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Abstract

Sustained attention (SA) and working memory (WM) are critical processes, but the brain

networks supporting these abilities in development are unknown. We characterized the

functional brain architecture of SA and WM in 9- to 11-year-old children and adults. First, we

found that adult network predictors of SA generalized to predict individual differences and

fluctuations in SA in youth. A WM model predicted WM performance both across and within

children—and captured individual differences in later recognition memory—but underper-

formed in youth relative to adults. We next characterized functional connections differentially

related to SA and WM in youth compared to adults. Results revealed 2 network configura-

tions: a dominant architecture predicting performance in both age groups and a secondary

architecture, more prominent for WM than SA, predicting performance in each age group dif-

ferently. Thus, functional connectivity (FC) predicts SA and WM in youth, with networks pre-

dicting WM performance differing more between youths and adults than those predicting

SA.

Introduction

Maintaining focus over time and information in working memory—related but separable

functions [1–5]—are foundational cognitive processes critical for successfully performing

everyday activities across the lifespan. In addition to being integral to everyday life, these cog-

nitive processes vary greatly across individuals [6–8] and fluctuate over time within the same

person [9]. These inter- and intra-individual differences are particularly important to study in

development because of their consequences for life-long achievements. For example, research

in children and adolescents has suggested that attention is more predictive of later academic

achievement than more general problem behaviors (e.g., aggression and noncompliance) and

interpersonal skills [10–12].
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Network neuroscience proposes that cognitive and attentional processes are emergent

properties of interactions between brain regions [13]. The success of recent work predicting

behavior based on functional magnetic resonance imaging (fMRI) functional connectivity

(i.e., the correlation between synchronous blood-oxygen-level-dependent (BOLD) activity

among pairs of brain regions) supports the tenability of this position [14–18]. In other words,

this work suggests that the degree to which activity is coordinated across large-scale brain net-

works may better characterize cognitive processes than the magnitude of activity in single

regions in isolation [19].

Therefore, in the current study, we aimed to understand the development of sustained

attention (SA) and working memory (WM) through the lens of network neuroscience. To do

this, we used 2 approaches. First, we assessed the degree to which connectome-based predic-

tive models of SA and WM defined in adults generalize to predict SA and WM in preadoles-

cents. Second, we characterized the functional brain connections that are differentially related

to SA and WM performance in preadolescents compared to adults, both within the constraints

of the adult networks and in a whole-brain data-driven manner.

Adult-defined connectome-based approach

Despite the popularity of connectome-based predictive modeling of behavior, cross-dataset

and cross-population testing is rare. In other words, brain-based predictive models defined in

1 dataset are rarely validated in other samples, and even less so in other participant populations

(e.g., different ages or diagnoses, see [20]). Hence, existing “publication preregistered” brain

markers are currently underutilized and under scrutinized, which obscures both their potential

and limitations [21]. Testing the generalizability of connectivity-based models across ages can

inform the degree to which adults and children share common network predictors of cogni-

tion and delineate models’ predictive boundaries. Cross-age model validation may also provide

insight into how networks underlying cognitive and attentional processes change with devel-

opment. Additionally, validating models of different cognitive processes (e.g., sustained atten-

tion and working memory) to evaluate their unique contributions to predicting behavior can

determine if distinctions between the models are behaviorally relevant (e.g. see [22]) and

whether those distinctions generalize to different stages of development.

To address these gaps, in Study 1, we utilized previously developed neuromarkers in the

form of large-scale functional networks defined to predict SA [23] and WM [24] in adults. We

applied these adult connectome-based models to data from the Adolescent Brain Cognitive

Development (ABCD) Study to predict individual differences and block-to-block changes in

SA and WM task performance in youth. In addition, to characterize relationships between sus-

tained attention, working memory, and long-term memory, we asked whether these same

models not only predicted ongoing task performance, but also predict subsequent recognition

memory for task stimuli. Successful model generalization would suggest that the functional

networks underlying SA and WM overlap between children and adults. Furthermore, a disso-

ciation such that the neuromarker of sustained attention captures sustained attention perfor-

mance, whereas the neuromarker of working memory captures working memory performance

would provide evidence that separable networks support these processes in development.

Connectome comparison approach

In the second approach, we aimed to characterize the functional connections that were differ-

entially related to SA and WM performance in children compared to adults. This was per-

formed both within the constraints of the adult networks and in a whole-brain data-driven

manner. This approach can complement both Study 1 as well as existing work that has
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revealed, for example, changes in the coupling of structural and functional connectivity (FC)

profiles that may support improvements in working memory and executive abilities in adoles-

cence [25].

To achieve this, in Study 2, we combined the behavioral and fMRI data from the youth sam-

ple ABCD Study (9 to 11 years old) and a large adult sample from the Human Connectome

Project (HCP; 21 to 36+ years old). We first investigated the developmental differences in SA

within the constraints of adult networks by (a) benchmarking the adult models’ fit to novel

adults compared to the preadolescents; and (b) computationally lesioning different compo-

nents of the adult networks and comparing how much different regions of the networks were

contributing to SA in the youths versus novel adults. Second, we used a multivariate method

to find the set of connections that differentiated the youth and adult connectomes with regards

to SA and WM performances.

Results

Study 1 overview

In Study 1, we tested the generalizability of network models previously defined to predict SA

and WM in adults to children.

In Study 1.1, we asked whether the degree to which children expressed FC markers of SA

[23] and WM [24] previously defined in adult data during an in-scanner n-back task predicted

their task performance (Fig 1). We hypothesized that the SA connectome-based predictive

Fig 1. Overview of Study 1. First, we constructed block-wise FC by correlating BOLD signal time series from all pairs of functional parcels (left). For each

participant, we calculated whole-brain FC patterns from fMRI data collected during the eight 0-back and eight 2-back tasks blocks. That is, we calculated up to

16 FC matrices per individual: 1 using data from each 25-s (30–31 volumes) n-back block separately. Each of the 2 predefined predictive network masks were

then applied to each of these matrices to generate block-specific WM or SA network strength scores (middle). Each child’s mean network strength during

0-back and 2-back blocks was compared to their mean accuracy in 0-back and 2-back blocks (Study 1.1) or their mean out-of-scanner recognition memory for

n-back stimuli (Study 1.3). In Study 1.2, block-to-block changes in network strength were compared to corresponding block-to-block changes in 0-back and

2-back accuracy within-subjects. ABCD, Adolescent Brain Cognitive Development; BOLD, blood-oxygen-level-dependent; fMRI, functional magnetic

resonance imaging; SA, sustained attention; WM, working memory.

https://doi.org/10.1371/journal.pbio.3001938.g001
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model would predict 0-back task performance because this low-working-memory-load task is

essentially a target detection task similar to a continuous performance task (CPT) traditionally

used to assess SA (e.g., [26]). The SA network may or may not predict 2-back task perfor-

mance: Although working memory and attention fluctuate in tandem in adults [27], sustained

attention is not sufficient for successful 2-back task performance. We hypothesized that the

WM connectome-based predictive model, on the other hand, would predict 2-back perfor-

mance, and that model predictions would be more closely related to 2-back than to 0-back per-

formance because successful 2-back (but not 0-back) performance requires the continuous

maintenance and updating of items in working memory.

In Study 1.2, we asked whether these same adult-defined network models captured changes

in SA and WM over time in children—i.e., whether block-to-block changes in network

strength predicted block-to-block changes in n-back task accuracy (Fig 1, right panel). Again,

we tested for specificity, asking whether the sustained attention and working memory net-

works better predicted sustained attention (0-back) and working memory (2-back) perfor-

mance fluctuations, respectively.

Finally, in Study 1.3, we asked: Does the degree to which an individual shows a FC signa-

ture of better sustained attention or working memory only affect concurrent task performance,

or does it also impact later cognitive processes, such as long-term memory? To investigate this

question, we evaluated the consequences of SA and WM network expression for long-term

memory by testing whether network strength during the n-back task predicted post-scan rec-

ognition memory for task stimuli.

Study 1.1. Predicting sustained attention and working memory across

participants

Do functional network models defined to predict SA and WM in adulthood generalize to a

large, heterogeneous developmental sample to predict individual differences in these abilities?

To test this possibility, we applied our adult connectome-based models of SA and WM to func-

tional connectivity observed during 9- to 11-year-olds’ performance of 2 n-back task

conditions.

Relationship between sustained attention and working memory networks

We hypothesized that the predefined SA [23] and WM [24] network masks (Fig 2) capture

related but distinct aspects of cognitive function (see Methods for descriptions of these net-

works). Prior to predicting behavioral performance in the ABCD Study sample, we assessed

this hypothesis by (a) comparing the anatomy of the SA and WM network masks; and (b)

comparing the strength of the SA and WM networks across participants in the ABCD Study

sample.

First, we found that although the SA and WM networks both include functional connec-

tions, or edges, representing coordinated activity across distributed brain regions, they show

little overlap. Thirty-seven edges are common to the high-attention and high-working-mem-

ory networks (1.5% of combined edges in high-attention and high-working-memory net-

works, hypergeometric p = 0.351; see Methods), which predict better SA and WM

performance, respectively. Thirty-three edges are common to the low-attention and low-work-

ing-memory networks (1.8% of combined edges, hypergeometric p = 0.005), which predict

worse SA and WM performance, respectively. Most of these common edges involved prefron-

tal (32%), motor (21%), and temporal (16%) regions in the high-attention and high-working-

memory networks; and cerebellar (45%), occipital (18%), and parietal (18%) regions in the

low-attention and low-working-memory networks. There is no significant overlap between
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the high-attention and low-working-memory networks (19 edges, 0.9%, p = 0.89) or the low-

attention and high-working-memory networks (12 edges, 0.5%, p = 0.99). At the macroscale

region level, the SA networks are more dominated by cerebellar, temporal, and occipital con-

nections, whereas the WM networks include more prefrontal connections (Fig 2).

