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The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pat-
tern classification. However, the interaction between the properties of the analytical model and the parameters of
the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem.
Weaddressed this problemby evaluating a set of pattern classification algorithms on simulated and experimental
block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector
machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used twomethods
of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify
the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatialmaps
that indicated the relative contribution of each voxel to classification. Our evaluationmetricswere: (1) accuracyof
out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an ad-
ditional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connec-
tivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the
best performers were linear and quadratic discriminants (operating on principal components of the data matrix)
and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were
supported bywithin-subject analysis of experimental fMRI data, collected in a study of aging. This is thefirst study
that systematically characterizes interactions between analysismodel and signal parameters (such asmagnitude,
variance and correlation) on the performance of pattern classifiers for fMRI.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Analysis of fMRI data is a challenging task, because the signal of in-
terest is typically weak, distributed among various spatial locations,
and confounded by complex spatially correlated high-variance noise.
Selecting the best method for data analysis is still an open question. A
popular analysis approach is that of pattern classification, where brain
patterns are examined to predict the behavioral task being performed
when a given brain volume was acquired (see, for example, Haxby
et al., 2001; Kamitani and Tong, 2005; Kjems et al., 2002; Mitchell
et al., 2004; Morch et al., 1997; Strother et al., 2002; and review papers
byHaynes andRees, 2006;Norman et al., 2006; Pereira et al., 2009). This
is frequently posed as a binary classification problem,where two classes
of brain volumes correspond to two behavioral task conditions, and the
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803 777 9558.
ov).
classifiermodels attempt to predict the task conditions underwhich in-
dividual brain volumes were acquired. Classification of brain volumes is
one way to investigate the differences in cortical recruitment between
the two conditions.

A researcher who wants to perform classification of fMRI data faces
the challenge of selecting a classification algorithm among a large
group ofmethods, with varying properties and underlying assumptions.
Someof thesemethods are probabilistic, i.e., they construct a probability
distribution for each class, compute the likelihood of an fMRI volume
belonging to each class, and assign the volume to the most probable
class. For example, the multivariate Gaussian distribution is used to
model data distributions for the linear discriminant (LD) and quadratic
discriminant (QD) classification algorithms (see Seber, 2004, for a gen-
eral introduction to linear and quadratic discriminants). Another group
of classifiers is non-probabilistic: fMRI volumes are assigned to classes
without constructing a probabilistic model. A popular example of non-
probabilistic classifiers is support vector machines (SVMs; see Vapnik,
1995).
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In addition to probabilistic and non-probabilistic classifiers, there is
another distinguishing characteristic: whether the classifier is univari-
ate or multivariate. Univariate classifiers treat fMRI voxels as mutually
independent, whereas multivariate classifiers quantify the interactions
between voxels. Given that the brain is a network of interacting cortical
areas, the assumption of voxel independence does not hold well for
fMRI data. Nevertheless, univariate classifiers, such as Gaussian Naïve
Bayes method (GNB; see Mitchell et al., 2004; Schmah et al., 2010),
are more constrained than multivariate ones such as LD and QD, and
therefore are not as prone to overfitting.

Yet another distinction between classifiers is whether they are linear
or non-linear. Linear classifiers separate the classes with a linear plane,
and nonlinear classifiers define amore complex surface as the boundary
separating the classes. Nonlinear classifiers (such as QD, or SVM with
nonlinear kernels) aremoreflexible and potentially less biased than lin-
ear classifiers (such as LD or linear-kernel SVM), but they require larger
training sets for robust classification, due to the larger number of de-
grees of freedom (Morch et al., 1997).

Several studies have compared the performance of classifiers on fMRI
data (see, for example, Ku et al., 2008; Misaki et al., 2010; Schmah et al.,
2010). Each of these studies concluded that linear multivariate methods
such as LD and linear-kernel SVM, are more accurate than simpler
methods such as GNB and K-nearest-neighbors. Two studies (LaConte
et al., 2005; Misaki et al., 2010) have demonstrated that nonlinear ker-
nels do not have any significant advantage over linear kernels when
used in SVM classification; however, Schmah et al. (2010) demonstrate
a case when SVMs with nonlinear kernels (radial basis functions and
second-degree polynomial) outperform linear-kernel SVM. In general,
the interaction of the classifier properties (e.g. linear/nonlinear,
univariate/multivariate) with the properties of the BOLD signal (such
as connectivity and contrast-to-noise ratio) is still not well understood.
In the current paper, we investigate this problem by evaluating the per-
formance of several classifiers on simulated fMRI data sets for varying
signal parameters.

The studies described above evaluated the performance of classifiers
on the accuracy of out-of-sample classification. However, accurate clas-
sification of data is usually not the sole purpose of an analysis; it is
equally important to identify the cortical areas where the difference be-
tween the classes is localized, in order to interpret the neuronal basis
underlying the cognitive contrasts. In otherwords, it is important to ob-
tain a spatialmap of classification,where voxels areweighted according
to their contribution to classification. Kjems et al. (2002) have proposed
a method of constructing “sensitivity maps” of voxels' contribution to
classification. These maps have been developed for SVMs with linear
(LaConte et al., 2005) and nonlinear (Rasmussen et al., 2011) kernels,
as well as kernel logistic regression and kernel LD (Rasmussen et al.,
2011). We have demonstrated a way to construct sensitivity maps for
QD, and compared them with LD sensitivity maps (Yourganov et al.,
2010). In the present paper, we propose a modification to the method-
ology of sensitivitymap construction (discussed in “Constructing spatial
maps for classifiers”) and show how to construct spatial maps for linear
and non-linear GNB.

Construction of spatial maps allows one to evaluate a classifier with
ametric that is complementary to classification accuracy: the reproduc-
ibility of maps. This metric has been used in several neuroimaging stud-
ies (e.g., LaConte et al., 2003; Raemaekers et al., 2007; Strother et al.,
1997, 2002; Tegeler et al., 1999). It has also been established that re-
producibility is monotonically increasing with signal-to-noise ratio
(LaConte et al., 2003), but the influence of functional connectivity on re-
producibility of different classificationmodels has not been studied sys-
tematically; we investigate this problem with simulation studies
presented in the current paper. We measure within-subject reproduc-
ibility by computing the correlation between two spatial maps con-
structed from two independent samples drawn from the subject's data
(Strother et al., 1997). Thresholding of maps is not required. This mea-
sure evaluates the stability of spatial locations where the neural effect
of interest is expressed. Taken together, prediction and reproducibility
are complementarymetrics that reflect bias-variance tradeoffs in classi-
fier model parameterization. Complex, flexible models tend to be more
predictive but less reproducible (i.e. exhibiting greater variance of
model parameters), whereas simplermodels tend to bemore reproduc-
ible but less predictive (i.e. more biased).

In the current paper, we compare a set of classification algorithms:
LD, QD, linear SVM, and GNB (linear and non-linear), on both simulated
and experimental fMRI data.We consider onlywithin-subject classifica-
tion tasks.We use the NPAIRS framework (Strother et al., 2002, 2010) to
evaluate each classification algorithm using twometrics: out-of-sample
classification accuracy, and reproducibility of spatial maps. Metrics are
computed by splitting the data set into two independent subsets of ap-
proximately same size. The first subset is used to train the classifier, and
the second subset serves as an independent test set to evaluate classifi-
cation accuracy; then, these roles are switched. Reproducibility of
spatial maps is computed by constructing the spatial maps (which indi-
cate the relative contribution of each spatial location to classification)
on the two subsets, and calculating the Pearson's correlation coefficient
between the two spatial maps. Several such splits are performed, and
the mean value of each of the two metrics is taken across the splits.

Previously, the NPAIRS framework was applied to evaluate the effi-
cacy of pre-processing techniques (Churchill et al., 2012a, 2012b;
LaConte et al., 2005; Strother et al., 2004).We show that this framework
is also useful for evaluating and comparing different classifier models.
Our paper presents two such evaluations: on a group of simulated
fMRI datasets, and on experimental fMRI data collected in a study of
age-related changes in cognitive ability. The main advantage of simula-
tions is the knowledge of “ground truth”, i.e. underlying parameters of
active signal. We have focused on three parameters: mean magnitude
and temporal variance of the signal, and connectivity across active
areas; multiple datasets were constructed for different levels of these
parameters, in order to systematically investigate their influence on
performance of the classifiers. In experimental data, we do not have
such knowledge of the “ground truth”; to partially compensate for
this, we performed our evaluation on task contrasts of varying strength
(a “strong” contrast is defined by a pair of dissimilar behavioral tasks
that are known to recruit different cortical networks) as well on data
coming from subjects belonging to different age groups.

The current study evaluates the classifiers on 6300 simulated
datasets, in addition to 47 experimental fMRI datasets. Due the high
computational burden of analyzing these large datasets, this paper
focuses on classifier models that require a maximum of one tuning pa-
rameter. Alternative models with multiple parameters include SVMs
with radial basis function (RBF) kernels, which have two parameters
and therefore require grid optimization. SVMs with RBF kernels have
been shown to accurately classify fMRI data in some, but not all, situa-
tions (Misaki et al., 2010; Schmah et al., 2010). Construction of spatial
maps for RBF kernels has been described by Rasmussen et al (2011);
evaluating them against spatial maps created for probabilistic classifiers
is an interesting direction for future research. Another limitation in our
analysis is our focus on binary classification problems (for evaluation of
classifiers on multi-class problems, see Hassabis et al., 2009; Schrouff
et al., 2012), an on within-subject classification.

