
Classifying Mental States From Eye Movements During Scene Viewing

Omid Kardan and Marc G. Berman
The University of Chicago

Grigori Yourganov and Joseph Schmidt
University of South Carolina

John M. Henderson
University of California, Davis

How eye movements reflect underlying cognitive processes during scene viewing has been a topic of
considerable theoretical interest. In this study, we used eye-movement features and their distributions over
time to successfully classify mental states as indexed by the behavioral task performed by participants. We
recorded eye movements from 72 participants performing 3 scene-viewing tasks: visual search, scene
memorization, and aesthetic preference. To classify these tasks, we used statistical features (mean, standard
deviation, and skewness) of fixation durations and saccade amplitudes, as well as the total number of fixations.
The same set of visual stimuli was used in all tasks to exclude the possibility that different salient scene
features influenced eye movements across tasks. All of the tested classification algorithms were successful in
predicting the task within a single participant. The linear discriminant algorithm was also successful in
predicting the task for each participant when the training data came from other participants, suggesting some
generalizability across participants. The number of fixations contributed most to task classification; however,
the remaining features and, in particular, their covariance provided important task-specific information. These
results provide evidence on how participants perform different visual tasks. In the visual search task, for
example, participants exhibited more variance and skewness in fixation durations and saccade amplitudes, but
also showed heightened correlation between fixation durations and the variance in fixation durations. In
summary, these results point to the possibility that eye-movement features and their distributional properties
can be used to classify mental states both within and across individuals.
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Whenever we perform a visual task or explore a scene, our eyes
move in a series of fixations and saccades (Henderson, Shinkareva,
Wang, Luke, & Olejarczyk, 2013; Rayner, 1998). Fixations are
brief periods of time in which the high-acuity fovea settles on the
features of interest. Saccades are high-velocity movements that
step fixations from one object to another through a scene. Because
eye movements are critical to scene understanding, the nature of
the processes that control these movements has been a focus of
intense research (see Henderson, 2011).

Systematic differences in eye movements across tasks shed light on
the underlying cognitive operations involved in each task and on
changes in the allocation of attention used to perform each task
(Henderson, 2011; Rayner, 2009). For example, in a classic demon-
stration of the relationship between eye movements and cognition,
Yarbus (1967) asked a viewer to examine The Unexpected Visitor, a
painting by Ilya Repin depicting the homecoming of a political
prisoner. The viewer was asked to look at the picture for a variety of
purposes, and Yarbus showed that the viewer’s eye movements
changed systematically depending on the viewing task. For example,
when the viewer was asked to determine the ages of the people in the
painting, she concentrated her fixations on the faces in the scene, but
when she was asked to determine the material circumstances of the
family, she directed her eyes more generally over the objects. In this
way, Yarbus demonstrated that cognitive processes and internal states
of the viewer influence eye movements.

The influence of cognitive processes on eye movements during
scene viewing was also shown by Buswell (1935), and has been
demonstrated many times since (Borji & Itti, 2014; Castelhano &
Henderson, 2008; Henderson, 2003; Henderson, Weeks, & Hol-
lingworth, 1999; Mills, Hollingworth, Van der Stigchel, Hoffman,
& Dodd, 2011; Tatler, 2009). That is, eye-movement patterns
differ as a function of the viewing task and other changes in
cognitive state. The question then arises: Is the inverse also true?
Can cognitive states be predicted from differences in eye-
movement patterns? More specifically, can we classify cognitive
states from the descriptive statistics of fixations and saccades? If it
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is the case that eye movements generally reflect the cognitive
processes active during a given cognitive task, then the prediction
is that such classification should be possible. Furthermore, we can
ask whether eye-movement differences across tasks are consistent
enough that we can classify the task that one participant is engaged
in from other participants’ eye-movement data. If the mapping of
cognitive processes to eye-movement behavior is generalizable
across people, as it should be if this mapping is lawful, then the
prediction is that it should be possible to recover one viewer’s task
from the similarity of their eye movements to those of other people
engaged in the same task.

Three recent studies (Borji & Itti, 2014; Greene, Liu, & Wolfe,
2012; Henderson et al., 2013) have investigated this question using
classification analysis. Classification analysis is an alternative to
hypothesis testing; rather than estimating the significance of the
task-driven differences for each statistical feature of eye move-
ments, a classification analysis uses a combination of such features
to (a) train a classifier to classify the task, and (b) test this
classification on data that have not been used during training
(Rosa, 2010). The accuracy of predicting the task for previously
unseen data is a measure of the replicability of the effect; this is
one advantage of classification analysis over null-hypothesis sig-
nificance testing, which does not evaluate replicability (Cohen,
1994).

