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Post-traumatic stress disorder (PTSD) is an anxiety disorder arising from exposure to a traumatic event. Although primarily defined in
terms of behavioral symptoms, the global neurophysiological effects of traumatic stress are increasingly recognized as a critical facet of
the human PTSD phenotype. Here we use magnetoencephalographic recordings to investigate two aspects of information processing:
inter-regional communication (measured by functional connectivity) and the dynamic range of neural activity (measured in terms of
local signal variability). We find that both measures differentiate soldiers diagnosed with PTSD from soldiers without PTSD, from healthy
civilians, and from civilians with mild traumatic brain injury, which is commonly comorbid with PTSD. Specifically, soldiers with PTSD
display inter-regional hypersynchrony at high frequencies (80 –150 Hz), as well as a concomitant decrease in signal variability. The two
patterns are spatially correlated and most pronounced in a left temporal subnetwork, including the hippocampus and amygdala. We
hypothesize that the observed hypersynchrony may effectively constrain the expression of local dynamics, resulting in less variable
activity and a reduced dynamic repertoire. Thus, the re-experiencing phenomena and affective sequelae in combat-related PTSD may
result from functional networks becoming “stuck” in configurations reflecting memories, emotions, and thoughts originating from the
traumatizing experience.
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Introduction
Post-traumatic stress disorder (PTSD) is an anxiety disorder that
manifests in response to a traumatic event that involves an actual

or perceived threat of death or injury. The American Psychiatric
Association [Diagnostic and Statistical Manual of Mental Disor-
ders, 4th Edition, Text Revision (DSM-IV-TR); American Psychi-
atric Association, 2000] defines PTSD with respect to three
symptom clusters: (1) re-experiencing intrusive memories of the
original event, (2) avoidance of stimuli associated with the event,
and (3) emotional numbing and hyperarousal. As the number of
afflicted veterans from recent missions in Afghanistan and Iraq
increases, there is a growing need to understand the disorder,
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Significance Statement

The present study investigates the effects of post-traumatic stress disorder (PTSD) in combat-exposed soldiers. We find that
soldiers with PTSD exhibit hypersynchrony in a circuit of temporal lobe areas associated with learning and memory function. This
rigid functional architecture is associated with a decrease in signal variability in the same areas, suggesting that the observed
hypersynchrony may constrain the expression of local dynamics, resulting in a reduced dynamic range. Our findings suggest that
the re-experiencing of traumatic events in PTSD may result from functional networks becoming locked in configurations that
reflect memories, emotions, and thoughts associated with the traumatic experience.
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both for diagnostic and therapeutic purposes (Garber et al.,
2012).

Although PTSD is primarily defined in psychological terms,
the neurophysiological effects of traumatic stress are increasingly
recognized as an important facet of the PTSD phenotype (Pitman
et al., 2012). For instance, exposure to traumatic stress can affect
gray matter volume in such structures as the hippocampi (Ki-
tayama et al., 2005), the ventromedial prefrontal cortex (Kasai et
al., 2008, and the dorsal anterior cingulate cortex (Kitayama et al.,
2006). Patients with PTSD display atypical functional activation
in many regions, including the hippocampi (Bremner et al.,
2003), the amygdalae (Etkin and Wager, 2007), and the ventro-
medial prefrontal cortex (Shin et al., 2004; Felmingham et al.,
2010). Altogether, these data suggest that PTSD affects multiple
aspects of information processing, both locally and globally. In
particular, core symptoms of PTSD are thought to originate from
a fear-conditioning mechanism, whereby the re-experiencing of
traumatic events arises from frequent reactivation of fear circuits.
Here we investigate the effect of traumatic stress on two comple-
mentary aspects of brain function: the dynamic range of local
activity and inter-regional communication.

The inherent variability of neural activity has traditionally
been disregarded as “noise” that masks the underlying mean sig-
nal. But dynamical systems theory suggests that that is not neces-
sarily the case. Namely, a dynamical system that flexibly responds
to external perturbations is capable of multiple metastable states
and system configurations (Deco et al., 2009, 2013), resulting in
variable activity. Moreover, converging evidence shows that sig-
nal variability is a robust indicator of brain function and integrity
that is sensitive to engagement in cognitive tasks (Mišić et al.,
2010; Heisz et al., 2012; Garrett et al., 2014), clinical disorders
(Mizuno et al., 2010; Takahashi et al., 2010; Catarino et al., 2011;
Raja Beharelle et al., 2012; Mišić et al., 2014), and changes across
the lifespan (McIntosh et al., 2008, 2014; Garrett et al., 2010,
2011; Vakorin et al., 2011; Yang et al., 2013).

While signal variability is an expression of local system dy-
namics, the collective function of multiple brain areas can be
described in terms of the statistical dependencies between their
time courses, termed functional connectivity. Functional con-
nectivity is hypothesized to reflect inter-regional communication
and coordinated integrative processing (Friston, 1994; McIntosh
and Mišić, 2013). Importantly, several reports using magnetoen-
cephalography (MEG) suggest that traumatic stress affects oscil-
latory brain activity and patterns of synchrony among distributed
brain regions. Temporal areas have been implicated, with in-
creases in slow local oscillations in the insular cortex (Kolassa et
al., 2007) and the superior temporal gyrus (James et al., 2013), as
well as increased synchrony with other cortical areas, particularly
the parietal cortex (Engdahl et al., 2010; Georgopoulos et al.,
2010). Converging evidence from seed-based fMRI studies, mea-
suring hemodynamic activity, shows similar hyperconnectivity
between temporal sites and the rest of the brain, including con-
nectivity between the posterior cingulate and hippocampus,
amygdala, and superior temporal gyrus (Zhou et al., 2012), be-
tween the amygdala and insula (Rabinak et al., 2011), and be-
tween the amygdala and anterior cingulate cortex (Brown et al.,
2014). Previously, we demonstrated that hippocampal synchrony
in combat-exposed soldiers with PTSD is associated with in-
creased symptom severity and worse cognitive and affective out-
come (Dunkley et al., 2014). Moreover, previous studies suggest
that through perpetual interplay between local and global dy-
namics, signal variability and functional connectivity should be
related to each other and provide complementary information

about the integrity of the system (Mišić et al., 2011; Deco et al.,
2013; Garrett et al., 2013).

