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P S Y C H O L O G Y

Calculated avoidance: Math anxiety predicts math 
avoidance in effort-based decision-making
Kyoung Whan Choe1,2*, Jalisha B. Jenifer1*, Christopher S. Rozek3,  
Marc G. Berman1,4, Sian L. Beilock1,5†

Math anxiety—negative feelings toward math—is hypothesized to be associated with the avoidance of math-
related activities such as taking math courses and pursuing STEM careers. However, there is little experimental 
evidence for the math anxiety-avoidance link. Such evidence is important for formulating how to break this relation-
ship. We hypothesize that math avoidance emerges when one perceives the costs of effortful math engagement 
to outweigh its benefits and that this perception depends on individual differences in math anxiety. To test this 
hypothesis, we developed an effort-based decision-making task in which participants chose between solving easy, 
low-reward problems and hard, high-reward problems in both math and nonmath contexts. Higher levels of math 
anxiety were associated with a tendency to select easier, low-reward problems over harder, high-reward math 
(but not word) problems. Addressing this robust math anxiety-avoidance link has the potential to increase interest 
and success in STEM fields.

INTRODUCTION
Individuals who experience mathematics anxiety, or negative feelings 
and apprehension toward math, are hypothesized to engage in math 
avoidance behaviors such as taking fewer math-related courses 
and pursuing fewer science, technology, engineering, and math 
(STEM)–related occupations than their less math-anxious peers 
(1–5). This theoretical link between math anxiety and math avoidance 
has critical implications for math performance, as it has been sug-
gested to create a vicious cycle that results in limited math practice, 
poor math performance, increased math anxiety, and additional 
math avoidance (6, 7). Despite the theoretical importance of math 
avoidance, however, there is little direct experimental evidence for 
the math anxiety-avoidance link.

One potential reason for the dearth in experimental research 
on math anxiety and avoidance is the absence of an empirical, 
behavioral measure of math avoidance. Previous studies have used 
math course enrollment (3, 8) and math test–taking strategies (9–11) 
as proxies for math avoidance. However, those proxies are con-
founded by math ability [i.e., it may be that math-anxious individuals 
avoid difficult math classes because they have low math ability 
rather than because they have high math anxiety (3, 9)], and their 
relation with math anxiety has been mixed (8–10). In short, pre-
vious evidence used in support of the math anxiety-avoidance link 
has been correlational and burdened by interpretation ambiguities 
common to correlational study designs. Through a novel math 
avoidance behavioral paradigm, the current study represents the first 
experimental demonstration of a direct relationship between math 
anxiety and avoidance, controlling for math ability and other 
confounds.

  Here, we hypothesize that math avoidance is related to individuals’ 
perceptions of the costs and benefits associated with effortful math 
engagement and that this perception depends on individual differences 
in math anxiety. This hypothesis is grounded in research on motivated 
behavior, which suggests that individuals make decisions based 
on a series of cost-benefit evaluations regarding task-related effort 
(12). From this perspective, avoidance behavior can be theorized 
to emerge when an individual perceives the effort-based costs of 
an action to outweigh the benefits (13). Specifically, we hypothesize 
that math anxiety leads individuals to perceive math to be more 
effortful and/or less rewarding, thus making them avoid effortful 
math even when it is incentivized with a high reward. We also 
hypothesize that the relationship between math anxiety and effort 
avoidance is exclusive to the context of math since math anxiety 
should not affect the perception of effort costs and benefits in nonmath 
contexts. Together, these predictions create our math-specific effort 
avoidance hypothesis. We preregistered our hypothesis at https://
osf.io/9vpgm/ before conducting the confirmatory study.

To test our hypothesis, we measured individuals’ effort avoidance 
in math and nonmath contexts by using a novel effort-based decision-
making task in which cognitive, effort-based costs for solving math 
and word (spelling) problems were pitted against monetary benefits. 
Recent studies have used effort-based decision-making tasks to 
quantify human motivation and examine its relationship to motivational 
disorders (13–15), which suggests that this type of paradigm may 
be particularly advantageous for studying the motivational patterns 
of individuals who experience math anxiety. Through multiple 
experiments, we found evidence in support of our math-specific effort 
avoidance hypothesis: Higher levels of math anxiety were selectively 
associated with higher levels of effort avoidance in the math condition—
but not the word condition—even after adjusting for individual 
differences in math ability and controlling for related variables such 
as test anxiety and trait anxiety, which are known to be confounded 
with math anxiety (3, 9, 10).

Our paradigm provides a reliable behavioral measure of math 
avoidance, which fills a major void in the math anxiety literature. 
Our paradigm can also facilitate the development of effective 
interventions to break the math anxiety-avoidance link. Addressing 
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math avoidance behaviors can help break the vicious cycle of math 
anxiety and increase interest and success in STEM fields and is 
therefore an important topic for future research.