Materials and methods

We compared classifiers on both simulated and experimental fMRI
datasets; the experimental data were obtained from a battery of cogni-
tive tasks, assessed in different age groups (Grady et al., 2010). The sim-
ulations were used to characterize classifiers as a function of different
signal properties, including mean signal change, variance and network
correlation. Similarly, we performed classification of experimental
data for a range of within-subject binary problems, which implicate a
variety of different brain networks, at different contrast strengths. For
all analyses, we compared prediction and spatial reproducibility of the



Fig. 2. Timecourse of the kth active area. The “baseline” epoch is composed of zero-mean
Gaussian noise (with standard deviation vk), and the “active” epoch contains a sum of
baseline noise and Gaussian active signal. Mean and variance of the active signal are con-
trolled by the parameters M and V, respectively.
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different classifiers. In addition, we performed ROC analyses on the
maps made for the simulated data, in order to compare the signal
detection (measured with the area under the ROC curve) against the
data-driven NPAIRS metrics. To account for high across-subject hetero-
geneity in the experimental data set, we performed some additional
evaluation of classifiers: nonparametric testing of ranking for our
metrics of prediction and reproducibility, and consensus analysis of
the brain maps with DISTATIS (a multidimensional scaling procedure;
Abdi et al., 2009).

Data

Simulated data
We utilized computer-generated data to simulate a blocked-design

experimentwith two conditions: activation and baseline. Full description
of the simulation is given in earlier papers (the simulation algorithm
was developed by Lukic et al., 2002; our modifications of the algorithm
are described in Yourganov et al., 2011). Each simulated run consisted
of 10 activation epochs and 10 baseline epochs, in an alternating order.
All volumes consisted of a single slice (60 × 60 pixels). The volumes in
the baseline condition were created by adding white Gaussian noise to
the simplified “brain-like” background structure (the “background
signal”); noise was spatially smoothed using a Gaussian filter with full
width at half-maximum (FWHM) of 2 pixels. After smoothing, the stan-
dard deviation of the noise was 5% of the background signal. Images in
the activation condition contained 16 Gaussian-shaped signal blobs dis-
tributed over the image and added to the smoothed noisy background
image. The FWHM of the activation blobs (that we will call “active
areas”) varied between 2 and 4 pixels. Fig. 1 shows the background
structure with andwithout activation, and Fig. 2 shows the composition
of the timecourse of an active area (where the baseline epochs consist of
noise, and the active epochs contain a mixture of active signal and
noise). To simulate the hemodynamic response, each pixel's time course
was convolvedwith amodel hemodynamic response function (HRF) de-
fined by the sum of two Gamma functions (Glover, 1999). Parameters of
the HRF model have been taken fromWorsley (2001), with TR (time to
acquire the full brain volume) set to 2 s.

Amplitudes of the active areas were sampled from a multivariate
Gaussian distribution. The mean amplitude of each activation was set
proportional to the local value of the background signal:

E ak½ � ¼ Mbk; ð1Þ

where ak is the amplitude of kth activation, E[ak] is its expected value, bk
is the value of noise-free baseline image at the center of the kth area, and
M is the proportionality constant. To study the effect of M on perfor-
mance of the algorithms, M was set to different levels (0, 0.02 and
0.03) in different realizations of our simulated experiment.
Fig. 1. Examples of simulated single-slice volumes in the baseline (left)
The variance of the amplitude of theGaussian activation signal in our
multivariate Gaussian distribution, denoted byσk

2, was defined propor-
tionally to the variance of the independent background Gaussian noise
added to each pixel, vk2:

σk
2 ¼ Vvk

2
; ð2Þ

where the proportionality constant V was varied from 0.1 to 1.6 (in in-
crements of 0.25), in different realizations of the experiment, whereas
vk was kept fixed at 5% of the background signal. In this paper, we
refer to V as the relative signal variance, which may be thought of as a
formof physiological variation of the activation signal. The third param-
eter of our multivariate Gaussian model was the correlation coefficient,
ρ, which defined the covariance betweenGaussian activation signal am-
plitudes at the kth and lth locations (k ≠ l):

cov ak; alð Þ ¼ ρσkσ l: ð3Þ

The value of ρ was set to 0, and 0.5 and 0.99 to define a simple dis-
tributed spatial network (Lukic et al., 2002). This variable served to ma-
nipulate the connectivity between the areas of activation.

The amplitudes of the multivariate Gaussian signal in the “active”
state are defined by the three parameters: M, V and ρ, which are the
same for all active areaswithin a simulated data set. Of these parameters,
and activation (right) conditions. Additive noise is not displayed.

image of Fig.�2
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M regulates the contrast-to-noise ratio, V regulates the dynamic range of
the signal, and ρ defines connectivity. The details are described in
Appendix A. For each active locus,M and V define themean and the var-
iance, respectively, of the Gaussian signal. For each setting of (M, V, ρ),
we generated 100 data sets. Also, for ROC analysis, we generated an ad-
ditional series of 100 “null” data sets that consisted entirely of baseline
volumes.

When analyzing simulated data, the first 2 volumes of each epoch
were discarded because of the delayed temporal response of HRF. This
reduced the size of the data sets to 160 volumes. Voxels outside the
“simulated brain” were discarded, leaving 2072 voxels for further
analysis.

Experimental data
We also analyzed a set of experimental fMRI data that was collected

by Grady et al. (2010). This study examined the impact of aging on cog-
nitive abilities. Participants from two age groups (young, 20–31 years,
19 subjects; older, 56–85 years, 28 subjects) were scanned on a 3 T
scanner (TR/TE = 2000/30 ms, flip angle = 70°, 28 axial slices, slice
thickness 5 mm), during performance of several behavioral tasks, for
four separate scanning runs. All four runs were acquired during the
same session. We analyzed the epochs acquired during the execution
of the following tasks:

1. fixation to a dot presented in the middle of the screen (“FIX”);
2. reaction task: detection of a visual stimulus and reporting its position

on the screen (“RT”);
3. perceptual matching, where the participant had to match the “target”

sample presented in the upper portion of the screen to one of the
three stimuli presented in the lower portion (“PM”);

4. delayedmatching test of workingmemory, where the target stimulus
was presented and then removed from the screen, followed by a 2.5 s
blank-screen delay. After this, three stimuli were presented and the
participant had to match them to the target (“DM”).

During each experimental run, the fixation condition was presented
in eight 20-second blocks. The other conditions were presented in
blocks that were interleaved with the fixation blocks, each block lasting
approximately 40 s (the duration varied slightly because the stimuli
were generated at the time of scanning). There were 2 blocks per run
for each of these three conditions, giving (8 blocks) × (20 scans) =
160 scans total per condition, on average.

Preprocessingwas carried out in several steps. First, the transforma-
tion of aligning functional images to a common atlaswas computed (de-
tails are described in Grady et al., 2010) but not immediately applied.
Then the unaligned images underwent slice time correction (with
AFNI package; Cox, 1996) and motion correction (with AIR package,
Woods et al., 1998). Afterwards, the corrected imageswere transformed
into a common anatomical space. Then the images were smoothed
with a Gaussian kernel (FWHM=7mm), and artifact-carrying compo-
nents were removed by using independent component analysis and
performing manual identification of ICs with probable motion and
physiological artifact (using MELODIC package; Beckmann and Smith,
2004). The white-matter signal (measured near the corpus callosum)
was regressed from the time course of each voxel. The same was done
for the cerebro-spinal fluid (CSF) signal, measured at the fourth ventri-
cle. Finally, linear trends were removed. The voxels outside of the brain
were masked out; additional voxels on the top of the brain were
discarded because they showed high susceptibility to motion in several
subjects. 21,401 voxels from thewhole brainwere retained for analysis.

This data set was used to evaluate the performance of several classi-
fiers in a series of binary classification problems. Contrasts for each
problem were defined by a pair of behavioral tasks. The volumes ac-
quired during the corresponding blocks were classified according to
the task performed. We performed our analysis on 4 contrasts: RT/FIX,
DM/FIX, DM/RT and DM/PM. For each contrast, we ensured that the
number of volumes was the same in both classes. After subsampling
from the larger class, the number of volumes per class varied between
144 and 179 across subjects.

Performance metrics

Out-of-sample classification accuracy
A natural way to evaluate the performance of a classifier is to esti-

mate how often it correctly classifies out-of-sample data, i.e. the data
that are not included in the training set.We follow a cross-validation ap-
proach (see e.g. Efron and Tibshirani, 1993), where the data are repeat-
edly split into training and test sets. For each split, we record the
proportion of test set vectors that were classified correctly, and then
compute themean value across splits; this is ourmeasure of classification
accuracy. We use classification accuracy as our predictionmetric, as it al-
lows us to compare both probabilistic (e.g. LD) and non-probabilistic
(e.g. SVM) classifiers in the same framework.

Our resampling scheme is based on theNPAIRS framework proposed
by Strother and colleagues (see Strother et al., 2002, 2004, 2010), where
the data set is repeatedly split into two sets of approximately equal size.
For each split, a classifier is trained oneachhalf separately, the other half
serving as a test set to evaluate classification accuracy. Then, these roles
are switched; and finally we take the mean of the two classification ac-
curacies. Our metric of classification accuracy is the mean frequency,
across splits, of correct assignments of test data.