Materials and Methods
The goal of the present study was to investigate the effect of combat-
related traumatic stress on integrative processing in the brain, as mea-
sured by signal variability and functional connectivity. To capture the
distributed effects of PTSD, we used a novel application of multivariate
partial least-squares (PLS) analysis (Berman et al., 2014; Mišić et al.,
2014). To capture the effects of PTSD on fast, transient neural activity
and to localize these effects to specific frequency bands and brain regions,
we used MEG. We analyzed two resting-state recordings before and after
triggering: a set of tasks that involved exposure to stressful, combat-
related stimuli. Due to the high comorbidity of traumatic brain injury
(TBI) with PTSD, we included two additional control groups: civilians
with mild TBI (mTBI) and healthy civilian controls.

Participants. MEG data were recorded from four distinct groups:
PTSD soldiers, control soldiers, mTBI civilians, and control civilians.
The PTSD soldiers group comprised 23 male Canadian Armed Forces
soldiers (mean age, 37.4 years) who had been deployed in support of the
Afghan mission and afterwards were diagnosed with PTSD. The control
soldiers group comprised 21 male Canadian Armed Forces soldiers
(mean age, 33.05 years) who also had been deployed in the Afghan mis-
sion but did not develop PTSD.

The PTSD criteria were defined as follows: (1) a diagnosis of combat-
related PTSD by an operational trauma stress support center, (2) PTSD
symptoms present 1– 4 years before participation in the present study,
(3) moderate or greater severity on the PTSD check list (PCL; PCL, �50).
Diagnosis was provided by a military psychiatrist on the basis of a semi-
structured interview, following DSM-IV-TR diagnostic criteria (Ameri-
can Psychiatric Association, 2000) and Canadian Armed Forces
standardized psychometric testing. The clinical interviews revealed that
most participants experienced �1 DSM-IV-TR “A1” event that contrib-
uted to the development of PTSD (direct personal experience of an event
that involves actual or threatened death or injury).

Control soldiers were matched with respect to rank, military experi-
ence, handedness, and education level. Both the PTSD and control sol-
diers were subject to the following inclusion criteria: (1) no history of a
TBI (screened by a psychiatrist through a review of electronic health
record, telephone interview, and the Defense and Veteran’s Brain Injury
Centre three-item screening tool), (2) ability to speak English, and (3)
ablility to provide informed consent. All PTSD soldiers were taking some
form of evidence-based psychotropic medication at the time of data
acquisition, including selective serotonin reuptake inhibitors (SSRIs),
serotonin norepinephrine reuptake inhibitors (SNRIs), and prazosin,
resulting in a naturalistic sample. In other words, the sample of partici-
pants was not controlled for presence, type, and dose of psychotropic
medication.

The mTBI group comprised 20 male civilian participants (�3 months
postinjury; mean period since injury, 32.20 days; mean age at injury, 31.4
years). Participants with mTBI were recruited via the emergency depart-
ment at the Sunnybrook Health Science Centre in Toronto, Canada.
These participants were subject to the following inclusion criteria: (1)
between 20 and 40 years of age, (2) concussion symptoms while in the
emergency department, (3) �3 months since injury, (4) �30 min loss of
consciousness if loss of consciousness occurred, (4) �24 h post-
traumatic amnesia if post-traumatic amnesia occurred, (5) clear cause of
head injury known, (6) Glasgow Coma Scale �13, (7) no skull fracture
and unremarkable CT scan, and (8) no previous incidence of concussion.

The civilian control group (n � 21) was age-matched and sex-matched
(mean age, 27.0 years). This group had no history of TBI (mild, moder-
ate, or severe) or neurological disorders. All participants were English-
speaking, capable of providing informed consent, and complied with
instructions to complete tasks during MEG and MR scans.

For all four groups, exclusion criteria included the following: (1) im-
bedded ferrous metal that may be classified as MRI contraindications or
interfere with MEG data acquisition, (2) implanted medical devices, (3)
neurological disorders or substance abuse, (4) ongoing medication
known to influence electrical brain activity, including anticonvulsants,
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benodiazepines, and GABA antagonists. None of the participants with
PTSD had a history of mTBI, and none of the participants with mTBI had
PTSD.

Procedure and MEG data acquisition. Participants lay supine in a mag-
netically shielded room at the Hospital for Sick Children in Toronto.
Two task-free resting-state runs were recorded in the MEG scanner, �45
min apart. Participants were instructed to rest with eyes open and to
maintain visual fixation on a central point of the screen, marked by an X
within a circle. Upon completion of the first resting-state run, partici-
pants completed several other imaging protocols and paradigms. These
included the following: (1) a memory task including trigger images, such
as visual depictions of the Afghan battlefield, intermixed with neutral
images, (2) an inhibition task featuring emotional faces, and (3) an at-
tention task that featured salient trigger words (e.g., “grenade”) and neu-
tral words. These affective stimuli and tasks were expected to induce
arousal and attentional mechanisms in the soldiers and, as a result, we
refer to the first scan as the “pre-trigger” resting-state run and the second
scan as the “post-trigger” resting-state run.

