the: subgenual-cingulate
cortex (SCC)/orbital frontal cortex (oFC), left and right inferior frontal
gyri (iFG), left and right temporal cortices, left and right occipital
cortices and left and right cerebella during induced rumination relative
to the other conditions. All of the robust connections are shown in
Table 1. While these results are reminiscent of some previous results
of heightened connectivity between the PCC and SCC in depression
(Berman et al., 2011; Greicius et al., 2007), they also show that the
effects may be stronger when participants are forced to ruminate on a
negative autobiographical memory, rather than engaging in uncon-
strained thinking during “rest.”

Relationship between seeded functional connectivity and behavior

In addition to examining differences in seeded connectivity by group
and condition, we also examined the relationship between changes in
functional connectivity and changes in mood. To determine this rela-
tionship, we ran a behavioral PLS analysis in which mood scores that
were collected close in time to the different experimental conditions
were included in the analysis to find relationships between seeded
functional connectivity, mood, condition, and group.

image of Fig.�2


Fig. 3. Seed PLS results of the PCC: The latent variables (LV) from PLS are displayed for the right PCC seed and the left PCC seed. A high or low bar signifies a strong relationship between
functional connectivity and that task condition and group. The results for both seeds are similar and show that connectivity is higher during the induced rumination phase for the MDDs
(A). In addition, the experimental conditions seem to affect the MDDs more than the HCs. In the bottom panel (B) the functional connections that most reliably show the LV patterns, as
determined by bootstrapping, are displayed for both the right- and left-PCC seeds. The connections in blue exhibit the direct LV pattern of increased connectivity during induced rumina-
tion for the MDDs.
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Fig. 4 displays the results from that analysis. Fig. 4A shows the
combination of group and conditions thatmaximizes the covariance be-
tween those conditions and seeded functional connectivity (a highly
significant LV; p = 0.004, 63% cross-block covariance). The most
reliable correlations between mood and functional connectivity were
observed in the control group during induced rumination. In Fig. 4B
we plot the connections that are most highly correlated with better
mood (i.e., lower negative affect from the VAS) during induced rumina-
tion and also during the resting-state scan after induced rumination.
While both groups show similar patterns during induced rumination,
the patterns are quite different in the resting-state scan after induced
rumination (see Fig. 4B resting 3). These effects are exacerbated in the
global functional connectivity analyses presented in the next sections.

fMRI connectivity results from global analysis

Results from the seeded PLS analysis demonstrated that uncon-
strained thinking during rest does not exhibit the same functional
connectivity patterns as active rumination for MDDs, but does not
present reliable differences for HCs. Areas that have been known to be
hyper-connected or hyper-active for individuals with MDD, such as
SCC (Berman et al., 2011; Drevets et al., 2008; Greicius et al., 2007;
Mayberg et al., 2005; Sheline et al., 2009a), were also found to show
greater functional connectivity during periods of active rumination.

Seeded analyses, while highly informative, characterize the connec-
tivity of a single brain area and do not capture how other, non-seed
areas, are connected with each other. In this way, seeded analyses
may be restrictive by focusing on connectivity in one network rather
than on how all brain networks may be affected by different groups or
experimental manipulations.

To address this issue, we performed a second analysis to examine
how the complete connectivity profile differed between MDDs and
HCs for the four different conditions in our experiment. We compared
the full connectivity matrix between the two groups, again utilizing
PLS. Fig. 5 shows the group-averaged correlationmatrices as a reference.
In the conducted PLS analysis individual participantmatriceswere used,
not the group-averaged matrices. The results from the PLS analysis of
global functional connectivity are shown in Fig. 6.
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Table 1
Reliable connections from seed analysis. Listed in the table are the connections
between AAL brain parcels that reliably change (i.e., bootstrap ratios greater
than 2.5) according to the first LV of the seeded analysis. The first column
shows the reliable connections with the left-PCC seed and the second column
shows the reliable connections with the right-PCC seed. The L and R suffixes
explain which hemisphere the parcel is in.