RESULTS
Behavioral task and hypothesis
We collected data across a series of experiments in which participants 
performed our effort-based decision-making task, the choose-and-
solve task (CAST; see tables S1 and S2 for descriptive statistics and 
correlation matrix of the self-report and behavioral measures). Each 
CAST trial was either a math or a word trial composed of a “choose,” 
“solve,” and “feedback” phase. In the choose phase (Fig. 1A), participants 
were given 3 s to choose between two choice cards, one labeled “easy” 
and the other labeled “hard.” Easy choice cards always offered a 
2-cent reward for a correct response in the subsequent solve phase. 
Hard choice cards offered one of five possible reward amounts (2, 3, 
4, 5, and 6 cents) so that we could obtain a psychometric curve for 
choosing the hard option as a function of reward and decrease 
habituation to repeated conditions. After making a selection in the 
choose phase, participants progressed to the solve phase in which 
they were given 7 s to solve the corresponding easy or hard math/
word problem (Fig. 1B). Participants then progressed to the feedback 
phase in which they received accuracy feedback on their problem 
solving (i.e., correct versus incorrect) and were informed of the 
reward amount they earned for the problem.

In the CAST, we reasoned that a rational participant who is trying 
to maximize earnings would make choices based on the expected 
values of the easy and hard choice cards (i.e., choose the option with 
higher expected value), where expected values are determined by 
the reward at stake and one’s expected accuracy. However, it is 
possible that less competent participants might also avoid hard 
options if they experience poor accuracy in solving hard problems. 
Thus, we aimed to maintain experienced accuracy at a constant level 
across participants to minimize the possibility that any observed 
differences in the choice behavior are driven by the variability in 
problem-solving accuracy arising from differences in participants’ 
competence. To do so, we sorted a set of 1999 math problems and a 

set of 1858 word problems based on their solving difficulty (see the 
Supplementary Materials) and used an adaptive staircase procedure 
(Fig. 2A; Materials and Methods) to ensure that the difficulty of the 
hard problems was continuously adjusted in our task to target an 
accuracy of 70% regardless of participants’ competence. As a result, 
participant accuracy of the difficulty-adapted hard problems was 
around 70% [study 1, math: 64.3 ± 17.5% (mean ± SD), word: 68.8 ± 
9.3%; study 2, math: 65.3 ± 12.4%, word: 68.5 ± 6.1%; Fig. 2B], and 
participant accuracy of the easy problems, which were all drawn 
from the easiest level of our sorting paradigm, was above 90% [study 1, 
math: 95.4 ± 6.0% (mean ± SD), word: 93.7 ± 6.3%; study 2, math: 
93.2 ± 6.9%, word: 92.5 ± 7.2%].

Given these accuracy levels, the hard choice cards that offered 
more than 3 cents warranted a higher expected value that that of the 
easy choice cards, which always offered 2 cents (e.g., a hard choice 
card offering 4 cents with a 70% accuracy rate would hold the 
expected value of 2.8 cents since 4 × 0.7 = 2.8; open black circles in 
Fig. 1C). Therefore, to maximize reward in the CAST, one should 
choose the hard option when it offers more than 3 cents (filled blue 
circles in Fig. 1C). On the basis of this rationale, we merged trials in 
which the hard choice card offered 4, 5, and 6 cents and indexed the 
proportion of these trials in which participants chose the hard 
option. The proportion of hard choice card selection was also highly 
correlated across trials that offered 4, 5, and 6 cents (r > 0.9), further 
justifying our decision to merge these three trial types to form one 
index. This index serves as our dependent variable, which is referred 
to as participants’ hard choice probability (HCP) and represents the 
proportion of trials in which participants selected the hard choice 
card when it was advantageous to do so. We obtained both math 
and word HCPs from each participant as the CAST included both 
math and word trials.

We hypothesized that math anxiety would be negatively correlated 
with the math HCP (red thick line in Fig. 1D) but would not be 
significantly correlated with word HCP (black line in Fig. 1D), leading 
to a significant interaction between the math and word conditions. 
Findings in line with our hypotheses would suggest that math anxiety 
leads individuals to avoid effortful math even when it is incentivized with 
a high reward. Such findings would also suggest that the relationship 

Fig. 1. Behavioral task and hypothesis. (A) Choose phase of the CAST. In each CAST trial, participants were asked to choose between easy (i.e., low effort) choice cards, 
which always offered 2 cents, and hard (i.e., high effort) choice cards, which offered one of five possible reward amounts (2, 3, 4, 5, and 6 cents). The domain (either math 
or word) of the choice cards was kept the same within a trial. (B) Four example problems in the solve phase of the CAST. Participants were asked to fill the blue square to 
make a correct equation (math) or an English word by selecting one of three options below. In word problems, “~” is used in place of some characters to make problems 
harder. The problems were sorted by seven difficulty levels through a validation study (see the Supplementary Materials). Word answers: PL[A]N, EX[A]MINED. Math 
answers: 30[8], 2[5]84. (C) Expected reward and optimal decision-making as a function of the reward offered in the hard option (the horizontal axis). The horizontal dashed 
line represents the expected reward (the left vertical axis) of the easy option given the expected accuracy of 95%, and the black open circles represent the expected 
reward of the hard options, given the expected accuracy of 70%. The blue filled circles indicate the optimal choice probability of the hard options in each reward condition 
to maximize monetary reward based on expected reward values. (D) Math-specific effort avoidance hypothesis. The hard choice probability (HCP; the vertical axis) was 
defined by averaging the individual HCPs in the 4-, 5-, and 6-cent conditions (C). We predicted that math anxiety would be negatively correlated with the math HCP 
(red thick line) but not with word HCP (black line).
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between math anxiety and effort avoidance is exclusive to the context 
of math. Together, these predictions create our math-specific effort 
avoidance hypothesis (Fig. 1D).