Anatomical differences between the SA and WM networks, however, do not guarantee that

their strength does not covary together across participants. That is, the degree to which an

individual expresses the networks may not be independent. As such, we correlated SA and

WM network strength during the 0-back and 2-back tasks in the ABCD Study sample (see

Methods). Briefly, in the 0-back task, children were instructed to detect a target image, shown

in the beginning of the block, among a series of images by pressing index versus middle finger

on the response box. In the 2-back task, children saw a series of images and determined if the

image in each trial matched that of 2 trials prior to it or not, again by pressing middle versus

index finger. In each block, images from 1 of 4 categories: faces with positive, negative, and

neutral expressions and scenes were used in the task.

Results revealed that SA and WM network strength values were positively correlated across

children during the 0-back task (r = 0.16, padj< 0.001), but negatively correlated during the

2-back task (r = –0.11, padj< 0.001; black scatterplots in Fig 3). We found a similar pattern of

Fig 2. Adult SA and WM networks and their differences. The circle plots (connectograms) show the SA and WM networks on the Shen-268 parcels grouped

into 20 anatomical regions (10 per hemisphere). The networks positively related to the behavior are shown on the top row and the networks negatively related

to the behavior are shown in the bottom row. The matrix plots show the percentage of edges belonging to each macroscale region in WM connectogram minus

the percentage of edges belonging to each macroscale region in SA connectogram. Differences in networks predicting better attention and working memory

are shown in the top matrix plot; differences in networks predicting worse attention and working memory are shown in the bottom matrix plot. The data for

this figure are available at NDA study 1849 10.15154/1528288. Circular plots are made with Circos [28]. SA, sustained attention; WM, working memory.

https://doi.org/10.1371/journal.pbio.3001938.g002
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results within participants, such that SA and WM network strength values were positively cor-

related across 0-back task blocks (mean r = 0.05, CI = [0.02, 0.07], p< 0.001) and negatively

correlated across 2-back task blocks (mean r = −0.04, CI = [−0.02, −07], p = 0.001). Taken

together, the anatomical overlap and network strength correlation analyses both across and

within participants suggest that the SA and WM masks are separable functional networks in

children and thus likely do not reflect a monolithic cognitive process.

Fig 3. Network strengths across the participants and tasks. Correlations between predictive networks strength values across the participants in the 2-back

task and 0-back tasks. Task-congruent relationships are shown in black scatterplots. The data for this figure are available at NDA study 1849 10.15154/1528288.

https://doi.org/10.1371/journal.pbio.3001938.g003
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Neuromarkers differentially predict sustained attention and working

memory abilities

After confirming that the SA and WM networks are separable in children, we asked whether

they generalize to specifically predict these abilities in children. To answer this question, we

related adult SA and WM network strength values to task performance during 0-back and

2-back task blocks across the 9- to 11-year-old participants. Again, we predicted that the SA

model would capture 0-back performance, whereas the WM model would capture 2-back

performance.

Supporting our hypothesis, we found that strength of the adult SA network predicted

0-back performance (r = 0.19, ρ = 0.15, padj < 0.001) and strength of the adult WM network

predicted 2-back performance (r = 0.13, ρ = 0.14, padj < 0.001) in the preadolescent youth.

This external validation demonstrates cross-dataset and cross-age generalizability of the SA

and WM connectome-based predictive models (Fig 4). This result suggests that the FC features

that predict individual differences in sustained attentional and working memory abilities in

adults are present and predictive in 9- to 11-year-olds.

Finally, we adjusted for data exclusions on household income, age, maternal education,

race/ethnicity, sex, household size, and mean Child Behavior Checklist scores using non-par-

ticipation sensitivity analysis (see Methods). The corrected correlation between WM network

strength and 2-back and 0-back accuracy (rcorrected = 0.134 and rcorrected = 0.115, respectively;

ps< 0.001), as well as between SA network strength and 0-back accuracy (rcorrected = 0.246,

p< 0.001) were significant. Thus, these correlations are robust to the application of post-strati-

fication weights (to account for differences between the full ABCD Study sample and nation-

ally representative sociodemographics) and non-participation weights (to account for

differences between the full ABCD Study sample and the 1,545 participants included our anal-

yses with respect to representation of sociodemographics and psychopathology).

To assess model specificity, we compared the predictive power of the SA and WM networks

for 0-back and 2-back accuracy. SA network strength was not significantly related to 2-back

accuracy (r = –0.04, ρ = −0.07, p = 0.11). This correlation was significantly weaker than the cor-

relation between WM network strength and 2-back accuracy (William’s t [test of difference

between 2 dependent correlations sharing 1 variable] = –4.65, p< 0.001). Thus, the WM net-

work was a better predictor of performance on the high-working-memory load 2-back task

than the SA network. We did not observe this dissociation for the 0-back task accuracy.

Instead, WM network strength predicted 0-back accuracy (r = 0.15, ρ = 0.14, padj < 0.001), and

this correlation was numerically but not significantly lower than the correlation between SA

network strength and 0-back accuracy (William’s t = –1.27, p = 0.20). SA network strength was

more correlated with 0-back accuracy than it was with 2-back accuracy (William’s t = 10.93,

p< 0.001), but the WM strength was not more predictive of 2-back than it was of 0-back accu-

racy (William’s t = −0.78, p = 0.44).

Strength in the SA and WM networks was correlated across children (r = 0.16, p< 0.001

during 0-back; r = –0.11, p< 0.001 during 2-back; Fig 3), and performance in 0-back and

2-back tasks are typically correlated across individuals (r = 0.62, p< 0.001 in the current sam-

ple of 1,545 children). Thus, it is important to further assess the unique contributions of the

SA and WM networks to 0-back and 2-back task performance. To this end, we included both

SA and WM network strength in a regression model to predict either 0-back or 2-back accu-

racy (Table 1). The regression also included age, sex, and remaining head motion (after exclu-

sion, see Methods) as covariates, as well as random intercepts for data collection sites. Echoing

the correlation results, SA network strength predicted 0-back accuracy better than chance (β =

0.16, t = 6.35, p< 0.001) and better than it predicted 2-back performance (p< 0.001 based on

PLOS BIOLOGY Sustained attention & working memory in youth & adults

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001938 December 21, 2022 7 / 33

https://doi.org/10.1371/journal.pbio.3001938


bootstrapped distribution of the difference between β coefficients). In contrast, WM network

strength predicted 0-back and 2-back accuracy above chance but equally well (β = 0.11,

t = 4.19, and β = 0.10, t = 3.89, respectively; p values< 0.001). Therefore, we found partial sup-

port for the specificity of the models, such that the SA network predicts 0-back accuracy better

than it predicts 2-back accuracy, whereas the WM network predicts both 0-back and 2-back

accuracy.

Fig 4. Strength of adult SA and WM networks in preadolescents predict respective task performance. Correlations between SA (left, golden) and WM

(right, blue) network strength and children’s 0-back (top) and 2-back (bottom) task performance. The data for this figure are available at NDA study 1849 10.

15154/1528288. SA, sustained attention; WM, working memory.

https://doi.org/10.1371/journal.pbio.3001938.g004
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Two factors may contribute to the lack of specificity of the WM connecotme-based model.

First, the 0-back task does require memory for the target image introduced at the start of each

0-back block, and thus is a low-load rather than a no-load task. Second, the adult WM model

was originally defined to predict individual differences in 2-back task performance from adult

connectomes comprised of both 0-back and 2-back fMRI data in the HCP sample [24], poten-

tially increasing its sensitivity to n-back task performance overall. Future work assessing the

SA and WM models’ generalizability to different datasets and behavioral measures will further

inform their sensitivity and specificity.

Finally, we compared the performance of the SA and WM models to that of 8 canonical

functional networks (the medial-prefrontal, frontoparietal, default, subcortical-cerebellar,

motor, visual I, visual II, and visual-association networks; [30]). To do so, we regressed n-

back accuracy across participants on the average strength of all within-network connections

in each network, with age, sex, and motion as covariates and site as random intercept (similar

to Table 1). The SA and WM networks significantly outperformed all 8 canonical networks

when predicting 0-back and 2-back accuracy, respectively (Z-test between β coefficients of

SA network against each of the 8 canonical networks: Zs> 4.74, p values < 0.001 for 0-back

accuracy and Zs> 2.39, p values< 0.017 for the WM network and 2-back accuracy). Further-

more, the SA and WM networks also significantly outperformed randomly selected size-

matched sets of connections from outside these networks for predicting 0-back and 2-back

accuracy, respectively (p values < 1/200 for both networks when compared to 200 random

networks).

Study 1.2. Tracking changes in sustained attention and working memory

over time

Do the adult connectome-based models of sustained attention and working memory also vary

with children’s performance fluctuations? To test this, we examined relationships between

block-to-block fluctuations in network strength and block-to-block fluctuations in task

Table 1. Strengths of both SA and WM networks as predictors of task performance.

0-back Accuracy 2-back Accuracy

Predictors Beta CI t p pr2% Beta CI t p pr2%

(Intercept) 0.04 [−0.07, 0.12] 0.67 0.513 _ 0.13 [0.02, 0.24] 2.36 0.026 _

Age 0.14 [0.09, 0.19] 5.56 <0.001 1.87 0.15 [0.11, 0.20] 6.21 <0.001 2.31

Female −0.08 [−0.18, 0.02] −1.65 0.099 0.17 −0.25 [−0.34, −0.15] −5.03 <0.001 1.51

Motion −0.04 [−0.09, 0.01] −1.59 0.112 0.12 −0.13 [−0.18, −0.08] −5.28 <0.001 1.63

SA network strength 0.16 [0.11, 0.21] 6.35 <0.001 2.42 −0.04 [−0.09, 0.00] −1.77 0.078 0.18

WM network strength 0.11 [0.06, 0.16] 4.19 <0.001 1.09 0.10 [0.05, 0.15] 3.89 <0.001 0.84

Random effects (site)

ICC 0.03site 0.03site

Observations 1,545 1,545

Marginal R2/conditional R2 0.074/0.102 0.079/0.105

Individual differences in SA and WM network strength are differentially related to individual differences in children’s 0-back (left) and 2-back (right) performance,

respectively. “Motion” is mean frame-to-frame displacement during 0-back (left) or 2-back (right) blocks. “Sustained Attention” and “Working Memory” are mean SA

network strength and mean WM network strength during 0-back (left) or 2-back (right) blocks. Marginal and conditional R2 statistics estimate fixed-effects R2 and total

(i.e., fixed + random effects) R2, respectively, based on [29]. Marginal semi-partial r2 is calculated for each variable in the regression (pr2%) and shown as percentage of

total variance uniquely explained by the predictor using package partR2 in R.