MEG data were acquired using a CTF Omega 151-channel system
(CTF Systems) at a sampling rate of 600 Hz for 300 s and subjected to
third-order spatial-gradient environmental-noise cancellation. Head po-
sition was continuously recorded by three fiducial coils placed at the
nasion and the left and right preauricular points. Following the MEG
session, anatomical T1-weighted MRIs were collected using a 3T MRI
scanner (Magnetom Tim Trio, Siemens). Images were collected using 3D
MPRAGE sequences (TR � 2300 ms; TE � 2.9 ms; flip angle, 9°; field-
of-view, 28.8 � 19.2 cm; 256 � 256 matrix; 192 slices; 1 mm isovoxel)
and a 12-channel head coil. MEG scans were coregistered to the MRIs
using the fiducial coils as a reference. Individual multisphere models
were constructed and normalized to the standard Montreal Neurological
Institute space using SPM2.

MEG data processing. MEG data time series were bandpass filtered at
DC-150 Hz and notch filtered at 60 Hz. Sources of interest were selected
using the Automated Anatomical Labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002), resulting in 90 cortical and subcortical locations. A
vector beamformer (described below) was then used to reconstruct time
series from these locations (termed “virtual sensors”) for each individual
participant. The time series were then further filtered into five classical
bands for further analysis: theta (4 –7 Hz), alpha (8 –14 Hz), beta (15–30
Hz), “low” gamma (30 – 80 Hz), and “high” gamma (80 –150 Hz).

Beamformers are 3D adaptive spatial filters that use surface field measure-
ments to estimate activity at particular sources in the brain while simultane-
ously suppressing noise from other sources. In the present study, the sources
of interest were derived from the AAL atlas, as described above. Activity at
each target source was estimated as a weighted sum of surface field measure-
ments (Quraan and Cheyne, 2010). The weights themselves, as well as the
orientation of source dipoles, were optimized in a least-squares sense,
wherein the average power originating from all other sources was maximally
attenuated without any decrease in the power of the forward solution for the
source of interest. MEG beamformers have been shown to be effective at
suppressing ocular and nonocular artifacts, including cardiac and muscle
activity (Muthukumaraswamy, 2013), obviating further artifact correction.

For the past two decades, a body of empirical evidence has accumu-
lated demonstrating the ability of MEG to detect weak signals emanating
from deep brain structures, such as the hippocampus (Kirsh et al., 2003;
Hamada et al., 2004; Cornwell et al., 2008a), amygdalae (Cornwell et al.,
2007, 2008b, 2010; Luo et al., 2007; Hung et al., 2012), and thalamus
(Bish et al., 2004; Bardouille and Ross, 2008). Moreover, several studies
based on physiologically realistic simulations (Attal and Schwartz, 2013;
Balderston et al., 2013)—some using CTF Systems machines (Quraan et
al., 2011; Mills et al., 2012)— have demonstrated the ability of beam-
former or minimum variance current estimate solutions to localize deep
generators.

We chose the AAL atlas to guide the beamforming procedure for sev-
eral reasons. First, the AAL atlas provides parcels (in the present case,
sources) for all brain regions that have previously been implicated in
PTSD, including the hippocampi, amygdalae, superior temporal gyri,
insulae, and anterior cingulate. Second, the AAL atlas is among the most
frequently used references in the PTSD literature, making the present

results readily comparable to those of previous studies. An important
methodological consideration is that this nonvolumetric approach may
potentially miss important individual connections between brain regions
that are not near a source. In the present study, this drawback was min-
imized because we focused on global multivariate effects of post-
traumatic stress, but this consideration highlights the need for deriving
anatomically and functionally representative multiscale parcellations of
the human brain.

Functional connectivity: weighted phase lag index. Functional connec-
tivity between band-limited source time series was estimated using the
weighted phase lag index (wPLI; Vinck et al., 2011). The instantaneous
phase of each time point in the filtered source time series was calculated
using the Hilbert transform. The Hilbert-transformed time series were
then used to estimate phase synchronization between all pairs of sources.
Specifically, we calculated the wPLI as the magnitude of the imaginary
component of the cross-spectrum (Lau et al., 2012). The wPLI was cho-
sen over other similar measures of synchrony as the phase-locking value
or imaginary coherence primarily because it has been shown to be more
robust against spurious volume-conducted neural synchrony (Vinck et
al., 2011). In addition, the present report builds on an existing body of
literature showing that wPLI is effective in distinguishing abnormal rest-
ing oscillatory synchrony in clinical populations (Boersma et al., 2013;
Dimitriadis et al., 2013; Ibrahim et al., 2014; Ye et al., 2014).

Signal variability: multiscale entropy. The goal of multiscale entropy
(MSE) analysis is to estimate the variability of a time series at multiple
temporal scales (Costa et al., 2002, 2005). Each time series is down-
sampled to multiple, coarse-grained time scales and sample entropy (SE)
is calculated for each scale (Richman and Moorman, 2000). The down-
sampling procedure is performed for several scales �. A coarse-grained
time series for scale � is calculated from the original time series by aver-
aging data points in nonoverlapping windows of length � (thus, � � 1 cor-
responds to the original time series). For convenience, time scales can be
expressed in seconds by dividing the scale � by the sampling rate (600 Hz).

For each downsampled time series, the SE algorithm is used to estimate
the conditional probability that any two sequences of m � 1 data points
will be similar to each other given that they were similar for the first m
points, effectively quantifying the regularity or predictability of the time
series. The SE metric is the negative of the natural logarithm of this
quantity, such that regular, predictable time series are assigned small SE

values, while variable, unpredictable time series are assigned large SE

values.
The MSE procedure depends on two parameters: the pattern length m,

which determines the length of sequences used to estimate SE, and the
similarity r, which is the criterion for assessing similarity between se-
quences. In the present study, pattern length was set to m � 2 and the
similarity criterion to r � 0.5. The pattern length (also known as the
embedding dimension) was judged to be optimal following the method
proposed by Small and Tse (2004), which uses an information theoretic
criterion for determining the optimal embdedding dimension in terms of
the ability of the dimension to capture the inherent periodicity in the
signal with respect to a predictive dynamic model. The similarity crite-
rion (also known as the tolerance) was chosen following the procedure
described by Richman and Moorman (2000), which was to set the toler-
ance to 0.5 times the SD of the signal. In the present study, the source time
series were normalized to have zero mean and unit SD and, as a result, the
tolerance was set to 0.5.