Left PCC seed Right PCC seed

Precentral_L Precentral_L
Precentral_R Precentral_R
Frontal_Sup_R Frontal_Sup_R
Frontal_Sup_Orb_L Frontal_Sup_Orb_L
Frontal_Sup_Orb_R Frontal_Sup_Orb_R
Frontal_Mid_L Frontal_Mid_L
Frontal_Mid_R Frontal_Mid_R
Frontal_Mid_Orb_L Frontal_Mid_Orb_L
Frontal_Mid_Orb_R Frontal_Mid_Orb_R
Frontal_Inf_Oper_L Frontal_Inf_Oper_L
Frontal_Inf_Oper_R Frontal_Inf_Oper_R
Frontal_Inf_Tri_L Frontal_Inf_Tri_L
Frontal_Inf_Tri_R Frontal_Inf_Tri_R
Rolandic_Oper_L Supp_Motor_Area_R
Supp_Motor_Area_L Olfactory_R
\_Motor_Area_R Frontal_Mid_Orb_R
Olfactory_L Insula_R
Olfactory_R Hippocampus_R
Insula_L Amygdala_R
Insula_R Occipital_Sup_L
Hippocampus_L Occipital_Sup_R
Hippocampus_R Occipital_Mid_L
Amygdala_L Occipital_Mid_R
Amygdala_R Occipital_Inf_L
Lingual_L Occipital_Inf_R
Occipital_Sup_L Fusiform_L
Occipital_Sup_R Parietal_Sup_L
Occipital_Mid_L Parietal_Sup_R
Occipital_Mid_R Parietal_Inf_L
Occipital_Inf_L SupraMarginal_L
Occipital_Inf_R Precuneus_L
Fusiform_L Caudate_L
Postcentral_L Caudate_R
Postcentral_R Putamen_L
Parietal_Sup_L Putamen_R
Parietal_Sup_R Pallidum_L
Parietal_Inf_L Pallidum_R
SupraMarginal_L Thalamus_L
SupraMarginal_R Thalamus_R
Paracentral_Lobule_L Temporal_Sup_L
Paracentral_Lobule_R Cerebellum_4_5_L
Caudate_L Cerebellum_6_L
Caudate_R Cerebellum_7b_L
Putamen_L Vermis_6
Putamen_R
Pallidum_L
Pallidum_R
Thalamus_L
Thalamus_R
Heschl_L
Temporal_Sup_L
Temporal_Sup_R
Temporal_Pole_Sup_L
Temporal_Mid_R
Cerebellum_4_5_L
Cerebellum_6_L
Cerebellum_6_R
Vermis_6
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As shown in Fig. 6A, there is a very strong effect of group in which
the healthy group exhibits overall greater functional connectivity com-
pared to the MDD group, independent of condition (p = 0.014, 93%
cross-block covariance). This increase in functional connectivity for
HCs was observed throughout the whole brain as shown in Fig. 6B
where connections in blue show reliably increased connectivity for
HCs and connections in red show increased connectivity for MDDs
(note: there were no such connections). As can be seen, there are
many connections that show overall greater connectivity for the HCs.
Importantly, this powerful group effect had been completely masked
in the seeded analysis.

Theremay be some concerns that differences in timing for the differ-
ent conditions could be affecting our results because the first two
resting-state scans are longer (8 min) than the induced rumination
condition (6 min). In addition, the rumination condition has partici-
pants thinking about 2 different memories (1 memory for the first
3 min and another memory for the second 3 min). To abate these
concerns we analyzed the first 3 min of each condition and find the
same pattern of results of hypo-connectivity for theMDD group relative
to the HC group across all of the conditions (p = .03, cross-block
covariance = 87%).

