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Economics has been profoundly affected by progress in information technology 

that has facilitated the collection and processing of vast amounts of data related to 

economic activity.  Information technology has so far assisted less with economic 

reasoning – deducing conclusions about behavior, markets, or welfare from assumptions 

or observations about motivation, technology, and market structure – of the sort done by 

Alfred Marshall, Paul Samuelson, Gary Becker, or Roger Myerson.  There are automatic 

algebraic simplifiers, but simplicity is often in the eye of the beholder and such tools are 

sparingly used by economic theorists.  Computers have already been used for generating 

numerical examples, but approximation quality is a concern, and more thinking is always 

needed to appreciate the generality of the results from examples.  The purpose of this 

paper is to show how approximation-free economic reasoning is beginning to be 

automated, present the mathematical foundations of those procedures, and allow readers 

of this paper to access a user-friendly tool for automated economic reasoning. 

Section I introduces, to an economics audience, quantified systems of polynomial 

equalities and inequalities, and their quantifier-free equivalents, as defined in real 

algebraic geometry.  Section II shows how a number of hypotheses in economic theory, 

especially those that leave functional forms unspecified, are isomorphic with those 

systems.  Section III shows how quantifier elimination can be used as a tool for proving 

hypotheses, detecting inconsistent assumptions, reformulating hypotheses to make them 

True, measuring the relative strength of alternative assumptions, and generating examples 

and counterexamples.  Results from mathematicians Tarski, Collins, and followers – 

shown in Section IV – speak to the feasibility of, and algorithms for, eliminating 

quantifiers from systems of polynomial equality, inequality, and not-equal relations 

(hereafter “polynomial inequalities”) and thereby for confirming or refuting many 

hypotheses in economic theory.  In addition to presenting results from the mathematics 

literature, Section IV links them with the economic examples, and gives special attention 

to single-cell decompositions, universal sentences, and existential sentences. 

Readers are also pointed to existing software implementations of quantifier-

elimination methods and given some indication as to likely progress in this dimension.  

One of the implementations is in the Wolfram Language/Mathematica, which has a 

number of other symbolic capabilities such as automated differentiation and various 
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interface options.  REDLOG is less familiar and has a more primitive user interface, but 

typically eliminates quantifiers more quickly than Mathematica does.1  

I.  Sets and hypotheses represented with and without quantifiers 
 

I.A.  An example from elementary algebra 
 As a first example, Figure 1 shows the two dimensional set of coefficients (b,c) of 

parabolas that have real roots.  Equation (1) features two (of many) ways of defining the 

same set: 

 

{(𝑏, 𝑐) ∈ ℝ2: ∃𝑥(𝑥2 + 𝑏𝑥 + 𝑐 = 0)} = 

{(𝑏, 𝑐) ∈ ℝ2: 𝑏2 ≥ 4𝑐} 
(1) 

 

where b, c and x are scalar real numbers.2  The first (hereafter, “quantified”) definition 

uses the “existential” quantifier “Exists” () over the quantified variable x in order to 

represent the parabola property of interest: having a real root.  The second “quantifier-

free” definition has no quantifiers, but nonetheless describes the same subset of ℝ2. 

 Now consider the question of whether a particular parabola (b,c) is in the set 

featured in (1): whether it has real roots.  The question might not be answered in finite 

time with the quantified definition, taken literally, because a parabola cannot be 

confirmed to be outside the set without checking all possible values of x.  At the same 

time, the quantifier-free definition provides verification in just one step: verifying 

whether b and c satisfy the inequality.  Ease of verification is why it can be of 

“enormous” practical value to “eliminate quantifiers” from a set’s definition: that is, to 

take a quantified definition such as the LHS of (1) and transform it into a quantifier-free 

                                                
1 Mathematica calculations have been fast enough for my purposes.  See also Bradford, et al. 
(2016), who find Mathematica to be faster than three other implementations (none of which is 
REDLOG) and Davenport and England (2015), who find Mathematica to be “exceptionally fast.”  
I have also encountered specific problems that REDLOG processes orders of magnitude more 
slowly than Mathematica does. 
2 I assume that the coefficient on x2 is nonzero, and therefore without loss of generality describe 
roots of quadratic equations by reference to a quadratic equation with a unit coefficient on x2.  
Throughout the paper, each variable is assumed to be a scalar real number unless explicitly 
indicated otherwise. 
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one such as the RHS of (1). 3   Indeed, some artificial intelligence research equates 

quantifier elimination with the vernacular concept of “solving” a mathematics problem 

(Arai, et al. 2014, p. 2). 

Real algebraic geometry has a number of results as to (a) what quantified set 

definitions have an equivalent quantifier-free representation, and (b) algorithms that 

eliminate quantifiers.  The purpose of this paper is to report results from the real algebraic 

geometry and symbolic computation literatures, show how they permit a significant part 

of economic theory to be automated, and give more details as to features that are 

especially relevant for the economics applications. 

 The quantified definition (1) has one quantified variable, x, and two that are 

unquantified {b,c}.  Now consider introducing quantifiers over one or two of the parabola 

coefficients as well.  For example, if we introduce the “universal” quantifier “ForAll” () 

over the linear-term coefficient b, we describe a coefficient set in ℝ: 

 

{𝑐 ∈ ℝ: ∀𝑏∃𝑥(𝑥2 + 𝑏𝑥 + 𝑐 = 0)} = {𝑐 ∈ ℝ: 𝑐 ≤ 0} (2) 

 

The quantified definition reads “For all b, there exists a real root” (the order of the 

quantifiers matters in this case).  Again, the quantifier-free definition facilitates 

verification that any particular parabola is in the set of interest.  Introducing a third 

quantifier, we have: 

  

∃𝑐∀𝑏∃𝑥(𝑥2 + 𝑏𝑥 + 𝑐 = 0) = 𝑇𝑟𝑢𝑒 (3) 

 

All three of the variables are quantified in Equation (3).  A fully-quantified formula is 

known as a “sentence,” and all sentences are either True or False. 4   Removing the 

quantifiers from a sentence is known as “deciding” that sentence and, in effect, is a proof 

of its assertion because the quantifier-free representation of any sentence is either True or 

False. 

                                                
3 Caviness and Johnson (1998, p. 2). 
4 Another example is the hypothesis that all parabolas have a real root (∀{𝑏, 𝑐}∃𝑥(𝑥2 + 𝑏𝑥 + 𝑐 =
0)), which is a False sentence. 
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 Hypotheses that involve assumptions also fit into this framework.  Take for 

example the hypothesis that if any parabola’s coefficients satisfy b2  4c then it has real 

roots: 

 

∀{𝑏, 𝑐}[𝑏2 ≥ 4𝑐 ⇒ ∃𝑥(𝑥2 + 𝑏𝑥 + 𝑐 = 0)]

= ∀{𝑏, 𝑐}[𝑏2 < 4𝑐 ∨ ∃𝑥(𝑥2 + 𝑏𝑥 + 𝑐 = 0)] = 𝑇𝑟𝑢𝑒 
(4) 

 

The first equality follows from the definition of “Implies” (): that either the implication 

is True or the assumption is False.5  The second equality shows the removal of the 

quantifiers from the sentence, and that the result is True.  This example shows how 

statements of the form “If X is true, then so is Y” are logically equivalent to Boolean 

combinations of hypotheses with And () and Or () and are therefore sentences that 

would be proven True or False by quantifier elimination. 

 

 

I.B.  The General Framework 

I.B.1.  The formulated hypothesis 
 The general framework has N <  real scalar variables x1, …, xN.  The 

formulation HF of a hypothesis involves quantifiers on x1, …, xNF, with the remaining 0 

 F < N of them free (unquantified): 

 

𝐻𝐹 = (𝑄1𝑥1)(𝑄2𝑥2)… (𝑄𝑁−𝐹𝑥𝑁−𝐹)𝑇(𝑥1, 𝑥2, … , 𝑥𝑁) 

𝑄𝑖 ∈ {∀, ∃}  𝑖 = 1,… , (𝑁 − 𝐹) 
(5) 

 

where the “Tarski formula” T by itself is a quantifier-free Boolean combination, with the 

logical And and Or operators, of a finite number of polynomial (in x1, …, xN) 

                                                
5 Note that, by this definition (also implemented as “Implies” in Mathematica and REDLOG), 
∃𝑐(𝑐 < 0 ⇒ 𝑐 > 0) = 𝑇𝑟𝑢𝑒.  This is one reason why (a) logicians sometimes argue for 
alternative definitions of Implies (Priest 2000, p. 53) and (b) when connecting assumptions with 
implications under the existential quantifier, Mathematica requires that there exists a point in 
which both the assumption and implication are simultaneously True.  See also below on “empty 
assumption sets.” 
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inequalities.6  For brevity I also use the Not operator, which merely refers to reversing an 

inequality (or changing = to ), and the Implies operator, which is a shorthand for a 

Boolean combination of And, Or and Not (see above). 