SA, sustained attention; WM, working memory.

https://doi.org/10.1371/journal.pbio.3001938.t001
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performance within-participants. We also investigated whether changes in network strength

and behavior were driven by stimulus types or were more spontaneous.

Mixed-effects block-level regressions with random intercepts for participants (Table 2)

showed that block-by-block changes in SA network strength tracked block-to-block fluctua-

tions in 0-back accuracy (β = 0.07, t = 7.37, p< 0.001) and block-to-block fluctuations in WM

network strength tracked block-by-block 2-back accuracy (β = 0.04, t = 3.83, p< 0.001). These

results were consistent with our predictions in Study 1.1. Again, demonstrating partial speci-

ficity, adult SA network strength did not significantly track 2-back accuracy (β = –0.01, t =

−1.46 p = 0.015), whereas adult WM network strength did track 0-back accuracy (β = 0.05,

t = 5.56, p< 0.001) in youth.

The observed relationships between functional network strength and task accuracy are

above and beyond the variance in block-by-block n-back accuracy explained by potential prac-

tice effects (i.e., run 2 versus run 1) or stimulus type (i.e., positive versus neutral faces, negative

versus neutral faces, and places versus neutral faces; see Tables A and B in S1 Text) because

these potential sources of variance are included as covariates in the regression model. Despite

the numerically small effect sizes, it is noteworthy that the strength of SA and WM networks—

developed in completely independent datasets to predict individual differences in adults—

track within-person fluctuations in 0-back and 2-back accuracy in children.

Similar to the across-participant results, we tested the SA and WM networks against the 8

canonical networks and 200 random size-matched networks in regressions with block motion,

stimulus type, and run as covariates and subjects as random intercept (similar to Table 2). SA

network strength was significantly more predictive of block-wise 0-back performance than

any of the 8 canonical networks (comparison of beta coefficients: Zs> 6.70, ps< 0.001), and

WM network strength was significantly more predictive of block-wise 2-back performance

than any of the 8 canonical networks (Zs> 3.33, ps< 0.001). Both networks also outperformed

200 random size-match networks (ps< 1/200).

Table 2. Block-by-block networks strength and task performance.

0-back Accuracy 2-back Accuracy

Predictors Beta CI t p pr2% Beta CI t p pr2%

(Intercept) 0.07 [0.02, 0.12] 2.93 0.003 _ 0.03 [−0.01, 0.08] 1.37 0.172 _

Block motion −0.03 [−0.05, −0.01] −3.06 0.002 0.13 −0.02 [−0.04, −0.00] −2.26 0.024 0.07

Block type: 0.88 2.21

Negative face −0.13 [−0.18, −0.09] −5.74 <0.001 _ −0.00 [−0.05, 0.04] −0.16 0.876 _

Positive face 0.01 [−0.03, 0.06] 0.64 0.522 _ −0.03 [−0.07, 0.02] −1.16 0.245 _

Place −0.22 [−0.26, −0.17] −9.51 <0.001 _ −0.36 [−0.40, −0.31] −15.60 <0.001 _

Run 2 –Run 1 0.02 [−0.02, 0.05] 0.80 0.424 0.01 0.15 [0.11, 0.18] 7.75 <0.001 0.53

Block SA network strength 0.07 [0.05, 0.09] 7.37 <0.001 0.30 −0.01 [−0.03, 0.00] −1.46 0.145 0.02

Block WM network strength 0.05 [0.03, 0.07] 5.56 <0.001 0.49 0.04 [0.02, 0.06] 3.83 <0.001 0.14

Random effects (subject)

ICC 0.40subs 0.39subs

Observations (blocks) 9,176 9,176

Marginal R2/conditional R2 0.019/0.412 0.030/0.411

Block-by-block changes in SA and WM networks strength values are differentially related to block level 0-back and 2-back performance in children, respectively.

Marginal and conditional R2 statistics estimate fixed-effects R2 and total (i.e., fixed + random effects) R2, respectively, based on [29]. Marginal semi-partial r2 is

calculated for each variable in the regression (pr2%) and shown as percentage of total variance uniquely explained by the predictor using package partR2 in R.

SA, sustained attention; WM, working memory.

https://doi.org/10.1371/journal.pbio.3001938.t002
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Study 1.3. Working memory network strength predicts subsequent

memory

Do youth with FC signatures of stronger sustained attention and/or working memory function

during memory encoding show better later visual recognition memory? To investigate this

question, we measured the relationship between recognition memory performance for n-back

task stimuli to individual differences in networks strength values during the n-back task.

Recognition memory was assessed after scanning sessions. The n-back recognition memory

test included 48 “old” stimuli (which has been presented during the n-back task) and 48 “new”

stimuli (which has not been presented), with 12 images each of happy, fearful, and neutral

faces as well as places. Participants were asked to rate each picture as either “old” or “new.”

Memory performance was measured as the discrimination index (d’) based on all stimuli. Rec-

ognition memory d’ was related to strength in the SA and WM networks averaged across all

blocks (i.e., both 0-back and 2-back blocks). Results revealed that strength in the WM

(r = 0.12, ρ = 0.13, padj < 0.001), but not the SA (r = 0.01, ρ = −0.01, p = 0.55), network pre-

dicted subsequent recognition memory (Fig C in S1 Text). The strength of the WM network

was also a significantly better predictor of subsequent memory than any of the 8 canonical

functional networks (comparison of beta coefficients: Zs> 5.37, ps< 0.001) or random net-

works (ps< 1/200).

Unsurprisingly, in-scanner n-back performance was correlated with subsequent recogni-

tion memory performance across participants (r = 0.31, p< 0.001) [the correlation of recogni-

tion memory d’ with 0-back and 2-back accuracy separately is r = 0.26 and r = 0.30,

respectively]. Nevertheless, the relationship between WM network strength and subsequent

recognition memory remained significant even when in-scanner n-back performance accuracy

was included in the regression model as a predictor (β = 0.04, t = 2.24, p = 0.025; Table 3)

along with the age, sex, and residual head motion. Thus, the variance in recognition memory

performance captured by the WM network is not fully accounted for by in-scanner task per-

formance. This result highlights the unique contribution of the connectivity-based measures

to long-term memory predictions.

Table 3. WM network strength during in-scanner n-back task performance is related to subsequent recognition memory for n-back task stimuli after adjusting for

nuisance variables and even n-back performance itself.

Recognition memory d’

Predictors Beta CI t p pr2%
(Intercept) 0.73 [0.67, 0.79] 23.31 <0.001 _

Age 0.06 [0.03, 0.09] 3.87 <0.001 0.93

Female −0.02 [−0.08, 0.04] −0.65 0.514 0.03

Motion 0.01 [−0.02, 0.04] 0.74 0.459 0.05

n-back Accuracy 0.18 [0.14, 0.21] 10.62 <0.001 6.83

WM network strength 0.04 [0.00, 0.07] 2.24 0.025 0.32

SA network strength −0.02 [−0.05, 0.01] −1.34 0.179 0.07

Random effects (site)

ICC 0.02site

Observations (subjects) 1,489

Marginal R2/conditional R2 0.104/0.120

Marginal and conditional R2 statistics estimate fixed-effects R2 and total (i.e., fixed + random effects) R2, respectively, based on [29]. Marginal semi-partial r2 is

calculated for each variable in the regression (pr2%) and shown as percentage of total variance uniquely explained by the predictor using package partR2 in R.

SA, sustained attention; WM, working memory.

https://doi.org/10.1371/journal.pbio.3001938.t003
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Study 2 overview

In Study 2, we directly compared the adult and preadolescent brain networks that support SA

and WM. In Study 2.1, we benchmarked the performance of the predefined adult network

models in 2 ways to assess the effects of cross-dataset, cross-task, and cross-age generalization

on models’ predictive power. In Study 2.2, we asked how networks predicting SA and WM are

differently configured in children and adults.

Study 2.1. Benchmarking the predictive power of the adult sustained

attention and working memory network models

Although the adult SA and WM network models successfully generalized to predict inter- and

intra-individual differences in n-back task performance in the ABCD Study sample, effect

sizes were modest. In Study 2.1, we benchmarked these effect sizes in 2 ways. First, we asked

how close the predictive power of the adult SA and WM models came to a model of general

cognitive ability trained in the ABCD Study sample itself. (We did not train separate ABCD-

specific SA and WM network models because the ABCD Study task battery does not include

an out-of-scanner SA measure.) Second, we asked how close the predictive power of the SA

model in Study 1 came to a theoretical maximum for the 0-back and 2-back tasks by applying

the same model to data from the high-quality adult HCP sample. (We could not fairly perform

this analysis with the WM model because it was defined using HCP data.) Finally, in a post

hoc analysis, we trained a new network predictor of SA in adults using 0-back accuracy and

tested its generalizability to ABCD sample’s 0-back performance (to maintain same SA task in

adults and children).

Building a development-specific connectome-based predictive model

To ask how close the predictive power of the adult SA and WM models came to that of a

“youth-specific” network predictor of general cognitive ability trained in the ABCD sample

itself, we defined a new connectome-based model—the cognitive composite network model

—using leave-one-site-out cross-validation in the ABCD Study dataset (see Methods). The

cognitive composite network model was defined to predict children’s average performance on

5 out-of-scanner NIH Toolbox tasks (i.e., their “cognitive composite” score; see Methods)

because NIH Toolbox data were collected outside the scanner and the cognitive composite

score was similarly correlated with 0-back accuracy (r = 0.31, ρ = 0.32, p< 0.001) and 2-back

accuracy (r = 0.33, ρ = 0.38, p< 0.001). Thus, it was fair to use the cognitive composite net-

work model to benchmark the predictive power of both the SA networks and WM network

models. (In other words, a model built to predict cognitive composite scores would not be

biased at the outset to better predict 0-back or 2-back accuracy.)