To determinewhether therewas any effect of condition in the global
connectivity analysis, we removed all potential group effects (that
dominated the differences between the groups) by subtracting the
group means for each group separately prior to the PLS analysis.
When doing so we found a non-significant effect (p = 0.07 cross-
block covariance = 37.59%), but the pattern mirrored that of the seed
analysis results of heightened connectivity forMDDs during induced ru-
mination. This means that while the effect of condition on functional
connectivity was stronger for brain networks that were connected to
the PCC (such as the default mode network), the impact of condition
on MDDs is also seen when the full brain connectivity profile is exam-
ined. In summary, for both analyses, functional connectivity is more
likely to change by condition for patients with depression compared
to controls; but both of these effects are smaller than the main effect
of group on global connectivity.

Relationship between global functional connectivity and behavior

Finally, we investigated the relationship between overall functional
connectivity and changes in mood. To determine this relationship, we
ran a behavioral PLS analysis, but this time used the full connectivity
profile to find relationships between global functional connectivity,
mood, condition, and group. Fig. 7 displays the averaged correlationma-
trices between mood and connectivity for both groups. It is apparent
from thosematrices that the relationship betweenmood and connectiv-
ity differs for the two groups (particularly in resting 3).

The first significant effect from the behavioral PLS analysis is shown
in Fig. 8A (p = 0.006, 54% cross-block covariance). Interestingly, the
strongest correlations between mood and functional connectivity
were observed during the induced rumination phase and, to a lesser ex-
tent, during the third resting-state scan, but fewer reliable relationships
between mood and functional connectivity were observed during the
first two resting-state scans. This effect is very salient when examining
the correlation between strength of functional connectivity and nega-
tive mood scores, which are shown in Fig. 7, where the most positive
correlations are in the induced rumination condition for both groups.

Fig. 8B shows the functional connections that were reliably correlat-
edwith negativemood and how these brain–behavior relationships dif-
fer between the two groups. During induced rumination, the HC group
exhibited strong relationships betweenmood and connectivity for ante-
rior–posterior connections in a more “ventral” network, while theMDD
group exhibited strong relationships for anterior–posterior connections
in a more “dorsal” network. For both groups increased connectivity in
those areas was related to lower negative mood as assessed with the
negative affect VAS score (i.e., better mood).

When examining the resting-state interval directly following the
induced rumination phase, we observed even stronger differences
between the groups. This resting-state interval is not as unconstrained
as thefirst two resting scans as it is highly contaminated by the negative
mood induction. However, it offers anopportunity to examine howboth
groups may regulate mood neurally after the rumination induction. The
HC group exhibited strong correlations between functional connectivity
and mood for anterior–posterior connections, and in particular high
connectivity in the occipital cortex. High connectivity in those areas



Fig. 4. PLS analysis relating seeded connectivity and mood: (A) shows the group and condition differences in the relationship between seeded connectivity and mood. Mood was only
reliably related to connectivity during the induced rumination phase for both positive and negative mood. (B) shows the connections that are most reliably related to better mood
(i.e., decreased negative affect) for the induced rumination phase and the resting-state scan after induced rumination (mood measures 4 and 5), as determined by bootstrap analysis.
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Fig. 5.Group averaged correlationmatrices by group and condition: For illustrative purposeswe display the group averaged correlationmatrices for each group and condition. The range is
from 0 to 1.
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Fig. 6. PLS results from global connectivity: PLS LV showing the dominant differences in connectivity. (A) Dominant differentiation of groups and conditions. (B) Functional connections
that reliably express the group difference shown in (A).

Fig. 7.Relationship betweenmood and connectivity: Group averaged correlationmatrices showing the correlation between negative affect and functional connectivity for both groups and
each condition. One can see the strong correlation betweenmood and connectivity in the induced rumination condition, with a subsequent reversal in correlation during resting 3 for the
controls. The range of correlation is between − .6 and +.6.
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Fig. 8. PLS analysis relating global connectivity and mood: (A) shows the group and condition differences in the relationship between connectivity and mood. Mood was only reliably
related to connectivity during the induced rumination phase for both positive and negative mood (determined by bootstrap analysis). (B) Shows the connections that are most reliably
related to negative mood for the induced rumination phase and the resting-state scan after induced rumination (mood measures 4 and 5).
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was related to increased negative mood. This is interesting because it is
possible that high connectivity with occipital–temporal areas may be
a neural mechanism of high visualization of the negative memory,
so showing weaker connectivity in those areas may be related to
improved mood and serve as a beneficial mood-regulation strategy.
For the MDD group there are few connections that significantly corre-
late with mood, which suggests that MDDs are more inconsistent in
their relationships between connectivity and mood following induced
rumination.
Results with a different parcellation scheme