To avoid a possible bias in our evaluation, we must ensure the inde-
pendence of the training and test set (the two “split-halves”). We do
this by designing our splitting algorithms to ensure a sufficient time
separation between any two volumes from different split-halves. In
simulated data, aminimum separation of 40 s is used, which guarantees
the independence of the two split-halves, since the timecourse of the
HRF kernel in our simulations is 20 s long. We create 20 training-test
splits for each simulated data set. In the experimental data, there are 4
runs for each subject, with the time between runs being much longer
than typical estimates for the latency of the BOLD signal, so it is suffi-
cient to ensure that, for each split, all volumes from a given run are
assigned to the same split-half. This strategy gives 3 possible training-
test splits (2 runs in each half-split).

Reproducibility of spatial maps
Following Strother et al. (2002), we also evaluate our classifiers

using a reproducibility metric for spatial maps. A spatial map can be
expressed as a vector of voxel weights, of the same size as our data
vectors, where each weight reflects the contribution of the correspond-
ing voxel in classifying the data. The process of creating spatial maps for
each classifier is described in “Constructing spatial maps for classifiers”.

We use the split-half resampling framework and compute a spatial
map for each half. We then compute the Pearson's correlation coeffi-
cient on the paired voxel values of the twomaps. Themean value of cor-
relations (across splits) is our measure of spatial map reproducibility.
This metric is complementary to classification accuracy, as it measures
the robustness of classifier's spatialmaps; this is a property not captured
by classification accuracy.

Area under ROC curve
When evaluating a classifier on our simulated data, we use another

well-known performance metric: area under receiver-operating-
characteristic (ROC) curve. Full details of our ROC analysis are described
in an earlier paper (Yourganov et al., 2011); herewe give a brief descrip-
tion. To build a ROC curve for a setting of (M, V, ρ), we construct 100
simulated data sets with two conditions (“activation” and “baseline”),
which we call H1 sets, and also 100 simulated data sets of the same
length consisting of only the “baseline” volumes, which we call H0

sets. In the H0 sets, there is no active signal that is present exclusively
in one class but not the other. The H0 andH1 sets are analyzed by a clas-
sifier algorithm, creating a spatial map for each set. In this map, a voxel
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weight that is above a particular threshold indicates an “active” voxel.
For the H1 set, an “active” voxel in one of the 16 active areas is a true
positive, as it is known to contain a mixture of active signal and noise.
For H0, an “active” voxel is a false positive, as these data contain only
baseline noise. In each simulated active brain area, we use the 100 H1

and H0 datasets to measure the fraction of true positives and false pos-
itives (respectively). A ROC curve is a plot of false-positives frequency
versus true-positives frequency, for all possible thresholds.

A ROC curve is constructed for the peak voxels at the centers of the
16 active areas in H1. We vary the threshold from most conservative
(when no voxels pass the threshold) to most liberal (when all voxels
pass). For each threshold, we compute the frequency at which the
voxel (active in H1) surpasses this threshold. A range of thresholds
gives us a set of (true positive frequency, false positive frequency)
pairs. We use the LABROC software (Metz et al., 1998) to generate
smooth ROC curves from a set of discrete (FPF, TPF) pairs. Area under
this curve corresponds to the probability that the classifier will assign
a higher value to a voxel from H1 than to a voxel from H0; it is propor-
tional to Mann–Whitney U test (Mason and Graham, 2002), which is a
non-parametric equivalent to Student's unpaired t test (Conover,
1999). Rather than examining the area under the whole curve, we ex-
amine the partial area that corresponds to false positive frequencies be-
tween 0 and 0.1; this is equivalent to setting the critical significance
level (α) equal to 0.1 (Skudlarski et al., 1999).

An alternative approach to constructing ROC curves (e.g., Skudlarski
et al., 1999) does not involve H0 sets. The frequency of false and true
positives is computed from spatial maps generated for simulated H1

sets. Since we knowwhich voxels are active in H1 sets, the true positive
frequency is computed from a ratio of active voxels where the voxel
weight surpasses a given threshold. False negative frequency is the
ratio of above-threshold voxels that are known not to be active. This
technique works well for univariate analysis, because the voxels that
are used to compute true positive frequency are independent from
voxels that are used to compute false positive frequency. However, if a
spatialmap is createdwith amultivariatemethod, theweights in differ-
ent spatial locations are not independent. Therefore, ROC analysis of
spatialmaps created bymultivariate classifiers requires an independent
group of H0 sets to compute the false positive frequency.

As a performance metric, the area under the ROC curve is similar to
reproducibility because both these metrics evaluate spatial maps. The
critical difference is that reproducibility evaluates the consistency of
spatial maps, whereas the ROC metric compares these maps against a
“gold standard”, utilizing the ground-truth knowledge of which voxels
are truly active and which are not. Both metrics could be applied to
simulated data, but application of ROCmethodology to spatial maps ob-
tained from experimental data is infeasible, due to the lack of this
ground-truth knowledge. However, a combination of classification ac-
curacy and reproducibility can, to a point, serve as an alternative to
ROCmethodology (LaConte et al., 2003; Strother et al., 2002); classifica-
tion accuracy uses a different kind of “ground truth” (i.e., the classmem-
bership of volumes).
Classification algorithms

We use our evaluation framework to assess the performance of sev-
eral classifiers that varied on the following aspects: probabilistic versus
non-probabilistic, linear versus non-linear, and univariate versusmulti-
variate. Our pool of classifiers is applied to binary classification prob-
lems (e.g. comparing tasks 1 and 2), where the class assignment of an
fMRI volume x is determined by the sign of a decision function D(x): if
it is positive, the volume is assigned to task 1, and if it is negative, to
task 2. Zeros of D(x) correspond to ambiguous cases that are equally
likely to be acquired during task 1 and 2. A surface where D(x) = 0 is
called the decision boundary. The goal of every classifier is to build
D(x), under a specific set of model assumptions.
Most classifiers in our pool are probabilistic, i.e. they assign the vol-
ume to the most probable class (e.g. experimental task condition). In
this case, a decision function is typically defined as a logarithm of the
ratio of posterior probabilities:

D xð Þ ¼ log
P x∈ class1jxð Þ
P x∈ class2jxð Þ : ð4Þ

If the prior probabilities of the two classes are equal (P(x∈ class1)=
P(x ∈ class2)), we can use Bayes' theorem to re-express the decision
function as a logarithm of the likelihood ratio:

D xð Þ ¼ log
P xjx∈ class1ð Þ
P xjx∈ class2ð Þ : ð5Þ

Probabilistic classifiers construct a probability distribution to model
each class, so the likelihood functions can be computed directly. We
have also included onenon-probabilistic classifier into our pool, support
vector machine (SVM) with a linear kernel, which computes the deci-
sion function without building a probabilistic model for the classes.

Probabilistic Gaussian classification
The probabilistic classifiers in our pool use themultivariate Gaussian

distribution to compute the likelihood function for both classes.
Quadratic discriminant (QD) is themost generalmethod. For two classes,
the decision function is

DQD xð Þ ¼ 1
2
log

Σ1j j
Σ2j j−

1
2

x−μ1ð ÞTΣ1
−1 x−μ1ð Þ þ 1

2
x−μ2ð ÞTΣ2

−1 x−μ2ð Þ;

ð6Þ

whereμi andΣi are themean vector and the covariancematrix of the ith
class (throughout the paper, we use boldface lowercase, boldface up-
percase, and italic letters to denote vectors,matrices and scalars, respec-
tively). The QD decision function is a quadratic form in x (producing a
quadric decision boundary).

Linear discriminant (LD) is amore constrained classifier: thedistribu-
tions for the two classes are assumed to be homoscedastic, i.e. to share
the same covariancematrixΣ. The decision function of Eq. (6) simplifies
to a linear form:

DLD xð Þ ¼ − x−1
2

μ1 þ μ2ð Þ
� �T

Σ−1 μ2−μ1ð Þ: ð7Þ

Gaussian Naïve Bayes (GNB) classifiers constrain the covariance ma-
trices to be diagonal. This is equivalent to assuming that the dimensions
of our data (that is, voxels) are independent of each other; therefore,
GNB is a univariate classifier, whereas QD and LD are multivariate. We
evaluate two versions of GNB: linear GNB (GNB-L) adds a further con-
straint of homoscedasticity for classes 1 and 2, whereas nonlinear GNB
(GNB-N) allows the covariance matrices to differ across classes. Deci-
sion functions for linear and nonlinear GNB are given by:

DGNB‐L xð Þ ¼
Xp

j¼1

xj−μ2 j

� �2− xj−μ1 j

� �2

2σ j
2 ; ð8Þ

DGNB‐N xð Þ ¼
Xp

j¼1
log

σ2 j

σ1 j
−
Xp

j¼1

xj−μ1 j

� �2

2σ1 j
2 þ

Xp
j¼1

xj−μ2 j

� �2

2σ2 j
2 : ð9Þ

Here, μ1j and μ2j denote the jth element of the class-specific mean
vectorsμ1 andμ2;σ1j andσ2j denote the jth diagonal element of the (di-
agonal) within-class covariance matrices Σ1 and Σ2; p denotes the total
number of voxels in the analysis and, finally, σj denotes the jth diagonal
element of the common covariance matrix Σ. It should be noted that
GNB-L is very similar to the univariate general linear model (GLM).
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Both methods use the assumptions of voxel independence, normality
and homoscedasticity, to different ends: GNB-L predicts the class mem-
bership of a test volume, whereas GLM estimates the statistical signifi-
cance of each voxel in training volumes. An important difference
between thesemodels is that GNB-L is performed directly on the binary
task design (where transitional volumes at the beginning of each epoch
are discarded),whereasGLM is typically performed after convolving the
task design with an HRF.

