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Abstract: Stressful life events are related to negative outcomes, including physical and psychological
manifestations of distress, and behavioral deficits. Patients diagnosed with breast cancer report
impaired attention and working memory prior to adjuvant therapy, which may be induced by distress.
In this article, we examine whether brain dynamics show systematic changes due to the distress associ-
ated with cancer diagnosis. We hypothesized that impaired working memory is associated with sup-
pression of “long-memory” neuronal dynamics; we tested this by measuring scale-free (“fractal”) brain
dynamics, quantified by the Hurst exponent (H). Fractal scaling refers to signals that do not occur at a
specific time-scale, possessing a spectral power curve P fð Þ / f 2b; they are “long-memory” processes,
with significant autocorrelations. In a BOLD functional magnetic resonance imaging study, we scanned
three groups during a working memory task: women scheduled to receive chemotherapy or radiother-
apy and aged-matched controls. Surprisingly, patients’ BOLD signal exhibited greater H with increas-
ing intensity of anticipated treatment. However, an analysis of H and functional connectivity against
self-reported measures of psychological distress (Worry, Anxiety, Depression) and physical distress
(Fatigue, Sleep problems) revealed significant interactions. The modulation of (Worry, Anxiety) versus
(Fatigue, Sleep Problems, Depression) showed the strongest effect, where higher worry and lower
fatigue was related to reduced H in regions involved in visuospatial search, attention, and memory
processing. This is also linked to decreased functional connectivity in these brain regions. Our results
indicate that the distress associated with cancer diagnosis alters BOLD scaling, and H is a sensitive
measure of the interaction between psychological versus physical distress. Hum Brain Mapp 36:1077–
1092, 2015. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Stressful life events may lead to significant negative out-
comes, including both physical manifestations of distress
(e.g., fatigue) and psychological distress (e.g., anxiety and
depression). The long-term impacts of stress on the brain
and cognition are well studied: severe stress leads to long-
term alterations in behavior and memory [Lupien et al.,
1999; McEwen, 1998], neuroanatomy [Bremner, 1999; Sap-
olsky, 1985], and patterns of brain activity [e.g., Hull, 2002;
Pechtel and Pizzagalli, 2010]. In this article, we are inter-
ested in uncovering how the dynamics of brain function
are altered during the experience of stressful, real-world
events; this may prove a sensitive measure to study con-
tinuous thought processes such as psychological and phys-
ical distress. In particular, we set out to examine how
different forms of physical and psychological distress
jointly affect brain dynamics, which is unknown even for
cognitively normal populations.

Women undergoing diagnosis and treatment for breast
cancer experience significant physical and psychological
distress. Worry is associated with cognitive effects in this
population, as many patients with breast cancer report
problems in memory and attention, which often precede
chemotherapeutic treatments [Berman et al., 2014; Cim-
prich et al., 2010; Hermelink et al., 2007]. These changes
are potentially driven by the distress that accompanies
cancer diagnosis, with long-term alterations in physiology
and cognition [Brown et al., 1995; Inagaki et al., 2007; Kes-
ler et al., 2009; Saykin et al., 2003]. However, the impact of
distress and worry has not been fully characterized in the
context of cancer diagnosis. For example, the effects are
variable across subjects and tasks [Correa and Ahles, 2007;
Hermelink et al., 2007], and the perception of cognitive
decline may be primed by an expectation of negative cog-
nitive effects [Schagen et al., 2012].

Recently, Berman et al. [2014] examined the pretreatment
neurocognitive effects of cancer diagnosis using blood oxy-
genation level dependent functional Magnetic Resonance
Imaging (BOLD fMRI) comparing women scheduled to
receive either chemotherapy (PRE-CHEMO) or radiother-
apy (PRE-RADIO), and an aged-matched control group
(CNTRL) during a working memory task. Worry was high-
est for the PRE-CHEMO group, but it was significantly cor-
related with cognitive dysfunction across all groups. In
addition, worry was correlated with task activation, particu-
larly in the posterior cingulate and precuneus, where deacti-
vation is associated with superior task performance [Lustig
et al., 2003]. However, standard analyses of mean task acti-
vation provide limited information about the complex
changes in brain function due to distress which lead to
impaired memory and attention. In particular, it is

unknown how the dynamics of endogenous BOLD fluctua-
tions during working memory are disrupted by stress. This
may prove critical for evaluating the neuronal impact of dis-
tress, as dynamical measures reflect changes over the whole
fMRI time-series, which are more likely to be related to per-
sistent state-like processes such as worry, fatigue, and
depression that are not limited to trial onsets.

In this article, we hypothesized that, just as distress
impairs working memory (i.e., at the behavioral level), it
also disrupts long-memory dynamics of brain regions
implicated in working memory performance (i.e., at the
neuronal level). We quantified long-memory neuronal
processes, by measuring the scale-free dynamics of BOLD
fMRI. Scale-free or “fractal” scaling refers to signals that
are statistically invariant over a range of timescales, and is
a phenomenon that has been observed in many biophysi-
cal systems [Gisiger, 2001; Hausdorff et al., 1996; Kobaya-
shi and Musha, 1982; Peng et al., 2002]. The power
spectrum of a scale-free signal takes the form P fð Þ / f 2b

(b> 0), where spectral power decreases in a power-law
fashion with greater frequency f. This implies that signal
fluctuations do not predominate at any specific frequency
(or time scale) as there are no “peaks” in P fð Þ. The scaling
properties are quantified by exponent b, which is the nega-
tive slope of a line fitted to log(P) versus log(f), This
parameter is usually referred to as the Hurst exponent (H)
[Hurst, 1951] and reflects the degree of scale invariance
that the signal possesses. This typically varies between
H 5 0.5 (white noise or scale limited) and H 5 1.0 (perfectly
fractal, or scale free). Signals with high H are considered
“long-memory” processes; signal changes have persistent
effects in time, leading to a highly autocorrelated signal
with slow, smoothly varying fluctuations.

Studies of fractal scaling have become increasingly preva-
lent in BOLD fMRI. Barnes et al. [2009] first established that
the Hurst exponent of BOLD time series is highest at rest,
and decreases in gray matter following overt tasks. He
et al. [2010; He, 2011] corroborated these findings and dem-
onstrated that H is spatially correlated with resting Glucose
metabolism. In addition, Van de Ville et al. [2010] demon-
strated that the BOLD signal is a function of scale-free elec-
troencephalography (EEG) “microstates.” Fractal scaling
analysis has also been extended beyond univariate meas-
ures, as Ciuciu et al. [2014] demonstrated that inter-regional
connectivity dynamics also exhibit scale-free behavior.
Finally, there is emerging evidence that brain dynamics can
be better modeled as a “multifractal” process, which com-
prises a spectrum of scaling exponents, instead of a single
H parameter [Ciuciu et al., 2012; Shimizu et al., 2004; Wink
et al., 2008]. Although not widely applied, these results
demonstrate the utility of fractal scaling measures in fMRI
[see He, in press for an overview of scale-free brain
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function and implications]. In related work, there has also
been some investigation of the link between fractal scaling
and distress, as [Tolkunov et al., 2010] demonstrated that H
is correlated with trait anxiety in the limbic system during
emotional tasks.