Demonstrating its utility for this analysis, the cognitive composite model successfully pre-

dicted cognitive composite scores in left-out ABCD Study sites (r = 0.295, ρ = 0.27, p< 0.001

across all sites; see Figs D and E in S1 Text). The youth cognitive composite network (averaged

over all the site-wise models and binarized at a threshold of 0.5) included edges spanning wide-

spread cortical and subcortical-cerebellar areas (Fig 5).

Cognitive composite network strength during 0-back task performance predicted 0-back

accuracy (r = 0.23, ρ = 0.23, p< 0.001) and strength during 2-back task performance predicted

2-back accuracy (r = 0.32, ρ = 0.33, p< 0.001) in children from left-out sites (Fig 5; Table A in

S1 Text). This youth cognitive composite model significantly outperformed the adult WM

model for predicting 2-back accuracy (β = 0.27, t = 10.76 versus β = 0.10, t = 3.89, p< 0.001

from bootstrapping). Surprisingly, however, the adult SA model’s prediction of 0-back
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accuracy in youth was comparable with that of this ABCD-specific cognitive composite model

(β = 0.16, t = 6.35 versus β = 0.19, t = 7.57, p = 0.242, N.S.). Furthermore, including both adult

SA and youth cognitive composite network strength of youths in a regression model to predict

their 0-back accuracy results in comparable β coefficients for each (β = 0.19, t = 8.20 and β =

0.21, t = 7.59, respectively; Table B in S1 Text).

Finally, intra-individual differences analyses revealed that block-to-block changes in the

strength of the youth cognitive composite network tracked block-by-block changes in both

0-back and 2-back accuracy. Echoing the block-by-block results observed with the adult net-

work models in Study 1.2 (Table 2; SA network tracking 0-back accuracy: β = 0.07, t = 7.37;

WM network tracking 2-back accuracy: β = 0.04, t = 3.83), the effects were significant but

Fig 5. Left: The youth-defined cognitive composite network averaged over all the ABCD site iterations (binarized at a 0.5 threshold). Right: Cognitive

composite network strength in 0-back and 2-back task blocks predict 0-back accuracy and 2-back accuracy across the ABCD sample, respectively. The data for

this figure are available at NDA study 1849 10.15154/1528288. ABCD, Adolescent Brain Cognitive Development.

https://doi.org/10.1371/journal.pbio.3001938.g005

PLOS BIOLOGY Sustained attention & working memory in youth & adults

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001938 December 21, 2022 13 / 33

http://dx.doi.org/10.15154/1528288
https://doi.org/10.1371/journal.pbio.3001938.g005
https://doi.org/10.1371/journal.pbio.3001938


subtle (Table C in S1 Text, cognitive composite network tracking 0-back accuracy: β = 0.05,

t = 5.37; cognitive composite network tracking 2-back accuracy: β = 0.08, t = 8.33).

Predicting n-back accuracy in adults

Compared to the original studies in which these networks were identified, both the SA [23]

and WM [24] models show lower predictive power in the current study than they did in adults.

This could arise for many reasons, including those related to developmental change (i.e., dif-

ferences between adults and children) and unrelated to development (e.g., differences in scan

sites and parameters and differences in the to-be-predicted behavioral task).

We used the HCP dataset to assess the degree to which differences unrelated to develop-

mental change—scan site and parameters and task differences—impacted the predictive

power of the SA model. To do so, we replicated the analyses in Studies 1.1 and 1.2 with n-back

task HCP data and compared model performance to that achieved in the ABCD dataset. A

result that the model predicted adults’ 0-back accuracy better than it predicted children’s

would suggest that adult models do not capture well the functional networks underlying SA

performance at age 9 to 11 and/or that predictive power was lower in the ABCD sample

because of data quality. On the other hand, a result that the model did not predict adults’

0-back accuracy better than it predicted children’s would suggest that adult models do capture

the functional networks underlying sustained attention at age 9 to 11. In this case, predictive

power may be lower in the ABCD Study sample than in adult datasets (e.g., [17]) because of

site- or scanner-related differences or differences in the to-be-predicted behavioral measure of

sustained attention (gradCPT d’ in [23,17] versus 0-back accuracy in the ABCD and HCP

samples).

HCP analyses included behavioral and fMRI data from 754 adults (405 female, 22 to 25

years old: 174, 26 to 30 years old: 321, 31 to 35 years old: 249, and 36+ years old: 10; see Meth-

ods). We applied the adult SA network mask to FC patterns of novel adults from HCP calcu-

lated during 0-back and 2-back blocks of the n-back task and related network strength to task

performance both across and within subjects. (Again, we did not apply the adult WM network

mask to HCP data because it was previously defined in this sample; [24]).

Demonstrating cross-dataset validity—and replicating the pattern of results observed in the

ABCD sample—the adult SA network predicted individual differences in novel adults in

0-back accuracy (r = 0.17, ρ = 0.12, p< 0.001) but not 2-back accuracy (r = 0.07, ρ = 0.07,

p = 0.07; Fig F in S1 Text), with the former correlation being significantly larger than the latter

(Steiger’s Z [test for the difference between 2 dependent correlations with different variables]

= 2.29, p = 0.02). Results were consistent after adjusting for age, sex, and remaining head

motion covariates (see Table D in S1 Text), and the β coefficient was significantly larger for

0-back than 2-back accuracy (β = 0.16, t = 4.51 versus β = 0.07, t = 1.95; p = 0.034 from a boot-

strap test). Mixed-effects regressions showed that, within-subject, block-by-block changes in

SA network strength tracked block-by-block changes in 0-back accuracy (β = 0.08, t = 6.36,

p< 0.001; Table E in S1 Text). Thus, the adult SA network generalized to a novel sample of

adults to predict 0-back, but not 2-back, task performance, which is similar to what we had

also observed in the ABCD sample (Study 1).

The predictive power of the adult SA network was numerically similar for children’s and

novel adults’ 0-back task performance (between-subjects: ABCD r = 0.19 golden line in Fig 6,

HCP r = 0.17 purple line in Fig 6). This was also true for tracking changes in performance

within subjects (ABCD β = 0.07, t = 7.37; HCP β = 0.08, t = 6.36). This suggests that the SA net-

work model captures children’s 0-back (i.e., sustained attention) performance just as well as it

captures adults’.
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Notably, the behavioral performance (mean 0-back accuracy) for adults is higher than

youth by 6.2% ± 0.8% (Fig 6; Welch 2 sample t(2,130.6) = 14.3, p< 0.001), suggesting that SA

ability is on average stronger in adults than youth. There are multiple possibilities that could

explain this. One is that the preadolescent SA network is a “pre-mature” version of the adult

SA network and predicts individual differences in youths similar to adults but is on average

expressed less strongly at 9 to 11 years old. For example, in Fig 6, the SA network expressed in

Fig 6. The strength of the adult SA network predicts 0-back accuracy in youth and novel adults. Even though the discriminability of individuals’ task

performance is not significantly different within each dataset, i.e., there is no significant difference between the correlations (ABCD = gold, r = 0.19, ρ =

0.15, ps< 0.001; HCP = violet, r = 0.17, ρ = 0.12, ps< 0.001; difference between rs is not significant Z = 0.46, p = 0.456), the mean performance and mean

network strength are both significantly larger in adults. Overall, adults show stronger SA networks and better 0-back performance than youth (red + signs

show the mean of SA strength and 0-back accuracy for the scatterplots in each dataset). The data for this figure are available at NDA study 1849 10.15154/

1528288. ABCD, Adolescent Brain Cognitive Development; HCP, Human Connectome Project; SA, sustained attention.

https://doi.org/10.1371/journal.pbio.3001938.g006
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the functional connectome of the adults is stronger than the 9- to 11-year-olds (Welch 2 sam-

ple t(1,448.9) = 35.8, p< 0.001). FC matrices were z-scored within each participant when used

to quantify the SA network strength values for this analysis, but scanner differences between

HCP and ABCD studies (e.g., spatially non-homogenous differences between HCP and ABCD

scans unrelated to development) could still bias the group-average network strength values.

Therefore, the current analyses cannot verify this explanation until longitudinal data from the

same youths are processed, allowing mediation tests.

It is also possible that different subcomponents of the adult SA network predict task perfor-

mance in adults and youth. To investigate this possibility, we “computationally lesioned” edges

with at least 1 node in each of 10 macroscale brain regions from the SA model. We compared

the effects of computational lesioning on the prediction of 0-back accuracy in the HCP and

ABCD samples by comparing the ΔR2 in lesioned versus the full SA network strength models.

We found that lesioning the prefrontal and temporal lobes decreased prediction power more

in adults than it did in children (p = 0.015 for the prefrontal and p = 0.007 for the temporal

lobe based on bootstrap distribution of ΔR2 values). Lesioning the subcortex, on the other

hand, decreased prediction power more in children than it did in adults (p = 0.009). Therefore,

the full SA network generalized equally well to adults and youth, though features within this

network may contribute differentially to prediction at different ages.

Together, Studies 2.1.1 and 2.1.2 demonstrate that the adult SA model captures youth’s

individual differences and fluctuations in attention just as well as it captures novel adults’—

and it is no worse at predicting attention in youth than is a youth-specific model of cognition

defined in the ABCD dataset itself. Furthermore, the adult WM model captures general aspects

of attention and memory in youth and is outperformed by a youth model of general cognition,

potentially suggesting less consistency in the functional architecture of WM versus SA from

age 9 to 11 to young adulthood.

Alternative adult-defined connectivity-based predictor of sustained

attention

To further assess the finding that there are more differences in the functional architecture of

WM versus SA from preadolescence to adulthood, we trained a new connectivity-based predic-

tive model for 0-back performance in adults from the HCP dataset’s n-back fMRI data in a post

hoc analysis. We then applied this HCP-based network predictor of SA instead of the Rosenberg

and colleagues [23] SA model (which is trained on adults performing a gradual-onset CPT) to

ABCD Study data. Consistent with our findings using the Rosenberg and colleagues [23] SA

model, the HCP-based network predictor of 0-back in adults predicts 0-back accuracy in the

youth sample (radj = 0.25, p< 0.001) but does not predict 2-back performance (radj = 0.05,

p = 0.056). Importantly, we found that this alternative adult SA model fits the 0-back perfor-

mance of the youths significantly better than the adult WM model predicts 2-back accuracy in

youth (radj = 0.11; p< 1/1,000 when comparing fits based on bootstrapped distribution of radj
between the 2 models). This analysis further supports our finding that networks supporting SA

are more consistent between youths and adults compared to those supporting WM.