Of particular interest are universal and existential formulations that have the same 

quantifier on each of the NF variables.  In these cases, I show the quantifier only once 

and list the quantified variables in braces: 

 

(𝑄𝑥1)(𝑄𝑥2)… (𝑄𝑥𝑁−𝐹)𝑇(𝑥1, 𝑥2, … , 𝑥𝑁) ≡ 𝑄{𝑥1, 𝑥2, … , 𝑥𝑁−𝐹}𝑇(𝑥1, 𝑥2, … , 𝑥𝑁) (6) 

 

Hypotheses formulated with only one kind of quantifier, e.g., (6), have the same meaning 

regardless of the order of the quantifiers.  Moreover, every universal formulation can be 

expressed as an existential formulation, and vice versa: 

 

¬∀{𝑥1, 𝑥2, … , 𝑥𝑁−𝐹}𝑇(𝑥1, 𝑥2, … , 𝑥𝑁) = ∃{𝑥1, 𝑥2, … , 𝑥𝑁−𝐹}¬𝑇(𝑥1, 𝑥2, … , 𝑥𝑁) (7) 

 

where ¬ is the Not operator.7 If, for given values of the free variables, the Tarski formula 

is not True on all of ℝ𝑁−𝐹, then there exists at least one point in ℝ𝑁−𝐹  where the Tarski 

formula is false, and vice versa.  The order-invariance and quantifier-interchangeability 

properties of universal and existential formulations offer many opportunities for 

facilitating and verifying computation. 

Because of their relationship with proofs, sentences (F = 0) are especially useful 

for automating economic reasoning.  This contrasts with previous discussions of 

quantifier elimination in economic theory, such as Brown and Matzkin (1996), Snyder 

(2000), Brown and Kubler (2008), Carvajal et al. (2014), and Chambers and Echenique 

(2016), whose purposes are to derive restrictions on free variables that they associate with 

“observables.”  Moreover, with an exception appearing in the appendix of Brown and 

Matzkin (1996), they do not intend to “carry out” the quantifier elimination but rather be 

assured that the result of doing so would be a non-empty semi-algebraic set in ℝ𝐹 .  

 
                                                
6 C.W. Brown (2004, 2).  For example, putting the middle of (4) in the same format, we have 
(∀𝑏)(∀𝑐)(∃𝑥)[𝑏2 < 4𝑐 ∨ 𝑥2 + 𝑏𝑥 + 𝑐 = 0], with the Tarski formula in square brackets. 
7 (7) is known as “De Morgan’s law for quantifiers.” 
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I.B.2.  An equivalent representation, without quantifiers 

 

As above, we are interested in a quantifier-free, but equivalent, statement HE of a 

formulated hypothesis HF.  Formally, 

 

𝐻𝐸 = 𝑃(𝑥𝑁−𝐹+1, … , 𝑥𝑁) (8) 

 

where P is another Tarski formula (distinct from the T appearing in HF), and therefore a 

quantifier-free Boolean combination of a finite number of polynomial inequalities.  If 

there are no free variables (F = 0), then P is either 1 = 1 (True) or 1 = 0 (False). 

Quantifier elimination refers to an algorithmic method that derives P from HF.8  

We are also interested in the existence and properties of such “automated” method(s), but 

first we consider some familiar economic hypotheses that fit into this framework and the 

potential value of such a method as a tool for economic reasoning. 

 

II.  Examples of quantifiers in economic analysis 

II.A.  Concave and quasiconcave production functions 
 

Consider the assertion, adapted from Jehle and Reny (2011), about continuous 

and differentiable production functions of two inputs x and y: that all such production 

functions f that are strictly increasing and strictly quasiconcave at a point (x,y) with 

positive input quantities are concave functions of their inputs at that point.  We can 

investigate this assertion by formulating a hypothesis within the framework (5), as shown 

below: 

 

                                                
8 In the quadratic formula example (2), it would be a method that derives the RHS (an inequality 
restriction on c) from the LHS.  Ideally, the same method used for (2) could also be used for (1), 
(3), and (4) and any other application that fits within the general framework (5). 
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∀{𝑥, 𝑦,
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
,
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
,
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
,
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2
,
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
} 

[(𝑥 > 0 ∧ 𝑦 > 0 ∧
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
> 0 ∧

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
> 0

∧ (
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
)

2
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
+ (

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
)

2
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2
< 2

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
)

⇒ (
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
≤ 0 ∧

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2
≤ 0

∧
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2
≥ (

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥𝜕𝑦
)

2

)] = 𝐹𝑎𝑙𝑠𝑒 

(9) 

 

The hypothesis formulation on the LHS of (9) is a universal sentence with 7 scalar real 

variables.9  Its logical form is an assumption with an implication.  The first-derivative 

conditions in the assumption say that, at the arbitrary point (x,y), the production function 

is increasing in both arguments.  The assumption’s second-derivative condition says that 

the production function is strictly quasiconcave at that point.  The implication’s second-

derivative conditions say that the production function is, at the same point, jointly 

concave in the two inputs.  Eliminating the quantifiers from the LHS reveals that the 

hypothesis is False: there are elements of ℝ7 in which the assumption is True but the 

implication is not. 

 Note that quantifiers in the general framework (5), and in the example (9), are not 

formulating universal or existential statements about elements of a function space.  

Rather, (9) refers to values of function arguments and derivatives at a particular point 

(x,y) and thereby to polynomials in ℝ7.  “ForAll” means all possible values for those 

seven arguments and derivatives.  This isomorphism is essential to broadly applying the 

results from real algebraic geometry because the latter refer to polynomials in real closed 

fields (such as the real numbers).  Table 1 illustrates the isomorphism more starkly by 

relabeling the input and derivative values as v1 through v7.10  Every component of the 

                                                
9 Two of them, x and y, are not related to the rest of the inequalities, but we use them later as we 
modify the example. 
10 The variables in (9) are mapped to the generic notation {v1,…,v7} in alphabetical order (as 
sorted by Mathematica with variables before functions of variables).  Table 1 lists the variables in 
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assumption and every component of the hypothesis is an equality or inequality comprised 

of a sum of various products of these variables (with some of the variables appearing 

more than once in the product). 

 The ForAll quantifier is powerful because it allows statements about real numbers 

to generate statements about classes of functions.  If, for example, (9) had been True, 

then it would tell us that any real-valued differentiable two-argument function that is 

strictly increasing and strictly quasiconcave at a point (with positive inputs) would be 

concave at that point because any such function has its arguments and derivatives 

(relevant to concavity and quasiconcavity) at a point described by seven real numbers.  

(9) is in fact False, which tells us that there exists seven real numbers to assign to those 

arguments and derivatives that describe, at a point with positive inputs, positive marginal 

products and strict quasiconcavity but not concavity.  Any function with those seven 

arguments and derivatives would prove by example that not all quasiconcave functions 

are concave.11 

 It follows that neither (9) nor (5) requires the production function to be a 

polynomial in x and y alone, as assumed the chapters of Brown and Kubler (2008) that 

posit semi-algebraic economies.  Indeed, as we shall see, an explicitly semi-algebraic 

production function would restrict the range of analysis and potentially have tremendous 

computational costs. 

 

II.B.  A Monopolist’s pass through of marginal costs 
 

 Consider a monopolist that faces a demand curve whose inverse is W(q) with 

W(q) < 0, where q is the quantity sold to consumers.  The cost of producing q is g(q,a), 

which satisfies 

 

                                                                                                                                            
order of the complexity of their contribution to the system of polynomial inequalities (C. W. 
Brown 2004). 
11 Given seven numbers that falsify (9), a entire family of nonconcave but analytic, increasing and 
quasiconcave functions could be found by using those values to specify the corresponding level 
and derivative terms in an infinite Taylor-series representation of the production function.  It is an 
entire family because the seven numbers are consistent with any values for the third- and higher-
order coefficients in the Taylor series. 
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𝜕𝑔(𝑞, 𝑎)

𝜕𝑞
≥ 0 ,   

𝜕2𝑔(𝑞, 𝑎)

𝜕𝑞2
≥ 0 ,   

𝜕2𝑔(𝑞, 𝑎)

𝜕𝑞𝜕𝑎
> 0 (10) 

 

where a is a cost parameter that increases marginal cost.  If the monopolist produces and 

sells q, then he receives W(q) from each unit sold.  His optimal quantity is described by:12 

 

𝑞𝑊(𝑞) − 𝑔(𝑞, 𝑎) ≥ 0 (11) 

 

𝜕

𝜕𝑞
[𝑞𝑊(𝑞) − 𝑔(𝑞, 𝑎)] = 0 (12) 

 

𝜕2

𝜕𝑞2
[𝑞𝑊(𝑞) − 𝑔(𝑞, 𝑎)] < 0 (13) 

 

The pass-through rate  can be defined to be the impact of a on the monopolist’s optimal 

price per unit impact on marginal cost:13 

 

𝜇 ≡

𝑑
𝑑𝑎𝑊

(𝑞)

𝑑
𝑑𝑎 [

𝜕𝑔(𝑞, 𝑎)
𝜕𝑞 ]

 (14) 

 

𝑑

𝑑𝑎
{
𝜕

𝜕𝑞
[𝑞𝑊(𝑞) − 𝑔(𝑞, 𝑎)]} = 0 (15) 

 

 

The assumptions (10)-(15) and W(q) < 0 are polynomial inequalities in the 9-

dimensional space {𝑞, 𝑑𝑞
𝑑𝑎
, 𝑔(𝑞, 𝑎),

𝜕𝑔

𝜕𝑞
,
𝜕2𝑔

𝜕𝑞𝜕𝑎
,
𝜕2𝑔

𝜕𝑞2
, 𝑊(𝑞),𝑊′(𝑞),𝑊′′(𝑞)} .  Quantifier 

elimination in this space can confirm a number of hypotheses about pass-through.  For 

example, a convex demand curve (W > 0) is necessary but not sufficient for pass-
                                                
12 See also Weyl and Fabinger (2013). 
13 A more familiar derivative would use the partial, rather than total, derivative in the 
denominator.  This paper features the total derivative because it makes the quantifier elimination 
a bit more complicated and interesting. 
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through to exceed one ( > 1) at positive quantities (q > 0).  Note that both the pass-

through implication and the extra assumptions are all (rather trivial) polynomial 

inequalities in the same space and thereby keep the hypothesis within the general 

framework (5). 