In all the algorithms described above, we estimate population pa-
rameters μi and Σi with the unbiased maximum-likelihood estimators
mi and Si, computed on the training set:

mi ¼
1
N

XNi

k¼1
xk; ð10Þ

Si ¼
1

N−1

XNi

k¼1
xk−mið Þ xk−mið ÞT: ð11Þ

Here,Ni is the number of training volumes for the ith class. For the LD
and linear GNB, the pooled covariance matrix S is the average of S1 and
S2. Probabilistic classifiers, aswell as the framework for their evaluation,
were implemented in MATLAB.

Non-probabilistic classification: support vector machines
Support vector machines (SVM) are a popular class of non-

probabilistic classifiers. They do not build a probabilistic model for the
classes, but create the decision function in a way that simultaneously
maximizes themargin between the two classes andminimizes themis-
classification rate (Cortes and Vapnik, 1995). We have tested the sim-
plest version of SVM that uses a linear kernel. The decision function
for a linear-kernel SVM is linear in x:

DSVM xð Þ ¼ wTx þ b; ð12Þ

where w is the normal of the optimal discriminant hyperplane and b is
the bias term. The vectorw and the scalar b are found byminimizing the
expression 1

2 wk k2 þ C∑Ntrain
n¼1 ξn

2, subject to the constraints:

tn w � xnð Þ≥1−ξn; ð13Þ

where x1,…, xN are the training volumes and tn is 1 for volumes in class
1 and −1 for volumes in class 2. The problem of finding optimal set of
(w, b, ξ1,…,ξN) has a unique solution, which can be found by quadratic
programming. The variables ξ1, …,ξN are called slack variables; ξi mea-
sures the degree of misclassification for vector xi. The quantity 2/||w||
is called themargin. The tradeoff hyperparameter C specifies the impor-
tance of accuracy of classification relative to maximizing the margin;
higher values of C force the slack variables to be smaller. We used a
MATLAB library LIBSVM (Chang and Lin, 2011) to compute the SVM
model for a given value of C.

Constructing spatial maps for classifiers
A spatial map, computed for a given classifier, indicates the relative

importance of different spatial locations in building the decision bound-
ary.We propose to construct spatial maps by taking a voxel-wise partial
derivative of the decision function D(x); this derivative demonstrates
how much the decision boundary is dependent upon a value of a
given voxel. This is similar to the technique of “sensitivity maps” pro-
posed by Kjems et al. (2002). The value of the ith voxel of the spatial
map is computed as

yi ¼
1
N

XN
j¼1

∂
∂xi

D x jð Þ� �
; ð14Þ

where x(j) is the jth volume, andN is the number of volumes. Essentially,
we take the decision function for each volume, compute its partial de-
rivative at a specific voxel location, and average it across all volumes.
Therefore, yi indicates the average impact of the ith voxel on the deci-
sion function, and reflects the importance of this voxel in classification.

The sign of ∂
∂xi D xð Þ encodes the class preference of the ith voxel: it in-

dicates whether the signal in that voxel should be increased or de-
creased in order to increase D(x) (Rasmussen et al., 2012A). For a
two-class problem, we can say that a positive value of ∂

∂xi
D xð Þ corre-

sponds to a preference of the ith voxel for task A, and a negative value
corresponds to a preference for task B. Therefore, signed sensitivity
maps can be interpreted analogously to statistical parametric maps
(Worsley, 2001),where the sign of the voxel indicateswhether the con-
trast is expressed positively or negatively in that voxel.

Let us consider the case when the derivative of D(x) can be
expressed analytically as a function of x: d xð Þ ¼ ∂

∂xi
D xð Þ. In this case,

the spatial map is the average of the values of d(xk) computed across
all training vectors xk:

y ¼ 1
Ntrain

XNtrain

k¼1
d xkð Þ: ð15Þ

For QD, taking the derivative of Eq. (6) is a linear form in x:

dQD xð Þ ¼ −S1
−1 x−m1ð Þ þ S2

−1 x−m2ð Þ: ð16Þ

Here, we substitute the maximum likelihood estimators mi and Si
(given in Eqs. (10) and (11)) for the population parameters μi and Σi.
To compute the spatial map, dQD(xk) is averaged over all training
vectors xk. The decision function of LD is linear, therefore its derivative
is a constant independent of x:

dLD xð Þ ¼ S−1 m2−m1ð Þ; ð17Þ

so the LDmap is equal to dLD and no averaging of dLD across the training
set is needed.

Although it is possible to express the derivative of DGNB-L(x) and
DGNB-N(x) as a function of vector x, it is simpler to express it in terms
of the jth voxel (in this model, the voxels are independent of one anoth-
er). The jth voxel of the derivative of the GNB-L decision function in
Eq. (8) is

dGNB‐L j xð Þ ¼ m1 j−m2 j

s j
2 ; ð18Þ

note the similarity to T statistic that is used to construct spatial paramet-
ricmaps in univariate general linearmodel (Worsley, 2001). For GNB-N,
the voxelwise derivative is

dGNB‐N j xð Þ ¼ −
xj−m1 j

s1 j
2 þ xj−m2 j

s2 j
2 : ð19Þ

Finally, the spatial map for linear-kernel SVM is a constant indepen-
dent of x, similar to LD. It is given by a weighted sum of the support
vectors (see LaConte et al., 2005, where other methods of creating spa-
tial maps for SVM are also discussed).

Regularization of multivariate classifiers
The decision functions for LD and QD, given by Eqs. (6) and (7),

require estimation of the inverse of the population covariance matrix
Σ (or Σi). For fMRI data, this is problematic because the number of ob-
servations (fMRI volumes) is usually much smaller than the number
of dimensions (voxels), making the sample covariance matrix S rank-
deficient and thus impossible to invert. This problem is overcome by
regularizing S, that is, by approximating Swith a lower-rank, invertible
matrix. We tested two approaches to regularization. The first approach
is to approximate S by a subset of its highest-ranking principal compo-
nents (the size of this subset corresponds to the amount of regulariza-
tion: a smaller subset is equivalent to more highly regularized data).



123G. Yourganov et al. / NeuroImage 96 (2014) 117–132
For this purpose, we use a set consisting of (first, second, …, Kth) PCs,
where K is less than the number of volumes in the training set. In an ear-
lier paper (Yourganov et al., 2011), we examined different approaches
for selecting K, and came to a conclusion that K should be selected in a
cross-validation framework. The value of K that optimizes reproducibil-
ity of spatial maps computed using split-half resampling scheme is very
close to the value that optimizes the area under the ROC curve, which
could be viewed as the “true dimensionality” of the simulated data. Op-
timization of prediction accuracy produced less robust estimates of K
but nevertheless was still sensitive to the underlying structure of simu-
lated networks. Here, we selectK by optimizing both reproducibility and
classification accuracy. Following Zhang et al. (2008) and Rasmussen
et al. (2012B), we use the NPAIRS framework to compute classification
accuracy and reproducibility for a range of values of K, and compute
the mean values of these two metrics across splits. We then select the
value ofK thatminimizes the Euclidean distance froma perfect classifier
performance of (reproducibility = 1, prediction = 1); this distance is
given by

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−mean reproducibilityð Þ2 þ 1−mean class � accuracyð Þ2

q
: ð20Þ

A second approach to regularization uses ridge regression, as sug-
gested by Kustra and Strother (2001). Here, instead of S−1 we compute
(S+ λI)−1, where I is the identity matrix and λ is the hyper-parameter.
An increased λ tends to produce an increasingly regularized covariance
matrix.We select λ by optimizing theΔmetric, as described above. Two
approaches to regularization give us two implementations of LD: LD-PC
and LD-RR, which use PC and ridge regularization, respectively. For QD,
only the first approach (PC regularization) was applied. The regulariza-
tion hyper-parameter of support vector machines is the “slack variable”
coefficient C. We select this parameter by minimization of the Δmetric.
Finally, GNB in our implementation does not require regularization and
therefore has no hyper-parameters.

Evaluation of performance on experimental data

To evaluate our classifiers on simulated data, we create 100 simulat-
ed “subjects” by sampling from a population defined by particular levels
ofM, V and ρ. Since all simulated “subjects” are sampled from the same
population, they form a relatively homogeneous set. In contrast, we ex-
pect much less homogeneity across the subjects that have participated
in the aging study. When evaluating performance on real experimental
data, we have performed some additional analysis to account for inter-
subject variability.

Evaluating performance of within-subject classification
We used the data from the aging study to perform within-subject

classification of fMRI volumes, for different behavioral contrasts. We
tested 4 binary contrasts: RT/FIX, DM/FIX, DM/RT, and DM/PM. For
each classifier, the distribution of prediction and reproducibility values
across subjects is visualized with box-and-whisker plots. Outliers are
not shown in the plots.