In the present study using classification analysis, we set out to
examine several eye-movement phenomena that have theoretical
and practical significance in terms of how individuals perform
various visual tasks. The first goal of this study was to determine
whether eye-movement features could be used to predict visual
task performance, even when the same stimuli are used for each
visual task. Henderson et al. (2013) demonstrated that one can
distinguish visual search, scene memorization, reading, and pseu-
doreading from each other based on the statistics of eye move-
ments. However, the stimuli for several of the tasks differed
(although they were the same for the two scene-viewing tasks),
suggesting that differing scene features may have contributed to
classification accuracy. A question, then, from the Henderson et al.
(2013) study is whether similar classification accuracy can be
observed when the visual stimuli are held constant across several
tasks and only the task varies, as in the Greene et al. (2012) study.
To address this question, the current study used the same scene
stimuli in all three tasks (scene memorization, visual search, and
aesthetic preference).

A second goal of this study was to examine whether individuals
perform different visual tasks in idiosyncratic ways, or whether
there are generalizable eye-movement patterns that characterize
how all people perform different visual tasks. To test this question,
we performed two levels of classification analysis: within-subject
classification (in which classifiers were trained on and tested
within a subject) and between-subjects classification (in which
classifiers were trained on a subset of subjects and tested on
another). Results from this analysis have theoretical implications
for understanding the cognitive control of overt attention. If dif-
ferences in the manner in which attention is allocated over a scene
as a function of task are functionally related to information pro-
cessing in that task, then we would expect these differences to be
consistent across individuals. In that case, classification based on
training data from one set of individuals should generalize to a new
set of individuals.

A third goal of this study was to examine whether classification
accuracy would differ depending on the nature of the classifier.
Differences across classifiers provide information about the best
model for visual task prediction in the context of our chosen visual
tasks. This helps to inform how different eye-movement features
are combined across tasks, providing information about how at-
tentional deployment changes across tasks. For this purpose, we
used four classifiers that make different assumptions about the
populations from which the data are sampled. The linear Gaussian
naive Bayesian classifier (GNB-L) and the nonlinear Gaussian
naive Bayesian classifier (GNB-N) assume that the statistical
features of eye movements are independent of each other. The
linear discriminant (LD) and the quadratic discriminant (QD) are
multivariate classifiers and model the covariance between features.
In addition, GNB-L and LD make the assumptions of linearity,
whereas the GNB-N and QD classifiers are nonlinear classifiers
and do not impose the assumption of linearity on the data. It is also
of note that the success of each classifier in predicting mental
states may provide information about the nature of eye movements
for these different tasks. For example, eye-movement features may
correlate differentially with each other for different tasks, and
some of these classifiers would capitalize on this feature to im-
prove classification accuracy. Such information provides addi-
tional evidence about how eye-movement features are related to
different visual tasks.

Lastly, we examined the relative importance of each eye-
movement feature to successful classification by excluding that
feature and measuring any decrease in classification accuracy. This
analysis also provides information about how differences in cog-
nitive processes can be reflected in specific (isolated) variables
that describe the shape of distribution in the eye-movement be-
haviors (mean, standard deviation, and skewness, which are first,
second, and third moments of the distribution, respectively). Our
hypothesis was that differences in the strategies to achieve the
goals of these visual tasks would be reflected in their overt atten-
tional deployment, and those variables that summarize the shape of
the distribution of fixation durations and saccade amplitudes dur-
ing each task should suffice to reliably distinguish the tasks from
each other. In summary, we set out to determine whether cognitive
states, operationalized as the viewing task type during scene view-
ing, can be predicted from eye-movement data within participants
and across participants. Our results have theoretical implications as
to how cognitive processes control overt attentional deployment in
complex tasks and how specific features of cognitive control
generalize across viewers.

Method

Participants

Seventy-two Edinburgh, Scotland, undergraduate students with
normal or corrected-to-normal vision participated in the experi-
ment as part of a large eye-movement corpus study. All partici-
pants were naive concerning the purposes of the experiment and
provided informed consent.

Apparatus

Eye movements were recorded via an SR Research Eyelink
1000 eye tracker (spatial resolution of 0.01°) with a sampling rate
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of 1000 Hz. Participants were seated 90 cm away from a 21-in.
CRT monitor. Head movements were minimized with chin and
head rests. Although viewing was binocular, eye movements were
recorded from the right eye. The experiment was controlled with
SR Research Experiment Builder software.

Stimuli and Tasks

We used 135 unique full-color 800 � 600 pixel (32 bit) photo-
graphs of real-world scenes from a variety of indoor and outdoor
scene categories in the experiment. The scenes were split into
blocks of 45 images, and participants were instructed to perform
one of three tasks during each block: search for an object (speci-
fied by a word cue), memorize the scene in preparation for a later
memory test, or provide an aesthetic judgment (4-point scale, 1 �
dislike to 4 � like). All scenes were presented for 8 s. During the
search block, search responses were logged during the trial but the
scene remained visible after the response until the full 8 s had
elapsed. During the aesthetic preference task, a preference judg-
ment was made after each scene’s presentation. Memorization
performance was assessed with a separate memory test following
all three main tasks.