Study 2.2. Differences between adult and preadolescent networks

Next, we asked, in a data-driven manner, how the networks are differently configured in chil-

dren and adults and how these differences relate to SA and WM performance. This analysis is

distinct from the lesion analysis in Study 2.1.2 in that no predefined networks are being used

to restrict the establishment of brain-behavior relationship differences between youth and

adults.
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To this end, we combined all whole-brain functional connectomes from the ABCD and

HCP datasets. We then applied a partial least squares (PLS) regression analysis [31,32] that

finds the linear combination of functional connections that maximally explains the age X

0-back performance covariance in these data (see Methods). This analysis revealed the multi-

variate patterns of FC that robustly covaried with latent variables (LVs) of age (child versus

adult) and SA performance simultaneously. This process was then repeated for the 2-back per-

formance to find the common versus age-specific functional connections that predict WM

performance in adults and children.

Results of this analysis reveal 2 kinds of network configurations: one predicts cognitive per-

formance across both age groups, while the other predicts performance specifically in youth or

adults. In other words, PLS finds a pair of orthogonal LVs, one for brain-behavior relation-

ships that are common for youths and adults and one for those that differ between youths and

adults. Either the similarity or difference LV can emerge as dominant. None, one, or both LVs

can be statistically significant with reliable loadings on connectivity and performance variables.

Our expectation was that the commonalities would be greater than the differences based on

the results of the previous studies showing comparable fit of the adult networks to the preado-

lescent brain. Critically, this analysis includes full connectomes and does not “constrain” func-

tional networks to any predefined predictive models.

The SA PLS analysis primarily showed FC patterns that predicted better attentional perfor-

mance in both ABCD Study youth and HCP adults (Fig 7, top left). In contrast, the second LV

revealed the connections whose relationship to SA performance was dependent on the age

group, showing connections that are robustly related to better SA performance in youths and

worse performance for the adults (Fig 7, bottom left). Specifically, the primary LV consisting

of 3,452 significant edges shows a pattern of connections that has a large positive correlation

with 0-back accuracy in both youths (r = 0.51, CI = [0.43, 0.59]) and adults (r = 0.63, CI =

[0.59, 0.67]). In contrast, the second LV consisting of 165 significant edges shows a pattern of

connections that separate out the youths and adults in their task performance, as it is positively

correlated (r = 0.79, CI = [0.74, 0.83]) with 0-back accuracy in preadolescents while negatively

in adults (r = −0.40, CI = [−0.50, −0.28]).

A similar pattern of results was observed for the WM PLS analysis, where the first LV

included functional connections that were related to WM performance similarly for youth and

adults (Fig 7, top right), whereas the second LV showed functional connections that related to

WM performance differentially for youth versus adults (Fig 7, bottom right). The primary

WM LV consisted of 1,610 significant edges and predicted higher 2-back accuracy in youth (r
= 0.68, CI = [0.62, 0.74]), as well as adults (r = 0.66, CI = [0.60, 0.71]). The second LV consists

of 224 significant edges and is related to better 2-back performance in preadolescents (r = 0.73,

CI = [0.66, 0.79]) but poorer performance in adults (r = −0.63, CI = [−0.72, −0.55]).

Importantly, these PLS results are consistent with our neuromarker generalizability approach

by showing the first LV, which represents connections that are positively related to performance

for both youths and adults, is stronger for SA than WM (cross-block covariance: attention σXY =

0.692; working memory σXY = 0.624, and these covariance scores are significantly different from

one another p< 1/200 based on 200 bootstraps) [cross-block covariance σXY is estimated as the

ratio of the LV’s squared eigenvalue over the sum of squared eigenvalues across all the LVs and

represents the dominance of an LV in the PLS analysis]. Equivalently, LV 2 that represents func-

tional connections that relate to performance differentially for youth versus adults is stronger for

WM than SA (attention σXY = 0.308; working memory σXY = 0.376; p< 1/200 for the difference

between these cross-block covariances). These analyses further support the idea of more differ-

ences between preadolescent and adult networks supporting working memory and more similar-

ity between preadolescent and adult networks supporting sustained attention.
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Fig 7. The data-driven LVs for the sustained attention (left column) and working memory (right column) PLS regressions. Left column: PLS relating

functional connectivity to SA performance and age group successfully identified functional connectivity patterns related to better attentional performance in

both ABCD youth and HCP adults (first LV), as well as connections differentially related to performance in youth and adults (second LV). Right column: PLS

relating functional connectivity to WM performance and age group successfully identifies functional connectivity patterns related to better WM performance

in both youth and adults (first LV), as well as connections differentially related to performance in youth and adults (second LV). P values are calculated from

500 permutations and LV weights are calculated from 500 bootstraps in each PLS; significant connections are those that have bootstrap ratios (Z) above +3 or

below −3. We randomly selected 754 of the ABCD sample in each PLS to make the age group sizes balanced (HCP has n = 754) and the presented figure is

averaged over 200 bootstrapped balanced samples. Using the full 1,545 ABCD participants instead of randomly balanced group sizes results in very similar PLS

LVs. Anatomical labels: R and L refer to right and left hemispheres; “!” is insula and “-!” is brainstem. The data for this figure are available at NDA study

1849 10.15154/1528288. ABCD, Adolescent Brain Cognitive Development; HCP, Human Connectome Project; LV, latent variable; PLS, partial least squares;

SA, sustained attention; WM, working memory.

https://doi.org/10.1371/journal.pbio.3001938.g007
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Discussion

Across 2 studies, we applied different approaches using connectome-based predictions to

reveal differences in the functional architecture of SA and WM in preadolescence and adult-

hood. The first approach utilized adult network models developed previously (also a new con-

nectome-based predictive model for 0-back accuracy) and allowed us to evaluate the degree to

which these same networks predicted SA and WM in preadolescence. The second approach

directly compared and contrasted the functional connectivity underlying SA and WM in

youth compared to adults.

In Study 1, we found that connectome-based models of SA and WM previously defined in

independent samples of adults generalized to capture inter- and intra-individual differences in SA

and WM in 9- to 11-year-olds. In Study 2, we showed that the adult SA network predicted chil-

dren’s 0-back task performance just as well it predicted novel adults’, and just as well as a youth-

defined network predictor of general cognitive abilities. The adult WM model, on the other hand,

predicted children’s 0-back and 2-back (i.e., low- and high-working memory load) task perfor-

mance, although not as well as the development-specific model of cognitive abilities. These results

suggest that distinct functional brain networks predict SA and WM in the developing brain. Fur-

thermore, WM network strength during the n-back predicted subsequent memory for the items

in the recognition memory task performed later outside the scanner, even when adjusted for n-

back performance. This result demonstrates that, in addition to predicting ongoing working task

performance, WM network expression predicts future long-term memory.

The current work signifies 3 benefits of individualized predictive modeling with fMRI—

and, in particular, of validating predictive markers in multiple independent datasets. First,

training and testing brain-based predictive models allows us to investigate specific versus gen-

eral brain markers of cognitive processes by conducting single- or double-dissociation analyses

predicting individual differences in different aspects of cognition. This can inform the extent

to which different processes relate to common or distinct functional network. For example,

sustained attention and working memory are highly related processes as they covary together

in individual ability [33,34], and attention lapses lead to worse working memory performance

[35]. Additionally, the ability to control attention has been proposed to play a major role in

complex WM tasks [36,37]. However, our results suggest that networks involved in SA are not

sufficient to predict differences in WM (i.e., 2-back) performance across participants, despite

predicting attentional (i.e., 0-back) performance in the same participants.

Second, we can ask whether the same networks that predict individual differences in behav-

ior capture intra-individual change. Recent work has begun to suggest that fluctuations in

large-scale functional brain networks index variance in SA function [17] and stimulus-unre-

lated thought [38] within individuals. In the current study, we demonstrate that block-by-

block changes in SA network strength generalized to tracked block-to-block fluctuations in

0-back accuracy of children, and block-to-block fluctuations in WM network strength tracked

block-by-block 2-back accuracy, above and beyond stimulus types and practice effects. This is

remarkable given the relatively few volumes of data per block (30–31 TRs) and blocks per run.

We also explored the source of changes in predictive network strength by investigating

whether network fluctuations were more driven by (a) an individual’s cognitive/attentional

state fluctuations or (b) properties of the task stimuli that they saw (i.e., the category of n-back

task images). We found that associations between network and n-back performance fluctua-

tions are largely independent of the effects of stimulus type on performance. With further lon-

gitudinal data, it will be possible to directly model intra-individual changes in FC patterns that

covary with performance, thus assessing the similarities and differences in trait-like versus

state indicators of SA and WM processes in FC space.

PLOS BIOLOGY Sustained attention & working memory in youth & adults

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001938 December 21, 2022 19 / 33

https://doi.org/10.1371/journal.pbio.3001938


Third, applying predictive models to predict differences in behavior both between and

within individuals allows us to assess how brain systems underlying different cognitive pro-

cesses differ (or remain consistent) across different time scales, from one moment, hour, and

even year to the next. Although the adult neuromarkers of sustained attention and working

memory both generalized to predict 9- to 11-year-olds’ behavior, they differed in their com-

parative fit to youth versus novel adults. We also found that a new adult network predictor of

sustained attention (based on 0-back performance in HCP) generalized to predict 0-back accu-

racy in the youths significantly better than the adult network predictor of working memory

(based on 2-back performance in HCP) generalized to predict 2-back accuracy in youths. This

may reflect differential developmental effects for each of the 2 cognitive constructs.

For WM, the adult network’s predictive power in the ABCD sample was smaller than it was

in the external validation sample of older adults in the Avery and colleagues [23] study (ABCD

r = 0.14; older adults r = 0.36 [23]). Second, it was also smaller than the predictive power of the

ABCD-defined cognitive composite network model (correlations with individual differences

in 2-back accuracy: working memory network r = 0.14; cognitive composite network r = 0.32).