All of the global results were found utilizing the AAL parcellation
scheme. One may wonder if our results are idiosyncratic to this
parcellation scheme or if these global results might generalize to
another parcellation scheme. Smith et al. (2011) caution the use of
atlas-based ROIs, which may not match functional ROI boundaries
and could lead to poor results. As such, we analyzed our data using
a second parcellation scheme that was based on meta-analyses of
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fMRI studies (please see Dosenbach et al., 2010 for a more in-depth
description) to build a functionally defined set of ROIs that would
cover much of cerebral cortex and the cerebellum (Dosenbach et al.,
2010).

Results from the meta-analysis of Dosenbach et al. (2010) yielded
160 peaks and we drew 10 mm diameter spheres around each of
those peaks to define our new ROIs for this functionally defined
parcellation scheme. Fig. S1 displays the (Dosenbach et al., 2010) ROIs
overlaid on top of the AAL atlas ROIs. We extracted themean timeseries
from each of these ROIs and re-ran the two global analyses. Importantly,
we obtained nearly the identical results utilizing this functionally
defined parcellation scheme where we find heighted connectivity for
the control group compared to the MDD group, p = 0.016, cross-block
covariance = 84.7%. These results are also plotted in Fig. S2.

In addition, we also found a similar LV pattern when examining the
relationship between the mood measures and global connectivity
utilizing the functionally defined ROIs, where mood and connectivity
were reliably related, p = 0.004, cross-block covariance = 38.7%. The
greatest correspondence between connectivity and behavior was
found during the induced rumination condition and the resting 3 condi-
tion for the healthy group. The fact that both of these resultswere nearly
identical for another parcellation scheme suggests that the results are
robust and are not idiosyncratic to how the brain is divided.

Discussion

The first goal of this study was determine whether unconstrained
resting-state intervals were similar to induced ruminative states behav-
iorally and neurally. We interrogated this question with a novel exper-
imental paradigmandnovel network analyses (i.e., PLS applied to global
functional connectivity) to examine the similarity of brain networks
during unconstrained resting-state intervals and induced ruminative
states.

First, mood was significantly altered between unconstrained
resting-state intervals and induced-ruminative states indicating,
that behaviorally, these cognitive states are not synonymous. This
effect may not be surprising for the HC group, but does show that un-
constrained thought patterns forMDDs are not synonymouswith active
rumination and given that it is assumed that MDD's ruminate during
rest, this effect is important. Second, with multivariate seeded analyses
with the PCC we found heightened connectivity for the MDD group
compared to the control group during induced ruminative states com-
pared to resting states. These results again signal that induced rumina-
tive states are not the same as unconstrained resting-state intervals,
particularly for individuals with depression.

While both groups showed significant changes inmood fromuncon-
strained states to ruminative states, HC brain networks remained
relatively unchanged for these different conditions. On the other hand
MDD brain networks did significantly change for the different condi-
tions and showed exacerbated connectivity in default-network areas,
including the Subgenual Cingulate Cortex (SCC) during induced rumi-
nation. The fact that HCs show changes in subjective mood, but main-
tain similar brain connectivity for unconstrained and ruminative states
suggests that HCs may have neural networks thatmay aidmore strong-
ly in mood regulation compared to MDDs, which may prevent future
rumination. These results are similar to previous research showing fail-
ures to down-regulate default-mode network activity when faced with
negative stimuli and overall heightened default-mode network activa-
tion when faced with negative stimuli in depression (Sheline et al.,
2009b). More generally, this heightened connectivity could reflect ex-
cessive self-directed thought (Buckner et al., 2008; Leech and Sharp,
2013; Raichle et al., 2001) in MDD.