 

II.C. Laffer curve surprises 
 Consider the prototype static representative agent economy for examining 

aggregate consequences of labor income taxation.  Specifically, the representative agent 

has preferences over the amount consumed c and the amount worked n, as represented by 

the utility function u(c,n).  c is a good, n is a bad, and preferences are quasiconcave, in 

the relevant range.  The economy’s production set is weakly convex with its boundary 

described by the monotone increasing production function f(n). 

 The government levies a constant-rate labor income tax in order to finance a lump 

sum transfer.  Given a labor income tax rate , a competitive equilibrium in this economy 

is a list of five scalars {c,n,a,r,w} such that: 

(i) Given a, r, w, and , the pair (c,n) maximizes the representative worker’s 

utility subject to his budget constraint: 

 

(𝑐, 𝑛) = argmax
𝑐′,𝑛′

𝑢(𝑐′, 𝑛′)   𝑠. 𝑡.  𝑐′ ≤ (1 − 𝜏)𝑤𝑛′ + 𝑟 + 𝑎 (16) 

 

(ii) Given w, n maximizes the representative employer’s profits a: 

 

𝑛 = argmax
𝑛′

𝑓(𝑛′) − 𝑤𝑛′ (17) 

 

𝑎 = max
𝑛′

𝑓(𝑛′) − 𝑤𝑛′ (18) 

(iii) The government budget constraint balances 

 

𝑟 = 𝜏𝑤𝑛 (19) 

 

There typically is more than one tax rate that is consistent with the same amount of 

revenue r: for example no revenue could come from  = 0 or from  = 1.  In this case, the 
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lower tax rate method of obtaining that revenue is associated with more equilibrium 

utility for the representative agent, but is that a general result?  Formally, if we have an 

equilibrium {cL,nL,aL,rL,wL} associated with tax rate L and another equilibrium 

{cH,nH,aH,rH,wH} associated with tax rate H > L > 0 and rL = rH > 0, can we conclude 

that u(cL,nL) > u(cH,nH)? 

 Note that, unless L were at the peak of the Laffer curve, we cannot assume that, 

say, cH differs from cL by only a differential change as we did with the first two examples 

that applied the chain rule of calculus.  This Laffer-curve example relates to discrete 

differences, but is nonetheless amenable to quantifier elimination.  Here the assumptions 

are: 

0 < 𝜏𝐿 < 𝜏𝐻 < 1 (20) 

 

𝑤𝐿 > 0,𝑤𝐻 > 0, 𝑛𝐿 > 0, 𝑛𝐻 > 0, 𝑐𝐿 > 0, 𝑐𝐻 > 0 (21) 

 

𝜏𝐿𝑤𝐿𝑛𝐿 = 𝜏𝐻𝑤𝐻𝑛𝐻 (22) 

 

(𝑐𝐿 − 𝑐𝐻)(𝑛𝐿 − 𝑛𝐻) > 0 ,   (𝑛𝐿 − 𝑛𝐻)𝑤𝐿 ≤ 𝑐𝐿 − 𝑐𝐻 ≤ (𝑛𝐿 − 𝑛𝐻)𝑤𝐻 (23) 

 

𝑢𝐿 = 𝑢(𝑐𝐿, 𝑛𝐿) > 𝑢𝐿
′ = 𝑢(𝑐𝐿

′ , 𝑛𝐻),   𝑐𝐿 − 𝑐𝐿
′ = (𝑛𝐿 − 𝑛𝐻)(1 − 𝜏𝐿)𝑤𝐿  (24) 

 

𝑢𝐻 = 𝑢(𝑐𝐻, 𝑛𝐻) > 𝑢𝐻
′ = 𝑢(𝑐𝐻

′ , 𝑛𝐿),   𝑐𝐻 − 𝑐𝐻
′ = (𝑛𝐻 − 𝑛𝐿)(1 − 𝜏𝐻)𝑤𝐻 (25) 

 

(𝑢𝐿
′ − 𝑢𝐻)(𝑐𝐿

′ − 𝑐𝐻) > 0 , (𝑢𝐻
′ − 𝑢𝐿)(𝑐𝐻

′ − 𝑐𝐿) > 0 (26) 

 

𝑀(𝑐𝐿, 𝑛𝐿) = (1 − 𝜏𝐿)𝑤𝐿 ,   𝑀(𝑐𝐻, 𝑛𝐻) = (1 − 𝜏𝐻)𝑤𝐻 (27) 

 

 The inequalities (20) and (21) define the question of interest (i.e., looking at 

equilibria with nondegenerate tax rates, positive wage rates, and positive amounts 

worked).14  Equation (22) assumes that the two equilibria have the same tax revenue.  

                                                
14 For brevity, I also assume that the utility and production functions are continuously 
differentiable in the neighborhood of each of the two equilibria being considered.  This 
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The inequalities (23) represent the production function assumptions: production is strictly 

increasing and the marginal product of labor is weakly decreasing.15  The inequalities 

(24) define and characterize one of the equilibrium utility levels.  In particular, an agent 

in equilibrium L choses not to work the amount nH and have the corresponding 

consumption level 𝑐𝐿′ .  In equalities (25) do the same with respect to the H equilibrium.  

The inequalities (26) say that consumption is a good.  The equations (27), which include 

the marginal rate of substitution function M, are the workers’ first order condition for 

each of the two equilibria under consideration. 

 Formally, the hypothesis of interest is that (20) through (27) imply that uL > uH.  

Quantifier elimination in a sixteen-dimensional space shows that more assumptions are 

required in order to conclude that uL > uH, because the hypothesis is true in part, but not 

all, of the sixteen-dimensional space. 16   For example, the additional assumption that 

consumption and leisure are normal goods – in particular that (M(cL,nL)  M(cH,nH))(nL  

nH) > 0 – is sufficient.  An alternative sufficient assumption is that the demand for labor 

is elastic ((wLnL  wHnH)(nL  nH)  0).   

 Note that the equilibrium definition (16) through (19) is not in the format (5) and 

therefore not identical to the Tarski formula that is the conjunction of (20) through (27).  

However, any pair of a low-tax equilibrium and high-tax equilibrium that satisfies (20) 

and (21) will have associated with it the sixteen real numbers (delineated in the previous 

footnote) that satisfy (22) through (27).  Anything that is necessarily implied by (20) 

through (27) must therefore describe any pair of equilibria (satisfying (20) and (21)).   In 

other words, adding any additional implications of (16) through (19) to the assumptions 

already in the Tarski formula cannot alter a conclusion that is already True. 

Conversely, quantifier elimination shows that, without an assumption beyond (20) 

through (27), it is possible that uL < uH.  Even so, it is not necessarily obvious that there is 
                                                                                                                                            
guarantees that different tax rates are associated with different work amounts and permits 
calculation of marginal rates of substitution and marginal products in the same neighborhoods. 
15 Note that, for brevity, I have eliminated four equations and four variables by making the 
substitutions 𝑓(𝑛𝑖) = 𝑐𝑖  , 𝑓′(𝑛𝑖) = 𝑤𝑖  , 𝑖 = 𝐿, 𝐻.  As a result, c is measuring the levels of both 
consumption and production, and w is measuring both the wage and the production function 
slope. 
16 The sixteen variables are 
𝑐𝐿 , 𝑐𝐻 , 𝑐𝐿

′ , 𝑐𝐻
′ , 𝑀(𝑐𝐿 , 𝑛𝐿),𝑀(𝑐𝐻 , 𝑛𝐻), 𝑛𝐿 , 𝑛𝐻 , 𝑢𝐿 , 𝑢𝐻 , 𝑢𝐿

′ , 𝑢𝐻
′ , 𝑤𝐿 , 𝑤𝐻 , 𝜏𝐿 , 𝜏𝐻.  Taking the Tarski 

formula as (20) – (27)  uL > uH, the universal sentence is False and the existential sentence is 
True (i.e., the Tarski formula is True somewhere, but not everywhere). 
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a pair of equilibria (defined by (16) through (19)) with the property that uL < uH.  Below I 

show that quantifier elimination can generate necessary conditions for a result, such as uL 

< uH, which can then be compared with the equilibrium definition for a possible 

contradiction.  In this Laffer-curve example, it turns out that no other property of 

equilibrium is relevant for concluding that uL could be less than uH. Appendix I proves 

this by providing specific utility and production functions, and graphing the 

corresponding Laffer curve, for which uL < uH at high tax rates. 

It is well known that models with optimization can be examined with local 

analysis (“first-order conditions” at a point) or revealed preference arguments (e.g., (24) 

and (25) from the Laffer-curve model), with many results obtainable with either 

approach.17  A revealed preference argument can be more versatile because it connects to 

points away from the optimum, but also more tedious because of the number of 

inequalities involved.  Quantifier elimination alters this tradeoff in favor of reveal 

preference because the processing of inequalities is embedded in the elimination 

procedure that, as shown in Section IV, is to be done by computer.   