Classification Analysis

Features. For each trial, we computed seven features from
the eye-movement data: Three described the distribution of
fixation durations, three described the distribution of saccade
amplitudes, and one coded the number of fixations. Specifi-
cally, we used the mean, standard deviation, and skewness of
the fixation durations; the mean, standard deviation, and skew-
ness of the saccade amplitudes; and the number of fixations per
image. We used the Matlab functions mean, stdev, and skew-
ness to compute these features.

Classifiers. Throughout this study, we used four distinct clas-
sifiers: LD, QD, GNB-L, and GNB-N. Implementation of the
classifiers was provided by the classify function in the Statistics
toolbox in Matlab (the classifier type was set to linear, quadratic,
diagLinear, and diagQuadratic, respectively). These classifiers use
a multivariate Gaussian distribution to model the classes and
classify a vector by assigning it to the most probable class. The LD
classification model contains an assumption of homoscedasticity;
that is, all classes are sampled from populations with the same
covariance matrix. For our purposes, this assumption means that
(a) the variance of each feature does not change across tasks, and
(b) the covariance between each pair of features is the same for all
tasks. QD makes no such assumption, and instead estimates the
covariance matrices separately for each class (that is, the variances
of and the covariances between features are allowed to differ
across tasks). GNB classifiers impose a constraint that the cova-
riance matrices are diagonal (in our case, this implies that the
eye-movement features are uncorrelated); furthermore, GNB-L
makes a further assumption of homoscedasticity, whereas GNB-N
does not make this assumption (that is, GNB-L assumes that the
variance of each feature is the same across tasks, and GNB-N
allows it to differ). Given that the covariance between features is
ignored by both versions of GNB, these two classifiers are uni-
variate, whereas LD and QD are multivariate classifiers because
they use the feature’s covariance to classify the task. Another

distinction between linear and nonlinear classifiers is that the
assumption of homoscedasticity is equivalent to separating the
classes with a linear plane; otherwise, the classes are separated
with a nonlinear curved surface (therefore, both QD and GNB-N
are nonlinear classifiers, whereas LD and GNB-L are linear).

Cross-validation procedure. All classifiers were evaluated
using a cross-validation approach. A subset of trials was used to
train the classifier, and the task was predicted for the trials that
were not included in the training set. We used two approaches for
separating the data into training and test sets. The first approach
used a within-participant classification, in which training and
testing were performed on data within the same participant in an
iterative fashion. In this analysis, 10% of the trials (13 trials) were
randomly left out for testing. We produced 1,000 unique training
and test sets for each participant in which the classifier was trained
on 90% of the trials and tested on the remaining left-out 10% of the
trials. This was done for each of the 1,000 unique training and test
set combinations. The percentages of correctly classified tasks in
each of the 13 left-out trials was calculated in all 1,000 training–
test set combinations and were then averaged for each participant
to obtain within-subject accuracy.

The second approach used an across-participant classification in
which all trials for a particular participant were iteratively tested
using all of the trials from the remaining 71 participants for
training. This process was iterated until all trials for all participants
had been tested.

Evaluation of classifiers. For both within- and across-
participants classification procedures, we computed, for each par-
ticipant, the proportion of trials when the task was predicted
accurately; this proportion was our measure of classification ac-
curacy for a given participant. In addition, we computed the
confusion matrices: The (ith, jth) cell of the confusion matrix
specifies the proportion of trials that were recorded while perform-
ing task i and were assigned to task j by a classifier. The diagonal
values of the confusion matrix correspond to the proportion of
trials in which the classifier correctly predicted the task, whereas
the nondiagonal values correspond to the proportion of trials
incorrectly classified as another task.

Feature loadings. The relative importance of each of the
seven features (the unique contribution of each feature) was eval-
uated by removing a feature from all participants’ data and com-
puting the difference in task classification accuracy relative to
classification using the full set of seven features. This difference
was computed for all 72 participants and for both within-
participant and across-participants classification.

Results

Seven eye-movement features were computed for each trial.
Table 1 lists the mean value and the associated standard error of
each feature for each of the three tasks across participants.
Simple paired t tests showed a significantly greater standard
deviation of fixation durations for the visual search task than
the scene memorization, t(71) � 6.64, p � .001, and the
aesthetic preference tasks, t(71) � 8.14, p � .001, and also a
greater standard deviation of fixation durations in the scene
memorization task compared with the aesthetic preference task,
t(71) � 2.78, p � .007. The skewness of fixation durations in
the visual search task was significantly greater than those of
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both the scene memorization task, t(71) � 3.17, p � .002, and
the aesthetic preference task, t(71) � 3.40, p � .001. As for the
number of fixations, visual search had fewer fixations than both
scene memorization, t(71) � �6.07, p � .001, and aesthetic
preference, t(71) � �9.30, p � .001. Also, scene memorization
had fewer fixations than aesthetic preference, t(71) � �6.98,
p � .001. In terms of saccade amplitudes, mean saccade am-
plitude for visual search was smaller than those for both scene
memorization, t(71) � �2.78, p � .007, and aesthetic prefer-
ence, t(71) � �6.38, p � .001, and also was smaller in the
scene memorization task compared with the aesthetic prefer-
ence task, t(71) � �5.47, p � .001. The standard deviation of
saccades in visual search trials was larger than those in both
scene memorization, t(71) � 4.81, p � .001, and aesthetic
preference, t(71) � 3.69, p � .001. Finally, the skewness of
saccades was larger in visual search compared with both scene
memorization, t(71) � 5.22, p � .001, and aesthetic preference,
t(71) � 6.15, p � .001, and skewness of saccades in memori-
zation was marginally larger than that in aesthetic preference,
t(71) � 2.02, p � .047. To see how these variables that describe
the shape of the distribution of fixation durations and saccade
amplitudes are distinguishable for different tasks, one can in-
spect the visualizations of these distributions across tasks,
which are plotted in Figure 1.