In this article, we examine how fractal scaling dynamics
of the BOLD signal are altered by different forms of distress.
Our goal is to test the hypothesis that distress is associated
with suppression of long-memory (scale-free) BOLD
dynamics, for brain areas recruited by working memory,
including the parietal cortex and prefrontal cortex. This
hypothesis is supported by [Barnes et al., 2009], who
showed that working memory load suppresses H. More
generally, a decrease in H is a known indicator of stress and
dysfunction in biological systems [Hausdorff et al., 1996;
Kobayashi and Musha, 1982; Peng et al., 2002]. We com-
pared populations of pre-treatment breast cancer patient
groups, PRE-CHEMO and PRE-RADIO, to healthy age-
matched CNTRL, while they performed a working memory
task. This task was analyzed to determine how distress
alters brain function during working memory and attention,
areas of reported cognitive deficit in pretreatment breast
cancer patients [Berman et al., 2014]. We also examined how
BOLD scaling is related to a set of self-reported distress
measures: Worry, Anxiety, Depression, Fatigue, and Sleep
Problems. In addition, we examined how distress is related
to functional connectivity, to provide better insight into the
potential mechanisms of distress-related change in H.

MATERIALS AND METHODS

In the sections below, we describe the participant data,
experimental task, scanning parameters, preprocessing
parameters, and the procedure for estimating fractal sig-
nal. We then describe our analysis approach for assessing
the hypothesis of (1) differences in fractal scaling across
patient groups, as well as (2) interactions between fractal
scaling in fMRI and self-reported distress measures. We
then (3) examine how functional connectivity is altered by
distress, to better understand the potential causes of
changes in fractal scaling. Finally, we (4) compare results
across different techniques for estimating fractal scaling to
determine the generalizability of our results. Subject data
were originally presented in [Berman et al., 2014], includ-
ing further experimental design details.

Subject Demographics

Ninety-seven women were recruited from the University
of Michigan Comprehensive Cancer Center. Sixty-five of
these women were diagnosed with localized (Stage 0 to
IIIa) breast cancer and following primary surgical treatment
(lumpectomy or mastectomy). These women were to be
treated with adjuvant chemotherapy (n 5 28) or radiation
(n 5 37), while thirty-two women with negative screening
mammograms served as healthy age-matched controls. Five

additional participants (four controls and one chemotherapy
patient) completed study procedures but were excluded
because of scan artifacts or poor performance on the Verbal
Working Memory Task (VWMT; i.e., performance worse
than three standard deviations away from the mean of their
group). Potential participants were also excluded if they
had secondary diagnosis of a neurological disorder, a psy-
chiatric disorder or met criteria for clinical depression using
the Patient Health Questionnaire (PHQ-8). All participants
were right-handed and scored 29 or better on the Mini
Mental Status Examination. All participants provided
informed written consent approved by the University of
Michigan Institutional Review Board for Medicine.

Behavioral Measures

Participants were assessed at baseline (pretreatment) 24
to 34 days after surgery but before adjuvant treatment
(chemotherapy or radiotherapy). Subjective assessments
included self-reported measures of: Worry (TIWI) [Kelly,
2004], Anxiety (STAI) [Spielberger et al., 1983], Depression
(PHQ-8) [Kroenke et al., 2009], Fatigue (FACIT-F) [Yellen
et al., 1997], and Sleep Problems (PSQI) [Buysse et al.,
1989]. Objective assessments included fMRI scanning dur-
ing a VWMT, with associated behavioral measures of reac-
tion time (RT) and accuracy (ACC). We also measured
participants’ hemoglobin concentration [Hb], which is
inversely related to the severity of anticipated adjuvant
treatment. See Supporting Information Results 1 for fur-
ther information on objective non-fMRI measures.

fMRI Task

Participants performed a VWMT during fMRI scanning.
This task was analyzed to identify changes in the neural
processing of working memory and attention induced by
distress from a breast cancer diagnosis. The VWMT has
been used extensively to assess working/short-term mem-
ory performance in healthy younger and older adults
[Badre and Wagner, 2005; Jonides et al., 2000; Nelson
et al., 2003]. For each trial in the VWMT, participants were
presented with a set of four letters for 1,500 ms. Following
a 3,000 ms delay interval, they were presented with a
“probe” letter for 1,500 and asked whether it was a mem-
ber of the current memory set. Each subject was presented
with 192 trials, acquired over four scanning runs of 285
repetition time (TR; 427.5 s); intertrial Intervals were jit-
tered, ranging between 1,500 and 9,000 ms. See Supporting
Information Methods 1 for further details.

fMRI Scanning Parameters

Images were acquired on a GE Signa 3 Tesla scanner,
equipped with a standard quadrature head coil. Functional
T2* weighted images were acquired using a spiral
sequence with 25 contiguous slices with 3.75 3 3.75 3
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5 mm voxels (TR 5 1,500 ms; echo time [TE] 5 30 ms; flip
angle 5 70�; field of view [FOV] 5 24 cm). A T1-weighted
gradient echo anatomical overlay was acquired using the
same FOV and slices (TR 5 225 ms, TE 5 5.7 ms, flip
angle 5 90�). Additionally, a 124-slice high-resolution T1-
weighted anatomical image was collected using spoiled-
gradient-recalled acquisition in steady-state imaging
(TR 5 9 ms, TE 5 1.8 ms, flip angle 5 15�, FOV 5 25–26 cm,
slice thickness 5 1.2 mm).

fMRI Preprocessing

For each functional run, motion correction was per-
formed with MCFLIRT (FSL ver. 5.5), slice timing correc-
tion was performed with 4-point sinc-interpolation, and
images were spatially smoothed with a 6 mm Gaussian
kernel. We identified high-motion outlier spikes using a
statistically driven procedure [Campbell et al., 2013]. Out-
liers were removed and interpolated from neighboring vol-
umes using cubic splines to avoid discontinuities in BOLD
signal; a median of two timepoints were replaced per run
(range 0–5). We also performed linear detrending and cor-
rected for residual motion by regressing the first two prin-
cipal components (PCs) of the rigid-body motion
parameter estimates (which account for >85% of head
motion variance), to provide strong control against poten-
tial head motion confounds. We obtained brain masks of
the EPI and T1 data using FSL’s Brain Extraction Tool
(ver. 5.5), and warped subject EPI data into MNI template
space using FSL’s flirt package, with “avg152T1_brain.nii”
as a reference volume.