 

II.D.  Concave and quasiconcave production functions revisited 
 

 As compared to subsection II.A above, Jehle and Reny (2011) examine more 

general production functions in that their functions (a) can have more than two inputs and 

(b) do not have to be differentiable.  They relate concavity and quasiconcavity to triples 

of production inputs, rather than single-point second-derivative restrictions as in equation 

(9).  Quantifier elimination can be applied in the “triples” framework too, as suggested by 

the subsection II.C’s Laffer-curve example.  Specifically, it can be shown by quantifier 

elimination (in the space of real numbers) that a production function f, with any number 

of inputs, that is positive, homogeneous, and quasiconcave must be concave. 

 Let V1 and V2 be any two vectors of production input and  denote a scalar.  We 

define two more vectors W1 and W2 as well as the scalar : 

 

                                                
17 Some of the important contributions to revealed preference theory are Samuelson (1938), Afriat 
(1967), Brown and Matzkin (1996), and Chambers and Echenique (2016). 
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𝑊1 =
𝜇𝑉1

𝑓(𝜇𝑉1)
 ,   𝑊2 =

(1 − 𝜇)𝑉2

𝑓((1 − 𝜇)𝑉2)
 (28) 

 

𝜆 =
𝑓(𝜇𝑉1)

𝑓(𝜇𝑉1) + 𝑓((1 − 𝜇)𝑉2)
 (29) 

 “Positive, homonogenous, and quasiconcave” are represented algebraically as: 

 

𝑓(𝜇𝑉1) > 0 ,   𝑓((1 − 𝜇)𝑉2) > 0 (30) 

 

𝜇 > 0 ⇒ 𝑓(𝜇𝑉1) = 𝜇𝑓(𝑉1) ,   𝜇 < 1 ⇒ 𝑓((1 − 𝜇)𝑉2) = (1 − 𝜇)𝑓(𝑉2) (31) 

 

𝑓(𝑊1) = 𝑓(𝑊2) = 1 (32) 

 

𝑓(𝜇𝑉1 + (1 − 𝜇)𝑉2) = [𝑓(𝜇𝑉1) + 𝑓((1 − 𝜇)𝑉2)]𝑓(𝜆𝑊1 + (1 − 𝜆)𝑊2) (33) 

 

(𝑓(𝑊1) = 𝑓(𝑊2) ∧ 0 < 𝜆 < 1) ⇒ 𝑓(𝜆𝑊1 + (1 − 𝜆)𝑊2) ≥ 1 (34) 

 

where (30) specifically refers to f’s positive property.  The statements (31) refer to both 

the positive and homogeneous properties.  Using the definitions of W1 and W2, (32) and 

(33) refer specifically to the homogeneity of f.18  The statement (34) is the definition of a 

quasiconcave production function. 

 The Tarski formula for the “triples” representation is that (29) through (34) 

together imply that f is concave, as represented by (35): 

 

0 < 𝜇 < 1 ⇒ 𝑓(𝜇𝑉1 + (1 − 𝜇)𝑉2) ≥ 𝜇𝑓(𝑉1) + (1 − 𝜇)𝑓(𝑉2) (35) 

 

One approach to quantifier elimination from the system (29) - (35) would be to (a) take 

any specific value of K, and (b) apply the algorithm to the (4K+10)-dimensional space 

that includes each of the K elements of each of the V1, V2, W1 and W2 vectors as well as 

                                                
18 Note that, from the definitions of W1 and W2, 𝑓(𝜆𝑊1 + (1 − 𝜆)𝑊2) = 𝑓 (

𝜇𝑉1+(1−𝜇)𝑉2

𝑓(𝜇𝑉1)+𝑓((1−𝜇)𝑉2)
). 
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values for each of the ten scalars {𝜆, 𝜇, 𝑓(𝑉1), 𝑓(𝑉2), 𝑓(𝑊1), 𝑓(𝑊2), 𝑓(𝜇𝑉1), 𝑓((1 −

𝜇)𝑉2), 𝑓(𝜇𝑉1 + (1 − 𝜇)𝑉2), 𝑓(𝜆𝑊1 + (1 − 𝜆)𝑊2)}.19  However, the result would apply 

only to the specific value of K. 

A second approach is to leave the dimension of the vectors unspecified, because 

none of those vectors enter (29) - (35) except through f, which maps vectors into scalars.  

All of the inequalities in the Tarksi formula are polynomial inequalities in the ten-

dimensional space {𝜆, 𝜇, 𝑓(𝑉1), 𝑓(𝑉2), 𝑓(𝑊1), 𝑓(𝑊2), 𝑓(𝜇𝑉1), 𝑓((1 − 𝜇)𝑉2), 𝑓(𝜇𝑉1 +

(1 − 𝜇)𝑉2), 𝑓(𝜆𝑊1 + (1 − 𝜆)𝑊2)}.  The Tarski formula would be True for all values of 

this vector if and only Jehle and Reny’s Theorem 3.1 – that all positive, homogeneous, 

and quasiconcave productions are concave – were correct.  Quantifier elimination 

confirms their Theorem. 

Note, however, that the quantifier-elimination-based proof, as well as Jehle and 

Reny’s, involves referencing eight different points on the production function f and using 

the assumed properties to derive relationships between those eight points even though the 

each definition of concavity and quasiconcavity refers to only three.20  In this sense, a 

more comprehensive result from quantifier elimination requires more thought – i.e., 

“manual” rather than “automated” economic reasoning – as to the setup of the Tarski 

formula, as compared to the single-point approach (9). 

   

III.  Quantifier elimination as a tool for economic reasoning 
 

 Quantifier elimination can do more than determine the truth of hypotheses.  It can 

help formulate and understand hypotheses by detecting inconsistent assumptions, 

calculating necessary and sufficient conditions, and generating examples.  Each 

subsection below explains how this is done and provides examples by reference to the 

production function, monopolist pricing, and Laffer curve models above. 

                                                
19 This approach would also need to include the definitions (28) in its Tarski formula. 
20 Similarly, the Laffer curve problem refers to four points on the utility function (𝑢𝐿 , 𝑢𝐻 , 𝑢𝐿′ , 𝑢𝐻′ ) 
even though the statement of the hypothesis refers to only two (uL,uH).  
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III.A.  Detecting inconsistent assumptions 
 

 Anything can be “proven” with an empty assumption set because 𝐴 ⇒ 𝐵  is 

identical to ¬𝐴 ∨ 𝐵, which is True everywhere that A is false. It is therefore important to 

know whether assumptions are mutually consistent.  Quantifier elimination performs this 

task too, by beginning with the sentence that there exist values of each of the variables so 

that the assumptions are simultaneously True.  If the quantifier-free representation of that 

existential sentence is False, then the assumptions are mutually inconsistent. 

 Take the Laffer curve model, in which the “surprise” result uL < uH requires that 

one of the goods is inferior (M(cL,nL) < M(cH,nH)) at the same time that the demand for 

labor is relatively inelastic ((wLnL  wHnH)(nL  nH) < 0).  In order to confirm that the two 

assumptions are simultaneously compatible with (20) through (27), we eliminate 

quantifiers from the sentence that says that there exists at least one point in ℝ16 where 

(20) through (27), M(cL,nL) < M(cH,nH), and (wLnL  wHnH)(nL  nH) < 0 are True. 

 

III.B.  Necessary and sufficient conditions: reformulating hypotheses to 
make them True 
 

 The hypothesis (9) is False.  Quantifier elimination can show what assumptions 

could be added so that the reformulated hypothesis is True.  For example, consider 

reformulating the hypothesis without the quantifiers corresponding to the production 

function’s second derivatives, as shown below using the condensed notation of Table 1. 

 

∀{𝑣1, 𝑣2, 𝑣3, 𝑣5}[(𝑣1 > 0 ∧ 𝑣2 > 0 ∧ 𝑣3 > 0 ∧ 𝑣5 > 0 ∧ 𝑣3
2𝑣7 + 𝑣5

2𝑣4 < 2𝑣3𝑣5𝑣6)

⇒ (𝑣4 ≤ 0 ∧ 𝑣7 ≤ 0 ∧ 𝑣4𝑣7 ≥ 𝑣6
2)]

= {(𝑣4, 𝑣6, 𝑣7) ∈ ℝ
3: ((𝑣4 = 0 ∨ 𝑣7 = 0) ∧ 𝑣6 = 0)  ∨ 𝐺(𝑣4, 𝑣6, 𝑣7)} 

(36) 

 

As before, there are seven variables, but three of them are unquantified (free) and 

correspond to the second derivatives of the production function.  The LHS of equation 

(36) is not a sentence.  This alone says that the formulated hypothesis might be neither 

True nor False. Applying quantifier elimination to the formulated hypothesis, we get the 

RHS of (36), which is a set of restrictions on the free variables {v4,v6,v7}.  The set 
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consists of two subsets described by the blue term and the G term.21  Each subset’s 

description is providing sufficient conditions to add to the assumptions of (9) to make it 

True.22  For example, the blue term says that the hypothesis (9) would be True if its 

assumptions also included that the production function was a quasilinear function of its 

inputs, as shown in (37).23 

 

∀{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} 

[(𝑣1 > 0 ∧ 𝑣2 > 0 ∧ 𝑣3 > 0 ∧ 𝑣5 > 0 ∧ 𝑣3
2𝑣7 + 𝑣5

2𝑣4 < 2𝑣3𝑣5𝑣6

∧ ((𝑣4 = 0 ∨ 𝑣7 = 0) ∧ 𝑣6 = 0)) ⇒ (𝑣4 ≤ 0 ∧ 𝑣7 ≤ 0 ∧ 𝑣4𝑣7 ≥ 𝑣6
2)] = 𝑇𝑟𝑢𝑒 

(37) 

 

In other words, quantifier elimination produces the blue term that, when added to the 

assumptions, makes the formulated hypothesis (9) True. 24   Moreover, some of the 

byproducts of Cylindrical Algebraic Decomposition (CAD), which is the primary 

quantifier-elimination algorithm, are further options for algebraically describing 

restrictions among the of the variables, regardless of whether they are “free.”  These 

options facilitate characterizing the intersection of the assumption and hypothesis sets, 

which goes more directly to the question of what additional assumptions are needed to 

make a hypothesis True.  CAD and other quantifier-elimination algorithms are the 

subjects of Section IV. 