Third, resting-state connectivity in the default-mode network on its
own differed between the two groups, such that back-to-back resting
state scans produced differences in connectivity for the MDD group,
but not for the HC group, though some caution should be taken in the
interpreting these results as the interaction was not found to be signif-
icant for group by resting 1 & 2. This result could mean that HCs are
overall more stable in their functional connectivity compared to
MDDs, and that MDDs may be more affected by the scanning environ-
ment compared to HCs. Therefore, one should not assume that MDDs
will produce stable connectivity patterns during unconstrained states
in the default-mode network.

Fourth, when examining global functional connectivity differences
between the two groups we found significant differences between
MDDs andHCs in overall connectivity. HCs exhibited overall higher con-
nectivity across the whole brain and similar results have been found by
other researchers studying depression with whole-brain networks
(Veer et al., 2010). These results in combination with our seeded analy-
sis results may help to reconcile results in the literature where some
find increased connectivity (Berman et al., 2011; Broyd et al., 2009;
Greicius et al., 2007; Sheline et al., 2010) in depression and others find
decreases (Veer et al., 2010). These results imply that MDDs have
increased connectivity in default-mode network areas, but decreased
connectivity elsewhere. Such results have important implications
when designing interventions to decrease rumination in depression.
For example, interventions, either pharmacological or behavioral, that
are tailored to increase overall connectivity while simultaneously
decreasing connectivity in the default-mode network may be the most
therapeutic. Certainly more research needs to be done to determine
how altering connectivity in these networks would alter depressive
symptoms, but this and other research are a starting point to identify
dysfunctional networks in MDD.

Similar global drops in connectivity have also been found when
comparing HCs and schizophrenic patients (Lynall et al., 2010) where
schizophrenic patients showed an overall drop in connectivity com-
pared to healthy controls. Other research in MDD has also suggested
the importance of examining global functional connectivity as global
functional connectivity has been found to be a highly sensitive met-
ric in distinguishing depressed and healthy individuals (Zeng et al.,
2012). As such, an overall drop in global functional connectivity may be
emblematic psychopathology more generally. In our data, these results
would have beenmissed if seed-based analyses had only been employed.

In related work, Harrison et al. (2008) examined changes in func-
tional connectivity in a group of healthy individualswhen thinking con-
tinuously about neutral vs. sad autobiographicalmemories. In thiswork,
the authors found an increase in functional connectivity in a paralimbic
network for sad vs. neutral recall and a decrease in functional connectiv-
ity in the default mode network for sad vs. neutral recall. The decreased
connectivity in the default mode network was thought to reflect
increased effort for healthy individuals when thinking about negative
information. Our results align nicely with these results as we found
heightened connectivity in the default mode network during induced
rumination for the MDD group relative to the healthy group suggesting
that overt rumination for them is less effortful compared to the healthy
group. Of course, more work is needed to disentangle effort from rumi-
nation, but these results and those of Harrison et al. (2008) seem to
point to similar conclusions.

Fifth, significant relationships between mood and functional con-
nectivity were most strongly observed during induced rumination and
the resting-state interval after the induced rumination phase. This was
further evidence that unconstrained “resting-states” differ from active
rumination states. This is not to say that rumination does not occur
during “resting-states,” but potentially the degree or foci of such rumi-
nation may differ when individuals are induced to ruminate. The rela-
tionship between mood and functional connectivity was also strongest
when using global functional connectivity metrics rather than seeded
connectivity metrics again demonstrating the utility of the global con-
nectivity measure.