Assessing task validity and reliability
Before testing our hypotheses, we assessed the validity and reliability 
of the CAST-derived variables. Through the adaptive difficulty 
manipulation (Fig. 2A), we obtained the average difficulty level (ADL) 
of the hard problems that each participant encountered, which 
might closely track their performance. Thus, we used math ADL to 
test the well-known negative association between math anxiety and 
math performance (16–18). Consistently, we found that math anxiety 
was significantly negatively correlated with math ADL [study 1: 
Pearson’s r(134) = −0.30; 95% confidence interval (CI), −0.45 to −0.14; 
P < .001; study 2 (preregistered): r(330) = −0.16; 95% CI, −0.27 to 
−0.06; P = 0.003; Fig. 2C], suggesting that ADL is a good proxy for 
one’s performance. Next, we examined the temporal stability of 
ADL and HCP within session to assess whether the CAST led to 
participant fatigue. We reasoned that fatigue would lead to decreased 
performance and increased effort avoidance, resulting in the decrease 
in ADL and HCP across blocks and, thus, negative slopes. In contrast, 
however, the observed slopes of math/word ADL and HCP were 
significantly positive across blocks (with an exception of study 1 math 
HCP, which showed a nonsignificant positive slope; fig. S1), suggesting 
against participant fatigue. Last, we examined the test-retest reliability 
of ADL and HCP between sessions that were 4 months apart (studies 1 
and 1R; see Materials and Methods). We found significant positive 
test-retest correlations in all math/word ADL and HCP measures 
[math ADL: Pearson’s r(92) = 0.62; 95% CI, 0.47 to 0.73; word ADL: 
r(92) = 0.63; 95% CI, 0.49 to 0.74; math HCP: r(101) = 0.64; 95% CI, 
0.51 to 0.74; word HCP r(101) = 0.68; 95% CI, 0.56 to 0.78; all Ps < 
0.001; fig. S2]. Note that many cognitive tests that are widely used 
clinically and for research (e.g., working memory tasks) have test-
retest correlations that are in the range of 0.3 to 0.7 (19, 20). Together, 

these results show that the CAST provides reliable measures of 
performance and choice behavior.

Testing the math-specific effort avoidance hypothesis
To test the math-specific effort avoidance hypothesis, we conducted 
an exploratory study (study 1) and examined the relationships 
between math anxiety and math/word HCP. We found that participants’ 
HCP generally increased as the reward value for choosing the hard 
option increased in both the math and nonmath conditions (Fig. 3A). 
We also found that math anxiety was negatively correlated with math 
HCP [Pearson’s r(140) = −0.34; 95% CI, −0.48 to −0.19; P < 0.001; 
top left in Fig. 3B], but not with word HCP [r(140) = −0.01; 95% CI, 
−0.18 to 0.15; P = 0.86; top right in Fig. 3B].

To examine whether the relationship between math anxiety and 
effort avoidance is exclusive to the context of math, we conducted a 
linear mixed-effect model (LMM) analysis to test the interaction 
between domain (math/word) and math anxiety on HCP (Fig. 1D). 
We controlled for variables related to individual differences in 
problem solving such as hard versus easy accuracy and response 
time (RT) since they were correlated with math anxiety (table S1) 
and could have confounded participants’ choice behavior (see the 
next section for a more thorough explanation). In this model, the 
dependent variable was participants’ HCP, and the fixed effects were 
domain, math anxiety, and their interaction. In addition, participants’ 
accuracy and RT of easy problems, accuracy and RT of hard problems, 
and ADL were added as fixed effects for the math and word conditions, 
respectively. The model (df = 267) explained 62.6% of the variance 
(adjusted R2); the full results are presented in table S3. We found a 
significant effect of math anxiety ( = −0.12; 95% CI, −0.19 to −0.05; 
P < 0.001) and a significant interaction between domain and math 
anxiety on HCP (interaction  = 0.11; 95% CI, 0.04 to 0.18; P = 0.001), 
confirming that the relationship between math anxiety and math HCP 
significantly differed compared with that between math anxiety and 
word HCP.