 

III.C.  Necessary and sufficient conditions: distinguishing strong 
assumptions from weak ones 
 

 In many cases there are multiple assumptions that deliver a result.  Quantifier 

elimination can show which, if any, implications are stronger than others, conditional on 

                                                
21 G is a more complicated function that is shown in Appendix II. 
22 Together, the two are also necessary. 
23 In the more verbose notation, the blue term is ((𝜕

2𝑓(𝑥,𝑦)

𝜕𝑦2
= 0 ∨

𝜕2𝑓(𝑥,𝑦)

𝜕𝑥2
= 0) ∧

𝜕2𝑓(𝑥,𝑦)

𝜕𝑥𝜕𝑦
= 0). 

24 In other words, because it is not a sentence, equation (36) has a lot in common with the 
quantifier elimination in Brown and Matzkin (1996) and Chambers and Echenique (2016).  
However, they do not use CAD, or improvements on it, to actually perform the quantifier 
elimination. 
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a set of assumptions A.  Specifically, if one of those implications is B and the other C, 

then the statement that B is a (weakly) stronger implication than C is written as:25 

 

[𝐴 ⇒ (𝐵 ⇒ 𝐶)] = [¬𝐴 ∨ ¬𝐵 ∨ 𝐶] (38) 

 

Reversing B and C in (38) would make the statement that C is a (weakly) stronger 

implication than B.  If both are True, then B and C are equivalent conditional on A 

[𝐴 ⇒ (𝐵 ⇔ 𝐶)]. 

In the Laffer curve model, assuming (20) through (27), quantifier elimination 

proves that a linear production function (wL = wH) is one with elastic labor demand ((wLnL 

 wHnH)(nL  nH) < 0).  Another example: quantifier elimination proves that, conditional 

on the same assumptions, nL > nH is equivalent to uL > uH.  

Of course, irrelevant assumptions do not affect conclusions.  Quantifier 

elimination therefore (a) still obtains the result even when the Tarski formula contains 

irrelevant assumptions and (b) can be used to identify the irrelevant assumptions.  These 

features of quantifier elimination allow the user to assemble his Tarski formula with less 

discretion.  The proof in the Laffer curve model, for example, requires evaluating utility 

at four points: {𝑢(𝑐𝐿, 𝑛𝐿), 𝑢(𝑐𝐻, 𝑛𝐻), 𝑢(𝑐𝐻′ , 𝑛𝐿), 𝑢(𝑐𝐿′ , 𝑛𝐻)} , where 𝑐𝐻′  ( 𝑐𝐿′ ) is the 

consumption that would be obtained by working the low-tax (high-tax) amount at the 

high-tax (low-tax) prices.  The first two are obvious, but the user might not be sure 

whether {𝑢(𝑐𝐿, 𝑛𝐻′ ), 𝑢(𝑐𝐻, 𝑛𝐿′ )} must also be included.26  These two utility levels, and the 

revealed-preference restrictions that go with them (for a total of eight utility levels and 

four revealed-preference restrictions), could be included in the Tarski formula without 

affecting the conclusions.  For that matter, the Tarski formula can be augmented with any 

additional implication of the equilibrium definition (16) through (19) that is expressible 

as a polynomial inequality. 

 

 

                                                
25 To be clear, A, B, and C are Boolean variables. 
26 Any labor amounts with a prime indicates the amount that must be worked in order to obtain 
the counterfactual consumption.  
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III.D.  Generating examples, counter-examples, and step-by-step proofs 
 

 The primary quantifier-elimination algorithm, Cylindrical Algebraic 

Decomposition (CAD) automatically generates sample points as part of its lifting phase 

(the phases of CAD are discussed further below).  For a hypothesis that is not everywhere 

False, the CAD can generate an example.  For a hypothesis that is not everywhere True, 

the CAD can generate a counterexample.  Take the Laffer curve model, without normal-

goods or elastic-demand restrictions.  The hypothesis that, conditional on (20) through 

(27), uL > uH is neither everywhere True nor everywhere False.  The CAD can therefore 

generate both an example of uL > uH and uL  uH, both of which are consistent with (20) 

through (27).  See Table 2. 

 A CAD represents a step-by-step proof.  In order to see, and qualify, this result, it 

is necessary to reference some of the theorems from real algebraic geometry and to 

understand some of the details of CAD construction.  This is the purpose of Section IV. 

IV.  Relevant Theorems from Real Algebraic Geometry 

IV.A.  Tarski: Quantifier elimination is always possible 
 Mathematician and logician Alfred Tarski proved that there exists a universal 

algorithm (that is, one not requiring problem-specific guidance) for quantifier elimination 

from systems of polynomial inequalities on real closed fields by providing such an 

algorithm.27  Because the real numbers are an example of a real closed field, the Tarski 

result guarantees that there exists a P so that HF = HE and gives an algorithm for finding 

P.  If HF is a sentence, then the quantifier elimination algorithm is a “decision method”: a 

procedure for determining whether HF is True or False.28 

 Tarski’s theorem applies to all of the examples above because, when interpreted 

in the right space, they are special cases of systems of polynomial inequalities.  A system 

with even one transcendental term is not covered by Tarski’s theorem (unless there is a 

change of variables that makes all terms polynomial), although quantifier elimination 

                                                
27 Tarksi made the proof in 1930 (Caviness and Johnson 1998, p. 1), but the result was not 
published until Tarski (1951). 
28 Renegar (1998, p. 221). 
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may still be possible.  There are algorithms for deciding existential sentences that contain 

transcendental terms, although they are not fully developed (see below). 

 

IV.B.  Collins: A more efficient algorithm for quantifier-elimination that 
defines sets recursively 
 

 Although Tarski’s method is enough to prove that quantifiers can be eliminated, it 

is not used in practice due to its “extreme” inefficiency.29  A major step forward came 

with the Cylindrical Algebraic Decomposition (CAD) method introduced by 

mathematician George E. Collins in 1973.30 

 

IV.B.1.  Properties of CAD 
In our setting (5), the CAD method decomposes ℝ𝑁 into finitely many connect 

regions, known as “cells,” with three properties: 

(i) each cell of the CAD is a semi-algebraic set (i.e., it is defined by a finite 

number of quantifier-free polynomial inequalities). 

(ii) The CAD result is cylindrical because the projections of any two of the 

cells into ℝ𝑘 , 1  k  N, are either identical or disjoint. 

(iii) Each cell is adapted to the Tarski formula from which it was derived, 

which means that none of the polynomials in the Tarski formula T has 

more than one sign {-1,0,1} in any one of the cells. 

Every Tarski formula has such a CAD (Basu, Pollack and Roy (2011, Theorem 5.6)). 

The T-adapted (i.e., uniform sign) property of the cells, and the fact that the cells 

are finite in number, means that any quantified formula can be confirmed in a finite 

number of steps.31  The cylindrical property of the decomposition means that the cells 

have a natural ordering and many times can be processed more than one at a time. 

Narrowly speaking, CAD refers to a method, or sometimes an expanded set of 

polynomials (including, among others, those in the original Tarski formula) obtained by 
                                                
29 Arai, et al. (2014).  See also Davenport, Siret and Tournier (1988, p. 119), who describe 
Tarski’s method as “completely impractical.” 
30 Collins (1973) and Collins (1975). 
31 By construction, the Tarski formula is True at any one point in a cell if and only if it is True 
everywhere in that cell. 
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the method.  One of result of the CAD method is its cells, described by Cylindrical 

Algebraic Formulas (CAFs).  I follow Kauers (2011), Mathematica, REDLOG, and 

others by (a) referring to CAD and CAFs interchangeably and (b) displaying CAFs that 

are simplified to exclude cells where the Tarski formula is false and to unify the 

remaining cells.32  For example, I refer to the right-hand sides of (2) and (3) as CADs. 