These 2 comparisons converge to suggest the possibility of developmental differences in the

functional architecture of WM in preadolescence and adulthood. Interestingly, there is a rela-

tively large and significant overlap between the youth-defined cognitive composite network

and the adult WM network both for edges positively related to behavior (11.6% overlap of

combined edges, hypergeometric p< 0.001) and edges negatively related to behavior (10.7%

overlap of combined edges, p< 0.001). This overlap may reflect a common subnetwork under-

lying general cognitive ability in youth and working memory in adulthood.

For SA, however, the cross-development results paint a different picture. The performance

of the SA network in predicting 0-back performance was similar for youth and adults (r = 0.19

and 0.17, respectively). Although this may reflect similarity in the functional architecture of SA

in these 2 age groups, it could arise from better “ground truth” prediction in adulthood disad-

vantaged by the relatively low variance in their 0-back accuracy (HCP SD = 0.081 versus

ABCD SD = 0.126). Making this explanation unlikely, however, the child cognitive composite

network did not significantly outperform the SA network in predicting 0-back accuracy

(r = 0.23 versus 0.19, respectively) despite the identical variance in behavioral performance

(i.e., both predictions are in ABCD sample). This makes the difference in variance between

adults and children a less tenable explanation for similarities in prediction and instead indi-

cates that the SA network is as informative about the functional architecture of sustained atten-

tion in youth as it is in adulthood. This is further corroborated by the good fit of the adult

0-back predictive model to the preadolescent 0-back performance (r = 0.25). The result sug-

gests consistency in this architecture from preadolescence to adulthood. Additionally, the rela-

tionship between children’s SA network strength and 0-back accuracy was unchanged when

adjusting for the strength of the cognitive composite network, again pointing to its unique and

specific relation to sustained attention even in youth.

Although the SA network model generalized equally well to novel youth and novel adult

0-back performance, the particular contributions of different anatomical regions involved in

the network differed between the 2 populations. That is, lesioning prefrontal, temporal, and

subcortical regions from the networks affected predictive power differently for youth and

adults. This may be related to the fact that SA function does improve well into adulthood (For-

tenbaugh and colleagues [7]), and in these samples 0-back performance was indeed higher in

the HCP than the ABCD data (mean accuracy = 0.93 versus 0.87, t (2,130.6) = 14.3, p< 0.001).

Therefore, it may be the case that the neural markers of individual differences in SA are pres-

ent and predictive by late childhood, but the way they are utilized to maintain focus on tasks

may change through adolescence. Taking together these and the working memory results
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discussed earlier, we found differential developmental effects for each of the 2 cognitive con-

structs, pointing to less consistency in the functional architecture of WM than that of SA from

age 9 to 11 to young adulthood.

Study 2.2 echoed these results by demonstrating that the relationship between FC patterns

and SA is more similar between youths and adults than the relationship between FC patterns

and WM. Further, this analysis revealed that most functional connections related to behavioral

performance (SA or WM) are shared between youths and adults, as the shared component was

the primary LV for both SA and WM in the PLS regressions. However, there are also connec-

tions, which comprise the secondary LVs, that differentiate youths from adults, i.e., connec-

tions that predict better performance in youth but worse performance in adults. Future work

can use longitudinal data to ask whether these patterns reflect neurodevelopment underlying

cognitive and attentional performance improvement from preadolescence through adulthood.

When putting these results in the context of broader theories of functional brain develop-

ment, our findings are consistent with 2 big picture frameworks. First, our finding that there is

dynamicity in the brain-behavior mapping of both SA and WM in development (though not

to the same extent for each process) is consistent with the interactive specialization hypothesis

[39]. This framework posits that developmental change in cognitive skills or behavior is

accompanied by widespread changes across network of regions, rather than maturation of sin-

gle brain regions [39]. Second, we found that overlapping networks support SA and WM abili-

ties between preadolescents and adults. This is consistent with the neural reuse hypothesis

[40], which posits that regions of the brain are “reused” throughout development such that

each will end up participating in multiple functions and involved in diverse tasks across multi-

ple cognitive domains [41]. Prior empirical evidence supporting these 2 frameworks has been

primarily from earlier stages of life than preadolescence and our approach, combined with

other work in the development of brain structure (e.g., [42]) may shine some light on these

theories in other stages of lifespan.

There are some limitations to this work. First, we rely on 0-back and 2-back performance to

index SA and WM rather than more traditional tasks like a CPT and visual change detection

tasks, as these more traditional paradigms are not included in the ABCD Study. Future work

characterizing the generalizability of connectivity-based models to other tasks of attention and

working memory can further inform their predictive boundaries. Additionally, work suggests

that models can be generalizable and robust with features that vary (e.g., [43]). It is not the

case that the edges in the SA and WM networks used here are the “end all be all” attention and

working memory networks. Rather, they are a preregistered set of edges that robustly predict

SA and WM function. Future work examining the overlap of edges that predict different mea-

sures of SA and WM in different datasets can help to refine the models to the minimum set of

edges that still generalizes across datasets. We make progress towards this goal by making the

0-back HCP-based network predictor brain mask and the PLSR analysis brain mask available

to other researchers. Second, the within-participant fluctuation effects in Study 1.2 are statisti-

cally significant yet modest, and the across-participant effects in Studies 1.1 and 1.3 have effect

sizes that are small to medium. This is consistent with a recent report using the ABCD Study

data [21], where, on average, out-of-sample multivariate brain-behavior associations (mean r
= 0.17) were smaller than in-sample associations (mean r = 0.46). However, it is important to

mention that these smaller effect sizes from large samples are reported to be more robust and

replicable than larger effects sizes from small samples [21]. Although the current approach

demonstrates the statistical significance and theoretical implications of conservative external

model validation analyses, further work is needed to determine the practical significance and

potential translational utility of these and other brain-based predictive models. Third, and as

mentioned before, in Study 2.2, since the ABCD and HCP samples are not the same cohort, it
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is difficult to tease apart the age-related versus scanning-related differences between the 2 sam-

ples in the multivariate PLS regression. However, it should be mentioned that the relative com-

parison of the primary LVs’ dominance in SA versus WM PLS regressions would not be

sensitive to the non-age-related factors unless these non-age-related factors interact differen-

tially with fMRI data during 0-back versus 2-back blocks.

In conclusion, we found that distinct functional brain networks predict SA and WM abili-

ties across youth, as well as changes in attentional and memory performances over time.

Therefore, sustained attention and working memory are overlapping but distinguishable cog-

nitive constructs in the preadolescent brain, with FC patterns of working memory differing

more between youth and adults than those of sustained attention.

Methods

Data

We analyzed a subset of baseline-year behavioral and fMRI data from the ABCD (Release

2.0.1). The total sample in the dataset is 11,875 children 9 to 11 years old from 21 sites across

the United States. We first excluded the participants who were scanned using Philips scanners

(see fMRI data processing) or those without functional MRI data, resulting in 9,446 partici-

pants from 19 sites. After a visual quality check of all structural and functional scans, 4,939 of

these participants had structural and at least 1 run of n-back task fMRI data that passed our

visual quality check and had corresponding EPrime files containing trial-by-trial n-back task

data. Next, we applied a frame displacement (FD) threshold of FD mean < 0.2 mm and FD

max < 2 mm to remove n-back fMRI runs with excessive head motion, resulting in 1,839 par-

ticipants. Finally, we removed n-back runs for which the start time of the behavioral recording

file was unclear with respect to the fMRI data, or if the data were flagged for “switched box” or

“n-back task done outside scanner”, resulting in sample size of N = 1,548. Additionally, partici-

pants from 1 site with only N = 3 subjects after prior exclusions were not included in the

across-subjects models that include site as a random intercept factor and also the within-sub-

ject analyses for consistency. Therefore, the final sample size was N = 1,545 participants 9 to 11

years old from 18 sites, mean age = 10.03 years old, 851 female.

In-scanner emotional n-back task

The emotional n-back task in the ABCD dataset [44] includes 2 runs of 8 blocks each with 10

trials in each block. A picture is shown in every trial and participants are told to make a

response on every trial, indicating whether the picture is a “Match” or “No Match.” In each

run, 4 blocks are 2-back task for which participants are instructed to respond “match” when

the current stimulus is the same as the one shown 2 trials back. The other 4 blocks are of the

0-back task for which participants are instructed to respond “match” when the current stimu-

lus is the same as the target image presented at the beginning of the block. At the start of each

block, a 2.5 s cue indicates the task type (“2-back” or “target =“ and a photo of the target stimu-

lus; see Fig G in S1 Text). A 500 ms colored fixation precedes each block instruction, to alert

the child of a switch in the task condition.

Two blocks of 0-back and 2 blocks of 2-back contain happy faces (1 in each run), another 2

in each task contain fearful faces, another 2 contain neutral faces, and another 2 contain places.

There are 24 unique stimuli per type presented in separate blocks, each trial is 2.5 s (2 s presen-

tation of a stimulus, followed immediately by a 500 ms fixation cross) resulting in 160 total tri-

als in 16 blocks of n-back. Four fixation blocks (15 s each) also occur in each run after of every

other n-back block.
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Post-scan n-back recognition memory task

We analyzed data from the post-scan n-back recognition memory task, in which 48 “old sti-

muli” (previously presented during the in-scanner emotional n-back task) and 48 new stimuli

were presented to participants. Participants were asked to rate each picture as either “Old” or

“New.” Each picture was presented for 2 s followed immediately by a 1-s fixation cross. The 96

pictures shown have equal numbers of each stimulus type in the old and new stimulus sets (12

each of happy, fearful, and neutral facial expressions and places in each set).

Out-of-scanner cognitive composite score

The “cognitive composite” behavioral scores were measured from each child’s average perfor-

mance in 5 out-of-scanner NIH-Toolbox tasks: the Picture Vocabulary task, Flanker inhibitory

control and attention task, Pattern Comparison processing speed task, Picture sequence mem-

ory task, and Oral Reading recognition task. These tasks were chosen because they capture a

wide range of cognitive processes and are the only NIH Toolbox tasks collected in subsequent

ABCD data releases. This makes them (and the cognitive composite score used here) suitable

for future longitudinal tracking of the general cognitive abilities of the children using the

model developed from the current release. The mean of these 5 measures was used as the cog-

nitive composite score rather than first principal component (PC) because the correlation

between the mean and the first PC was r = 0.94. Therefore, we used the mean for a straightfor-

ward interpretation.