Fractal Scaling Analysis

We tested for long-memory processes in brain dynamics,
by measuring the fractal scaling of BOLD time-series; frac-
tal scaling requires signal to be statistically identical over a
range of different timescales (i.e., scale-free). In practice,
this is usually evaluated by testing whether signal var-
iance increases in a power-law fashion with time-scale (or
decreasing frequency f). This is “monofractal” analysis,
which assumes that data are Gaussian (i.e., fully described
by their second-order moment); see Comparison with
Alternative Fractal Scaling Measures below for alternative
scaling analyses.

To measure monofractal scaling of BOLD signal, we
used detrended fluctuations analysis (DFA) [Peng, 1995].
This was chosen as a model that is computationally effi-
cient, insensitive to nonstationary signal, and is well estab-
lished in dynamics literature. For a voxel time course x(t)
(1 < t < T), we transform it into an unbounded random
walk by subtracting the mean, and computing the inte-
grated time series: y tð Þ5

Xt

i51
x ið Þ2xaveð Þ. We then subdi-

vide y into time windows of equal length n, and estimate
a least-squares linear fit per window. Each time point y(t)
now has a fitted linear estimate ŷn tð Þ, for window size n.

Next, we computed the root-mean-square magnitude of
fluctuations on the detrended data, which is insensitive to
signal nonstationarities:

F nð Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t51
y tð Þ2ŷn tð Þ
� �2r

:

Scale-free signals exhibit a power-law relationship
between fluctuations and window size, defined by the
equation F nð Þ5Cna, where the exponential term a defines
the degree of scale invariance in the signal. The log-
transform of this equation has the linear form:

log F nð Þð Þ5log log Cð Þ1alog nð Þ

Thus, a is given by the slope of a fitted line for log(n)
versus log(F), obtained by computing F(n) for a range of
window sizes n. If 0 < a < 1, then x(t) is a stationary sig-
nal, and the Hurst exponent H is given by a. A slope of
H 5 0.5 indicates highly scale-limited signal with no long-
range correlations (e.g., white noise). Increasing slope indi-
cates greater power-law scaling, up to H 5 1, which corre-
sponds to a smoothly varying time-course, with long-
range autocorrelations in the signal.

We measured the Hurst exponent of fMRI data, by apply-
ing DFA to the full voxel time series of 285 TR (427.5 s), for
each preprocessed dataset. For each time series, we itera-
tively subdivided it into time windows of equal size, from
n 5 285 (full time series) down to n 5 3 (the smallest win-
dow size on which detrended variance can be estimated).
We then measured the slope of log(n) versus log(F) to com-
pute H. For each subject, we obtained average H at each
voxel, by computing the mean across all four task runs.

Between-Group Differences in Fractal Scaling

The mean H voxel values were computed by averaging
across subjects, for each of the CNTRL, PRE-RADIO, and
PRE-CHEMO groups. We tested for significant, stable dif-
ferences in H between the three groups at each voxel,
using a nonparametric bootstrapped significance test. This
test avoids any assumptions about the distribution of H
and provides a direct estimate on the stability of mean dif-
ferences between groups.

For each pair of groups, we performed a bootstrapped
resampling of subjects (i.e., resampling with replacement)
and computed the difference in mean H between the boot-
strapped samples for each resampling iteration. This was
repeated for 1,000 iterations, and we measured the fraction
of resamples that showed a positive change in mean H at
each voxel. This fraction provides the empirical P-value for
a between-group increase in H. We similarly compute the P-
values for the between-group decreases in H by the fraction
of resamples showing negative changes in mean H. For each
map of voxel P-values, we then corrected for multiple com-
parisons, by identifying voxels of significant change at false-
discovery rate threshold (FDR) 5 0.05, and thresholded at a
minimum cluster size of three contiguous voxels.
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We also examined to what degree any between-group
change in H is “global” throughout the brain. For each
subject, we computed the mean H value across all gray
matter voxels (using an MNI152 anatomical template), giv-
ing a single mean value for each subject. We tested for a
significant difference between each pair of subject groups
using the nonparametric Wilcoxon rank-sum test, chosen
to minimize any assumptions about the distribution of H.
This test was performed to better characterize the overall
distribution of H in the brain. For example, it is possible
that changes in H are highly localized in the brain, and
there is no consistent overall change in gray matter; con-
versely, we might observe only a few significant brain
regions (due to FDR thresholding), but the mean change
in H for subthreshold voxels may still be highly consistent,
even if not large in magnitude.

The DFA scaling analysis procedure computes the slope
on a linear fit of fluctuations F(n) versus window size n
(time scale) on a log–log plot, where a slope closer to one
indicates greater H. As a visualization tool, we directly
plotted log(F(n)) versus log(n) curves for a set of represen-
tative regions of interest (ROIs) to demonstrate that a high
H value (as computed in the above section) corresponds to
a steeper slope on the log–log plot, when comparing
between brain regions, and between subject groups. We
took mean seed time courses from three 8-voxel ROIs cen-
tered on: the posterior cingulate (PCC), the primary visual
cortex (V1; left calcarine sulcus), and the left middle fron-
tal lobe (LMF). We selected PCC and V1 as representative

examples of brain regions with large regional differences
in mean H for all subject groups (see slices 48 and 33,
respectively; Fig. 1), as PCC shows consistently high mean
H� 0.75, whereas V1 shows consistently low mean
H� 0.65. We selected the LMF as a representative example
of a brain region with a large cluster (36 contiguous vox-
els) showing significant differences between CNTRL and
PRE-CHEMO groups at a FDR 5 0.05 threshold (slice 33;
Fig. 1). For each of the three ROI time series, we compute
mean log(F) as a function of window size n, averaged
across the four runs. This was performed for all subjects.
We compared mean n versus F(n) log-scale curves for (1)
PCC versus V1, averaged over all subjects and (2) in LMF,
for CNTRL, PRE-RADIO, and PRE-CHEMO. We per-
formed bootstrapped resampling on subjects, and com-
puted median slope a, with 95% CIs.

In addition, we demonstrated that fractal scaling analy-
sis, using standard power spectral density (PSD) estimates,
produces similar trends in scaling as DFA when compar-
ing between brain regions, and across subject groups. For
the standard definition of monofractals, scale-free signal
produces a PSD curve of P fð Þ / f 2b, where b � 2H 2 1.
Although our measure of fractal scaling was computed
using DFA, which is robust to nonstationary signal, we
also confirmed that between-group differences in H corre-
sponded to a systematic change in PSD curves. Using the
same ROI time series, for each subject we computed the
PSD per run, using a Welch estimator and standard Mat-
lab parameters (Hamming window, eight time windows,

Figure 1.

Changes in mean Hurst exponent (H) between pretreatment can-

cer groups. A: H maps for control (CNTRL), pre-radiotherapy

(PRE-RADIO), and pre-chemotherapy (PRE-CHEMO) groups.