We perform additional statistical testing to answer the question
whether the ranking of classifiers is consistent across subjects. For this
purpose, we employ a non-parametric statistical test described in
Conover (1999; pages 369–373), and also in Demsar (2006) and in
our earlier paper (Schmah et al., 2010). First, Friedman test is applied
to test the null hypothesis that all methods perform equally well. If
null hypothesis is rejected, we proceed to post-hoc testing, where we
test for a significant difference in ranking between all pairs of classifiers.
For each contrast separately, we compute the average rank of each clas-
sifier across subjects, as well as the critical distance (the minimum dif-
ference between average ranks of classifiers that are considered
significantly different). Results of this evaluation are presented as a
plot of average classifier rankings, on a scale of 1 to 6; a rank of 1 denotes
the best performance and a rank of 6 is theworst. A bar on a rankingplot
represents a particular contrast. The classifiers that are not found to be
significantly different are linked together with a horizontal line under
the bar. If the null hypothesis is rejected, the critical distance (CD) is
shown beside the bar.

Normalizing individual spatial maps
In order to compare the spatial maps created by different classifiers

for the same subject and contrast, the maps have to be normalized so
the distribution of noise is matched across methods. This normalization
is described in theNPAIRS literature (LaConte et al., 2003; Strother et al.,
2002), where the resulting normalized maps are called “reproducible
statistical parametric maps, Z-scored” (rSPM{Z}). The distribution of
signal and noise is computed from the scatter plots of pairwise voxel
values, from two split-half maps (which are divided by their respective
standard deviations in order to bring them to the same scale). The scat-
ter plot has a major axis along the line of identity and a minor axis per-
pendicular to it. Variation along the minor axis is due to the noise
uncorrelated with signal of interest, and variation along the major axis
contains a mixture of signal and noise. For two split-half maps z1 and
z2, the projection of scatter-plot points onto the major and minor axes
is (z1+ z2)/2 and (z1− z2)/2, respectively (Strother et al., 2002). To ob-
tain rSPM{Z}, we divide the projection onto the major axis by the stan-
dard deviation of the projection onto the minor axis. We repeat this
procedure for all splits; each split gives us a scatter plot, and rSPM{Z}
patterns are averaged across splits. In this way, we compute a mean
rSPM{Z} for every individual subject analysis.

Consensus of individual maps across classifiers
Wealso investigate the question of similarity of spatial maps created

by different classifiers. For this purpose, we use DISTATIS, a variant of
multidimensional scalingwhich identifies the pattern of correlation be-
tween classifier maps that is most consistent across subjects. Full treat-
ment of DISTATIS can be found in publications by Abdi et al. (2005,
2009).

The goal of multidimensional scaling is to find a low-dimensional
representation of high-dimensional data, in such a way that the
distances between low-dimensional representations of any two data
points are good approximations to the distances between these points
in the original high-dimensional space. In our study, the high-
dimensional data are the spatial maps, and we define the distance be-
tween ith and jth map as 1− ρij, where ρij is Pearson's correlation coef-
ficient of ith and jth maps; thus we create the distance matrix between
all possible pairs of datapoints. Multidimensional scaling finds a low-
dimensional representation from the eigendecomposition of the dis-
tancematrix. DISTATIS is a generalization of this method for a set of dis-
tance matrices. This method combines the distance matrices into a
single compromise matrix, and projects the original distance matrices
onto the compromise matrix.

In order to apply DISTATIS, we compute within-subject distance
matrices. Our pool of classifiers consists of six methods, so we compute
a 6 × 6 distance matrix for each of the 47 subjects. We double-center
these matrices; let Si denote the doubly-centered distance matrix for
the ith subject. We then compute the similarities between distancema-
trices for each pair of subjects. The similarities are computedwith an RV
coefficient (Robert and Escoufier, 1976), which indicates howmuch in-
formation is shared between two matrices (Abdi et al., 2009). We form
the 47 × 47 matrix of RV coefficients, and compute its first eigenvector
p1. The ith coordinate of this eigenvector indicates how similar the ith
subject's distance matrix is to all other subjects' distance matrices.
Then, the compromise matrix S+ is formed as a weighted sum of
doubly-centered distance matrices:

Sþ ¼
X#subjects

i¼1

αiSi ð21Þ
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where the weight αi is the ith coordinate of p1, divided by the sum of all
coordinates of p1. The compromise matrix S+ is the best way (in the
least-squares sense) to represent all 47 distance matrices with a single
matrix.

A low-dimensional representation of S+ is computed from its
eigendecomposition. For easy visualization, it is common to use
2-dimensional representation. We project the centroids of the spatial
maps created by each of the six methods onto the space defined by
the first two principal components of S+. In order to compute the con-
fidence intervals around the centroids, we have drawn 1000 bootstrap
samples from our set of 47 subjects. On the DISTATIS plots, the projec-
tions of centroids are marked with a +, and the confidence intervals
are shown as ellipses around the centroids.

Results

We have evaluated the following pool of classifiers:

1. QD: quadratic discriminant with PC regularization of covariance
matrices (the same number of principal components is used to regu-
larize both classes);

2. LD-PC: linear discriminant with PC regularization of the pooled
covariance matrix;

3. LD-RR: linear discriminant with ridge regularization of the pooled
covariance matrix;

4. SVM: support vector machine with a linear kernel;
5. GNB-N: nonlinear Gaussian Naïve Bayes classifier, where the (diago-

nal) covariance matrices are allowed to differ across classes and the
decision function is nonlinear;

6. GNB-L: linear GNB classifier, where the covariance matrix is pooled
across classes and the decision function is linear.

Performance on simulated data

Our pool of classifiers (QD, LD-PC, LD-RR, SVM, GNB-L, GNB-N) was
applied to analyze simulated fMRI data. The performance of each classi-
fier was evaluated with three metrics: accuracy in classifying fMRI
volumes according to the task, reproducibility of the classifier maps,
and the area under the ROC curve. The results of this evaluation are pre-
sented in Figs. 3 and 4. Fig. 3 displays the performance metrics of classi-
fication accuracy (top) and map reproducibility (bottom), and Fig. 4
displays the performance as measured by the partial area under the
ROC curve. The lines in Fig. 3 show mean performance, taken across
100 data sets generated for each setting of simulation parameters
(M, V, ρ); the error bars show standard deviation of performance. For
the ROC metric shown in Fig. 4, we computed a curve for each of the
16 active areas; the lines show themean value of partial ROC area across
the 16 areas, and error bars show its standard deviation across these
areas. The black dashed line in Fig. 4 indicates the partial ROC area of
0.05, which corresponds to random guessing.

The columns of Figs. 3 and 4 correspond to the levels of mean signal
change M (0, 0.02 and 0.03). The three levels of network correlation
ρ (0, 0.5 and 0.99) are shown as three sub-panels of each level of M.
Each of these sub-panels consists of a performance plot, where the hor-
izontal axis represents signal variance V (relative to the noise variance),
going from 0.1 to 1.6. The vertical axis of the plot is themeanmagnitude
of the performance metric.

Classification accuracy
In terms of classification accuracy (top rowof Fig. 3), there are strong

similarities between LD-PC, LD-RR, SVM and GNB-L. Thesemethods can
all be referred to as “linear classifiers”, because they all use a linear de-
cision function to compute class membership, and the decision bound-
ary that separates the two classes is a hyperplane. Their accuracy is
lowest when M = 0, and tends to increase as mean signal strength M
grows. For M = 0.03, we see a negative effect of increasing V, which
is modulated by ρ (it is weakest when ρ = 0, and strongest when
ρ = 0.99). Since V is the variance of the active signal, its growth causes
an increase in overlap between the “active” and the “baseline” classes,
making discrimination between the two classes more difficult.

The remaining classifiers in our pool, QD and GNB-N, show quite dif-
ferent trends in performance forM=0 (different from the linear classi-
fiers as well as from each other); although the overall positive influence
of M is also observed, the effect of V and ρ is more complex. These
methods can use the difference in the covariance matrices to their ad-
vantage, which is particularly helpful when the separation between
the class centroids is small (that is,M is low). ForM=0, both nonlinear
methods get better as V increases. When ρ= 0, the functional nodes of
the active network are independent, and GNB-N is the best model for
our data, achieving 60% mean accuracy at the largest setting of V.
On the other hand, when the functional nodes are strongly correlated
(ρ = 0.99), QD is the most accurate classifier, peaking at 66% when
V reaches 1.6. For the intermediate level of correlation (ρ = 0.5), QD
and GNB-N perform at the similar level.

When M N 0, the two nonlinear classifiers perform similarly to the
linear classifiers. When M is 0.03, performance is high (greater than
70%), but the influence of V is detrimental to performance, due to grow-
ing overlap between the classes. When M = 0.02, V does not have a
strong impact on linear as well as nonlinear classifiers.

Reproducibility of spatial maps
The bottom row of Fig. 3 shows the reproducibility of spatial maps

produced by our pool of classifiers. If we compare it with the classifica-
tion accuracy plot, we see that the classifiers here can be grouped in a
different way:

1. univariate methods: two versions of GNB
2. multivariate methods that use PC regularization: LD-PC and QD
3. other multivariate methods: SVM and LD-RR.

Inside each group, reproducibility is quite similar, but the groups are
clearly distinct inmost cases.We see the same pattern for all levels ofM:

• As expected, network coupling (ρ) has no effect on univariate
methods. There is a slight detrimental effect of V, which is noticeable
at high levels of M. In most cases, univariate maps are less reproduc-
ible than multivariate maps. It is interesting to note here that pooling
of variance across classes has no effect on reproducibility, because
performance of GNB-N and GNB-L is the same.