We observed striking group differences in how connectivity was
related to mood during active rumination and also during the resting-
state phase after induced rumination, whichwould be heavily influenced
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from the negative rumination induction. Not surprisingly, carryover ef-
fects of previous mental states have been found to affect resting-state
connectivity (Barnes et al., 2009). While both groups exhibited similar
drops in mood during induced rumination, the networks that may
support mood regulation appear to be quite different between the
groups. HCs showed heightened connectivity in a more dorsal network,
whileMDDs showed heightened connectivity in amore ventral network.
Thesefindings are somewhat consistentwith recentfindings showing in-
creased nodal centralities in medial frontal and parietal areas in MDD
(Zhang et al., 2011), i.e., some of the same regions where we find height-
ened connectivity related to mood during induced rumination for MDD.
In addition, Ma et al. (2013) have shown that connectivity between the
cerebellum and the anterior cingulate, the ventromedial pre-frontal
cortex, vetrolateral pre-frontal cortex and the temporal lobe strongly dis-
tinguishes MDD from non-MDD groups. Consistent with this finding are
our results showing heightened connectivity between these areas that
was related to mood for the healthy group. Counter-intuitively, HCs
exhibited many connections that were correlated with mood post-
induced rumination, while MDDs did not. However, the connections be-
tween connectivity andmoodwere different during and after rumination
for the HCs and may provide a neural mechanism as to why HCs can re-
cover from negative mood states, but MDDs have more difficulty.

We did have a heterogeneous MDD population in this study, which
may have added noise to our results. However, evenwith this heteroge-
neous sample, we still found highly reliable and robust effects. In the fu-
ture itwould be interesting to see if there are differences in connectivity
within the MDD group based on medication, co-morbid diagnosis and
MDD recurrence.We our confident that our results are not driven by in-
dividual MDD participants because of the PLS resampling framework
that tests for the robustness of the effects based on which participants
are included/excluded from the analysis.

There could be other factors that may contribute to differences in
connectivity between the groups. One such factor could be arousal
levels. For example, lower connectivity between MDDs vs. non-
depressed controls could be driven by lower arousal levels, but lower
arousal levels characterize depression (i.e., these are not trivial factors
to de-couple). Therefore, one would need an experiment that manipu-
lated arousal levels, while not altering mood; a task that would not be
easily accomplished. Importantly, if arousal was a main contributing
factor, greater differences would be expected between groups during
the final resting-state scan, but the largest condition differences were
found during induced rumination, a condition that occurred earlier in
the experiment. Lastly, the fact that global connectivity did not differ
by condition suggests that arousal levels, task vigilance and fatigue
were not factors contributing to our results.

Others may worry that lower global connectivity may reflect dif-
ferences in motion or other physiological parameters. We are confi-
dent that motion is not a contributing factor because we covaried
out motion from the functional timeseries and the 6-rigid body mo-
tion parameters were not significantly different between the two
groups. We encourage readers to view recent work by Zeng et al.
(2014) showing that motion may actually reflect neurobiological
signal and therefore should not be regressed out with caution. In
addition, our use of PHYCAA (Churchill et al., 2012) to remove phys-
iological noise parameters from all participants should mitigate con-
cerns that differences in connectivity were due to physiology. Our
sample size was also relatively small because it was challenging to
recruit our MDD sample, which is a limitation of the current study.
However, the effects that we did obtain were robust under stringent
bootstrapping and permutation tests, which should ease concerns
regarding our sample size.

Our results show that when examining changes in functional
connectivity in relation to health and disease, it is important to explore
both specific neural networks such as those from our seeded analysis
and the entire functional connectivity landscape, which revealed strong
connectivity difference between groups. Therefore, we strongly
encourage researchers to examine and report results from global
connectivity in addition to results from singular networks.

Ironically, induced ruminative states led to stronger functional con-
nectivity differences between the groups even though the subjective
mood states between groups were more similar to one another during
induced ruminative states. This result suggests that subjective feelings
may manifest themselves quite differently neurally between the
two groups. Lastly, while rumination may occur during uncon-
strained resting-state intervals the connectivity patterns are heightened
during induced rumination in addition to the relationships with mood.
Therefore, resting-state intervals do not identically reflect depressive
rumination neurally or behaviorally.
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