In addition, we computed the correlations between features,
which are displayed in Figure 2. The correlation matrix shows
a clear grouping, that is, the features of saccade amplitudes
were relatively uncorrelated with the features of fixation dura-
tions (Castelhano & Henderson, 2008; Henderson & Luke,
2014). The number of fixations was negatively correlated with
mean fixation duration, as long fixations would reduce the total
number of possible fixations in the fixed length trials. The
correlations displayed in Figure 2 were computed by pooling
the trials for all three tasks. The same general pattern of
correlations was observed in all tasks, but a small set of corre-
lations differed by task. Significantly different correlations
were assessed with paired t tests, computed using Fisher’s r-to-z
transformation, with the threshold of significance set to .002
(.05/21) after adjustment for Bonferroni correction for multiple

comparisons. The correlation between mean and standard de-
viation of fixation durations was significantly larger in the
visual search task than in the aesthetic preference task, z(69) �
3.89, p � .001, and was also larger in the visual search task than
the scene memorization task, z(69) � 2.34, p � .019, df � 69,
but did not survive the Bonferroni-corrected threshold.

Classification Results

The fact that some features were strongly correlated (see
Figure 2) suggests that the multivariate classifiers may outper-
form the univariate classifiers because a multivariate model
incorporates the covariance between features, whereas the uni-
variate classifiers assume that the features are independent.
However, it is not immediately clear whether a linear or a
nonlinear multivariate model should perform better. The linear
(i.e., homoscedastic) model ignores the task-driven differences
in correlations mentioned above (i.e., it assumes that the eye-
movement features covary with each other in the same way for
each task type). A nonlinear multivariate classifier, such as QD,
models the covariances between features separately for each
task. This increases the number of model parameters by one
and, therefore, requires a larger amount of training data relative
to LD. Therefore, QD is expected to outperform LD only if the
feature interactions are sufficiently different across tasks and a
sufficient amount of data is available for training (Seber, 2004).

The accuracy of the four classifiers applied to the within-
participant classification is shown in Figure 3, where a box-
and-whisker plot summarizes the distribution of each classifi-
er’s accuracy over the 72 participants. The plot was created
using the Matlab boxplot function; any point outside the [q1 �
1.5�(q3 � q1), q3 � 1.5�(q3 � q1)] range, where q1 and q3 are
the 25% and 75% percentiles, respectively, was considered an
outlier. The asterisk-marked lines that connect classification
models indicate significant differences in the performance of
the two corresponding classifiers, as estimated by the nonpara-
metric Wilcoxon signed-ranks test with the threshold of signif-
icance set to a Bonferroni-corrected threshold of .008. For the
use of Wilcoxon’s tests in comparative evaluation of classifiers,

Table 1
Features of Eye Movements Used to Classify Task Performed During the Trial

Task

Feature Visual search Scene memorization Aesthetic preference

Mean fixation duration 256.59 � 3.28 256.88 � 3.35 251.43 � 3.77
Average standard deviation of fixation durations 132.75 � 2.12 117.46 � 2.17 113.52 � 2.36
Average skewness of fixation durations 1.14 � 0.03 1.01 � 0.03 1.00 � 0.03
Number of fixations 22.42 � 0.48 25.02 � 0.35 27.47 � 0.56
Mean saccade amplitude 4.46 � 0.09 4.63 � 0.07 4.85 � 0.08
Average standard deviation of saccade amplitudes 3.88 � 0.06 3.65 � 0.05 3.69 � 0.06
Average skewness of saccade amplitudes 1.19 � 0.03 1.05 � 0.02 1.00 � 0.02