Oscillatory power: power spectral density. Several reports have indicated
that changes in the dynamic range of neural signals often reflect changes
in power spectral density (PSD), offering complementary information
(McIntosh et al., 2008; Mišić et al., 2014). Likewise, it is possible changes
in interareal phase synchrony depend on changes in local oscillatory
power. To investigate the extent to which changes in synchrony or local
signal variability depend on changes in spectral properties of the signal,
we computed PSD for all source time series. To account for individual
differences in global signal power, all time series were normalized to a
mean of 0 and an SD of 1. Power spectra were computed using the fast
Fourier transform. At the present sampling rate (600 Hz) and number of
time points (180,000), the frequency resolution of the analysis was 0.0025
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Hz. Power spectral density was estimated at the same classical frequency
bands used in the synchrony analysis (see above).

Statistical assessment: PLS. PLS analysis is a multivariate statistical
technique that serves to relate two blocks of variables to one another
(McIntosh and Lobaugh, 2004; McIntosh and Mišić, 2013). In most
neuroimaging applications, these blocks correspond to the study design
on one hand (e.g., the assignment of groups and/or conditions) and
neural activity on the other (e.g., electromagnetic activity, hemodynamic
activity, etc.). The principal feature of PLS is the ability to analyze mul-
tivariate datasets, where one or both blocks contain data that vary across
multiple dimensions (e.g., electromagnetic activity across multiple
sources and time points; hemodynamic activity across multiple voxels
and time points). The goal of the analysis is to find linear combinations of
variables in both blocks that maximally covary with each other (e.g., a
combination of groups and/or conditions that may be interpreted as a
contrast, together with a spatiotemporal pattern of sources and time
points that covary with that contrast).

In the present study, we used two different types of neural activity data
blocks, which are represented as the matrix X. In both analyses, the matrix X
is arranged such that the observations (participants nested within condi-
tions, nested within groups) correspond to the rows of the matrix, and the
variables to the columns of the matrix. To investigate the effect of PTSD on
signal variability, we analyzed MSE data, such that the columns of the matrix
correspond to time scales nested within sources. To investigate the effect of
PTSD on functional connectivity, we analyzed the wPLI data, such that the
columns of the matrix correspond to the unique entries (upper diagonal) of
the wPLI matrix.

The data matrix X is used to create a matrix of means, M, by calculating
column-wise means within each group or task. If there are g groups, c
conditions, and v variables, M has g � c rows and v columns. To poten-
tiate group differences, the grand condition means are then removed
from each condition. Alternatively, to potentiate condition differences,
the group condition means are removed from each group. The resulting
mean-centered matrix, Mdev, has the same dimensions as M, and is sub-
jected to singular value decomposition (SVD) according to the following
equation: [U, S, V] � SVD(Mdev) such that USV� � Mdev.

The outcome of a PLS analysis is a set of mutually orthogonal latent
variables. The number of latent variables is equal to the rank of Mdev,
which is the smaller of its dimensions (typically g � c for most neuroim-
aging experiments). Accordingly, U has v rows and g � c columns, V has
g � c rows and g � c columns, and S also has g � c rows and g � c
columns. Each latent variable is composed of a set of singular vectors
(columns of U and V) and a set of singular values (diagonal elements
of S).

The singular vectors are weights that describe the contributions of
variables from the original data blocks to the overall multivariate pattern.
The column vectors of U contain r elements (e.g., sources or functional
connections) describing the weighting of the original imaging variables
in the latent variable, and can be interpreted as functional networks or
spatiotemporal patterns. The column vectors of V contain g � c elements
(e.g., groups and conditions) describing the weighting of the design vari-
ables in the latent variable, and can be interpreted as a contrast. Finally,
each latent variable is associated with a scalar singular value from the
diagonal matrix S, which reflects the covariance between the two data
blocks captured by the latent variable. The effect size (proportion of
cross-block covariance) of a latent variable can be estimated as the ratio
of the squared singular value to the sum of squared singular values from
the decomposition.

The statistical significance of a latent variable is assessed by permuta-
tion testing, while the reliability of individual weights is estimated by
bootstrapping. Permutation tests are performed by randomly reordering
the rows of the original data matrix X, generating a set of permuted data
matrices where the original group and condition assignments have been
destroyed. The permuted data matrices are mean-centered and subjected
to SVD as described above, to generate a distribution of singular values
under the null hypothesis that there is no relation between the brain data
block and the design block. Since the singular values are proportional to
the magnitude of a statistical relationship captured by a latent variable, a
p value for a latent variable is estimated as the proportion of times the

permuted singular values exceed the original singular value. Note that
statistical inference is made at the level of the entire multivariate pattern,
rather than at the level of individual variables. As a result, only a single
test is performed and further correction for multiple comparisons is not
warranted.

Bootstrapping is performed by randomly resampling participants with
replacement (i.e., the rows of data matrix X), while respecting the origi-
nal group and condition assignments (Efron and Tibshirani, 1986). The
resampled data matrices are mean-centered and subjected to SVD as
described above, to generate a sampling distribution for each of the
weights in the singular vectors. The bootstrap distribution is used to
estimate the SE for each weight, which reflects the stability of the weight.
Finally, a bootstrap ratio is calculated for each original variable (e.g.,
functional connection or source), by dividing the weight from the singu-
lar vector by its bootstrap-estimated SE. Thus, a bootstrap ratio with a
large magnitude indicates that the functional connection or source with
which it is associated has both a large singular vector weight (i.e., con-
tributes to the latent variable) and a small SE (i.e., stable across partici-
pants). When the bootstrap distribution is approximately normal, the
bootstrap ratio is equivalent to a z-score (Efron and Tibshirani, 1986).
Thus, bootstrap ratio maps are thresholded at values of 	2.58, corre-
sponding to the 99% confidence interval.