As an example (due to Kauers 2011), take the set of all points in the plane that are 

outside the origin-centered circle of radius two and inside the hyperbola centered at (1,1): 

 

{(𝑥1, 𝑥2) ∈ ℝ
2: 𝑥1

2 + 𝑥2
2 − 4 > 0 ∧ (𝑥1 − 1)(𝑥2 − 1) − 1 < 0} (39) 

 

Figure 2 displays a CAD of the set described in (39), with each of the two-dimensional 

cells shown as a different color.  The CAD partitions the x1-axis six different ways: x1  

r1, x1  (r1, r2], x1  (r2,1), x1 = 1, x1  (1,2) and x1 > 2, where r1 and r2 are the two real 

roots of z4  2z3  2z2 + 8z  4 = 0.  Each of partition of x1 defines a cylinder of all points 

in the plane that would be projected onto that part of the x1-axis.  Each cylinder is itself 

vertically partitioned where one of the polynomials changes sign, which guarantees that 

the CAD is adapted to the two polynomials.  If the problem were more than two 

dimensional, then the CAD would proceed further by stacking one-higher dimensioned 

cylinders on top of the cells in the [x1,x2] plane, partitioning those cylinders, stacking 

one-higher dimensioned cylinders on the cells in the [x1,x2,x3] space, etc. 

 The CAD shown in Figure 2 has seven two-dimensional cells and two one-

dimensional cells.  Although not emphasized in Figure 2, the rest of the plane could be 

decomposed into cells (12 in this case) using the same cylinders.  As a result, at most 21 

sample points need to be checked – one in each cell – to confirm or deny hypotheses such 

as “There exists points outside the circle that are inside the hyperbola” or “All points 

outside the circle are inside the hyperbola.”  In this way, CAD decides universal and 

existential sentences in a finite number of steps. 

 

  

                                                
32 See Strzebonski (2010) and Chen and Maza (2015) for more on the distinction between CAD 
and CAF. 
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IV.B.2.  CAD Construction 
A CAD is obtained in two straightforward, albeit tedious, phases: projection and 

lifting. In the projection phase, one variable is eliminated at a time in the order that they 

are quantified in the formulated hypothesis.33  In order to eliminate a variable, both 

polynomial intersections and singularities are found. 34   In Figure 2, there are two 

intersection points, two singularities for the circle (x1 =  2), and one singularity for the 

hyperbola (x1 = 1) that can be used to make a cylindrical projection.35  The set described 

in (39) is two dimensional, so there is only one projection step, but the general case 

involves one projection step for each variable eliminated, with the exception of the final 

variable.  Also note that higher polynomial degrees can increase the number of 

intersections and singularities to be processed, as shown by example below. 

The following describes the lifting phase, assuming for brevity that xN is the first 

variable eliminated, 𝑥𝑁−1 is the second, etc., until only x1 is left.  In the lifting phase, one 

scalar value – a sample point – for x1 is found for each of the cells defined on the x1-axis 

by the projection phase.  Using those values, sample points in the [x1,x2] plane are found 

for each of the cells in the cylinders above the cells on the x1–axis.  This procedure is 

repeated (“lifted”) through each dimension until there is a sample point in the [x1,x2,…, 

xN] space for every cell in the CAD.  Because the CAD is adapted to the Tarski formula, 

one sample point is enough to determine which˙ inequalities are satisfied at all points in 

                                                
33 This means that CAD can be constructed in at least N! different ways: one for each possible 
variable-elimination sequence.  Although familiar from linear systems, Gaussian elimination is 
not necessarily a close analogy because polynomial intersections are not the only calculations that 
may occur as the CAD eliminates a variable (Van den Dries 1988, p. 9). 
34 When viewed as a function of the variable being eliminated, each polynomial in the system has 
roots that are (a) numbered according to the degree of that variable and (b) potentially a function 
of the remaining variables.  As a function of the remaining variables, the roots need to be 
identified as real or complex (the source polynomial’s singularity points indicate which is the 
case) and the real ones sorted collectively for the entire system (the polynomial intersection 
points indicate the sort order).  Each sort is associated with conditions on the remaining variables 
and a partition of the eliminated variable at each root.  The exact algebra requires several pages of 
explanation, for which readers are referred to the literature, especially Arnon, Collins and 
McCallum (1998) and Basu, Pollack and Roy (2011).  I have found the latter to be especially 
helpful because each subalgorithm is illustrated with an example (see also (Dolzmann, Sturm and 
Weispfenning 1998)). 
35 Figure 2’s projection does not need the x1 = 2 singularity in order to have a cylindrical 
projection, but it would if the set of interest were the points outside both the circle and hyperbola. 
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the cell.  The quantifier-free formula is the union of all cells where the Tarski formula is 

True.36 

Recall the existential quantifier elimination result shown in (1), which has a 

Tarski formula of x2 + bx + c = 0.  If x were eliminated first, and then c, then the full 

decomposition of ℝ3 the nine cells below 

 

(𝑏2 < 4𝑐) ∨ (𝑏2 = 4𝑐 ∧ 𝑥 < −
𝑏

2
) ∨ (𝑏2 = 4𝑐 ∧ 𝑥 = −

𝑏

2
) ∨ 

(𝑏2 = 4𝑐 ∧ 𝑥 > −
𝑏

2
) ∨ (𝑏2 > 4𝑐 ∧ 𝑥 < −

𝑏

2
−
√𝑏2 − 4𝑐

2
) 

∨ (𝑏2 > 4𝑐 ∧ 𝑥 = −
𝑏

2
−
√𝑏2 − 4𝑐

2
) ∨ 

(𝑏2 > 4𝑐 ∧ 𝑥 > −
𝑏

2
−
√𝑏2 − 4𝑐

2
∧ 𝑥 < −

𝑏

2
+
√𝑏2 − 4𝑐

2
)

∨ (𝑏2 > 4𝑐 ∧ 𝑥 = −
𝑏

2
+
√𝑏2 − 4𝑐

2
)

∨ (𝑏2 > 4𝑐 ∧ 𝑥 > −
𝑏

2
+
√𝑏2 − 4𝑐

2
) 

(40) 

 

Only three of the cells above satisfy the Tarski formula.  The (b,c) projections of those 

three cells are:37 

 

(𝑏2 = 4𝑐 ) ∨ (𝑏2 > 4𝑐 ) ∨ (𝑏2 > 4𝑐 ) (41) 

 

which simplifies to the RHS of (1). 

Note that, for economic applications, CAD construction, and even quantifier 

elimination by way of CAD, can be fully delegated to either commercial or open-source 

software packages, much as the standard economics practice for, say, inverting matrices.  

Mathematica and REDLOG are featured in what follows. 

                                                
36 The lifting phase can be done together with the quantifier elimination, in which case entire 
cylinders may be discarded (i.e., no sample points calculated). 
37 As C.W. Brown (2003, p. 97) puts it, “the existential quantifier is simply projection.” 
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IV.B.3.  Single-cell CADs 
 In general, CADs can have many cells, especially when the number of variables is 

large.  The three-dimensional version of the circle-hyperbola example has 242 cells (as 

compared to 9 shown in Figure 2).  The four-dimensional version has 3,531. 38  

Sometimes the CAD has just one cell, even when there are more than two variables.  The 

single-cell CADs are of special interest because (a) the hypothesis represented by the 

CAD can be proved recursively in the order in which the CAD projections occurred and 

(b) the steps of that recursive proof correspond to the components of the single-cell 

formula generated by the CAD. 

 Take, for example, a three-dimensional set described by 

 

{(𝑥, 𝑦, 𝑧) ∈ ℝ3: 𝑥 > 0 ∧ 𝐴𝑦(𝑥, 𝑦) > 0 ∧ 𝐴𝑧(𝑥, 𝑦, 𝑧) = 0} (42) 

 

Where Ay and Az are quantifier-free functions mapping scalar arguments into ℝ1.  The 

system of inequalities is triangular in the sense that only Az = 0 contains all three 

variables and, of the remaining two inequalities, only Ay > 0 contains both remaining 

variables.  Eliminating the variables in the order {z,y,x}, the cylindrical decomposition is: 

 

{𝑥 > 0 ∧ {𝑦: 𝐴𝑦(𝑥, 𝑦) > 0} ∧ {𝑧: 𝐴𝑧(𝑥, 𝑦, 𝑧) = 0}} (43) 

 

which is cylindrical because the third atom is conditional on x and y, the second atom is 

conditional on x, and the first atom can be evaluated without regard for y and z.  It has 

only one cell, as evidenced by the fact that it has no disjunctions ().  (43) would be a 

single-cell CAD if the functions Ay and Az were algebraic (i.e., polynomials). 