• PC-based methods (LD-PC and QD) get a tremendous boost from in-
creasing V, when the active areas are coupled (ρ N 0). The reproduc-
ibility of PC-based methods increases approximately linearly with V;
for sufficiently large levels of V, reproducibility of these two methods
greatly surpasses reproducibility of all other methods in our pool.

• Othermultivariatemethods (SVM and LD-RR) are not influenced by V
and ρ, and have effectively identical performance. In terms of relative
ranking, they perform better than univariate methods, but, in most
cases, worse than PC-based multivariate methods.

This ranking of themethods is largely consistent acrossM. Overall,M
has a positive effect on reproducibility: for all methods, spatialmaps be-
come more reproducible asM grows.

Partial area under the ROC curve
Fig. 4 shows the performance of our pool of algorithms measured

with partial area under the ROC curve. We see that the classifiers
group in the same fashion with respect to ROC area as they do with re-
spect to spatial map reproducibility:

1. univariate methods;
2. PC-based multivariate methods;
3. other multivariate methods (SVM and LD-RR).



Fig. 3. Performance of the pool of six classifiers on simulated data sets. Performance is measured with classification accuracy (top row) and reproducibility of spatial maps (bottom row).
The three columns correspond to three levels ofmean signalmagnitudeM, and the three sub-columns correspond to three levels of spatial correlation ρ. Relative temporal variance of the
active signal (V) is plotted on the x-axis. The colored lines correspond to the mean performance of six classifiers across 100 simulated datasets, and the error bars indicate the standard
deviation. The classifiers are: quadratic discriminant with PC regularization (QD), linear discriminant with PCA regularization (LD-PC) and with ridge regularization (LD-RR), linear-
kernel SVM, and linear and nonlinear Gaussian naive Bayes classifiers (GNB-L, GNB-N).
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The second group is the best performer in terms of ROC area (as is
true for reproducibility in Fig. 3). Both methods are sensitive to V, and
their performance increases as V grows from 0 to 1. When mean signal
is relatively strong (M = 0.03), both LD-PC and QD are near-perfect in
their signal detection (partial ROC area approaches the theoretical max-
imum value of 0.1), for all levels of V and ρ.

Univariate methods are uniformly the worst performers. In the ab-
sence of mean signal, they never rise significantly above chance.
When M N 0, they are much better than chance, but their performance
drops as V grows. This decline is less severe whenM is large. As expect-
ed, ρ has no effect on performance of univariate detectors. The third
group of algorithms (SVM and LD-RR) is intermediate in terms of
performance: better than univariate methods, but never as good as
PC-based multivariate methods.
Fig. 4. Performance of the pool of six classifiers on simulated data sets, measured by partial are
columns correspond to three levels of mean signal magnitudeM, and the three sub-columns c
signal (V) is plotted on the x-axis. ROC curves are measured at the centers of each of the 16 a
loci, and the error bars show the corresponding standard deviation. Dashed black lines indicat
The black curve in Fig. 4 shows the ROC performance of a univariate
GLM. The GLM maps (Worsley, 2001) were created by performing
voxelwise T tests on the beta weights for the two epochs (active and
baseline); the beta weights were computed with the same HRF kernel
that had been used to create the simulated data. This figure shows
that GLM is amore powerful signal detector than GNB, which is not sur-
prising, because GLMutilizes the “true”HRF tomodel the transitions be-
tween the epochs, whereas GNB (like all other classifiers in our pool)
discards the transition scans. With respect to the influence of M and V,
we observe the same trends in GLM as in GNB: the effect ofM is benefi-
cial, and the effect of V is detrimental (ρ has no effect on univariate
GLM). These trends are expected, because themagnitude of the T statis-
tic is proportional to the contrast magnitude (controlled by M) and in-
versely proportional to the sample variance (controlled by V).
a under the ROC curve corresponding to false positive frequency from 0 to 0.1. The three
orrespond to three levels of spatial correlation ρ. Relative temporal variance of the active
ctive loci. Colored lines show, for each classifier, the mean partial ROC area across the 16
e the partial ROC area for random guessing.
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Performance on experimental data

Within-subject reproducibility and classification accuracy
Fig. 5 displays the within-subject classification accuracy and repro-

ducibility on a box-and-whisker plot; two age groups are plotted sepa-
rately (left and right columns correspond to young and older subjects).
In terms of classification accuracy, the difference between the classifiers
is not significant for a given contrast, which is also observed in simula-
tions forM N 0. However, there is a difference between contrasts, with
DM/FIX and RT/FIX being the easiest to classify, and DM/PM the hardest.
We will therefore refer to the DM/FIX and RT/FIX as the “strong con-
trasts”, and the DM/RT and DM/PM as the “weak contrasts”. With re-
spect to reproducibility, the grouping of classifiers is similar to the
grouping we see in the simulations: (1) QD and LD-PC, (2) SVM and
LD-RR, and (3) GNB-L and GNB-N. The second and third groups are
quite similar to each other, particularly in the older group.

Comparing the performance of our classifier pool across the age
groups, we can see that the classifiers frequently perform better on
the older subjects. We have evaluated the significance of the age-
related difference in accuracy with a Mann–Whitney U test, for all task
contrasts and classifier models. To account for multiple comparisons,
we have used false discovery rate correction with significance level
α = 0.05 (Genovese et al., 2002). We observed significantly increased
classification accuracy for the older group in the DM/FIX contrast, for
LD-PC, LD-RR and SVM; and in the RT/FIX contrast, for LD-PC, LD-RR
andQD. Reproducibility ofmapswas not significantly different between
the two age groups.

In order to test whether classifiers' performance were statistically
distinguishable, we examined the ranking of classifiers, and performed
post-hoc Friedman tests; results are shown in Figs. 6 (for the young
group) and 7 (for the older group). In the younger group, there is a
large overlap in classifier accuracy, particularly for the strong contrasts;
in the two weaker contrasts, the univariate classifiers have the lowest
rank. In the older group, the multivariate linear classifiers (LD-RR,
LD-PC and SVM) tend to be the highest-rankingwith respect to their ac-
curacy, although they are not always significantly different in ranking
from the other classifiers. With respect to reproducibility of maps, the
rank of algorithms displayed in Figs. 6 and 7 corresponds to the trend
Fig. 5. Performance of the pool of classifiers on the dataset from the aging study, based onmetr
columns correspond to subjects in the young and the older age groups, respectively. Results are s
are: reaction task (RT), delayed matching (DM), perceptual matching (PM), and fixation (FIX)
observed in simulations. QD and LD-PC have the highest rank. They
are followed by LD-RR and SVM (SVM tending to rank higher than
LD-RR). Finally, both versions of GNB receive the lowest ranking.

It is important to note that high within-subject reproducibility, as
displayed in Fig. 5, does not translate into high across-subject reproduc-
ibility. If the heterogeneity across subjects is large, it is possible that the
maps generalize poorly across subjects, despite being highly reproduc-
ible within a subject. This is the case of the LD-PC and QD maps for
the two weaker contrasts, DM/RT and DM/PM. Supplementary Fig. 1
shows the across-subject reproducibility ofmaps created by the six clas-
sifiers; it was computed as the Pearson's correlation across all possible
pairings of subjects within an age group. For the two weak contrasts,
across-subject reproducibility is lower than for the two strong contrasts,
and for the weakest contrast (DM/PM) it is near zero on average.

Consensus of spatial maps across classifiers
We next examined the question of similarity of subjects' spatial

maps across methods. For each contrast andmethod, we have computed
the across-subject average rSPM{Z} maps, and correlated them across
classifiers; the correlations are given in Supplementary Tables 1–4.
The across-method correlation between the average maps was at least
0.63 for the weakest contrast (DM/PM), and at least 0.83 for the other
three contrasts. However, these tables do not account for across-
subject variability in spatial brain map patterns; a more thorough anal-
ysis of consensus across classifiers was performed using DISTATIS, a
multidimensional scaling procedure with bootstrapped confidence
estimates.