Results
High-frequency hypersynchrony
We measured spontaneous inter-regional phase synchrony
(functional connectivity) using the wPLI, resolved in five classical
frequency bands: theta (4 –7 Hz), alpha (8 –14 Hz), beta (15–30
Hz), low gamma (30 – 80 Hz), and high gamma (80 –150 Hz). To
assess the effects of PTSD and mTBI on functional connectivity,
we treated each of the elements of the wPLI matrix (i.e., func-
tional connections) as separate variables in the PLS analyses.
Configured in this way, the PLS analyses look for combinations of
groups and conditions (interpreted as contrasts) that maximally
covary with a weighted pattern of functional connections (inter-
preted as functional networks).

Condition differences
To assess the effect of the triggering procedure, we mean-
centered the data using group-specific means, thereby potentiat-
ing condition effects (see Materials and Methods). When all four
groups are entered into the analysis, no statistically significant
effects are found. However, when the analysis is focused only on
soldiers with PTSD and the control soldiers, a statistically signif-
icant latent variable emerges (Fig. 1a; p � 10
10, accounting for
63% of covariance). The contrast primarily differentiates the pre-
trigger and post-trigger recordings, but also captures a condi-
tion � group interaction, whereby the effect of the triggering
procedure—as revealed by the contrast between pre-trigger and
post-trigger scans—is greater in the control compared with the
PTSD soldiers (Fig. 1a).

Figure 1b,c shows the expression of the latent variable across
all connections and frequency bands, as indexed by bootstrap
ratios. Bootstrap ratios are used to estimate how reliably a partic-
ular connection expresses the contrast shown in Figure 1a, and
can be interpreted as a z-score (see Materials and Methods). Con-
nections with positive bootstrap ratios express the contrast as is,
while connections with negative bootstrap ratios express the op-
posite contrast. Thus, the triggering protocol appears to primar-
ily affect functional networks in the low and high gamma bands,
spanning frontal and anterior temporal cortices (Fig. 1c; left hip-
pocampus, left parahippocampal gyrus, left operculum, left su-
perior temporal gyrus, left amygdala). The cognitive and affective
mechanisms elicited by the triggering procedure induce in-
creased synchrony in these networks, as evident from the exclu-
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sively positive bootstrap ratios. This is consistent with results
from a subset of these data reported using the network-based
statistic approach (Dunkley et al., 2014). Out of all other possible
pairwise group comparisons (PTSD vs mTBI, PTSD vs civilian
controls, military controls vs mTBI, military controls vs civilian
controls, mTBI vs civilian controls), only one was statistically
significant: the contrast between PTSD and mTBI. This contrast
is explored in more detail in the following subsection.

Group differences
To assess group effects, we mean-centered the data using
condition-specific means, thereby potentiating group differences
(see Materials and Methods). The analysis yielded one statisti-
cally significant latent variable (Fig. 2a; p � 10
10, accounting for
31% of covariance). The latent variable differentiates the two
military groups (PTSD and control soldiers) from the two civilian
groups (mTBI and civilian controls), with a pronounced contrast
between the PTSD and mTBI groups.

The bootstrap ratio maps indicate that this differentiation of
groups was primarily driven by functional networks in the alpha,

gamma, and high-gamma bands (Fig. 2b,c). A subnetwork of
gamma and high-gamma band connections, comprising the su-
perior temporal sulcus, the supramarginal gyrus, and the tempo-
ral pole, displayed stronger synchrony in the PTSD group
compared with the mTBI group. Conversely, a subnetwork of
alpha band connections, comprising the left superior parietal
cortex, the left superior frontal gyrus, and the left precuneus,
displayed stronger synchrony in the mTBI group compared with
the PTSD group (Fig. 2c). Note also that soldiers with PTSD,
compared with control soldiers, displayed greater synchrony in
the high-gamma band. Thus, the fact that soldiers with PTSD
show a milder reaction to trauma-related cuing (explored in the
previous subsection; Fig. 1) may be interpreted as an effect of
elevated baseline synchrony.

Narrow dynamic range
We next investigated the effects of PTSD and mTBI on local
signal variability. For each source time series, we estimated signal
variability in terms of sample entropy at multiple time scales.

Figure 1. Functional connectivity: condition differences. The dominant PLS latent variable, capturing the effect of triggering on resting-state functional connectivity (measured by the wPLI) in
multiple frequency bands in the two military groups. a, The optimal combination of groups and conditions (contrast). Error bars represent bootstrap-estimated 95% confidence intervals. b,
Bootstrap ratios: a linear combination of connections (i.e., a network) weighted by how reliably they contribute to the latent variable. For a given connection, a high-magnitude positive bootstrap
ratio indicates that the connection reliably expresses the contrast in a. A high-magnitude negative bootstrap ratio indicates that the connection expresses the opposite contrast. c, Statistical maps
showing networks of connections that reliably express the contrast in a, as determined by bootstrapping (see Materials and Methods).
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Using PLS, we captured combinations of sources and time scales
at which signal variability was affected by group membership
and/or the triggering procedure.

Condition differences
To determine whether the triggering protocol had any effect on
signal variability, we mean-centered the data using group-
specific means. The analysis revealed no statistically significant
latent variables. However, the strongest latent variable—as mea-
sured by the proportion of covariance that it accounted for—was
close to significance at the 5% level, and for completeness we
include it here (Fig. 3a; p � 0.06, accounting for 55% of covari-
ance). Note, however, that the latent variable is not significant at
the conventional alpha threshold of 5%, indicating insufficient
evidence to reject the null hypothesis that the effect is signifi-
cantly different from chance. As such, this particular effect should
be interpreted with caution. The latent variable captures a con-
trast between the pre-trigger and post-trigger resting-state runs
and resembles the contrast obtained for functional connectivity
(Fig. 1a). Namely, the military controls are affected by the proto-

col more than the soldiers with PTSD, as evident from the relative
differences in the contrasts for the two groups. Moreover, expo-
sure to trauma-related stimuli had no effect on either civilian
group.