The monopolist’s pass-through model from above is a triangular system with a 

single-cell CAD, from which a recursive proof can be constructed.  Consider the (True) 

hypothesis that, assuming (11)-(13), (15), a demand curve that is concave and slopes 

                                                
38 These CADs (technically, CAFs) were calculated by Mathematica, with cells distinguished by 
the disjunction operator ().  The cell counts refer only to the cells where the Tarski formula is 
True. 
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down (W(q)  0, W(q) < 0), then marginal costs are not overshifted (ie.,   1).  To see 

this concisely, we drop the irrelevant variables {𝑔(𝑞, 𝑎), 𝜕𝑔(𝑞,𝑎)
𝜕𝑞

, 𝑊(𝑞)}  and the 

inequalities in which they appear: (11), (12) and the first part of (10).39   That leaves six 

variables { 𝜕
2𝑔

𝜕𝑞𝜕𝑎
,
𝜕2𝑔

𝜕𝑞2
,
𝑑𝑞

𝑑𝑎
,𝑊′′(𝑞),𝑊′(𝑞), 𝑞}  and seven inequalities describing the 

assumptions of the model.40  When the six variables are eliminated in this order, the CAD 

representation of the model’s assumptions is: 

{𝑞 > 0 ∧𝑊′(𝑞) < 0 ∧𝑊′′(𝑞) ≤ 0 ∧
𝑑𝑞

𝑑𝑎
< 0 ∧ 

𝜕2𝑔(𝑞, 𝑎)

𝜕𝑞2
≥ 0

∧
𝜕2𝑔(𝑞, 𝑎)

𝜕𝑞𝜕𝑎
= [2𝑊′(𝑞) + 𝑞𝑊′′(𝑞) −

𝜕2𝑔(𝑞, 𝑎)

𝜕𝑞2
]
𝑑𝑞

𝑑𝑎
} 

(44) 

 

which is a single cell (no disjunctions).  In order to prove that pass-through cannot exceed 

one using the CAD (44), we assume the contrary: 

𝑑
𝑑𝑎𝑊

(𝑞)

𝑑
𝑑𝑎 [

𝜕𝑔(𝑞, 𝑎)
𝜕𝑞 ]

=
𝑊′(𝑞)

𝑑𝑞
𝑑𝑎

𝜕2𝑔(𝑞, 𝑎)
𝜕𝑞2

𝑑𝑞
𝑑𝑎 +

𝜕2𝑔(𝑞, 𝑎)
𝜕𝑞𝜕𝑎

> 1 (45) 

 

We take the last atom of the single-cell CAD, which represents the assumption (15), to 

eliminate from (45) the first variable (at least) from the elimination list: 

 

𝑊′(𝑞)

2𝑊′(𝑞) + 𝑞𝑊′′(𝑞)
> 1 (46) 

 

The result (46) contradicts the first three atoms of the CAD, which are the assumptions 

about a positive quantity and the demand curve’s shape.  This completes the CAD-

inspired proof by contradiction that pass-through cannot exceed one. 

                                                
39 The level of cost g(q,a) appears only in (11) and in doing so does not restrict the remaining 
variables.  With (11) dropped, W(q) appears in only in condition (12), without restricting any of 
the other variables.  With (11) and  (12) dropped, marginal cost appears only in the first part of 
(10), without restricting any of the other variables. 
40 The seven inequalities form a triangular system in the sense that only one of them contains all 
six variables, a second contains four variables, and the remaining five contain only one variable 
each. 
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Note that any CAD eliminating N variables has N! different elimination sequences 

and thereby up to N! different CADs and up to N! different methods of proving the same 

result.  The CADs may differ in terms of the number of cells, which means the 

complexity of the proofs they represent may differ.41  One CAD by itself is enough to 

decide a universal sentence, but sometimes it may be of interest to examine multiple 

elimination sequences in order to find a relatively simple proof of that decision. 

 

IV.B.4.  Necessary and sufficient conditions revisited with CAD 
 

 Each of the N! CADs offers a potentially unique algebraic characterization of the 

same set.  This is useful when we have a hypothesis that does not follow from the 

assumptions because CAD can offer various algebraic descriptions of the intersection of 

the assumptions and the hypothesis.  Any extra assumption that restricts the model to a 

subset of that intersection is, together with the original assumptions, sufficient to 

conclude that the hypothesis is True.  Such an extra assumption is readily identified from 

a CAD. 

The model (9) is an example: concave production does not follow from 

quasiconcave production: 

 

∀{𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} 

[(𝑣3 > 0 ∧ 𝑣5 > 0 ∧ 𝑣3
2𝑣7 + 𝑣5

2𝑣4 < 2𝑣3𝑣5𝑣6)

⇒ (𝑣4 ≤ 0 ∧ 𝑣7 ≤ 0 ∧ 𝑣4𝑣7 ≥ 𝑣6
2)] = 𝐹𝑎𝑙𝑠𝑒 

(47) 

 

where (49) uses the condensed notation of Table 1 and for brevity omits v1 and v2, which 

do not affect the conclusions.  The intersection of the assumptions and the hypothesis is a 

subset of ℝ5  that can be characterized with CAD.  That description depends on the 

elimination sequence used during the projection phase.  If the variables representing 

                                                
41 If variables were eliminated from the pass-through example in reverse order, then the CAD 
would have four cells rather than the single cell shown in (42).  Also note the analogy with 
Gaussian elimination for full-rank N-dimensional systems of linear equations: there are N! 
different elimination sequences. 
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second derivatives (v4,v6,v7) are eliminated last, and otherwise variables are eliminated in 

reverse alphabetical order, we have: 

 

{
(𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7) ∈ ℝ

5:

(𝑣3 > 0 ∧ 𝑣5 > 0 ∧ 𝑣3
2𝑣7 + 𝑣5

2𝑣4 < 2𝑣3𝑣5𝑣6) ∧ (𝑣4 ≤ 0 ∧ 𝑣7 ≤ 0 ∧ 𝑣4𝑣7 ≥ 𝑣6
2)
}

= {
(𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7) ∈ ℝ

5:
(𝑣4 = 𝑣6 = 0 ∧ 𝑣7 < 0 ∧ 𝑣3 > 0 ∧ 𝑣5 > 0) ∨ 𝛤(𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7)

} 
(48) 

 

where the right-hand side is the CAD, which consists of two subsets described by the 

blue term and the  term.42  Each subset is by itself a sufficient condition to add to the 

assumptions of (49) to make it True. 43   For example, the blue term says that the 

hypothesis (49) would be True if its assumptions also included that the production 

function was quasilinear in its second input.  In other words, the CAD of the intersection 

of (49)’s assumption and hypothesis produces the blue term that, when added to the 

assumptions, makes it True. 

 Recall that the condition (36) describes a set in just the three free variables 

because the other two (v3,v5) were quantified and then eliminated.  In contrast, the CAD 

(48) is a set in all five dimensions.  In other words, CAD can provide a “simple” 

description of a set by prioritizing variables rather than, or in addition to, eliminating 

them.  In the case of (48), v3 and v5 still appear, but restrictions on v4, v6, and v7 are 

shown without reference to v3 and v5: that’s that it means for the decomposition to be 

cylindrical.  The CAD approach thereby offers a wider range of descriptions of the 

necessary and sufficient conditions than does the elimination approach shown in 

subsection III.B.  

 

IV.C.  The complexity of quantifier elimination 
 

 Collins’ CAD method is not necessarily the most efficient method for quantifier 

elimination, but it is a good benchmark for understanding the computational complexity 

of practical problems.  CAD’s computational complexity (e.g., computing time) is 
                                                
42  is a more complicated function that is shown in Appendix II. 
43 Together, the two are also necessary. 
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polynomial in the number of inequalities and in the maximum degree of their 

polynomials, but double exponential in the number of variables.  In order to anticipate 

practical experiences with CAD-based quantifier elimination, it helps to see a graph of a 

double-exponential function, which reflects a kind of “curse of dimensionality.”  Figures 

3a and 3b graph the same function 2^(2x), but on different domains.  Figure 3a’s graph is 

almost a vertical wall: doubling the number of variables (e.g., moving from the middle of 

the horizontal axis to the right edge) in this range increases the complexity by a factor of 

more than 4,000.  The figure thereby gives the impression that CAD, and perhaps any 

method for quantifier elimination, may never be practical.  Indeed, a number of 

economics papers discussing quantifier elimination cite the theoretical complexity results 

and suggest that quantifier elimination is too “computationally demanding” without ever 

reporting any actual computation times.44 

But Figure 3b gives a much different impression.  It is fairly close to linear, with a 

doubling of the number of variables less than tripling the complexity.  In other words, the 

feasibility of CAD depends on where the “wall” is located relative to problems of interest 

and whether those problems can be rephrased to, in effect, move the wall to the right.  As 

Shankar (2002, p. 13) puts it, “Many decision procedures are of exponential, super-

exponential, or non-elementary complexity. However, this complexity often does not 

manifest itself on practical examples.”  Although CAD and related methods have been 

used for many problems in geometry (Lasaruk and Sturm 2011), I am not aware of their 

use on sentences that represent economic problems, which tend to be less symmetric and 

with lesser polynomial degrees.  We must also remember that CAD is not the only 

method for quantifier elimination, especially in the case of existential sentences. 

There is therefore no substitute for actually trying quantifier elimination on 

economics examples.  Each of the examples in this paper, which were chosen for their 

economic interest – they are interesting enough to appear in textbooks and have journal 

articles devoted to them – rather than computational simplicity, have been processed in 

                                                
44 E.g., Carvajal, et al. (2014).  In his lectures at the Cowles Foundation, mathematician Charles 
Steinhorn (2008, p. 177) conjectures “…quantifier elimination is something that is do-able in 
principle, but not by any computer that you and I are ever likely to see. Well, I’ll retract that last 
statement because it’s probably false.”  Using the same logic, Anai et al (2014, p. 7) claim – 
incorrectly, as shown throughout this paper  – that “[t]he practical limit to obtain a solution would 
be at most five variables.” 
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milliseconds.  In my own research and teaching, the norm is that problems of this type are 

processed orders of magnitude faster than the time it takes for me to type the 

assumptions.  Appendix III shows an example, based on a growth model with taxation, 

whose CAD is in 41 dimensions, yet nonetheless is processed in milliseconds. 

 With that said, the double-exponential property means that poor judgement and 

brute force can produce economics problems whose CADs are overwhelmingly complex 

for today’s computers.45  Take the concave production function example II.A., using 

quantifier elimination to prove, based on derivatives at a single point, that a 

homogeneous and quasiconcave production function is a concave production function.  