Maps are averaged across four runs for each subject, and then

averaged across all subjects. B: Bootstrap significance plot, indicat-

ing areas of significant change in mean H, for False-Discovery Rate

FDR 5 0.05 threshold and minimum cluster-size threshold of

three voxels. Arrows point toward highly sparse regions of signifi-

cant change for: PRE-CHEMO> PRE-RADIO and PRE-

RADIO>CNTRL. C: Boxplots showing distribution of subjects’

average gray matter H values. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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50% overlap), which we averaged across runs. We then
plotted mean P(f) versus f log-scale curves for the same
ROIs as the previous paragraph. Bootstrapped resampling
was performed on subjects, to compute the median nega-
tive slope b and the 95% CIs.

Correlations with Self-Reported Distress

Measures

We tested for systematic changes in H that are corre-
lated with self-reported measures of distress, including:
Worry, Anxiety, Depression, Fatigue, and Sleep Problems.
We first explored the relationship between these five
behavioral variables, by Z-scoring each variable across
subjects, then performing principal component analysis
(PCA) on the set of behavioral values, to identify the
strongest covariance relationships between variables.

For behavioral data matrix X (of dimensions #subjects 3 5),
we obtained the Singular Value Decomposition X5UKVT,
consisting of paired eigenvector matrices U 5 [u1 . . . u5],
V 5 [v1 . . . v5], and diagonal matrix K of elements {l11, . . . l55}.
The ith PC is represented by ui 5 vector of behavioral load-
ings, vi 5 vector of subject loadings on this PC, and
l2
ii 5 singular value, representing variance expressed by this

PC. The PCs are the set of orthonormal factors that explain
the greatest covariance between behavioral measures and are
ordered by decreasing variance l2ii. To test for the stability of
PCs, we ran PCA in a Bootstrap resampling framework. For
each iteration, we resampled on subjects with replacement,
and reran the PCA. We plotted confidence intervals for the
loadings on each behavioral variable in ui, and the fraction of
variance explained by l2

ii. We performed all analyses in this
section by combining the three groups (CNTRL, PRE-
RADIO, PRE-CHEMO), as there were no significant differen-
ces in their behavioral PCAs.

We then tested for significant correlation between
behavioral PC loadings and H brain maps. For each behav-
ioral PC vector, we performed behavioral partial least
squares (bPLS) analysis (PLS) [Krishnan et al., 2011] of vi

loadings against H maps, in a split-half subsampling
framework. This multivariate procedure finds the pattern
of brain voxels that shows greatest covariance between H
and behavioral PC ui. The split-half bPLS (see [Churchill
et al., 2013] for details), produces (1) a reproducible
Z-scored brain SPM, indicating brain voxels of reliable
covariance with the behavioral PC, (2) a vector of latent
variable scores wi, measuring how much each subject
expresses the behavioral SPM pattern, and (3) and an
unbiased predictive correlation q 5 corr(wi, vi) of brain pat-
tern expression versus behavior. We performed 200 resam-
ples for bPLS analysis of each behavioral PC, to estimate
an empirical 95% confidence interval on q. We used the
bPLS model due to its stability in the presence of high-
dimensional fMRI data; many alternative multivariate
models may also be used for behavioral analysis such as
Canonical Correlation Analysis, see [Rosipal and Kr€amer,
2006] for a discussion of these models.

Effects of Distress on Functional Connectivity

To better characterize the effects of psychological dis-
tress on brain dynamics, we also examined changes in
functional connectivity as a function of self-reported meas-
ures of distress. For each subject, we segmented the whole
brain using the Automated Anatomical Labelling (AAL)
atlas [Tzourio-Mazoyer et al., 2002], and down-sampled
the data to its native resolution (3.75 3 3.75 3 5 mm). For
each of the 116 ROIs in the AAL atlas, we computed a
mean time series, and then obtained the 116 3 116 correla-
tion matrix between these ROIs. This produced a set of
subject correlation matrices, with (11622116)1=2 5 6,670
unique off-diagonal elements.

We then examined how connectivity values changed as
a function of psychological distress. We vectorized the
connectivity elements, producing a (6,670 3 subjects)
matrix, and performed bPLS analysis of the behavioral vi

loadings from the previous section, against the matrix of
functional connectivity values for each behavioral PC,
using the same cross-validation approach. In this case,
bPLS analysis produces (1) a reproducible Z-scored plot of
function connectivity saliences Zconn, indicating the change
in pairwise correlations as a function of behavioral PC
loading. It also produces (2) a vector of latent variable
scores wi, measuring how much each subject expresses the
behavioral Zconn pattern, and (3) and an unbiased measure
of the correlation q 5 corr(wi, vi) between connectivity pat-
tern expression and behavior. We performed 200 resam-
ples for bPLS analysis of each behavioral PC, to estimate
an empirical 95% confidence interval on q.

To summarize the connectivity changes between all 116
ROIs, we performed clustering on the Z-scored map of
changes in functional connectivity, grouping brain regions
that show similar overall changes in connectivity. The 116 3

116 salience map Zconn, was diagonalized via Singular
Value Decomposition X5UKVT, and we projected the data
into PC-space coordinates: Qconn 5 UTZconn. We then per-
formed k-means clustering on Qconn, where the number of
clusters k was determined using the variance ratio criterion
[Cali�nski and Harabasz, 1974], which selected an optimal
k 5 4. We then grouped the rows and columns of Zconn into
the four clusters before plotting; the corresponding AAL
brain regions are also displayed for each cluster. We then
compared these results against the findings for fractal scal-
ing obtained in the previous section.

Comparison with Alternative Fractal Scaling

Measures

For this article, we used DFA to estimate the Hurst expo-
nent for BOLD signal, due to its low computational cost,
ease of interpretation, and widespread use. However,
fractal-scaling analysis is a rapidly maturing field, for which
many different scaling estimators have been developed. In
particular, wavelet-based techniques have become increas-
ingly popular [Ciuciu et al., 2012; Shimizu et al., 2004; Van
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de Ville et al., 2010; Veitch and Abry, 1999; Wendt and
Abry, 2007; Wink et al., 2008]. Wavelets are basis functions
that are compact in both time and frequency domains, and
can be shifted and dilated to correspond to different delays
and time scales, respectively. We measured the wavelet
coefficient for a signal x(t) at time delay k and time scale a
by the inner product:

dx a; kð Þ5 1

a

ð
x tð ÞW t2k

a

� �
dt

Wavelet-based scaling analyses are typically performed

using the discrete wavelet transform, which analyzes the

signal at dyadic scales (a 5 2j for a range of j). We tested

for monofractal power-law scaling by measuring the aver-

age wavelet power at each time-scale 2j, which exhibits the

relationship:

1

K

Xk

k51
jdx 2j; k
� �

j25C2j2H

We can therefore estimate H by the slope of the linear
fit for log 2jdx 2j; k

� �
j2 versus scale j. To validate our DFA-

based results, we analyzed the data using the monofractal
wavelet estimator of (www.cubinlab.ee.mu.oz.au/�darryl/
secondorder_code.html) [Veitch and Abry, 1999].