Fig. 8 plots the 2-dimensional representation of similarity between
classifiers' brain maps, for each of the four contrasts. The first and sec-
ond principal components are represented by the horizontal and verti-
cal axes, respectively; on each axis, we specify the amount of variance
explained by each component. In this coordinate space, we represent
the centroids of the spatial maps created by each of the six methods as
‘+’ symbol. In order to compute the confidence intervals around the
centroids, we have drawn 1000 bootstrap samples from our set of 47
subjects. The 95% bootstrapped confidence intervals are shown as ellip-
ses around the centroids. Classifierswith overlapped confidence ellipses
are not significantly distinguishable in the DISTATIS space.
ics of classification accuracy (top) and spatial map reproducibility (bottom). Left and right
hown for 4 binary task contrasts, ordered from strong toweakwithin eachpanel. The tasks
.
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Fig. 6.Ranking of the 6 classifiers in the young age group, based onmetrics of classification accuracy (top) and reproducibility (bottom). Themean (across subjects) rank of each classifiers
is represented with a colored box. Classifiers that are linked with a black horizontal bar are not significantly different in their ranking. Results are shown for 4 binary task contrasts. The
critical distance (CD) is displayed for the contrasts where a significant difference between the classifiers' performance has been found; the performance of the two classifiers is considered
significantly different if their rank difference is greater than CD.
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We can observe a familiar grouping of methods in Fig. 8, where pairs
of classifiers have overlapping confidence ellipses: (QD and LD-PC),
(SVM and LD-RR), and (GNB-L and GNB-N). This pairing is observed in
simulated data when we evaluate the reproducibility and ROC proper-
ties of the algorithms (Fig. 3, bottom row; Fig. 4); it is also observed in
evaluation of within-subject reproducibility in the aging study (bottom
rows of Figs. 5, 6 and 7). Within each pair of methods, there is a similar-
ity in computational models: both QD and LD-PC use PCA-based regu-
larization, both GNB-L and GNB-N are univariate Gaussian Naive Bayes
classifiers, and both SVM and LD-RR use a L2 penalty for regularization.
This pairwise similarity between methods appears strongest in the
DM/FIX and RT/FIX contrasts, as the corresponding ellipses overlap
almost completely. In two weak contrasts (DM/RT and DM/PM), the
(QD and LD-PC) and (SVM and LD-RR) pairs of ellipses are less overlap-
ped but still not significantly different while the GNB ellipses remain
identical. More striking is the fact that LD-RR and SVM, while having
unique pattern features as shown by their negative weighting on PC2
(vertical) axis, are most like LD-PC and QD for the strongest contrasts
and DM/RT with negative PC1 weights, but for the weakest contrast
DM/PM they are like theGNBpatternswith positive PC1weights. There-
fore, the strength of the contrast interacts with the pattern similarities
between the three pairs of methods with LD-RR and SVM appearing
most sensitive to contrast effects such that their patternsmay reflect ei-
ther multivariate or univariate features.

Group-average classifier maps
Figs. 9 and 10 show the spatial maps, created by our pool of classi-

fiers, normalized into rSPM{Z} patterns and averaged across all subjects
within the age group. After the averaging, the group-average maps are
Fig. 7.Rankingof the 6 classifiers in the older age group, based onmetrics of classification accura
representedwith a colored box. Classifiers that are linkedwith a blackhorizontal bar are not sign
distance (CD) is displayed for the contrasts where a significant difference between the classifie
nificantly different if their rank difference is greater than CD.
corrected for multiple comparisons using false discovery rate (FDR) cor-
rection (Genovese et al., 2002) and thresholded at FDR≤ 0.1. Figs. 9A and
B display the maps created for the RT/FIX contrast for the young and the
older groups, respectively. Figs. 10A and B are the DM/FIX maps for the
young and the older group. The group-average GNB-N and GNB-L
maps for these two contrasts were identical; only the GNB-L maps are
shown. The group-average maps created for the weaker contrasts
(DM/RT and DM/PM) are not shown, because they do not contain any
significant voxels at FDR ≤ 0.1 threshold (this holds for all classifiers
fromour pool). Supplementary Table 5 shows Pearson's correlation coef-
ficient between the averagemap computed for the young groupwith the
averagemap computed for the older group (bothmaps unthresholded);
this correlation is shown for all classifiers and contrasts.

Comparing Figs. 9A andB,we can see a set of similar peak activations
between the young and the old groups. All multivariate classifiers iden-
tify the posterior cingulate cortex as having a significant preference to
FIX condition. In the young group, this preference is also found in the
left angular gyrus and lingual gyrus, in the QD map. Univariate classi-
fiers do not find any brain areas with a significant preference for FIX
in either group. Also, multivariate classifiers find a larger set of areas
with significant preference for RT than univariate classifiers do. In
the young group, these areas are: bilateral cerebellum, contralateral
intraparietal lobule (IPL), middle cingulate/supplementary motor area
(SMA), and primarymotor cortex (contralateral stronger than ipsilater-
al). The LD-PC and QDmaps show a larger set of voxels than LD-RR and
SVM, and GNB does not identify activation in the contralateral primary
motor cortex/SMA, contralateral IPL, and middle cingulate/SMA. In the
older group, preference for RT is found in the same areas as in the
young group, but the spatial extent is larger, whereas FIX activations
cy (top) and reproducibility (bottom). Themean (across subjects) rank of each classifiers is
ificantly different in their ranking. Results are shown for 4 binary task contrasts. The critical
rs' performance has been found; the performance of the two classifiers is considered sig-
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Fig. 8.DISTATIS plots of similarity ofwithin-subjectmaps createdwith different classifiers. Each classifiermodel is represented as a centroid ‘+’with 95% confidence ellipse (based on boot-
strap resampling, 1000 iterations). Models that are closer in DISTATIS space produce more similar spatial patterns, and are not significantly different if their confidence ellipses overlap.
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are not detected bymany classifiers. In addition, LD-PC and QD find sig-
nificant preference in anterior insula/temporal poles. In the older group,
significant preference for RT is found bilaterally in the IPL and primary
motor cortex (although there is still greater spatial extent in
Fig. 9.Group-average Z-scored classifiermaps for the RT/FIX contrast for the young (A) and olde
Z scores.
contralateral activation); this is different from the young group, where
this preference tends to be predominantly on the contralateral side.

The group-average maps for the DM/FIX contrast, displayed in
Fig. 10, are similar to the RT/FIX maps. Compared with RT/FIX maps,
r (B) groups. Maps are thresholded at false-discovery rate 0.1. Color bar represents average
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Fig. 10. Group-average Z-scored classifier maps for the DM/FIX contrast for the young (A) and older (B) groups. Maps are thresholded at false-discovery rate 0.1. Color bar represents
average Z scores.
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thepreference for FIX ismore extensive throughout the brain in the DM/
FIX contrast, particularly in the young group. LD-PC and QDmaps reveal
this preference in posterior and anterior cingulate cortex, and in the in-
ferior parietal lobe. These areas are known as parts of default mode net-
work (Grady et al., 2010); the activity in these areas is known to increase
when the participants perform a passive task (such as FIX) or attend to
internally driven cognitive processes, and to decrease when performing
an active task (such as DMor RT) requiring focusing on external stimuli.
LD-RR and SVM find a subset of these areas. The only area with signifi-
cant FIX preference that GNB finds in the older group is posterior cingu-
late, and no such areas are found by GNB in the young group. With
respect to DM preference, LD-PC and QD find the largest number of
brain areas, and GNB finds the smallest number (in the young group,
the only such area found by GNB is contralateral IPL). The multivariate
maps reveal this preference in cerebellum, bilateral premotor and pri-
mary motor cortex, IPL and SMA. In the older group, the spatial extent
of the areas with significant DM preference is larger than in the young
group (this is consistentwith the RT/FIX contrast). In addition, this pref-
erence is found in some areas that are not observed n the young group:
bilateral interior insula and in left dorsolateral prefrontal cortex.

Discussion

We evaluated the performance of six pattern classification algo-
rithms, using the NPAIRS resampling framework (Strother et al.,
2002). Our pool of classifiers includes representatives of a variety of im-
portant types of classification algorithms: linear vs. nonlinear, multivar-
iate vs. univariate, and probabilistic vs. non-probabilistic. To determine
how theperformance of these classifiers is influenced by themagnitude,
temporal variance and spatial correlation of the active signal, we applied
them to a series of simulated fMRI sets.

The active signal is absent in the simulated “baseline” volumes;
therefore, when we increase its magnitude M, the separation between
the “active” and “baseline” classes grows, and the accuracy of classifiers
grows accordingly. The accuracy of classifiers becomes more similar as
M grows. When M = 0.03, the increase of temporal variance (V) of
the active signal is detrimental to classification accuracy, because it in-
creases the spread of the volumes in the “active” class, and decreases
the separation between the classes.

When M = 0, the difference between the classes is in their covari-
ancematrices rather than in their mean signal amplitudes. Linear classi-
fiers ignore this difference, but nonlinear classifiers are able to use it to
their advantage: nonlinearmethods (QD andGNB-N) getmore accurate
as V increases. This beneficial effect of V is modulated by ρ. QD is the
most accurate classifier when active networks are strongly coupled
and ρ = 0.99. When ρ = 0, the functional nodes of the active network
are independent, and GNB-N becomes the best model for our data.
This suggests the utility of nonlinear classifiers in situations when the
difference between classes is driven by variance/covariance rather
than bymagnitude of BOLD signal. This agreeswith our previousfinding

image of Fig.�10
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(Schmah et al., 2010), where we used several fMRI sessions of stroke
patients and classified the volumes into “early” and “late” classes de-
pending on the timing of the session relative to the stroke onset. We
found that nonlinear classifiers (e.g., QD, SVM with quadratic and RBF
kernels) were significantly more accurate than linear classifiers (e.g.,
LD and linear-kernel SVM), which could be explained by the change in
brain connectivity (due to the process of post-stroke recovery of func-
tion) that was happening between the early and late sessions. We can
hypothesize that nonlinear classifiers could be useful for across-
subject studies of diseases that are related to connectivity deficits (e.g.,
schizophrenia, depression, and Alzheimer's disease; see Greicius, 2008,
for a review of connectivity deficits in neuropsychiatric disorders).

In terms of reproducibility of spatial maps and partial ROC area,
there is a difference between classifiers at all levels ofM. The best repro-
ducibility is achieved by multivariate methods that use PCA regulariza-
tion. We have previously shown that the simulated active signal is
efficiently captured by the first few principal components of the data
matrix when ρ N 0 and V is sufficiently high (Yourganov et al., 2011).
With growing V, there is an increase in the portion of total variance
that is due to the active signal. In PCA, principal components are ranked
by the amount of variance that they explain; as V increases, the variance
explained by the first few principal components is increasingly due to
correlated active signal. PCA is, in essence, a detector of correlated
sources of variance; this helps the methods that use PCA for regulariza-
tion to improve their signal detection (Fig. 4) and the reproducibility of
their maps (Fig. 3, bottom row). Univariate methods, as well as multi-
variate methods that do not use PCA regularization, do not benefit
from increasing V; univariate maps are the least-reproducible and also
the worst in terms of ROC area.