Fig. 2. Adaptive difficulty manipulation and validation. (A) Time courses of hard math difficulty level from two representative participants. The problem difficulty was 
determined by the 2-up-1-down staircase procedure (see Materials and Methods). Each circle represents a correct trial, and each × represents an incorrect trial. The difficulty 
trajectory around trial 120 (indicated with a dashed rectangle) is magnified in the top panel to illustrate the 2-up-1-down staircase procedure. The filled triangle and 
square symbols on the right indicate the average difficulty level (ADL). (B) Relationships between math/word ADL and resulting accuracy in the hard problems. Each circle 
represents a participant, and the horizontal dotted line at 70% indicates the target accuracy. The filled triangle and square symbols indicate the representative participants 
in (A). The histograms of the hard accuracy are plotted on the right vertical axes. (C) Relationship between math anxiety and math ADL. Each circle represents a participant, 
the solid lines are the significant regression lines [study 1 (top): Pearson’s r(134) = −0.30; 95% CI, −0.45 to −0.14; P < .001; study 2 (bottom): r(330) = −0.16; 95% CI, −.27 to −.06; 
P = .003], and the gray shades represent the 95% confidence bands.
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To replicate the findings from study 1, we conducted a confirmatory 
study with a larger, age-restricted, and gender-balanced sample 
(study 2) after preregistration (https://osf.io/9vpgm). Again, we found 
that math anxiety was negatively correlated with math HCP [r(330) = 
−0.15; 95% CI, −0.26 to −0.05; P = 0.005; bottom left in Fig. 3B], but 
not with word HCP [r(330) = −0.03; 95% CI, −0.14 to 0.08; P = 0.60; 
bottom right in Fig. 3B]. Since the problem-solving variables in 
study 2, such as hard versus easy accuracy and RT, were also correlated 
with math anxiety, even in the word condition (table S2), we conducted 
an LMM analysis in the same manner as in study 1 to test the math-
specific effort avoidance while controlling for the problem-solving 
variables. The model (df = 655) explained 71.6% of the variance 
(adjusted R2), and the full results are presented in table S4. Again, 
we confirmed a significant effect of math anxiety ( = −0.05; 95% CI, 
−0.09 to −0.00; P = 0.03) and a significant interaction between domain 
and math anxiety on HCP (interaction  = 0.06; 95% CI, 0.02 to 0.10; 
P = 0.003). These results demonstrate that individuals who experience 
math anxiety choose to avoid exerting greater levels of effort in math, 
even when it is highly rewarded, and provide a strong evidence for 
the math-specific effort avoidance hypothesis.

Examining potential problem-solving confounds on  
math-specific effort avoidance
Our finding of math-specific effort avoidance may have been con-
founded by at least two problem-solving behaviors that are less 
related to math anxiety. First, participants only received rewards when 
they solved problems correctly, so their problem-solving accuracy 
may have affected their perceived value of the hard options and their 
choice behavior. Despite our efforts to hold the accuracy constant 
with a computer-adaptive paradigm, we observed a significant negative 
correlation between math anxiety and hard math accuracy (i.e., the 

higher the math anxiety, the lower the math accuracy; tables S1 and 
S2, and see fig. S3A for study 2 results). On the basis of this correlation, 
one could argue that participants with math anxiety avoided hard 
math because they experienced lower hard math accuracy than their 
less-math-anxious peers. However, we also observed a significant 
negative correlation between math anxiety and hard word accuracy 
in study 2 [r(330) = −0.21; 95% CI, −0.31 to −0.11; P < 0.001; fig. S3B] 
but did not observe word effort avoidance (Fig. 3B). Moreover, we 
confirmed a significant association between math anxiety and math 
HCP even after controlling for problem-solving variables (tables S3 
and S4). These results suggest that the math-specific effort avoidance 
cannot be explained by differences in problem-solving accuracy.

Second, participants with math anxiety may have avoided hard 
math problems because they did not expect to solve these problems 
within the 7 s time limit. We examined math anxiety in relation to 
the proportion of hard trials in which participants ran out of time 
while solving problems (fig. S3C) and found that all participants 
provided responses to most of the hard math problems within the 
time limit (the proportion of hard math timeout: mean ± SD, 4.4 ± 
5.4%; range, 0 to 36.4%) and that the proportion was not significantly 
correlated with math anxiety in study 2 [r(328) = −0.05; 95% CI, 
−0.16 to 0.06; P = 0.39], ruling out this possibility. Moreover, we 
found that math anxiety was negatively correlated with the amount 
of time spent on solving hard math problems (i.e., the higher the 
math anxiety, the shorter the problem-solving time for hard math) 
[r(330) = −0.18; 95% CI, −0.29 to −0.07; P = 0.001; fig. S3C]. This 
suggests that participants with higher levels of math anxiety may have 
been engaging in even greater math effort avoidance by “guessing” 
on hard math problems, a speculation that is also supported by 
the significant negative correlation between math anxiety and hard 
math accuracy (tables S1 and S2).

Fig. 3. Math-specific effort avoidance. (A) Observed HCP as a function of the reward offered in the hard option (the horizontal axis; the easy option always offered 
2 cents). The circles and squares specify the HCP in each reward condition averaged across participants, and, especially, the squares represent the conditions in which the 
hard choice is optimal (see Fig. 1C). Filled red symbols specify the math condition, and open black symbols specify the word condition. Error bars indicate SEM across 
participants. (B) Relationships between math anxiety, math HCP (left), and word HCP (right). Each circle represents a participant, the solid lines are the significant regression 
lines [the left Math panels; study 1: r(140) = −0.34; 95% CI, −0.48 to −0.19; P < 0.001; study 2: r(330) = −0.15; 95% CI, −0.26 to −0.05; P = 0.005], the dashed lines are the 
nonsignificant regression lines [the right Word panels; study 1: r(140) = −0.01; 95% CI, −0.18 to 0.15; P = 0.86; study 2: r(330) = −0.03; 95% CI, −0.14 to 0.08; P = 0.60], and 
the gray shades represent the 95% confidence bands. The histograms of HCP are plotted on the right vertical axes.
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Linking math-specific component of math anxiety and math 
effort avoidance
Previous research (3, 9, 10) reported that math anxiety is correlated 
with other types of anxiety, such as test anxiety and trait anxiety. 
Similarly, we found that math anxiety was positively correlated with 
test anxiety, trait anxiety, and reading anxiety in our samples (tables S1 
and S2). Thus, it is possible that the observed association between 
math anxiety and math effort avoidance could be driven by the 
non–math-specific, general component of anxiety that is shared 
across math anxiety and other types of anxiety as suggested by 
previous research (10).