All analyses thus far are based on monofractal scaling

estimates. This formalism assumes that the data are Gaus-

sian, and that scaling phenomena are fully defined by its

variance (i.e., the second-order moment) as a function of

time scale. While this provides interpretable results, it may

be an over-simplified representation of a richer fractal scal-

ing structure, defined across multiple statistical orders.

This is the basis of multifractal analysis, which seeks to

characterize the spectrum of scaling exponents present in

the data. Multifractal scaling is typically defined by the

following relationship:

1

K

Xk

k51
jLx 2j; k
� �

jq5Cq2jf qð Þ;

for range of scaling exponents 2q�; q�½ �

This is similar in form to the previous monofractal
expression, but with three significant changes: first, we
replaced wavelet coefficients dx 2j;k

� �
with wavelet leaders

Lx 2j; k
� �

, which provide better model stability [Wendt
and Abry, 2007]; second, we now measure scaling over a
range of exponents q, whereas monofractal analysis was
limited to q 5 2; third, the constant term in the exponent H
is no longer sufficient to describe the multifractal spec-
trum. Instead, a characteristic function f qð Þ describes scal-
ing behavior as a function of exponent q, which is
typically parameterized by the polynomial expansion
f qð Þ5

P
pcp qp=p!ð Þ. Coefficients cp (log-cumulants) are now

used to describe the scaling behavior of signal x(t). The
first-order cumulant c1 quantifies monofractal scaling, as
c1> 0.5 indicates long-range dependence. Higher-order

log-cumulants cp (p> 1) indicate the presence of multifrac-
tal scaling and characterize properties of the multifractal
spectrum. We examined the behavior of the first three log-
cumulants (c1, c2, c3), using software obtained from (www.
irit.fr/�Herwig.Wendt/software.html).

We compared the different monofractal and multifractal
scaling estimators for the pre-treatment breast cancer data-
set. Note that both monofractal and multifractal models
are able to assess monofractal scaling (H or c1, respec-
tively), whereas only multifractal models can quantify the
spectrum of higher-order cumulants. Due to the computa-
tional burden of computing these scaling measures, we
obtain time series for each of the 116 ROIs in the AAL
atlas, and apply the three scaling estimators (DFA, wavelet
monofractals, wavelet multifractals), which dramatically
reduces the number of time series being analyzed. Because
AAL ROIs are of different sizes, we examined the mean
time series of a 4-voxel ROI, taken from the center of mass
of each AAL template region. This avoids averaging
different-sized ROIs, which may create spurious regional
differences in time-series smoothness. We compared the
consistency of the mean scaling parameter (H or c1) across
brain regions, and for multifractal wavelets we also exam-
ined log-cumulants (c2, c3). We also examined how scaling
parameters vary as a function of patient group. For the
wavelet models, we examined the data over seven dyadic
scales (2 TR 5 3 s up to 265 TR 5 384 s; recommended by
the monofractal wavelet diagnostics) using Daubechies
wavelets with three vanishing moments (i.e., insensitive to
linear and quadratic signal drifts). For multifractal analy-
sis, we examined scaling orders of q 5 [210,10].

RESULTS

Between-Group Differences in Fractal Signal

Overall, PRE-CHEMO patients exhibited greater fractal
scaling (i.e., Hurst exponent) in their functional timeseries
compared to the other groups. Figure 1A plots the average
Hurst exponent (H) brain maps for CNTRL, PRE-RADIO,
and PRE-CHEMO, where higher H indicates greater fractal
scaling. Regions of peak H value are relatively consistent
across groups, including inferior orbitofrontal (slice 28),
middle and medial orbitofrontal lobes and anterior cingu-
late (slice 33, 39), inferior frontal lobes and posterior cingu-
late (slice 48), precuneus (slice 57, 69), and dorsal
supplementary motor area (slice 69). In contrast, certain
regions only show high H for PRE-CHEMO, including cere-
bellum, hippocampus, amygdala (slice 28), and thalamus
(slice 39). Figure 1B depicts regions of significant difference
between each pair of groups. All regions of significant dif-
ference reflect an increase in H by intensity of planned
adjuvant treatment. We observe widespread differences in
PRE-CHEMO>CNTRL, with large clusters in the right hip-
pocampus, amygdala and cerebellum (slice 28), anterior cin-
gulate and left middle orbitofrontal lobe (slice 33), middle
occipital lobe (slices 39, 48) cuneus, Rolandic operculum,
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inferior frontal and superior temporal lobes (slice 48), post-
central and supramarginal gyri (slice 57, 69), superior parie-
tal, and middle frontal lobes (slice 69). We observed only a
few sparse regions of reliable PRE-CHEMO>PRE-RADIO
and PRE-RADIO>CNTRL change, limited to the anterior
cingulate (PRE-RADIO>CNTRL; slice 39), inferior tempo-
ral lobe (PRE-CHEMO>PRE-RADIO; slice 39), right post-
central gyrus (slice 48) and Rolandic operculum (slice 57).
Figure 1C shows a similar trend in H for the global average,
computed over all gray matter voxels. We observed a trend
in mean H of PRE-CHEMO>PRE-RADIO>CNTRL, but

only the PRE-CHEMO versus CNTRL difference is signifi-
cant (P 5 0.02, Wilcoxon test).

Figure 2 provides sample ROIs demonstrating how
higher H from DFA analysis (Fig. 1) corresponds to a
steeper slope in log(F(n)) versus log(n) plots, when com-
paring across brain regions (Fig. 2A) and subject groups
(Fig. 2B); results are shown for representative ROIs (see
Methods regarding ROI selection). Figure 2A plots the aver-
age variance F(n) versus window size n on log–log scale,
comparing V1 (lower H) to PCC (higher H), showing that
the slope a of a linear fit is consistently higher for PCC

Figure 2.

Mean power versus time-scale plots shown on log–log scale, for

different ROIs. A,B: Plot variance F(n) versus time window size

n, as estimated for DFA. The slope of a linear fit a and Boot-

strapped 95% CIs are also given. C,D: Plot of spectral power

P(f) versus frequency f, along with the negative slope of a linear

fit b and Bootstrapped 95% CIs. Left-side plots (A,C) compare

scaling behavior between different brain regions of primary vis-

ual cortex (V1) and posterior cingulate (PCC). Right-side plots

(B,D) compare scaling behavior of different patient groups, for

representative left middle frontal (LMF) ROI. [Color figure can

be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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than V1. Figure 2B shows scaling plots comparing the
groups, for a single ROI in LMF, and shows that the mean
slope increases with anticipated treatment severity, going
from CNTRL to PRE-RADIO to PRE-CHEMO. Figure 2C,D
show that similar scaling relationships are observed when
using standard PSD-based estimates of fractal scaling,
obtained by plotting spectral power P(f) versus frequency f
on a log–log scale. The negative slope b of a linear fit is
higher for PCC versus V1 (Fig. 2C), and increases when
going from CNTRL to PRE-RADIO to PRE-CHEMO (Fig.
2D). We observe relatively large deviations from linearity in
PCC and V1 curves (Fig. 2C). This is absent in the log(F(n))
versus log(n) plots (Fig. 2A), which indicates that there are
potential BOLD signal nonstationarities in these brain
regions, which DFA corrects for.