Note. Values are means � standard errors (df � 71) across participants computed for each task. Fixation
durations were measured in milliseconds, and saccade amplitudes were measured in degrees of visual angle. The
numbers of trials were 3,132 for visual search, 3,239 for scene memorization, and 3,131 for aesthetic preference.
The first fixation in each trial and fixations that were above or below the mean � 3.5 SD of fixations in all trials
(n � 247,017) were removed from data. The features were calculated in each trial (8 s) in each task and then
averaged over all trials in that task for a participant. Then the means and standard errors across participants were
calculated.
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Figure 1. Comparison of the shapes of the probability distributions of fixation durations (top) and saccade
amplitudes (bottom) for visual search, scene memorization, and aesthetic preference tasks. (Top) Greater
standard deviation of fixation durations and skewness of fixation durations are observed in the visual search task
compared with the scene memorization and the aesthetic preference tasks. Greater standard deviation of fixation
durations is also observed in the scene memorization task compared with the aesthetic preference task. (Bottom)
Mean saccade amplitudes for the visual search task are smaller than those for both scene memorization and
aesthetic preference tasks. Mean saccade amplitude is also smaller in the scene memorization task compared with
the aesthetic preference task. The standard deviation of saccade amplitudes and the skewness of saccade amplitudes
in the visual search task are larger than those in both the scene memorization and aesthetic preference tasks. See the
online article for the color version of this figure.
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see Demsar (2006). All four classifiers accurately classified the
task types. However, the multivariate classifiers (LD and QD)
consistently outperformed the two univariate GNB classifiers,
suggesting that the covariance between eye-movement features
is particularly important for correct within-participant task clas-
sification. The mean within-subject classification accuracies
across participants were 66.4% for LD, t(71) � 23.3, p � .001
(compared with chance note: chance is 33.3%), 65.5% for QD,
t(71) � 20.7, p � .001 (compared with chance), 61.2% for
GNB-L, t(71) � 23.2, p � .001 (compared with chance), and
59.1% for GNB-N, t(71) � 20.6, p � .001 (compared with
chance). All classifiers showed above-chance levels of accuracy
(as indicated by the dashed line in the top panel of Figure 3) in
both median level of classification accuracy and classification
accuracy of each participant (i.e., the error bars do not cross the
chance line, indicating that all participants were classified with
above-chance accuracy). The high within-participant task clas-
sification accuracy is also reflected in the confusion matrices
(see Figure 3, bottom panel). In each confusion matrix, the
highest value for each row is on the diagonal, indicating that for
each task the number of correct classifications is higher than the
number of mistakes.

Figure 4 displays the task classification accuracy across
participants. Median classification accuracy was again above
chance for all classifiers (55.6% for LD, 45.8% for QD, 53.3%
for GNB-L, 45.5% for GNB-N), suggesting a reasonable degree
of overlap in the task-specific eye-movement characteristics
across participants. However, for all classifiers, across-
participant classification was significantly less accurate than
within-participant classification (p � .001, Wilcoxon signed-

ranks test). Nevertheless, the LD classifier did provide above-
chance across-participant classification in all participants. For
the three remaining classifiers, classification was at or below
chance for a small subset of participants (five participants for
QD, two for GNB-L, and six for GNB-N), and yet the means of
accuracies across subjects were significantly more than 0.33 for
all classifiers (df � 71, p � .001, for all classifiers). A Wil-
coxon signed-ranks test showed that LD was significantly more
accurate than all other classifiers (df � 71, p � .001, for all
classifiers), suggesting that the homoscedastic model used by
LD (which accounts for covariance between the features, but
ignores the task-driven differences in the covariance between
features) most accurately captures the task-specific information
that generalizes across participants.

In addition, GNB-L was significantly more accurate than both
the QD, t(71) � 9.91 p � .001, and GNB-N, t(71) � 9.54 p �
.001, which were not significantly different from each other,
t(71) � 1.18, p � .238. The confusion matrices for the two linear
classifiers (LD and GNB-L) have high diagonal entries, meaning
that each task is likely to be accurately predicted. This is not the
case for the two nonlinear classifiers; only the third task (aesthetic
judgment) is likely to be predicted correctly by the nonlinear
classifiers.

Finally, we evaluated the contribution of each feature to classi-
fication accuracy using the LD classifier (see Figure 5). The
number of fixations contributed the most to classification accu-
racy: After its removal, the mean classification accuracy dropped
by 8.85% (within-participant) and 4.42% (across-participants). In
some participants, the drop in accuracy was as high as 23%. The

Figure 2. Correlation matrix exhibiting the correlation between all seven features of the eye movements. See
the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1507PREDICTING TASK FROM EYE MOVEMENTS