Inspection of the bootstrap ratios suggests that exposure to the
experimental protocol resulted in lowered signal variability. In
addition, these effects were reliably expressed at coarse time scales
(Fig. 3b), which correspond to lower frequencies (see Materials
and Methods for more information on converting time scales to
frequencies). Figure 3c shows the sources where signal variability
was reduced due to the protocol for one representative time scale
(scale 15, equivalent to 25 ms). This condition-induced reduc-
tion in signal variability was reliably observed in several temporal
structures bilaterally, including the hippocampi, parahippocam-
pal gyri, and amygdalae, as well as ventral frontal structures, in-
cluding orbitofrontal and anterior cingulate cortices (Fig. 3c).

Group differences
We next examined whether overall patterns of signal variability dif-
fered between groups. PLS analysis revealed a single significant latent

Figure 2. Functional connectivity: group differences. The dominant PLS latent variable, capturing the effect of group membership on resting-state functional connectivity (measured by the wPLI)
in multiple frequency bands. a, The optimal combination of groups and conditions (contrast). Error bars represent bootstrap-estimated 95% confidence intervals. b, Bootstrap ratios: a linear
combination of connections (i.e., a network), weighted by how reliably they contribute to the latent variable. For a given connection, a high-magnitude positive bootstrap ratio indicates that the
connection reliably expresses the contrast in a. A high-magnitude negative bootstrap ratio indicates that the connection expresses the opposite contrast. c, Statistical maps showing networks of
connections that reliably express the contrast in a, as determined by bootstrapping (see Materials and Methods).
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variable (Fig. 4a; p � 0.04, accounting for 75% of covariance) that
primarily differentiated the PTSD group from all other groups. In
addition, these group differences were more pronounced for the
post-trigger resting-state recordings, consistent with the condition
analysis shown in the previous subsection (Fig. 3).

The subsequent bootstrap analysis revealed two distinct pat-
terns contributing to these group differences (Fig. 4b). Namely, a
subnetwork of sources, comprising posterior cortical regions and
operating mainly at fine time scales, displayed greater signal vari-
ability in the PTSD group compared with the other groups. Con-
versely, a subnetwork of sources, mainly comprising left

temporal structures and operating at coarse time scales, displayed
lower signal variability in the PTSD group compared with the
other groups. Figure 4c shows two representative spatial patterns,
one for fine scales and the other for coarse scales.

Functional connectivity and signal variability
Finally, we observed a remarkable similarity between the patterns
of condition-based changes in functional connectivity (Fig. 1c)
and signal variability (Fig. 3c), as well as the similarity in the
contrasts associated with those analyses (Figs. 1a, 3a). Thus, we
directly compared the two bootstrap patterns, focusing on

Figure 3. Signal variability: condition differences. The dominant PLS latent variable, capturing the effect of triggering on resting-state signal variability at multiple time scales (measured by MSE).
a, The optimal combination of groups and conditions (contrast). Error bars represent bootstrap-estimated 95% confidence intervals. Note that, at p � 0.06, this latent variable is not statistically
significant at the conventional statistical alpha threshold of 0.05. b, Bootstrap ratios: a linear combination of sources and time scales (i.e., a spatiotemporal pattern), weighted by how reliably they
contribute to the latent variable. For a given source, a high-magnitude positive bootstrap ratio indicates that the source reliably expresses the contrast in a. A high-magnitude negative bootstrap
ratio indicates that the source expresses the opposite contrast. c, Statistical maps showing sources that reliably express the contrast in a, as determined by bootstrapping (see Materials and
Methods).
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condition-dependent increases in functional connectivity and
condition-dependent decreases in signal variability. To make the
patterns comparable in a temporal sense, we selected functional
connectivity patterns at 75 Hz and signal variability patterns at
time scale 8, both of which correspond to a period of 13.3 ms
given the 600 Hz sampling rate.

Figure 5a shows the spatial overlap in the bootstrap ratios for
the two analyses, revealing a broad correspondence: areas that
experience increased synchrony also tend to become less variable.
To test this formally, we first estimated the mean change in func-
tional connectivity for every source by calculating the mean boot-
strap ratio for every source. We then correlated the mean
functional connectivity bootstrap ratios (representing the mean
increase in synchrony per node) with the signal variability boot-
strap ratios (representing the decrease in signal variability per
node). Figure 5b shows that there is a statistically significant,
though modest, relation between changes in functional connec-
tivity and signal variability (r � 0.23, p � 0.03). Upon closer
visual inspection, however, it appears that the effect is not global,
but driven by a subset of regions, mainly in the left temporal lobe,
that experience both increased functional connectivity and de-
creased signal variability. We confirmed this hypothesis quanti-
tatively: when these 10 data points are removed, the relationship
ceases to be statistically significant (r � 0.12, p � 0.61).