Therefore, we tested whether the association between math anxiety 
and math effort avoidance holds after controlling for other types 
of anxiety by conducting comprehensive LMM analyses on study 1 
(df = 116; adjusted R2 = 41.6%; see table S5 for details) and study 2 
(df = 321; adjusted R2 = 47.0%; see Table 1 for details). The variables 
related to problem solving, such as math ADL and accuracy/RT 
of easy and hard math, were added as fixed effects, as those were 
correlated with both math anxiety and math HCP (tables S1 and S2). 
We confirmed a significant effect of math anxiety on math HCP 
(study 1:  = −0.19; 95% CI, −0.30 to −0.09; study 2:  = −0.09; 95% CI, 
−0.14 to −0.04; both Ps < 0.001) after controlling for these variables, 
suggesting that math effort avoidance is driven by the math-specific 
component of math anxiety. We also ran generalized binomial 
regression analyses to address the nonnormal distribution of math 
HCP (see the histogram of math HCP in the right vertical axes in 
Fig. 3B) and confirmed a significant effect of math anxiety on math 
HCP (study 1:  = −1.22; 95% CI, −2.23 to −0.20; P = 0.02; study 2: 
 = −0.49; 95% CI, −0.92 to −0.03; P = 0.03; see tables S6 and S7 for 
the full results). Together, these findings establish a robust link 
between math anxiety and math effort avoidance.

DISCUSSION
Math anxiety has long been hypothesized to be associated with math 
avoidance (1–5). However, little research has directly investigated 
this relationship and potential underlying mechanisms, most likely 
due to the absence of a reliable avoidance measure. We aimed to fill 
this void in the literature with our novel effort-based decision-making 
paradigm, the CAST (Figs. 1 and 2). By developing a paradigm in 
which one can manipulate the levels of effort and reward associated 
with solving math and nonmath problems, we demonstrated that 
math anxiety is associated with math-specific effort avoidance over 
and above math performance (Fig. 3). Moreover, the association 
between math anxiety and math effort avoidance remained significant 
after controlling for other types of anxiety (Table 1), suggesting that 
the math-specific component of math anxiety drives math-specific 
effort avoidance. Together, these results experimentally establish a 
robust math anxiety-avoidance link.

Why do individuals with math anxiety avoid exerting effort in 
math even when it is highly rewarded? Theories of economic decision-
making suggest that such avoidance may relate to individuals’ subjective 
valuation of the effort-based costs and rewards associated with a given 
task (12, 13). Moreover, it is also possible that individuals with math 
anxiety reactively avoid math effort because they feel the need to 
escape, as a spider-phobic would avoid spiders, perhaps due to their 
highly negative, even traumatic, past experience with math (e.g., 
failure, humiliation, or the experience of fear). Regardless, we argue 
that individuals with math anxiety avoid the high-reward, high-effort 

math options because they perceive the costs of effortful math 
engagement to outweigh its benefits. Unfortunately, however, this 
behavioral study cannot differentiate whether math effort avoidance is 
due to decreased valuation of math-related rewards, greater anticipation 
of math effort costs, or reactive fear toward math. Moreover, the 
observed correlation values between math anxiety and math effort 
avoidance were small to modest (rs = −0.37 and −0.15; Fig. 3), 
suggesting that there are factors other than math anxiety that also 
affect math avoidance behavior.

How could math anxiety lead to less valuation of reward and/or 
greater anticipation of cognitive effort in math contexts? Recent 
research using functional magnetic resonance imaging shows that 
math anxiety activates the pain network in anticipation of doing math 
(21) and the fear network while either performing math (22, 23) or 
simply viewing mathematical symbols for a brief period (24). These 
pain- and fear-related neural activations suggest that math anxiety 
may lead individuals to experience a concrete, visceral sensation of 
pain and/or fear in math situations, the sensation that may heavily 
discount the reward associated with math. This speculation is 
supported by previous research (25) demonstrating that pain-associated 
monetary reward evokes attenuated neural activation in the ventral 
striatum, the brain region that encodes expected reward (26). Simulta-
neously, regulating such visceral sensation requires substantial 
cognitive effort (27), so it is highly likely that individuals with math 

Table 1. Results of comprehensive LMM analysis for study 2.  
Dependent variable: math HCP. Independent variables were not 
transformed. Random effects: The random intercepts for age, gender, 
education level, highest level of math taken, current math taking, 
ethnicity, race, and income. All 332 rows (participants) were entered into 
the model. The maximum likelihood estimation method was used to fit 
the model. df = 321. Adjusted R2 = 47.04%. The 95% confidence intervals 
are presented in parentheses beside the s. 