Figure 3. Performance of the four classifiers in within-participant classification. (Top) Accuracy of each
classifier when predicting the task. From left to right, LD � linear discriminant, QD � quadratic discriminant,
LGNB � linear Gaussian naive Bayes, NLGNB � nonlinear Gaussian naive Bayes classifiers. The dot
represents the median classification performance of all participants. The box represents the middle two quartiles
of classification performance, and the whiskers represent the full range of classification performance (outliers are
marked with a �). The dashed line indicates the level of chance classification (0.333 . . .). The horizontal lines
marked with an asterisk indicate a significant difference in performance between pairs of classifiers. (Bottom)
The corresponding confusion matrices. The tasks are visual search (VS), scene memorization (SM), and aesthetic
preference (AP). See the online article for the color version of this figure.
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Figure 4. Performance of the four classifiers in across-participant classification. (Top) Accuracy of each
classifier when predicting the task. The dot represents the median classification performance across participants.
The box represents the middle two quartiles of classification performance, and the whiskers represent the full
range of classification performance. From left to right, LD � linear discriminant, QD � quadratic discriminant,
LGNB � linear Gaussian naive Bayes, NLGNB � nonlinear Gaussian naive Bayes classifiers. The dashed line
indicates the level of chance. The horizontal lines marked with an asterisk indicate a significant difference in
performance between pairs of classifiers. (Bottom) The corresponding confusion matrices. The tasks are visual
search (VS), scene memorization (SM), and aesthetic preference (AP). See the online article for the color version
of this figure.
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Figure 5. Relative influence of each measured feature on task classification using the linear discriminant
classifier for within-participant classification (top) and across-participant classification (bottom). The vertical
axis shows the drop in classification accuracy when the corresponding feature was excluded from the classifi-
cation relative to classification using all features. The dot for each feature indicates the median value, and the
box indicates the middle two quartiles; the whiskers represent the distribution, with � indicating the outlying
values. The dashed line indicates no change in classification accuracy. VS � visual search; SM � scene
memorization; AP � aesthetic preference. See the online article for the color version of this figure.
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other six features, taken in isolation, were less important for
classification, with skewness of saccade amplitudes having the
least contribution for both within- and across-participants classi-
fication.

This result again suggests that the covariance between features
is particularly important for classification accuracy because drop-
ping individual features does not generally produce appreciable
drops in classification accuracy. This suggests that the highly
correlated nature of these variables (see Figure 2) fails to produce
a large classification cost if only one variable is removed. Perhaps,
if highly correlated feature pairs were removed, rather than single
features, classification accuracy may have been impaired to a
greater degree. Because the fixation features seem to be uncorre-
lated with the saccade features (see Figure 2), better classification
accuracy could be achieved by a hybrid LD/GNB-L model, in
which the fixation features are assumed to be independent of the
saccade features. Evaluating this hybrid classifier is an interesting
direction for future research.

Visual Search Caveats

Although including search target objects in the scenes helps to
ensure that the participants are kept motivated throughout the
search task, one drawback is the possibility that some of the
viewing time during the visual search task may not be related to
searching when the object has been found before the search time

ends. Search trials would therefore include eye movements that
were not due to search. It could be that these eye movements
changed once search was complete in a way that artificially aided
the classifier to distinguish the visual search task from the other
tasks. Figure 6 compares the means, standard deviations, and
skewness of saccade amplitudes and fixation durations for the
eye-movement patterns for all three tasks with complete 8-s trials
(labeled as VS, SM, and AP) as well as parts of trials in search
before (pre-VS) and after (post-VS) each participant successfully
found the target (sometimes the participant failed to find the target
in 8 s). To check whether the differences in features before and
after finding the target in the search trials inflated the accuracy of
classifiers to distinguish this task from the others, we performed
another classification analysis using only the predetection fixations
for visual search and truncating the aesthetic preference and scene
memorization trials to match predetection visual search trials. This
was done by randomly assigning trial-by-trial search completion
times from the visual search task to the aesthetic preference and
scene memorization tasks and omitting the fixations in each trial
that followed the assigned/artificial task completion times. This
simulation was done 100 times.

For within-participant classification, all of the classifiers per-
formed better than chance, and the median classification accura-
cies across 100 simulations were 58.6% for LD, 63.0% for QD,
51.4% for GNB-L, and 60.0% for GNB-N (note: chance is 33.3%),

Figure 6. Eye-movement features for each visual task (VS � visual search, SM � scene memorization, AP �
aesthetic preference) and for the visual search task separated by the eye-movement features for the intervals
before the object was found (VS-Pre) and after the object was found (VS-Post). See the online article for the
color version of this figure.
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showing classification accuracy differences of �7.8% for
LD, �2.5% for QD, �1.8% for GNB-L, and �7.7% for GNB-N
compared with the original analysis. The mean accuracies across
subjects for all classifiers were significantly higher than 0.33 (df �
71, p � .001, for all classifiers). For between-participants task
classification, median classification accuracies across 100 simula-
tions were again above chance for all classifiers (48.7% for LD,
54.0% for QD, 49.1% for GNB-L, 52.6% for GNB-N), showing
classification accuracy differences of �6.9% for LD, �8.2% for
QD, �4.2% for GNB-L, and �7.1% for GNB-N compared with
the original analysis. Similar to the across-participant analysis on
the original data, classification accuracy was below chance for a
small subset of participants (four participants in LD and one
participant for GNB-L), and yet the means of accuracies across
subjects were significantly greater than 0.33 for all classifiers
(df � 71, p � .001, for all classifiers).

Average classifier performance from this analysis thus
showed similar levels of accuracy for both within- and between-
participants classifications. However, there was a decrease in
accuracy for the linear classifiers (specifically LD), which we
believe was due to the amount of data that was lost when
performing this truncation (on average, the last 51% of trials
were removed in all tasks). Another explanation for this per-
formance drop in LD could be that the number of fixations may
have inflated accuracy for linear classifiers before equating task
lengths (original analysis before truncating the trials). After
truncating the trial lengths, however, the number of fixations
may have become less informative for the classifiers because it
was directly related to the total length of the tasks. To check
this possibility, we calculated the accuracy drop in the LD
classifier on the truncated trials after excluding the number of
fixations. As before, the number of fixations had the highest
isolated loading among features. The results showed an average
accuracy drop of 3.26% in between-subjects classification and
7.67% in within-subject classifications after excluding number
of fixations. These reductions in accuracy are similar to the
results on the nontruncated data (4.42% between-subjects and
8.85% within-subjects). Therefore, the number of fixations’
contribution to classification survives to a great degree even
after equating task lengths.