Oscillatory power
To determine the extent to which changes in synchrony and sig-
nal variability depend on changes in oscillatory power, we ana-

lyzed the effect of condition and group membership on local PSD
at each of the 90 sources. The power spectra produced a statisti-
cally significant group effect (p � 10
10, accounting for 60% of
cross-block covariance). The latent variable mainly differentiated
the PTSD group from the mTBI group (Fig. 6a), with the PTSD
group characterized by greater power in the lower-gamma range
(30 – 80 Hz; left superior temporal gyrus, left pars orbitalis, left
parahippocampal gyrus, left and right rectus gyrus), and the
mTBI group characterized by greater power in the alpha range
(8 –14 Hz; left and right anterior cingulate, left angular gyrus, left
middle frontal gyrus, and left inferior parietal cortex). This pat-
tern bears some similarity to the group differences observed for
synchrony, where the PTSD group was characterized by greater
synchrony at higher frequencies and lower synchrony at lower
frequencies. However, one important difference between the two
effects is the frequency band specificity. While differences in
spectral density are most prominent in the lower-gamma range
(30 – 80 Hz), differences in synchrony are observed at a higher
range (80 –150 Hz). Although the effects of post-traumatic stress
on local power and synchrony do not overlap completely, these
results suggest that the two measures provide complementary
information about these clinical populations.

Discussion
We investigated the effects of traumatic stress on two comple-
mentary aspects of brain function and integrity: functional con-
nectivity and signal variability. Soldiers with PTSD experience

Figure 4. Signal variability: group differences. The dominant PLS latent variable, capturing the effect of group membership on resting-state signal variability at multiple time scales (measured
by MSE). a, The optimal combination of groups and conditions (contrast). Error bars represent bootstrap-estimated 95% confidence intervals. b, Bootstrap ratios: a linear combination of sources and
time scales (i.e., a spatiotemporal pattern), weighted by how reliably they contribute to the latent variable. For a given source, a high-magnitude positive bootstrap ratio indicates that the source
reliably expresses the contrast in a. A high-magnitude negative bootstrap ratio indicates that the source expresses the opposite contrast. c, Statistical maps showing sources that reliably express the
contrast in a, as determined by bootstrapping (see Materials and Methods).
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global hypersynchrony at higher frequencies and reduced local
signal variability at comparable time scales, relative to matched
military controls. Importantly, the two effects appear to be closely
related and primarily driven by a left temporal subnetwork, in-
cluding the hippocampus and amygdala. Altogether, the present
findings demonstrate that global connectivity patterns and local
signal variability can be used to reliably distinguish PTSD from
mTBI. This is a distinction with practical significance, because
the two conditions are frequently comorbid—particularly in mil-
itary personnel—yet require different types of treatment (Bryant,
2011).

We find that soldiers with PTSD consistently display a re-
duced reaction to the triggering protocol compared with healthy
control soldiers. In agreement with previous literature, our re-
sults suggest that exposure to stimuli or triggers related to the
original trauma may elicit mechanisms related to the disorder
and help reveal more about the underlying pathophysiology
(Dunkley et al., 2014). Interestingly, most previous literature sug-
gests that reactivity to trauma-related cues, including autonomic
reactivity (Pitman et al., 1987; Keane et al., 1998) and potentiated
startle (Pole, 2007), is exaggerated in the disorder, while electrical
brain activity, such as P3b amplitude, is often reduced (Orr and
Roth, 2000). Our analyses suggest that, as a result of elevated
baseline synchrony (Fig. 2) and lower baseline variability (Fig. 4),
exposure to trauma-related cues does not affect soldiers with
PTSD as much as control soldiers. We hypothesize that the state
of chronic hyperarousal and re-experiencing of traumatic events
in PTSD effectively keeps the soldiers with PTSD at ceiling,
whereas the combat-exposed non-PTSD soldiers are temporarily
more affected by the triggering protocol.

Likewise, our results suggest that the dynamic range of neural
activity is effectively constrained by traumatic stress. Though tra-
ditionally considered to be a confound or simple “noise,” signal
variability is increasingly recognized as a characteristic of func-
tional integration in the brain (Mišić et al., 2011; Garrett et al.,
2013), and thus a potential marker of pathology as well. Several
recent studies have demonstrated the utility of signal variability
as a measure of pathology in clinical populations, including
schizophrenia (Brookes et al., 2015), autism spectrum disorder

(Catarino et al., 2011; Mišić et al., 2015), and Alzheimer’s disease
(Mizuno et al., 2010). Our results contribute to this effort by
showing that traumatic stress limits the dynamic range of neural
activity in a specific temporal lobe circuit.

Most importantly, evidence from connectivity, signal vari-
ability, and triggering collectively suggests a specific mechanism
underlying PTSD: global hypersynchrony at higher frequencies
may effectively constrain the number of potential states of the
system, resulting in stereotyped local signals with low variability.
This type of mechanism would be predicted by dynamical sys-
tems theory (Deco et al., 2009, 2013), and to our knowledge this
is among the first empirical observations of such a mechanism in
the context of brain function. The fact that hypersynchrony and
the concomitant decrease in variability were particularly severe in
a subnetwork of temporal lobe structures, including the hip-
pocampus and amygdala, suggests that this increasingly con-
strained neural functioning may be related to such symptoms as
re-experiencing of memories, emotional reactivity, impaired ex-
tinction, and increased sensitivity to stimulation (Pitman et al.,
2012).

We thus speculate that network hypersynchrony and stereo-
typed local dynamics, which characterize the PTSD group, reflect
a reduced propensity for exploring the full repertoire of network
states and configurations. Moreover, this reduced dynamic rep-
ertoire may reflect a predisposition for occupying states that con-
tribute to the symptoms and cognitive sequelae associated with
PTSD. A prominent view in computational neuroscience posits
that experience is related to the largest informationally integrated
large-scale neuronal ensemble (Tononi, 2012; Oizumi et al.,
2014), and that this is related to brain signal complexity (Tononi
and Edelman, 1998).