Predictor  coefficient 
(95% CI) SE () t(321) P

Intercept −0.11 
(−0.68 to 0.46) 0.29 −0.38 0.70

Word HCP 0.74 
(0.64 to 0.85) 0.05 14.04 <0.001

Math anxiety −0.09 
(−0.14 to −0.04) 0.02 −3.60 <0.001

Reading 
anxiety

0.05 
(−0.00 to 0.09) 0.02 1.93 0.05

Trait anxiety −0.001 
(−0.003 to 0.001) 0.001 −0.81 0.42

Test anxiety 0.003 
(0.000 to 0.007) 0.002 2.16 0.03

Easy math 
accuracy

−0.03 
(−0.62 to 0.55) 0.30 −0.12 0.91

Easy math RT 0.01 
(−0.06 to 0.08) 0.04 0.22 0.82

Hard math 
accuracy

0.14 
(−0.29 to 0.57) 0.22 0.62 0.53

Hard math RT −0.03 
(−0.08 to 0.02) 0.03 −1.30 0.19

Math ADL 0.08 
(0.03 to 0.12) 0.02 3.23 0.001
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anxiety would have to exert cognitive effort in math-related situations 
(16). Consistent with this notion, math-anxious individuals who are 
able to use greater cognitive control can overcome the adverse 
effects of math anxiety (28).

Among the few differences between studies 1 and 2, it is worth noting 
that although the observed correlations between math anxiety and 
math HCP were significant in both studies, the correlation was smaller 
in study 2 (r = −0.15 versus −0.37 in study 1; Fig. 3). Why are the 
correlation values different? In our analysis of the data from study 1, 
we found that a few participants completely avoided solving hard 
problems by always choosing easy options. Realizing that calculating 
math/word ADL requires participants to solve a minimum number 
of hard problems, we introduced no-choice trials in study 2 so that 
participants had to solve at least 10 hard math and 10 hard word 
problems. It is possible that this forced exposure to hard math problems 
during the task reduced math effort avoidance in study 2. Consistent 
with this notion, exposure therapy is known to be effective at reversing 
avoidance behavior in other forms of anxiety and phobia (29). In 
addition, increasing math exposure through computer games (30) 
or intensive tutoring (23) has been shown to provide positive math 
experiences and improve math performance in students with math 
anxiety, thereby potentially turning the vicious cycle of math failure➔ 
increased anxiety➔ increased avoidance➔ increased failure into a 
virtuous cycle of math success➔ increased confidence➔ increased 
approach➔ increased success (7, 30).

Choosing to avoid challenging math can start a vicious cycle of math 
anxiety that results in limited math practice, poor math performance, 
increased math anxiety, and additional math avoidance (6, 7). Students 
with math anxiety often choose to take fewer math-related courses 
and consequently pursue fewer STEM-related occupations than their 
less-anxious peers (3–5). By tackling math avoidance early, we 
may be able to break this vicious cycle before critical academic and 
occupational choices are made. We envision that our novel task, the 
CAST, will be used to identify young children and adolescents who 
have trouble putting effort into math so that targeted interventions 
can be introduced to reduce their math avoidance and math anxiety. 
Future research should therefore explore the use of the CAST in 
more naturalistic settings to validate and optimize its effectiveness 
for early identification of math effort avoidance.

MATERIALS AND METHODS
Experimental design
To assess the relationship between math anxiety and willingness to 
exert effort in a math and nonmath context, we used questionnaires 
and a novel effort-based decision-making task, the CAST. Here, we 
report all experimental conditions, measures, and data exclusion 
criteria. Studies 1 and 1R were not formally preregistered. The 
preregistration for study 2 can be accessed at the Center for Open 
Science (https://osf.io/9vpgm/). The materials, deidentified data, and 
analysis scripts are openly available at https://osf.io/t4wju/.

Participants
All studies were approved by the Social and Behavioral Sciences 
Institutional Review Board of The University of Chicago (IRB 
no. 16-0639). Participants were recruited via TurkPrime (31) to complete 
the studies online via Amazon Mechanical Turk (see the Supplementary 
Materials for details) and provided informed consent prior to 
participation. They were compensated with a combination of base 

amount and a performance-based bonus in the CAST (described in 
the “Experimental procedure” section). We limited the analyses to 
those who passed the problem-solving accuracy criteria (described in 
the “Choose-and-solve task” section). Outliers were not excluded.

Study 1 was exploratory; a desired sample size of 194 was set to 
detect an expected correlation of 0.2 with 80% power at a 5% significance 
level. Because of computer errors, 154 participants completed study 1, 
and we report the results from 142 participants (age: mean, 37.4; SD, 
10.1; range, 21 to 66; sex: 56 females, 77 males, and 9 other/not 
identified/lost). Study 1R was conducted to measure test-retest 
reliability of the CAST; 103 of the 142 participants performed the 
CAST again after 4 months (age: mean, 37.9; SD, 10.1; range, 21 to 
66; sex: 41 females, 57 males, and 5 other/not identified/lost). Study 2 
was conducted to replicate study 1 on a larger, age-restricted (18 to 
35 years old), gender-balanced sample; a sample size of 376 was set 
to detect a correlation of 0.2 with 95% power at a 5% significance 
level (i.e., a target sample size of 319) after excluding about 15% of 
participants who do not pass the preregistered problem-solving 
accuracy criteria. Of 377 participants who completed study 2, we 
report the results from 332 participants (age: mean, 28.7; SD, 4.2; range, 
19 to 57; sex: 163 females, 165 males, and 4 other/not identified).