Correlations with Self-Reported Distress

Measures

After assessing group differences in fractal scaling, we
examined the relationship between fractal scaling and self-

reported measures of distress. We first examined the rela-
tionship between the five different behavioral measures:
Worry, Anxiety, and Depression (psychological distress),
Fatigue and Sleep Problems (physical distress). Note that
Worry is a “trait” measure of distress, whereas Anxiety is
a “state” measure [for further details, see Berman et al.,
2014]. Figure 3 plots a PCA of the behavioral measures,
showing PCs #1–3 (PCs #4–5 did not have a significant
relationships with H maps; see below).

In addition, we examined the relationship between dis-
tress measures and objective measures of task performance
(plotted in Supporting Information Results 1). As expected,
the self-reported distress measures are all significantly
related to intensity of anticipated adjuvant treatment (i.e.,
PRE-CHEMO has the greatest distress loadings), and
inversely related to hemoglobin concentration [Hb] (a mea-
sure of cancer stage). The distress measures are also asso-
ciated with decreased performance in the working
memory task, including lower accuracy and longer RT.
These results also provide evidence that the change in H
across groups is not caused by elevated hemoglobin levels
(and thus higher BOLD dynamic range), since [Hb]

Figure 3.

PCA of the 5 self-report measures of stress: Worry, Anxiety

(Anx.), Depression (Depress.), Fatigue (Fatig.), and Sleep prob-

lems (Sleep). A: bar plots of mean PCA eigenspectrum, indicat-

ing fraction of total variance explained by each PC, with

Bootstrapped Standard Error (SE) error bars (1,000 resampling

iterations). B: bar plots of mean behavioral loadings for PCs #1–

3, with SE error bars. C: mean subject scores on each PC, as a

function of cancer group. CNTRL 5 control, PRE-RADIO 5 pre-

radiotherapy, PRE-CHEMO 5 pre-chemotherapy, with SE error-

bars. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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declines when going from CNTRL to PRE-CHEMO,
whereas average H increases. Moreover, [Hb] is not a sig-
nificant predictor of global changes in H. A PLS analysis
of H maps versus [Hb] showed nonsignificant correlations
at q 5 0.03 (95%CI: 20.22 to 0.11), further demonstrating
that our results are insensitive to any systematic confound
caused by hemoglobin levels.

Figure 3A shows the Bootstrapped PC eigenvalues of
the distress variables, and Figure 3B plots the associated
behavioral loadings. PC#1 (53% of variance) shows a com-
mon effect of all five behavioral measures, indicating that
they are all moderately correlated. PC#2 (20% of variance)
reflects a contrast effect of high (Worry, Anxiety), anticor-
related with (Depression, Fatigue, Sleep Problems). PC#3
(14% of variance) shows a more complex contrast of
(Worry, Sleep Problems) versus (Anxiety, Depression,
Fatigue). Figure 3C plots the average subject loading on
each PC, for each pretreatment cancer group. For PC#1,
we observed a graded effect of PRE-CHEMO>PRE-
RADIO>CNTRL (Fig. 3C), indicating that overall distress
increases with anticipated severity of treatment. PC#2
reflects primarily CNTRL versus PRE-RADIO/PRE-
CHEMO (i.e., control vs. patients), albeit with large error
bars reflecting group heterogeneity, thus control and
patient groups tend to have different relationships in the

balance between physical and psychological distress. PC#3
expresses a CNTRL/PRE-CHEMO versus PRE-RADIO
contrast, indicating a nonlinear relationship between dis-
tress and severity of anticipated treatment. It also demon-
strates that the PRE-RADIO group has some unique
properties, that is, they tend to report high “state” anxiety
relative to “trait” worry, and they report high fatigue and
depression but little difficulty with sleep.

We then performed split-half partial least squares (PLS)
analysis of each behavioral PC against the Hurst exponent
maps in the fMRI data. This model estimates a Z-scored
brain pattern of H expression, associated with each behav-
ioral PC (Fig. 4) and measures the correlation between the
expression of this brain pattern and the behavioral PC
scores, for an independent set of subjects (producing an
unbiased “predictive correlation” estimate; see Methods:
Correlations with Self-Reported Distress Measures). All 3
PCs have significant correlations (q) with fractal scaling:
[PC#1] q 5 0.13 (95%CI: 0.05 to 0.15); [PC#2] q 5 0.22
(95%CI: 0.12 to 0.24); [PC#1] q 5 0.12 (95%CI: 0.12 to 0.14).
Although PC#1 explains the greatest behavioral variance,
it has low correlation with H and low brain Z-scores, indi-
cating a relatively weak relationship with BOLD scaling.
Conversely, PC#2 has the highest predictive correlation,
indicating that it has the strongest brain-behavior

Figure 4.

PLS analysis of distress measures versus Hurst exponent brain

maps. A cross-validated behavioral PLS is shown for subject

loadings on each PC (shown in Figure 3B), against Hurst

exponent brain maps (mean maps shown in Fig. 1). PCs #1–3

had significantly stable behavioral relationships. Each Z-scored

map shows regions where Hurst scaling is correlated with

behavioral PC expression, displayed on the left (red 5 positive

correlation; blue 5 negative correlation). Self-reported behav-

ioral measures include: Worry, Anxiety (Anx.), Depression

(Depress.), Fatigue (Fatig.), and Sleep problems (Sleep). [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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relationship across subjects. In addition, the higher brain
Z-scores of PC#2 and PC#3 indicate that the associated
brain regions tend to be more stable than those of PC#1.

For PC#1, positive Z-scores indicate that H is correlated
with overall distress (e.g., PC#1 loadings), in inferior and
superior frontal lobes (slices 45, 60) and dorsolateral pre-
frontal cortex (slice 60, 70); negative Z-scores indicate that
H is anticorrelated with overall distress in a sparser set of
regions, including posterior cingulate and precuneus (sli-
ces 45–70). For PC#2, brain regions show decreased H
when (Worry, Anxiety) are relatively high and (Depres-
sion, Fatigue, Sleep Problems) are relatively low (e.g.,
PC#2 loadings), in the visual cortex (slice 34), thalamus
(slice 40), middle frontal (slice 45), parietal lobes, and pre-
cuneus (slice 60). PC#3 shows decreased H when (Worry,
Sleep Problems) are relatively high and (Anxiety, Depres-
sion, Fatigue) are relatively low, localized to the thalamus
(slice 40) and parietal lobes (slice 60).