Therefore, the re-experiencing phenomena and affective se-
quelae in combat-related PTSD may result from brain networks
becoming “stuck” in configurations that reflect memories, emo-
tions, and thoughts originating from the traumatizing experi-
ence. Our findings offer neurophysiological evidence for the
long-held notion that PTSD is a disorder of fear learning and fear
conditioning, whereby the re-experiencing of traumatic events
arises from frequent reactivation of fear circuits. Increased con-

Figure 5. Relation between functional connectivity and signal variability. The overlap between PLS latent variables for functional connectivity and signal variability. a, Overlap between the
connections that become stronger post-trigger (at 75 Hz, corresponding to a 13.3 ms period) and sources that become less variable post-trigger (at time scale 8, corresponding to a 13.3 ms period).
Reliability is assessed by bootstrap analysis (see Materials and Methods). b, Correlation between bootstrap ratios for the signal variability analysis, and bootstrap ratios for the functional connectivity
analysis, averaged across connections, such that each data point represents a source.
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nectivity among temporal lobe structures, with a concomitant
decrease in signal variability, suggests that these fear-related and
memory-related circuits are effectively “locked” in certain con-
figurations. This rigidity may prevent the exploration of alterna-
tive network states and configurations, leading to the core
cognitive and affective symptoms of PTSD.

The implication of these findings is that the symptoms of
PTSD may potentially be relieved by treatments that restore the
natural variability in these subnetworks. Although the effects of
pharmacologic intervention on connectivity and variability are
not yet fully understood, several recent studies suggest the possi-
bility that local signal variability may be modulated pharmaco-
logically, with robust cognitive effects (Tagliazucchi et al., 2014;
Garrett et al., 2015). For instance, Garrett et al. (2015) recently
showed that dopamine agonists, such as D-amphetamine may
boost signal variability and cognitive performance in older

adults. The present results contribute to a growing literature
showing that the brain’s functional architecture and local dy-
namics are not just important markers of healthy and patholog-
ical cognitive function, but potential targets for therapeutic
intervention as well.

Interestingly, the PSD analysis bore some topographic simi-
larity to the wPLI analysis. In the alpha and high-gamma bands,
sources that exhibit decreased/increased oscillatory power also
participate in many weaker/stronger functional connections.
Likewise, no significant effects are observed for either measure in
the beta band. In theory, changes in phase synchrony do not
necessarily have to accompany changes in local oscillatory power,
yet in practice, the two are often found to be related (Singer,
1993). Computational models suggest that the power of local
oscillations and their mutual synchrony could potentially be me-
diated by a number of anatomical and physiological characteris-

Figure 6. Oscillatory power: group differences. The dominant PLS latent variable, capturing the effect of group membership on local oscillatory power (measured by PSD) in multiple frequency
bands. a, The optimal combination of groups and conditions (contrast). Error bars represent bootstrap-estimated 95% confidence intervals. b, Bootstrap ratios: a linear combination of sources,
weighted by how reliably they contribute to the latent variable. For a given connection, a high-magnitude positive bootstrap ratio indicates that the source reliably expresses the contrast in a. A
high-magnitude negative bootstrap ratio indicates that the connection expresses the opposite contrast. c, Statistical maps showing networks of sources that reliably express the contrast in a, as
determined by bootstrapping (see Materials and Methods).
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tics, including coupling strength, propagation delays, and
intrinsic dynamics (David and Friston, 2003; Zavaglia et al.,
2008). In particular, synchronization among remote neural as-
semblies may at least partly contribute to oscillatory power in
those assemblies (Singer, 1993).

In this context, the discrepancy between connectivity and os-
cillatory power in the low-gamma range (30 – 80 Hz) is salient.
Increased power in this band is concomitant with decreased syn-
chrony, suggesting that PTSD disrupts communication. Despite
the increased prominence of 30 – 80 Hz rhythms, they appear to
contribute less to global information transfer. Thus, reduced syn-
chrony in the low gamma range may be as important to the PTSD
phenotype as increased synchrony in the high gamma range (80 –
150 Hz). The fact that synchrony is affected differentially in the
two bands may indicate a gradual rebalancing of communication
from lower to higher frequencies, resulting in the high-frequency
hypersynchrony observed in the present study.

Our results and interpretations are also subject to several po-
tential limitations. First, as with most naturalistic PTSD studies,
the effects of exposure to trauma cannot be disentangled from
potential biological predisposition to the disorder, nor from the
effects of medications or other interventions and treatments. In
the present PTSD sample, all individuals were taking evidence-
based psychotropic medication, including SSRIs, SNRIs, and
prazosin, an alpha blocker. The effects of conventional pharma-
cotherapy on global synchrony and signal variability are still not
fully understood, which means that the effects of PTSD on these
measures may be confounded by the administration of psycho-
tropic medication. For instance, McCabe and Mishor (2011)
found that administration of the SSRI citalopram reduces
resting-state functional connectivity in a specific prefrontal
circuit, while Schaefer et al. (2014) found that administration
of escitalopram reduces intrinsic connectivity throughout the
brain. These considerations highlight an important challenge
going forward in human brain mapping and connectomics:
namely, the need to understand the effect of commonly used
medication on both traditional and novel measures of brain
structure and function, in both healthy participants and clin-
ical populations.

Second, we emphasize that contrasts between pre-trigger
and post-trigger resting-state scans should be interpreted with
caution. Although the scans were made before and after sev-
eral cognitive tasks that included emotionally salient stimuli,
differences between the two recordings do not necessarily re-
flect emotional triggering, or may only partly reflect emo-
tional triggering. For example, these differences could also be
due to order effects and to the deployment of other, nonemo-
tional cognitive processes. Our results suggest that the conflu-
ence of these factors elicits a differential response in PTSD and
control soldiers and that future research should aim to disen-
tangle the contribution of affective and cognitive processes in
this population.

In summary, our findings contribute to growing evidence that
post-traumatic stress is a network-level disorder that affects mul-
tiple aspects of neural information processing, dynamics, and
communication. By continuing to explore specific features, in-
cluding functional connectivity and signal variability, it should
become possible to further articulate the mechanisms underlying
the disorder. Moreover, insight about neural information pro-
cessing and communication dynamics gained from clinical pop-
ulations may ultimately help us to further appreciate their
importance in the context of healthy brain function as well.
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