Questionnaires
To measure math anxiety, we administered the short Mathematics 
Anxiety Rating Scale [sMARS; (32)]. Participants responded to 
questions about how anxious they would feel in different math-
related situations (e.g., “signing up for a math course” and “studying 
for a math test”) on a 5-point Likert scale (1, not at all; 2, a little; 3, 
a fair amount; 4, much; 5, very much). All analyses were conducted 
on the average of the 25 items for each participant (Cronbach’s s = 
0.97 for both studies 1 and 2). To isolate math-specific component 
of math anxiety, we also used an adaptation of the sMARS designed 
to measure anxiety about reading (e.g., “signing up for an English 
course” and “studying for an English test”), dubbed the short Reading 
Anxiety Rating Scale (sRARS; s = 0.97 for both studies).

To control for other forms of anxiety, we also measured participants’ 
trait anxiety, test anxiety, and social desirability. Trait anxiety was 
assessed using the trait component of the State-Trait Anxiety Inventory 
(33), in which participants rated how frequently they experienced 
feelings of anxiety and calmness (e.g., “I feel nervous and restless” 
and “I make decisions easily”). Test anxiety was assessed using the 
Test Anxiety Inventory (34), in which participants rated how anxious 
they feel in 20 test-related situations (e.g., “During tests I feel very 
tense” and “I feel confident and relaxed while taking tests”). In both 
measures, items were scored on a 1 to 4 scale and were reverse coded 
where appropriate. Scores were summed for a composite measure 
of 20 to 80 (trait anxiety: s = 0.96 for both studies 1 and 2; test 
anxiety: s = 0.96), with a higher value indicating a higher level of 
trait or test anxiety. Social desirability was measured using the Marlowe-
Crowne Social Desirability Scale (35) ( = 0.89 for study 1 and  = 0.88 
for study 2) to check the underreporting of anxiety (36).

We also administered the single-item math/reading anxiety scale 
(37) and the self-math/reading overlap (38), the results of which are not 
reported here. Summary statistics and correlation matrix of self-report 
and behavioral measures are reported in tables S1 and S2.

The choose-and-solve task
In the CAST, participants were asked to make a series of binary 
choices on their willingness to put effort into solving a math or word 
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problem for varying monetary reward. Each CAST trial comprised 
a choose, solve, and feedback phase.
Choose phase
Participants first entered the choose phase and were shown a screen 
containing two choice cards on the left and right sides of the screen 
(e.g., Fig. 1A); easy choice cards always offered 2 cents, and hard 
choice cards offered one of five possible reward amounts (2, 3, 4, 5, 
and 6 cents). The domain (i.e., math or word) of the choice cards 
was kept the same within a trial. Participants were given 3 s to select 
a card by pressing one of two designated keys (the “i” key for the 
choice card seen on the left side of the screen and the “p” key for the 
choice card seen on the right side of the screen). If they did not 
make a selection within 3 s, they were automatically directed to an 
easy problem with 1 cent. The critical dependent measures in the 
CAST were the hard math and word choice probabilities (math and 
word HCPs; i.e., probability of choosing the hard choice cards that 
offer more than 3 cents) because choosing the hard choice cards 
that offer more than 3 cents was always in the participants’ best 
financial interest (see Fig. 1C).
Solve and feedback phases
Participants then entered the solve phase, in which they were given 
7 s to solve a three-alternative problem (e.g., Fig. 1B) based on their 
selection of the choice card in the choose phase (i.e., easy or hard). 
The problem was drawn from a large pool of problems that were 
sorted by seven difficulty levels through a prior validation study (see 
the Supplementary Materials for details). When participants chose 
the easy card, problems in the easiest level were given. The difficulty 
of hard problems was continuously calibrated to a target accuracy 
of 70% regardless of participants’ competence using a 2-up-1-down 
staircase method; the difficulty level increased after two successive 
correct trials, with the maximum level of 7 (the hardest level), and 
decreased after one incorrect trial, with the minimum level of 2 
(see Fig. 2A for two exemplar participants). Capitalizing on the 
adaptive difficulty calibration, the math and word difficulty levels 
(ADLs) were defined as the average level of the hard problems that 
one encountered.

In math trials, participants were presented with a multidigit 
multiplication problem whose solution was missing one digit. They 
were provided with an answer bank of three digits and were given 7 s 
to select the missing digit from the three options. In word trials, 
participants were provided with common English words with one 
letter removed. Again, they were provided with an answer bank of 
three letters and were given 7 s to select the missing letter from the 
three options to complete the word. Participants made their selection 
by pressing one of three designated keys (“i,” “o,” and “p” for the left, 
middle, and right options, respectively). To discourage participants 
from making quick guesses, key responses were not registered by the 
paradigm until 1.5 s after problem onset. After participants entered 
their selection or the time was up, the correct answer was displayed 
along with the number of remaining trials, and if correct, the reward 
offered was added to the total reward. Participants then proceeded 
to the next trial at their own pace by pressing the enter or space key.

The problem-solving accuracy criteria were based on participants’ 
performance in easy math and word problems, which were expected 
to yield over 90% accuracy; participants whose accuracy was below 
70% in either easy math or word problems were excluded from the 
analysis because their perception of expected rewards was assumed 
to be very different from the majority of participants, whose accuracy 
was over 90%. We preregistered these exclusion criteria in study 2.