Effects of Distress on Functional Connectivity

We also examined distress-related changes in functional
connectivity, as a complementary analysis to the Hurst
exponent measures. We performed split-half bPLS analy-
ses of each behavioral PC against the functional connectiv-
ity values for the 116 ROIs defined by the AAL atlas. Only
PC#2 showed significant behavioral correlations: [PC#1]
q 5 0.15 (95%CI: 20.23 to 0.17); [PC#2] q 5 0.28 (95%CI:

0.09 to 0.41); [PC#1] q 5 0.08 (95%CI: 20.13 to 0.23). Figure
5 plots the results of the PLS analysis against PC#2, show-
ing Z-scored changes in functional connectivity when
(Worry, Anxiety) are relatively high and (Depression,
Fatigue, Sleep Problems) are relatively low (Fig. 5A). We
identified four significant clusters with similar functional
connectivity relationships (denoted C1–4), with the corre-
sponding AAL regions plotted in Figure 5B. The most con-
sistent changes in functional connectivity were decreased
correlation between C2 (which primarily includes the pari-
etal and frontal regions showing significant changes in H;
Fig. 4), and the more ventral regions of C3 (including fusi-
form and lingual gyri, amygdala, hippocampus, and para-
hippocampus). We also observe a general increase in
functional connectivity between C4 (lower cerebellum) and
all other clusters.

Comparison with Alternative Fractal Scaling

Measures

In this section, we compared the results of DFA against
other fractal scaling estimators, including wavelet-based
monofractal and multifractal estimators. Figure 6 plots the
mean scaling exponent values of the 116 AAL template
ROIs, comparing (A) DFA versus wavelet monofractals,
and (B) DFA versus wavelet multifractals. Brain regions
have a consistent order in scaling exponent for all estima-
tion methods, as H values estimated by DFA are correlated

Figure 5.

PLS analysis of distress measures versus functional connectiv-

ity. Results show PLS analysis of connectivity versus behavioral

PC#2 (refer to Fig. 3), which was the only PC with a signifi-

cant relationship. A: Z-scored map of changes in connectivity

between 116 AAL atlas ROIs, for increased (Worry, Anxiety)

and decreased (Depression, Fatigue, Sleep Problems). The

ROIs have been clustered into four groups labeled C1–4,

based on k-means clustering of connectivity relationships. B:

Map showing regions of the AAL atlas associated with each

functional cluster C1–4. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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with wavelet techniques at 0.96 (monofractal H) and 0.82
(multifractal c1). However, the three models differ in the
absolute range scaling parameter values. Figure 7 displays

mean scaling parameter values of the AAL ROIs as a func-
tion of patient group, along with regions showing signifi-
cant differences for CHEMO>CNTRL (FDR 5 0.05

Figure 6.

Comparing regional scaling for different fractal estimators. We plot average fractal scaling values

of the 116 AAL atlas ROIs, comparing H of DFA, against (A) H of monofractal wavelet estimator,

and (B) c1 of multifractal wavelet estimation. Each point denotes the average scaling exponent

over all subjects, computed from a 4-voxel ROI at the center of each AAL template region.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 7.

Comparing between-group differences for different fractal esti-

mators. We plot average fractal scaling estimates of the 116

AAL atlas ROIs for (A) DFA, (B) monofractal wavelets, and (C)

multifractal wavelets. We plot (top) average scaling exponent

computed on a 4-voxel ROI at the center of each AAL template

region, and (bottom) Bootstrap significance plot, indicating areas

of significant difference in PRE-CHEMO>CNTRL, for False-

Discovery Rate FDR 5 0.05 threshold. No regions showed sig-

nificant change in the opposite direction (i.e., PRE-CHE-

MO<CNTRL). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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threshold). Wavelet multifractals were the most sensitive
(50/116 regions), followed by DFA (23/116 regions) while
wavelet monofractals were the least sensitive (10/116
regions); no regions of significant CHEMO<CNTRL were
identified.

We also tested whether higher-order log-cumulants of
multifractal analysis were sensitive to between-group dif-
ferences. We consistently observed c1> 0.5 (median: 0.58;
min: 0.40; max: 0.72) significant for 102/116 ROIs (at
FDR 5 0.05 threshold) indicating long-range correlations in
most brain regions. We also consistently observed c2< 0
(median: 20.035; min: 20.057; max: 20.019) for 116/116
ROIs, and c3< 0 (median: 20.01; min: 20.03; max: 0.01) for
111/116 ROIs. This indicated the presence of multifractal
scaling in the signal. However, no regions showed signifi-
cant difference in CNTRL versus PRE-CHEMO at
FDR 5 0.05 for either c2 or c3. Therefore, higher-order mul-
tifractal parameters do not appear to be sensitive to
between-group effects of distress.

DISCUSSION

This article provides the first systematic examination of
fractal scaling in BOLD signal and its relationship to dis-
tress in a susceptible population, of women newly diag-
nosed with breast cancer awaiting adjuvant treatment. Our
findings demonstrate the utility of nonlinear dynamical
measures such as fractal scaling, which are sensitive to
systematic changes in BOLD signal associated with patient
group and behavior, without requiring overt task analyses.
The measure of fractal scaling, therefore, shows potential
as a sensitive biological marker of distress and its impact
on brain dynamics.

Contrary to our initial hypothesis, of disrupted “long-
memory” neuronal processes in the highly distressed
patient populations, the between-group analyses showed
robust increases in Hurst exponent (H) with intensity of
adjuvant treatment plan. This indicates that the popula-
tions anticipating more severe adjuvant treatment have
smoother, scale-free BOLD fluctuations, with greater long-
range correlations. However, groups are highly heteroge-
neous, as we only observed systematic, widespread
changes in PRE-CHEMO versus CNTRL groups. This is
consistent with the behavioral literature, which demon-
strates heterogeneity in the severity of reported pretreat-
ment cognitive effects for breast cancer treatment groups
[Correa and Ahles, 2007; Raffa et al., 2006]. The most con-
sistent average changes between cancer groups were not
limited to regions of high or low H, as they included right
hippocampus and amygdala, LMF, and anterior cingulate
(all with high average H), as well as middle occipital
lobes, Rolandic operculum, and supramarginal gyri (all
with low average H). This confirms that the location of
between-group differences is not limited to tissues with a
specific dynamic range (i.e., mean H value), and are thus

unlikely to be artifacts of local tissue properties, such as
vascular reactivity.

Our results also demonstrate robust overall differences
in the spectral distributions for different brain regions (Fig.
2). We confirm that the spatial differences in H correspond
to consistent changes in spectral power: sensorimotor
regions such as the visual cortex have both less variance
overall, and a “flatter” slope on the power spectral curve,
compared to highly integrative regions (e.g., PCC); this is
consistent with an increased need for dynamic range in
highly connected “hub” regions of the brain. We also
observed both an increase in total variance and a greater
proportionate increase in low-frequency spectral power
with increasing intensity of adjuvant treatment plan. This
further demonstrates that in high-distress populations,
BOLD fluctuations become increasingly low frequency for
many brain regions, with increased dynamic range.