Functional MRI data processing

Minimally preprocessed functional and structural scans for ABCD Release 2.0.1 were down-

loaded for all participants from the National Institutes of Mental Health data archive. Use of

the data was approved by the relevant University of Chicago Institutional Review Board. Mini-

mal preprocessing included motion correction, B0 distortion correction, gradient warping

correction and resampling to an isotropic space [45]. Participants who were scanned on Phil-

ips brand scanners were excluded because of a known error in the phase encoding direction

while converting from DICOM to NIFTI format. Next, a custom modification of the FMRI-

PREP pipeline was run on all images. Each participant’s structural T1w scan was skull-

stripped, segmented by tissue type, and then normalized to the MNI152 nonlinear sixth gener-

ation template: the standard MNI template included with FSL. Functional scans were then

aligned and normalized to the T1w space and then to MNI space and potential confounds of

interest were extracted. Next 36 confounds [46] were regressed out of the voxelwise BOLD

time series including: global mean signal, mean cerebro-spinal fluid signal, mean white matter

signal, the 6 standard affine motion parameters and their derivatives, squares, and squared

derivatives. This was followed by applying a bandpass filter with a high-pass cutoff of 0.008 Hz

and a low-pass cutoff of 0.12 Hz via the 3dBandpass command in AFNI. Finally, the cleaned

volumetric BOLD images were spatially averaged into 268 predefined parcels, including corti-

cal, subcortical, and cerebellar regions, from the whole-brain Shen functional atlas [47].

Predictive network anatomy

The sustained attention network mask (Fig 2) was defined to predict SA function using data

collected from 25 adults who performed a gradual-onset continuous performance task

(gradCPT; [48]) during fMRI [23]. Sustained attentional abilities were operationalized as par-

ticipants’ sensitivity (d’) on the gradCPT. The same functional networks that predicted perfor-

mance in the initial training sample—a “high-attention” network whose strength predicted
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higher d’ scores and a “low-attention” network whose strength predicted lower d’ scores—have

generalized to independent datasets to predict performance on other attention tasks from data

observed during rest and task performance. These include a stop-signal task (Rosenberg and

colleagues [16]), Attention Network Task [49], Stroop task [50], and Sustained Attention to

Response Task [51].

The SA networks do not rely on canonical brain networks, such as the default mode and

frontoparietal networks, to predict sustained attention. Instead, the high- and low-attention net-

works comprise 757 and 630 functional connections, or edges, respectively (out of 35,778 total),

and span distributed cortical, subcortical, and cerebellar regions. In general, functional connec-

tions between motor cortex, occipital lobes, and cerebellum predict better sustained attention

whereas functional connections between temporal and parietal regions, within the temporal lobe,

and within the cerebellum predict worse attention. Computationally lesioning the high- and low-

attention networks by removing connections from specific brain networks does not significantly

reduce predictive model performance [23], suggesting that the SA connectome-based predictive

model does not rely on individual canonical networks to achieve significant prediction.

The working memory network mask (Fig 2; [24]) was defined to predict 2-back task accu-

racy from data observed during 10-min n-back task fMRI runs (both 0-back and 2-back

blocks) in the HCP dataset (N = 502 from the S900 release). Like the SA networks, the WM

networks were defined using connectome-based predictive modeling [30,52]. Briefly, in this

approach, a “high-working-memory” network whose strength predicted higher 2-back accu-

racy and a “low-working-memory” network whose strength predicted lower 2-back accuracy

were identified by correlating all edges (defined with the 268-node whole-brain Shen atlas;

[47]) with 2-back accuracy across the HCP sample and retaining the edges significantly related

to performance (p< 0.01). The resulting network model predicted unseen 2-back accuracy

scores in HCP sample (r = 0.36, p< 0.001) in an internal cross-validation analysis, and gener-

alized to predict individual differences in a composite of visual and verbal memory task perfor-

mance (r = 0.37, p< 0.001) from resting-state fMRI in an independent sample of 157 older

adults, 109 of whom were memory-impaired [24].

The WM networks comprise a distributed set of edges (1,674 edges in the high-working-

memory network and 1,203 edges in the low-working-memory network) including frontopar-

ietal, subcortical-cerebellar, motor, and insular edges. Additionally, default mode network

(DMN) connections are included in the WM networks, with the DMN and DMN-associated

regions (including limbic, prefrontal, parietal, and temporal cortices) overrepresented in the

high-working-memory network relative to the low-working-memory network [24].

Functional connectivity measures

The stimulus onset and offset times of the first and last trial in each block of the ABCD n-back

task data were extracted from each participant’s n-back EPrime file (shared in the curated MRI

data folders sourcedata/func/task_events). The node-wise BOLD signal time series during

each n-back block (30 or 31 TRs; TR = 0.8 s; approximately 25 s from the onset of the first

stimulus to the offset of the last stimulus in each block) were used to create block-wise func-

tional connectivity matrices (FC matrices) by computing all pairwise Pearson correlations

between the block-wise time series of the 268 Shen parcels. (See Defining n-back blocks with a

temporal lag in the supplement for a replication analysis with different block onsets and off-

sets.) The positive edge mask (i.e., the functional connections positively related to behavior)

and negative edge mask (i.e., the functional connections negatively related to behavior) for

each of the SA and WM predefined networks (Fig 2) were then multiplied by the FC matrices.

These network masks are 268�268 trinary matrices determining if a pairwise correlation
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(edge) belongs to a certain predictive network with −1 or +1 or not with a 0. These are shown

in Fig 2 and briefly described in the previous section. Next, the Fisher’s z-transformed correla-

tion values in the masked FC matrices were summed (with mask weight sign) to calculate the

corresponding network’s strength in the block for the participant:

Block� wise network strength ¼
X268

i;j
tanh� 1ðri;jÞ � wi;j:

Where ri,j is the Pearson’s correlation between BOLD time series of parcels i and j, and wi,j
is the corresponding network mask value of 0, 1, or –1.

The block-wise network strengths were averaged over all 0-back blocks or all 2-back blocks

for Study 1’s across-participant analyses and z-scored across participants. For Study 2, the

measures were left at the level of blocks within each participant. In Study 4, the network

strengths were averaged over all blocks (i.e., both 0-back and 2-back) for across-participant

subsequent memory analysis, because the released recognition memory scores (d’) were from

stimuli that could have been encoded during 0-back and/or 2-back task blocks, and files distin-

guishing the subsequent memory stimuli source were not available for this ABCD data release.

Youth cognitive composite network

For consistency, the youth cognitive composite model was constructed using connectome-

based predictive modeling [52], the same approach used to define the adult SA and WM net-

work models. To construct the cognitive composite network mask for ABCD participants

from site k, we retained the FC matrices (calculated from the entire n-back task time series)

and cognitive composite scores of participants from all sites excluding k. We correlated the

strength of every FC with cognitive composite score across participants in this training set.

The edges positively and negatively correlated with cognitive composite score (p< 0.01)

defined the masks that were applied to the block-wise FC matrices of participants from the

left-out site k as described in the previous section. This analysis included 1,536 participants

because 9 participants did not have all 5 NIH Toolbox measurements).

HCP 0-back accuracy network

We constructed the connectome-based predictive model predicting 0-back accuracy in the

HCP sample to be used on the ABCD sample using all 754 HCP participants. To be consistent

with the Avery and colleagues [24], working memory CPM, fMRI data from all of the n-back

task were used to construct the FC matrices. The edges positively and negatively correlated with

0-back accuracy (p< 0.01) defined the masks that were then applied to the block-wise FC

matrices of participants from the ABCD Study sample. This 0-back predictor included 2,506

edges in the positive network (112 shared edges with the Rosenberg and colleagues SA positive

network of 757 edges; hypergeometric p< 0.001, i.e., significant overlap) and 3,191 edges in the

negative network (42 edges shared with the SA negative network of 630 edges; hypergeometric

p = 0.977, i.e., no significant overlap). The network strength in this 0-back predictive network

and the Rosenberg and colleagues [23] SA predictive network were correlated across the ABCD

participants (radj = 0.36 during 0-back blocks and radj = 0.18 during 2-back blocks, ps< 0.001).

Mediation analysis

To perform the mediation analysis described in Fig A in S1 Text, 2-back task performance

and working memory network strength measures were mean-centered within each participant

to remove individual differences and then entered into the mediation model. The model
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included block type (Neutral Face versus Place) as the predictor, block-wise 2-back perfor-

mance as the dependent variable, block-wise working memory network strength as the media-

tor, and block-wise FD during 2-back blocks as a covariate. The mediation was performed

using the mediation package in R with the built-in bootstrapping option for computing p val-

ues for the coefficients and the mediated effect.

Hypergeometric cumulative distribution function

To assess whether the overlap of the edges of different predictive networks was statistically sig-

nificant, we calculated the probability of the overlap being due to chance using the hypergeo-

metric cumulative distribution function implemented in MATLAB (www.mathworks.com).

The function used was hygecdf() computed as:

F ¼
Xx

i¼0

K

i

 !
M � K

N � i

 !

M

N

 ! :

Where F is the probability of drawing up to x of a possible K items in N drawings without

replacement from a group of M objects. The p value for significance of overlap is then calcu-

lated as 1-F.

Removing relatives does not change across-participant results

In our final sample (n = 1,545), there were 82 related children (41 pairs). We repeated the

across-participant analyses after randomly removing from our sample 1 sibling from each pair

(new n = 1,504) and found no significant differences in the results (see Tables F–H in S1

Text). We did not repeat the block-to-block change analyses because within-participant analy-

ses are not affected by across-participant relationships.