Interestingly, we observed an improvement in classification
accuracy in truncated trials versus the full data set for between-
subjects task classification in the nonlinear classifiers. Im-
proved performance of the nonlinear classifiers could be the
result of removing some noise from the search task. The more
limited data set may have made the covariance and variance
structure of the visual search task more distinct from aesthetic
preference and scene memorization, resulting in enhanced per-
formance of QD and GNB-N. Performing classification analysis
on only unsuccessful search trials was not possible given the
lack of sufficient data for training (in only 15% of the trials the
target had never been found). Therefore, we avoid drawing too
many conclusions from the truncated data sets because of the
large decrease in the amount of data, but these analyses dem-
onstrate that our classification results were not artificially in-
flated based on the eye-movement patterns that occurred after
targets were found in the visual search task.

Discussion

How eye movements reflect underlying cognitive processes
during scene viewing has been a topic of considerable theoretical
interest. One focus of research concerns the relationship between
viewing task and eye-movement characteristics, with an emphasis
on documenting differences in eye movements across viewing
tasks (e.g., Castelhano & Henderson, 2008; Henderson, 2003;
Henderson et al., 1999; Mills et al., 2011; Tatler, 2009; Yarbus,
1967). In the present study, we addressed this issue by asking the
reverse question: Can viewing task be predicted from differences
in eye-movement patterns? Specifically, we investigated whether it
is possible to classify the viewing task from differences in the
descriptive statistics of fixations and saccades that viewers make
as they view pictures under different viewing conditions (Borji &
Itti, 2014; Greene et al., 2012; Henderson et al., 2013). We
hypothesized that if eye movements generally reflect the cognitive
processes that are active during a given task, then it should be
possible to classify the viewing task from participants’ eye move-
ments. In addition, we hypothesized that if the mapping of cogni-
tive processes to eye-movement behavior generalizes across peo-
ple, then it should be possible to classify the task that one viewer
is engaged in from the eye-movement data of other viewers.

The first goal of this study was to determine whether eye-
movement features could be used to predict visual task perfor-
mance, even when the same stimuli are used for each visual task.
To test this, we asked 72 participants to view pictures of natural
scenes in three viewing task conditions: scene memorization, vi-
sual search, and aesthetic preference. The images were the same in
the three conditions to ensure that any differences in viewing
behavior were reflecting task differences rather than image con-
tent. We showed that it is indeed possible to successfully classify
the viewing task using characteristics of eye-movement patterns,
even when the stimuli are held constant. This success was due to
differences in the distributional properties of fixation durations and
saccade amplitudes. Therefore, for the visual tasks that we tested,
unique eye-movement characteristics can be used to classify visual
tasks even when the stimuli are held constant.

The second goal of this study was to examine whether the
mapping of cognitive processes to eye-movement behavior gener-
alizes across individuals. To investigate this question, we per-
formed between-subjects classifications in which classifiers were
trained on one subset of subjects and then tested on another. While
within-participant classification produced more accurate results,
between-participants classification accuracy was also significantly
above chance, suggesting that there are lawful task-specific con-
sistencies in eye-movement patterns that generalize across partic-
ipants. This result demonstrates that there are aspects of eye-
movement patterns that characterize how people in general
perform different visual tasks. From the perspective of cognitive
control of overt attention, the results are consistent with models in
which cognitive processes common to each task across viewers
influence the manner in which attention is allocated over a scene
(e.g., Nuthmann, Smith, Engbert, & Henderson, 2010).

Given that eye-movement patterns distinguished how partici-
pants performed different visual tasks, we were then able to
examine which features were most critical in determining the
cognitive task that the participants were performing. The number
of fixations was a highly discriminating feature for both within-
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and between-participants classification (see Figure 5). Potentially,
more interesting is that whereas mean fixation durations and
saccade amplitudes were only marginally important in distinguish-
ing the visual tasks performed, parameters that capture the higher
order shapes of their distributions (second and third moments)
were more useful in distinguishing tasks. Specifically, we showed
that the second (standard deviation) and third moment (skew) of
fixation durations and saccade amplitudes distinguish search (with
the most variability and skewness) from memorization (with vari-
ability higher than preference) and preference (being the most
homogenously performed task in terms of duration of fixations and
size of saccades during viewing) in a reliable way. One way to
interpret this is that the time pressure of meeting an end is greatest
for search and is the least for aesthetic preference judgment. Thus,
adaptive alterations in eye-movement behavior are more drastic in
search, more modest in memorization (with a less immediate goal),
and relatively small in preference judgments during scene viewing.
This could also be more generally thought of as a control system
with feedback. If the gain of the feedback component is compa-
rable to the gain of the feedforward component of the system, more
drastic alterations are likely to be produced by the system, leading
to more adaptive and less homogenous output (where attention
deployments are reflected by eye-movement behavior). If, how-
ever, the gain of the feedback component is small relative to the
feedforward component, the output will be less varied and less
skewed. More research would be necessary to validate this
feedback-gain-tuning control system model of visual task perfor-
mance, but we believe that this may be a useful model to help
predict eye movements for different visual tasks.