However, as demonstrated in Figures 3 and 4, the
increase in H with intensity of cancer treatment plan is
driven by a complex relationship between measures of
psychological and physical distress. This demonstrates
that comparing populations strictly based on patient
group, or a single measure of distress, can produce mis-
leading results that do not fully reflect the underlying cog-
nitive processes. Moreover, distress does not consistently
lead to suppressed scaling dynamics, which indicates that
it cannot be simply treated as systemic brain dysfunction
[Hausdorff et al., 1996; Kobayashi and Musha, 1982; Peng
et al., 2002] or a cognitive load on working memory
[Barnes et al., 2009].

As expected, there is a consistent increase in all self-
report measures of distress with intensity of anticipated
cancer treatment, in behavioral PC#1; the correlation with
fractal scaling is significant but relatively weak. We
observe increased H in regions with low average fractal
scaling, previously seen in between-group analyses (Fig.
1), but also decreased H in areas of high mean H, includ-
ing PCC and precuneus. These findings are complemen-
tary to the task-based GLM analyses of [Berman et al.,
2014], who found reliable increases during task engage-
ment in PCC and precuneus for the high-worry pretreat-
ment cancer groups. Given that H is suppressed for more
difficult exogenous tasks [Barnes et al., 2009], an increase
in PCC activation and decreased H potentially indicates
that higher-worry patient groups are expending more
effort to perform the task.

PC#2 shows that a (Worry, Anxiety) versus (Depression,
Fatigue, Sleep Problems) interaction has the strongest rela-
tionship with fractal scaling, with the highest behavioral
correlations and a reliable spatial pattern. This includes
the precuneus and parietal lobes, which are implicated in
visuospatial search, attentional and memory processing
[Behrmann et al., 2004; Cavanna and Trimble, 2006; LaBar
et al., 1999; Nee and Jonides, 2008], further demonstrating
that dynamical changes are primarily localized to brain
regions implicated in working memory tasks, as initially
hypothesized. This also provides evidence that relatively
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high psychological distress (e.g., worry) but relatively low
physical distress (e.g., fatigue) alters the temporal dynam-
ics of cognitive processes implicated in visual search and
attention, making them more scale-limited, with more
high-frequency fluctuations and shorter correlations in
time. How this would relate to performance on cognitive
tasks is a question that we plan to pursue in the future.

Behavioral PC#3 reflects both elevated (state) Worry rel-
ative to (trait) Anxiety, and elevated Fatigue relative to
Sleep problems and Depression. These effects are primar-
ily correlated with increased fractal scaling in the thala-
mus, although changes are also present in the parietal
lobes. The change in thalamic signal is consistent with
prior neuroscience literature, as the thalamus is implicated
in the regulation of anxiety [Cannistraro and Rauch, 2003]
and sleep versus wakefulness [Saper et al., 2005]. This sug-
gests that the dynamics of thalamic signal become more
scale-limited when “state” distress (Worry) is high relative
to “trait distress (Anxiety),” that is, when stress levels are
abnormally high for a given patient. Moreover, the BOLD
signal becomes more scale-limited when people report
sleep problems but also relatively low fatigue. This sug-
gests that the dynamics of thalamic signal may be altered,
when maintaining alertness in the presence of adverse
conditions such as sleep deprivation.

We may also compare our results to prior studies on
trait anxiety and BOLD scaling dynamics. Comparisons
between patient groups (Fig. 1) reveal a significant change
in the dynamics of the amygdala, which is consistent with
findings of [Tolkunov et al., 2010]. We measured an
increase in H in the higher-distress PRE-CHEMO group;
which is consistent with the moderately anxious popula-
tion of [Tolkunov et al., 2010]. However, our analyses of
self-reported distress (Figs. 3 and 4) provide evidence of a
more complicated relationship between trait anxiety and
other sources of distress, which involve distributed brain
regions beyond the limbic system.

To more fully understand interactions of H with self-

reported distress, we also examined changes in functional

connectivity using the bPLS framework (Fig. 5). This

allowed us to characterize how H and connectivity are

jointly influenced by cognitive state. Only behavioral PC#2

evidenced significant, predictive behavioral correlations,

further demonstrating that the interaction of physical ver-

sus psychological distress captured in PC#2 is the primary

modulator of brain dynamics. The results of bPLS analysis

demonstrated that regions showing the greatest decrease

in H (e.g., middle frontal lobes, parietal lobes) were part of

cluster C2, which had decreased functional connectivity

with a set of ventral regions including fusiform/lingual

gyri, amygdala, hippocampal, and parahippocampal gyri.

This suggests (1) a potential mechanism for decreased H,

which may be mediated by specific decreases in functional

connectivity, and (2) as we might expect when examining

distress, connectivity changes involve the amygdala, which

is involved in emotion processing.

In Figures 6 and 7 we validated our DFA-based analy-
ses, by comparing them against wavelet-based fractal scal-
ing measures. Our results indicated that the scaling
measures are generally robust across methods, showing a
consistent ordering of brain regions in H, as well as con-
sistent between-group differences in mean H. The different
fractal estimators have varying levels of sensitivity, with
wavelet multifractals being the most sensitive and wavelet
monofractals being the least sensitive to between-group
differences. However, the scale of H values varied by
method, where multifractal wavelets produced the lowest
c1 values, followed by DFA, then monofractal wavelets.
Thus, while relative trends are quite robust, it may prove
difficult to compare absolute scaling parameter values
between studies, if they use different fractal scaling esti-
mators. Finally, we note that although there is evidence of
multifractal behavior in the BOLD time series, the addi-
tional log-cumulants were less sensitive than the mono-
fractal estimates to between group differences.

In this article, we analyzed fractal scaling dynamics for
a VWMT. This allowed us to study dynamics of the brain-
state for which pretreatment breast cancer patients report
cognitive deficits, and also allowed us to directly link
results to prior task-based analyses of Berman et al. [2014].
However, this comes at the expense of reduced generaliza-
tion: it is unknown if the relationships between H, patient
group and distress are stable across different cognitive
states, or specifically modulated by the working memory
task. Moreover, it is not yet known if these findings
directly relate to other studies of scale-free dynamics,
which often focus on resting state [e.g., He, 2011; He et al.,
2010; Van de Ville et al., 2010]. These issues must be inves-
tigated in future studies.

In summary, we have demonstrated significant differen-
ces in fractal scaling of BOLD signal across breast cancer
preadjuvant treatment groups. However, we have also
demonstrated that there is a relatively complex underlying
relationship between measures of distress (Worry, Anxiety,
Depression, Fatigue, Sleep Problems) and fractal scaling,
with significant heterogeneity even within the individual
cancer pretreatment groups (e.g., Fig. 3C). We, therefore,
believe that the Hurst exponent is a useful measure to
understand the neural correlates of distress, and to help
quantify the relationship between physiological and psy-
chological distress.
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