Our results suggest that a researcher should consider classifying
fMRI data with linear and quadratic discriminants using PC regulariza-
tion, and select the better performer of the two. In terms of classification
accuracy, the most accurate method from the (LD-PC, QD) pair often
outperforms linear SVM and LD-RR, particularly given significant net-
work structure (i.e., V ≥ 0.6 and ρ ≥ 0.5). In terms of reproducibility
of maps and ROC area, LD-PC and QD are always the best performers
among the tested methods. Running a combination of QD and LD-PC
does not take more computational time than running either QD or
LD-PC by itself, because the computation is dominated by PCA decom-
position of the data (Schmah et al., 2010).When the difference between
classes is driven by the difference inmeans, LD-PC is likely to be the best
method of the two; when it is driven by difference in connectivity be-
tween brain areas with weak mean differences, QD is likely to be best.
However, for the weak contrasts DM/RT and DM/PM of our experimen-
tal data in Fig. 8 this only appears as a nonsignificant mean shift of the
QD ellipsoid relative to that of LD-PC.

In the within-subject analysis of experimental data, the difference
between the classifiers' accuracy is more pronounced than in our simu-
lations. SVM and LD-RR tend to be the best-ranking classifiers, although
for most contrasts they are not significantly different from one or both
of QD and LD-PC (this observation has also been reported by Churchill
et al., in press). GNB-L and GNB-N tend to be the worst-ranking. With
respect to reproducibility of spatial maps, the same grouping is ob-
served in experimental data and in simulations: (best) LD-PC and QD,
(intermediate) LD-RR and SVM, (worst) GNB-N and GNB-L. Nonpara-
metric testing of ranking also shows this grouping (Figs. 6 and 7), and
evaluation of consensus across classifiers (Fig. 8) reinforces this finding
including the tendency for LD-RR and SVM to be more like GNB for
weaker contrasts. It should be noted that both LD-RR and SVM use an
L2-type penalty in regularization, which could account for their similar-
ity (observed also by Rasmussen et al., 2012b, and by Churchill et al., in
press).

All classifiers tend to be more accurate when the contrast is defined
by a pair of tasks that recruit spatially different brain networks. DM/FIX
and RT/FIX are examples of such “strong” contrasts: FIX condition corre-
sponds to passive fixation and is expected to recruit areas from the
“default mode network” (Toro et al., 2008), which is often anti-
correlated with “task-positive” areas recruited by active visuomotor
tasks such as DM and RT. The DM/PM contrast can be assumed to be
the weakest, because of the similarity between the DM and PM tasks
(because of this similarity, we did not study PM/FIX and PM/RT con-
trasts). Finally, the DM/RT contrast is intermediate. These four contrasts
represent a range of “contrast strengths”, which is somewhat analogous
to varying M, V and ρ in our simulations. In the strong contrasts, the
across-subject reproducibility of classifier maps is higher compared to
the weak contrasts; also, the consensus between classifiers is higher in
the strong contrasts.

Comparing the classifiers' performance on simulated (Fig. 3) and ex-
perimental (Fig. 5) data, we can see that the reproducibility of spatial
maps tends to be higher in experimental data, particularly for
PC-based methods (QD and LD-PC). This can be explained by the fact
that experimental data consist of a much greater number of voxels,
among which a large portion of voxels forms multiple, spatially
extensive cortical networks such as the default-mode network and the
task-positive network, compared to the simulated spatially sparse
single-network brain. Principal component analysis reliably detects
these networks, resulting in spatial maps that are highly reproducible
even when they are not predictive (e.g., in the DM/PM contrast). It is
also possible that themagnitude of the task-driven signal in experimen-
tal data is higher than in our simulations; unfortunately, this hypothesis
is hard to test because of the difficulty of separating the signal from the
noise in experimental data. This difficulty is discussed in a recent review
paper (Welvaert and Rosseel, 2013). For a particularmethod,we cande-
fine the signal and noise axes (see Normalizing individual spatial maps)
assuming that signal is reproducible within a spatial map and noise is
not. This, however, makes the definition of contrast-to-noise ratio and
dynamic range specific to our method of analysis, and therefore not
equivalent to the true signal parameters M and V in our simulations.

The group-average classifier maps created for the two weaker con-
trasts do not contain any voxels that pass the relatively liberal threshold
of significance of FDR≤ 0.1. The maps created for strong contrast reveal
preference for FIX in the default-mode areas, and a preference for RT or
DM in the “task-positive” areas such as motor and premotor cortices,
supplementary motor area, intraparietal lobule and cerebellum. This is
most evident from the LD-PC and QD maps; univariate (GNB) maps
are the least informative, particularly in the young group. Comparing
the group-average maps for the two age groups, we can see that the
older group recruits the task-positive areas more extensively than the
young group, and, conversely, the recruitment of default-mode areas
is more extensive in the young group. This is consistent with the results
obtained by Grady et al. (2010) on the same data set with a different
method of analysis (partial least squares analysis, with pooling across
subjects).

Analyzing fMRI data with LD and QD on a PC subspace has an addi-
tional advantage not discussed in this paper: the additional information
obtained by determining the optimal PC subspace. Size of this subspace
is the number of orthogonal dimensions in the model that captures the
relevant information in the data and ignores the noise (Yourganov
et al., 2011). This number has been shown to have a neurobiological
significance: it relates to behavioral measures of post-stroke recovery of
motor function (Yourganov et al., 2010), as well as the strength of self-
control (Berman et al., 2013). The highest-ranking principal components
capture the most important correlated sources of variance in the BOLD
signal; therefore, we expect LD and QD on regularized a PC subspace to
be efficient detectors of brain networks as we have demonstrated in
our simulated and experimental data.

We suggest that the current focus in the literature on using SVM
(or equivalently LD-RR) even with, but mostly without, careful regular-
ization emphasizes prediction at the expense of stability of brain maps.
Our previous results (Schmah et al., 2010) demonstrate the usefulness
of PC-regularized LD and QD in classifying fMRI volumes. The current
work suggests that the spatial maps created for these two classifiers
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have the advantage of being highly reproducible (see also Churchill
et al., in press) in addition to being highly accurate. Reproducibility is
an important criterion in fMRI analyses, as reliable activation maps
are required to interpret the brain regions that underlie task perfor-
mance. Althoughwe examined a range of simulated parameters and ex-
perimental task contrasts, it is important to test whether these effects
generalize to other experimental datasets, as well as testing classifiers
that have been omitted in the current study (in particular, SVMs with
nonlinear kernels). Currently, our results indicate that a switch to LD
and QD on a carefully regularized PC basis may lead to generally im-
proved classification results and spatial activation maps.
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Appendix A. Simulated data

The simulated volumes consist of three additive parts: (1) back-
ground structure, (2) baseline noise, and (3) active signal.

1) Background structure is based on a PET image of a phantom (Lukic
et al., 2002). It is displayed in Fig. 1, left. It consists of simulated
“gray matter” along the edge of the phantom and in its center, and
of “white matter” elsewhere. Before spatial smoothing, the ampli-
tude of “graymatter” is 4 units, and the amplitude of “whitematter”
is 1 unit. The background structure is spatially smoothed using
a Gaussian kernel with FWHM (full width at half maximum) of
2 pixels.

2) Baseline noise is zero-mean white Gaussian, smoothed with the
same Gaussian kernel. After smoothing, the standard deviation of
baseline noise is 5% of the background signal.

3) Active signal is added at 16 specific locations (see Fig. 1, right), 12 of
them in the “graymatter” and 4 in the “whitematter”. It is the sumof
a constant term and a variable term. The constant term is the value of
the background structure at this location, multiplied by M. It spec-
ifies the expected magnitude of the active signal. The variable term
is a zero-mean random variable, which is created as described
below.

To create correlations between our 16 active loci, we construct a
16 × 16 covariance matrix S. The (i, j)th element of S is

• if i ≠ j and both i and j are in gray matter, sij = 4*4*ρVvi2;
• if i = j and i is in gray matter, sii = 4*4*Vvi2;
• if i≠ j, and one of them is in gray matter and the other in white mat-
ter, sij = 4*ρVvi2;

• if i ≠ j and both i and j are in white matter, sij = ρVvi2;
• if i = j and i is in white matter, sii = Vvi

2.

Here, vi is the standard deviation of the baseline noise at the ith ac-
tive area; for all active areas, it is equal to 5% of the background signal.
The parameter ρ controls the correlation between the active loci, and
the parameter V controls the temporal variance of the active signal in
a locus. Matrix S defines the covariance between the active loci. To cre-
ate a variable term, we take a 16-dimensional vector sampled from a
Gaussian distribution with zero mean and identity covariance matrix.
Then, we multiply it by the Cholesky decomposition of the matrix S.
This gives us the magnitude of activations of the 16 centers of active
loci. Then, it is spatially blurred using a Gaussian kernel with FWHM
varying from 2 to 4 pixels for different loci.
Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2014.03.074.
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