No-choice trials
Calculating the math/word competence and easy problem accuracy 
requires participants to solve a minimum number of both hard and 
easy problems. However, in study 1, seven participants never chose 
the hard choice card, and two participants never chose the easy choice 
card. To address this issue, in study 2, we introduced the no-choice 
trials in which only one choice card was presented during the choose 
phase. In these trials, participants were instructed to accept the single 
choice card by pressing the key corresponding to the side of the screen 
that the card was presented on (i.e., “i” for left and “p” for right); un-
like in the choice trials, the solve phase of these no-choice trials did not 
begin until they pressed the corresponding key. In study 2, 40 no-
choice trials were included (10 easy math, 10 hard math, 10 easy word, 
and 10 hard word); easy choice cards were always valued at 2 cents, 
and hard choice cards were always valued at 5 cents. These no-
choice trials ensured that participants encountered a minimum 
number of both easy and hard problems throughout the task that 
could be used to calculate their math/word competence and easy 
problem accuracy.

Experimental procedure
Each study was uploaded as a human intelligence task on Amazon 
Mechanical Turk to be completed in one session. After providing 
informed consent, participants first completed a series of questionnaires 
in the following order: math anxiety (sMARS), reading anxiety (sRARS), 
reading motivation questions, math motivation questions, self-math/
reading overlap, single-item math/reading anxiety, trait anxiety, test 
anxiety, and social desirability. Ten attention check questions were 
embedded throughout the questionnaires; if participants missed 
more than two attention checks, the study session was terminated. 
Demographics such as gender, age, and race were collected after 
participants completed questionnaires and the CAST.

Participants then performed the CAST, which started with practice 
blocks to train them on the problem format, button keys, and time 
restrictions. The first two practice blocks were designed to familiarize 
participants with the solve phase of task: All participants solved the 
same 12 math problems in the first block and the same 12 word 
problems in the second block (with the presentation order fixed in 
ascending difficulty). The third practice block mirrored the design 
of the main CAST blocks (20 trials in studies 1 and 1R; 28 trials in 
study 2), although no monetary reward was given for performance 
during practice. In the main portion of the CAST, in which the 
performance-based bonus was determined, participants in study 1 
completed two blocks that each contained 50 math choice trials and 
50 word choice trials (200 trials total), participants in study 1R 
completed five blocks that each contained 10 math choice trials and 
10 word choice trials (100 trials total), and participants in study 2 
completed five blocks that each contained 10 math choice trials, 
10 word choice trials, 4 no-choice math trials, and 4 no-choice word 
trials (140 trials total). The location of the choice cards (left versus 
right) was counterbalanced within each block. The difficulty calibration 
for hard problems began in the practice CAST block and continued 
through the main blocks. The initial difficulty level was set at level 4 and 
was adjusted on a trial-by-trial basis according to one’s performance; 
as a result, each participant may have encountered different problems 
during the practice CAST block and afterward. The CAST was 
implemented in jsPsych (39), so that it could be administered over 
the Internet and run on the participants’ web browsers. A working 
version of the CAST used in study 2 (including the practice blocks) 
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can be found at https://kywch.github.io/CAST_jsPsych/choose-and-
solve-task.html.

Each session of study 1 comprised the questionnaires, the practice 
blocks, 200 trials of the CAST without the no-choice trials, posttask 
questions, a perceptual metacognition task (40) (not reported here), 
and demographic questions. Participants were paid the base of $1.50 
plus performance-based bonus of up to $8.00 (total: mean, $7.55; SD, 
$0.62). Each study 1R (i.e., the retest of study 1) session comprised 
the CAST and posttask questions only: 100 trials of the CAST with-
out the no-choice trials and 100 trials of the pilot version of modified 
CAST (not reported here). Participants were paid the base of $3.00 
plus performance-based bonus of up to $8.80 (total: mean, $9.56; SD, 
$0.74). Each study 2 session comprised the questionnaires, 140 trials 
(including 40 no-choice trials) of the CAST, posttask questions, and 
demographic questions. Participants were paid the base of $2.00 plus 
performance-based bonus of up to $5.40 (total: mean, $5.46; SD, 
$0.58). The pdf version of the study 2 Qualtrics survey is available at 
https://osf.io/t4wju/.

Statistical analysis
All statistical tests were performed using MATLAB R2015b. The 
corrcoef function was used to calculate the effect size (95% CI) of 
Pearson’s correlation, the polyfit and polyconf functions were used 
to calculate the 95% confidence band of a regression, and the anova1 
function was used to calculate the F statistics. Cronbach’s alpha was 
calculated using the CronbachAlpha function, which can be obtained 
from https://www.mathworks.com/matlabcentral/fileexchange/38320. 
To perform the participant-level LMM analyses, the fitlme function 
in the Statistics and Machine Learning Toolbox was used, which allows 
incorporating random effects. The LMM results were replicated with 
a logistic regression (i.e., the binomial distribution was specified for 
the math HCP) using the fitglm function. The independent variables 
were not transformed.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/11/eaay1062/DC1
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Fig. S2. Test-retest reliability of the math/word ADLs and HCPs.
Fig. S3. Relationships between math anxiety and problem-solving variables.
Table S1. Descriptive statistics and correlation matrix of questionnaires and behavioral 
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Table S2. Descriptive statistics and correlation matrix of questionnaires and behavioral 
measures of study 2.
Table S3. Results of study 1 LMM analysis for the math-specific effort avoidance.
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