This finding is also interesting in light of the high test–retest
reliability of fixation duration and saccade amplitude distributions
across tasks and participants (Henderson & Luke, 2014). These
results suggest that the distributional properties of these eye-
movement characteristics, which reflect processing time (fixation
duration) and attentional breadth (saccade amplitude), vary across
tasks in reliable ways. From an empirical standpoint, these results
indicate that attempts to model and understand overt attention and
eye-movement control in scene viewing must take into account the
shapes of the distributions as well as the means of these features
(Nuthmann et al., 2010; see also Henderson & Luke, 2014; Hen-
derson, Choi, & Luke, 2014). In the future, it will be important to
determine whether the inclusion of distributional properties of
additional eye-movement features will provide further discriminat-
ing information and boost classifier performance.

The third goal of this study was to determine whether one
classifier was superior to the rest, as this information could be used
to constrain theories of how eye movements relate to different
cognitive states. The LD classifier was the most successful at
predicting the task both within and across participants. This
method uses a probabilistic model that considers the covariance
between features but ignores task-related differences in the cova-
riance of the features; that is, some covariance between eye-
movement features could change with task. Specifically, the co-
variance between the mean and standard deviation of fixation
durations differed between the visual search task and the scene
memorization task, z(69) � 2.34, p � .019, and also between the
visual search task and aesthetic preference task, z(69) � 3.89, p �
.001. Interestingly, accounting for these differences (as in the QD
model) did not improve task classification within a participant, and

actually impaired classification across participants. This finding
suggests that accounting for the covariance between eye-
movement features is beneficial for accurate task classification, but
task-specific modulations of these correlations do not generalize
across participants. However, because the classification results
were so similar between LD and QD in the full data set, and QD
outperformed LD in the truncated data, it may be premature at this
point to speculate about differences between them. What we can
confidently conclude is that the covariance between eye-
movement features is important in determining the task that indi-
viduals are performing. Treating each eye-movement feature as
independent, as in the univariate classifiers, can achieve above-
chance classification, but is not the optimal model in determining
participants’ cognitive states (i.e., the task they are performing).

In summary, if we want to determine which cognitive state a
person is in from her eye-movement patterns, we need to model the
covariance between eye-movement features. This finding suggests
that there are relationships among the distributional features of
fixation durations and saccade amplitudes across tasks, a finding
that is not explicitly included in most current models of eye-
movement control and should be accounted for in future models.
An important caveat on this conclusion, however, is that our
results also demonstrated a lack of correlation between fixation
and saccade features, supporting the suggestion that two relatively
independent mechanisms are involved in controlling saccades and
fixations (Castelhano & Henderson, 2008; Henderson & Luke,
2014; Rayner, 2009; but see also Unema, Pannasch, Joos, &
Velichkovsky, 2005, for an alternative view). Stronger correlations
were observed within features (mean, standard deviation, and
skewness) of fixation durations, and within the same features of
saccade amplitudes. However, correlations between the mean and
the standard deviation are expected in a population with non-zero
skewness (Shanmugam, 2008). The distribution of fixation dura-
tions, and of saccade amplitudes has been shown to be highly
skewed in previous work (Castelhano et al., 2009; Luke et al.,
2013; Tatler et al., 2006).

In conclusion, our study supports three main conclusions. First,
we demonstrated that it is possible to successfully classify the
viewing task from eye movements. Second, we found that four
common classifiers with different underlying assumptions were all
successful to varying degrees, with classifiers that accounted for
the covariance between features generally producing better perfor-
mance. Third, we demonstrated that the relationships between the
viewing task and the eye-movement patterns generalized across
participants, such that we could classify a given participant’s task
from the similarity of her eye movements to those of other partic-
ipants. This result is theoretically important because it suggests
that task differences in eye movements are not simply due to
idiosyncratic differences, but instead reflect common underlying
cognitive mechanisms that are consistent across participants and
reveal changes in the deployment of overt attention. As discussed
by Henderson et al. (2013), this result also has practical implica-
tions for using eye-movement classification technologies to clas-
sify cognitive states in human–computer interactions. Specifically,
the results suggest that changes in eye movements across tasks are
lawful enough that they may be used to infer the task engaged. In
the future, analysis of stimulus-driven visual features (such as
saliency, entropy, etc.) and their distributions, as well as time-
series analysis throughout visual tasks may provide additional
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sensitive information, which is the next step for future work in our
laboratories.
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