Non-participation and post-stratification weights do not change across-

participant results

Participant exclusion rates are high for the functional neuroimaging data in adolescents, mainly

due to high attrition rate from head motion, including the current study. To correct for any

biases due to not being included in the analysis relative to the demographic characteristics of

the overall ABCD Study sample, we conducted sensitivity analyses to confirm if the relation-

ships in our between-subject analyses (n = 1,545) hold with non-participation (non-inclusion)

weights (overall ABCD sample n = 11,875). Specifically, results were re-assessed with member-

ship in the analyses weighted by estimated non-participation weights calculated for sex, age,

race/ethnicity categories, Child Behavior Checklist (CBCL) mean score (square root trans-

formed), and family income and then combined with the American Census Study (ACS) to

ABCD raked propensity scores in file acspsw03.txt of Curated Release 2.0.1 (see [53,54]. The

process is similar to [55,56]. In brief, inclusion/exclusion was regressed on age, sex, race/ethnic-

ity, family income, and parental education in an elastic net regularized binary logistic regression

model using glmnet in R. The logistic regression model picked the optimal tuning parameter

lambda with the least cross-validation deviance in model selection. Having selected the optimal

model, the non-participation weights are the inverses of the probabilities of response, condi-

tional on being sampled. In order to compute corrected correlations between network strengths

and task performances, non-participation weights capturing which individuals had available
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data were multiplied by the post-stratification weights. Finally, the weighted mean, weighted

variance, and weighted covariance were computed as in [57], to construct the corrected correla-

tions. No between-subject results were changed with the non-participation and post-stratifica-

tion weights. Within-subject analyses are not impacted by non-participation.

Results are consistent with less motion restricted sample

Our main analysis uses a relatively stringent head motion criterion consistent with motion-

related reliability issues in the task fMRI in youth (see [58]). However, in addition to the par-

ticipation weight analysis, we also re-analyzed the ABCD data with a less stringent motion

threshold of FD mean< 0.5 mm and FD max< 5 mm to retain more of the ABCD Study sam-

ple. The sample size for this FD threshold was n = 3,225, which is double the sample with the

more stringent FD threshold in the main analyses (FD mean < 0.2 mm and FD max < 2 mm;

n = 1,545). The results are shown in Tables J–M and Fig I in S1 Text and echo the same find-

ings from the more restricted sample.

Human Connectome Project data

In Study 2, we analyzed data from the HCP release S1200, a multisite consortium that collected

MRI, behavioral, and demographic data from 1,113 participants. Minimally preprocessed,

open-access n-back fMRI data were downloaded from connectomeDB (https://db.

humanconnectome.org/) via Amazon Web Services. The acquisition parameters and prepos-

sessing of these data have been described in detail elsewhere [59]. Briefly, preprocessing for

task data included gradient nonlinearity distortion correction, fieldmap distortion correction,

realignment, and transformation to a standard space. In addition, we applied additional pre-

processing steps to the minimally preprocessed task data. This included a high-pass filter of

0.001 Hz via fslmaths [60] and the application of the ICA-FIX denoising procedure using the

HCPpipelines (https://github.com/Washington-University/HCPpipelines) tool, which

regresses out nuisance noise components effectively, similar to regressing out motion parame-

ters and tissue type regressors [61]. The cleaned volumetric BOLD images were spatially aver-

aged into 268 predefined parcels [47].

A total of 32 participants without sync time information files or motion regressor files for

both n-back runs were removed from further analysis. Next, similar to the ABCD dataset, we

applied a FD threshold of FD mean < 0.2 mm and FD max < 2 mm to remove n-back fMRI

runs with excessive head motion, resulting in 881 participants. Finally, we removed partici-

pants with any quality control flags from the HCP quality control process (variable QC_Issue),

resulting in a final sample of 754 participants.

FC measures for HCP data were computed as described for the ABCD data. Text files con-

taining the timing information of the n-back trials were used to extract the beginning and end-

ing of the blocks for each participant (each block approximately 35 TRs; TR = 0.72 s;

approximately 25 s). An FC matrix for each block was constructed from the Pearson correla-

tion between the BOLD signal time series of pairs of Shen parcels, and the sustained attention

mask was applied to each block-specific FC matrix. The block-wise SA network strength values

were averaged over all 2-back blocks or all 0-back blocks for Study 2.1’s across-participant

analyses and z-scored across participants. For Study 2.1’s within-participant analysis, the mea-

sures were left at the level of blocks.

Partial least squares regression

In Study 2.2, we used PLS to identify the relationship between the set of connections with

group-by-performance accuracy. The PLS implementation software was downloaded from
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Randy McIntosh’s lab at: https://www.rotman-baycrest.on.ca/index.php?section=84. In PLS,

the goal of the analysis is to find weighted patterns of the original variables in the 2 sets

(termed “latent variables” or “LVs”) that maximally co-vary with one another ([31,32]; exam-

ples of application for fMRI connectivity studies: [62–65]). Briefly, PLS is computed via singu-

lar value decomposition (SVD). The covariance between the 2 datasets X (FC matrices) and Y

(age-group stacked task performances) is computed (X’Y) and is subjected to the SVD:

SVDðX0YÞ ¼ USV0:

Where U and V (the right and left singular vectors) provide weights (or “saliences”) for the

2 sets (connectivity matrices and group-by-performance), respectively. The scalar singular

value on the diagonal matrix S is proportional to the “cross-block covariance” between X and

Y captured by the LV and is naturally interpreted as the effect size of this statistical association

(reported as σXY).

First 200 re-samples of 754 participants from the 1,545 total ABCD sample were randomly

selected and combined with the 754 HCP participants to make the age groups balanced. For

each of these 2 × 754 samples, a set of 500 bootstrap samples were created by re-sampling sub-

jects with replacement (preserving age labels) in order to determine the reliability with which

each connection contributes to the overall multivariate pattern. Each new covariance matrix

was subjected to SVD as before, and the singular vector weights from the resampled data were

used to build a sampling distribution of the saliences from the original dataset. Saliences that

are highly dependent on which participants are included in the analysis will have wide distri-

butions, therefore low reliability. For the functional connections, a single index of reliability

(termed “bootstrap” ratio or “ZBR”) was calculated by taking the ratio of the salience to its

bootstrap estimated standard error. A ZBR for a given connection is large when the connection

has a large salience (i.e., makes a strong contribution to the LV) and when the bootstrap esti-

mated standard error is small (i.e., the salience is stable across many resamplings). Here, con-

nections with ZBR > 3 or ZBR < −3 were selected as showing reliable increase or decrease in

FC, respectively (equivalent to p~0.0025, 2-tailed, under normal distribution assumptions)

similar to [66]. In each iteration, a set of 500 covariance matrices were generated by randomly

permuting condition labels for the X variables (brain set). These covariance matrices embody

the null hypothesis that there is no relationship between X and Y variables. They were sub-

jected to SVD resulting in a null distribution of singular values. The significance of the original

LVs was assessed with respect to this null distribution. The p value was estimated as the pro-

portion of the permuted singular values that exceed the original singular value.

Supporting information

S1 Text. Appendix: Supplementary Analyses and Material. Fig A in S1 Text. Task accuracy

(top) and network strength (bottom) as a function of stimulus types. Fig B in S1 Text. Results

of the mediation analyses relating block-by-block performance in the 2-back task to stimulus

type, with fluctuations in working memory network strength as a mediator. Fig C in S1 Text.

Working memory network strength, but not sustained attention network strength, was predic-

tive of children’s subsequent memory task performance. Fig D in S1 Text. Relationship

between cognitive composite network strength and cognitive composite scores in the ABCD

sample in all iterations of leave-one-site out combined. Fig E in S1 Text. Relationship between

cognitive composite network strength and cognitive composite scores in the ABCD sample in

each site separately is shown with blue points on permutation null distributions (violins).

Table A in S1 Text. Model predicting individual differences in 0-back and 2-back task accu-

racy from cognitive composite network strength in the ABCD Study sample. Table B in S1
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Text. Model predicting individual differences in 0-back and 2-back task accuracy from cogni-

tive composite and sustained attention network strength in the ABCD Study sample. Table C

in S1 Text. Model predicting intra-individual differences in 0-back and 2-back task accuracy

from youth cognitive composite network strength in the ABCD Study sample. Fig F in S1

Text. Relationship between sustained attention network strength and n-back accuracy in the

adult HCP sample. Table D in S1 Text. Model predicting individual differences in 0-back and

2-back task accuracy from sustained attention network strength in the HCP sample. Table E

in S1 Text. Model predicting intra-individual differences in 0-back and 2-back task accuracy

from sustained attention network strength and block type in the HCP sample. Fig G in S1

Text. The instruction and first 3 trials in a block of 0-back task (top, example from Places

block type) and 2-back task (bottom, example from Positive Faces block type) are shown in

this figure. Table F in S1 Text. Model predicting inter-individual differences in 0-back and

2-back task accuracy from sustained attention and working memory network strength values

in the ABCD sample with only one of each pair of family members retained randomly

(n = 1,504). Table G in S1 Text. Model predicting inter-individual differences in 0-back and

2-back task accuracy from sustained attention and youth cognitive composite network

strengths in the ABCD sample with only one of each pair of family members retained ran-

domly (n = 1,504). Table H in S1 Text. Model predicting out-of-scanner item memory recog-

nition from sustained attention and working memory network strengths in the ABCD sample

with only one of each pair of family members retained randomly. Fig H in S1 Text. The time-

course of n-back blocks (from the beginning of the first trial’s stimulus onset to the end of the

last trial’s stimulus offset time in the block) in a run in the ABCD n-back task. Table I in S1

Text. Working memory network strength measured in the 6-sec shifted manner described

above is not significantly related to subsequent recognition memory for n-back task stimuli

after adjusting for nuisance variables and n-back performance itself. Table J in S1 Text.

Regression of n-back accuracy against network strength values across ABCD participants with

liberal head motion criteria. Table K in S1 Text. Regression of n-back accuracy against net-

work strength values in blocks within participants using ABCD participants with liberal head

motion criteria. Table L in S1 Text. Regression of recognition memory performance against

network strength values across ABCD participants with liberal head motion criteria. Table M

in S1 Text. Regression of n-back accuracy against cognitive composite network strength values

across ABCD participants with liberal head motion criteria. Fig I in S1 Text. PLS regression

results including ABCD participants with liberal head motion criteria.
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