This example is a particularly tough test for quantifier-elimination methods because (a) it 

concerns second-order properties of the model rather than first-order, and thereby more 

polynomials of higher degree and (b) alternative proof strategies are available that avoid 

any reference to second derivatives of the production function.46  Nevertheless, assuming 

that the production function has two inputs, the quantifier elimination (in seven 

dimensions) from subsection II.A. takes at most a few dozen milliseconds on a laptop 

computer (see the first row of Table 3).47  If three inputs were assumed, twelve variables 

are quantified and the quantifier elimination occurs in about two minutes with 

Mathematica, and a fraction of a second with REDLOG.  However, neither software 

package could eliminate quantifiers in the four-input case in less than five days of 

                                                
45 Complex in terms of having a large number of cells, and defining the cells with roots of high-
degree polynomials. 
46 See subsection II.D. 
47 Specifically, using the condensed notation (36), quantifiers are eliminated from 
 

∀{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7} 

[(𝑣1 > 0 ∧ 𝑣2 > 0 ∧ 𝑣3 > 0 ∧ 𝑣5 > 0 ∧ 𝑣3
2𝑣7 + 𝑣5

2𝑣4 < 2𝑣3𝑣5𝑣6
∧ 𝑣2𝑣4 + 𝑣1𝑣6 = 0 ∧ 𝑣2𝑣6 + 𝑣1𝑣7 = 0)

⇒ (𝑣4 ≤ 0 ∧ 𝑣7 ≤ 0 ∧ 𝑣4𝑣7 ≥ 𝑣6
2)] 

 
where the two equations are the second-order-term restrictions implied by homogeneity and are 
derived by differentiating Euler’s theorem with respect to each input.  The quantifier-free 
equivalent is True (because all homogeneous and quasiconcave production functions are 
concave). 
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processing (more than 100 million milliseconds; this case has 18 quantified variables).48  

Here we see the double-exponential property. 

 The CAD algorithm, especially when applied to universal sentences, is amenable 

to parallel processing methods that can, in effect, move the “wall” to the right.  For 

example, an N-variable universal sentence has N! different sequences in which to 

eliminate variables in the projection phase and there is no known generic formula for 

determining which of these is the least complex.49  Parallel processors can be used to, 

among other things, simultaneously execute different elimination sequences and then 

terminate all processes that are still running after the first process has completed.50 

Finally, the CAD algorithm is more general than needed for deciding universal 

sentences, such as the economic examples provided in this paper.  Quantifier-elimination 

algorithms are being developed specifically for existential sentences, which are 

equivalent to universal sentences (recall (7)) and known as the “existential theory of the 

reals.”  The complexity of the dedicated algorithms are “just” singly exponential in the 

number of variables even without parallel processing.51  These advances are not yet fully 

incorporated into Mathematica and REDLOG software (Passmore & Jackson, 2009; 

Davenport & England, 2015).52  As computing power increases and singly-exponential 

                                                
48 Subsection II.D. shows an alternative approach that expresses the general case (i.e., any number 
of inputs, and a not-necessarily differentiable production function) in the polynomial framework 
(5).  As shown in Table 3, this approach eliminates 10 quantifiers in less than one second. 
49 C.W. Brown (2004).  Mathematica and REDLOG have heuristics for guessing an elimination 
sequence than might economize on computation, but were not used for the results reported in this 
paper.  Also note that the elimination sequence is irrelevant for symmetric a Tarski formula such 
as (39); in my experience economic hypotheses are not so symmetric. 
50 When consecutive variables have the same quantifier, changing their order does not affect the 
meaning of the formulated hypothesis, but it does affect features of the CAD, such as the number 
of cells and the difficulty of the algebraic operations required to obtain it (Brown and Davenport 
2007).  Table 3 eliminates variables in alphabetical order (as sorted by Mathematica), which 
generally does not minimize computation time.  Algorithms for determining more efficient 
elimination sequences, which are beyond the scope of this paper, can, for example, find a 
sequence (and process it) for the four-input model in a few minutes as compared to more than 
five days for elimination in alphabetical order.   
51 These decision problems are in PSPACE (Canny 1993).  See Basu, Pollack and Roy (2011) for 
a recent theoretical treatment of algorithms for deciding existential sentences. 
52 Separate from the CAD literature, computer scientists have (for the purpose of automatically 
verifying software programs) developed non-CAD algorithms for deciding existential sentences.  
Some of them, such as those competing at http://smtcomp.sourceforge.net in the QF-NRA 
division, deal with nonlinear polynomials.  In my experience, Microsoft’s Z3 is the most adept at 
answering the economics questions, but still narrower than the primarily-CAD methods used by 
 

http://smtcomp.sourceforge.net/
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algorithms are put into practice, it is likely that even larger economic problems will be 

practically processed by quantifier elimination (Passmore, 2011, p. p. 100).  

 

 

IV.D.  The utility of leaving functional forms unspecified 
 

Ironically, specifying assumptions and hypotheses with particular functional 

forms makes it more difficult to use the quantifier-elimination results.  Take, for example, 

the first derivative restriction f/x > 0 in the concave production function example.  In 

this form, it is a (trivial) polynomial inequality in the seven-dimensional space noted 

above.  If, instead, a production function were specified with transcendental marginal 

product schedules, then we would no longer have a polynomial inequality in x and y.  

Even a Cobb-Douglas production function with exponents  and  would have its first 

derivative restriction entered as 𝛼𝑥𝛼−1𝑦𝛽 > 0, which is not a polynomial inequality in 

{,,x,y}.53  Thus, while traditional “pencil-and-paper” proving approaches are many 

times facilitated with functional-form assumptions, quantifier elimination in the Tarski-

Collins tradition is facilitated by avoiding them. 

 Semi-algebraic economies include Cobb-Douglas utility and production functions 

as long as their exponent parameters are rational numbers, because then statements about 

those functions are special cases of polynomial inequalities.  Still, for the purposes of 

implementing quantifier elimination as we have outlined above, their approach is 

unnecessarily complicated.  First, the quantifier-elimination would have to be performed 

with specific values of the exponent parameters.  For example, the production function in 

the Laffer curve example could be, say, n7/10, but then the quantifier-elimination result 

would refer only to n7/10 and not to any other Cobb-Douglas production function, even 

with rational coefficients. 

                                                                                                                                            
Mathematica and REDLOG.  For example, Z3 does not process the concave production function 
problem with three production inputs in less than 1000 seconds. 
53 In this case, the marginal-product restrictions could be transformed to be of the form  > 0 and 
 > 0, which are polynomials in {,}, but more complicated statements about Cobb-Douglas 
production functions cannot be simplified to restrictions on the exponents. 
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Second, a CAD for hypotheses about a production function having a rational 

exponent is likely vastly more complicated than the CAD for the same hypothesis 

expressed in terms of f(n).  Take the rather simple (and True) hypothesis that, assuming a 

Cobb-Douglas production function with a positive exponent, aggregate labor income is 

increasing in the amount of labor.  Expressed in terms of f(n), it is: 

 

(𝑤𝐿 = 𝑓′(𝑛𝐿) > 0 ∧ 𝑤𝐻 = 𝑓
′(𝑛𝐻) > 0 ∧ 𝑛𝐿 > 𝑛𝐻 > 0

∧ 𝑓(𝑛𝐿) > 𝑓(𝑛𝐻) > 0 ∧
𝑓′(𝑛𝐿)𝑛𝐿
𝑓(𝑛𝐿)

=
𝑓′(𝑛𝐻)𝑛𝐻
𝑓(𝑛𝐻)

)

⇒ 𝑤𝐿𝑛𝐿 > 𝑤𝐻𝑛𝐻 

(49) 

 

where, as in the Laffer curve example, n denotes labor input and w the wage rate.  The 

second row of assumptions shows the relevant restrictions imposed by Cobb-Douglas: 

positive output and a constant elasticity of output with respect to input. 

Deciding the hypothesis (49) with (an eight-dimensional) CAD takes a fraction of 

a second because the number of inequalities is low and the polynomial degrees are no 

more than three.54  Transforming (49) into a semi-algebraic economy by replacing f(n) 

with n to a specific rational power reduces the dimensionality of the CAD, but can 

increase the polynomial degree and thereby increase the decision time by orders of 

magnitude.  Figure 4 shows the relative decision times of the semi-algebraic model with 

various production-function exponents.55  The decision time is, for example, five times 

longer when f(n) is replaced with n5/8 (some of the polynomials are of degree 8), and 

3,000 times longer when replaced with n23/30 (some of the polynamials are of degree 30). 

The unnecessary complexity of semi-algebraic production functions is even 

greater in systems with more inequalities, such as the systems used above to examine the 

Laffer curve.  Table 4 shows some results of deciding the (True) hypothesis that a Cobb-

Douglas production function, together with the other assumptions (20) through (26), 

                                                
54 The eight dimensions are nL, nH, wL, wH, f(nL), f(nH), f(nL), and f (nH). 
55 The exponents, when simplified, have denominators ranging from 2 through 30 and numerator 
equal to the integer making the exponent closest to 7/10 without changing the denominator.  E.g., 
13/20 is used rather than 14/20, because the latter simplifies to 7/10.  Note that the exponent 
denominator is the degree of the polynomial in the Tarski formula. 
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guarantees that the lower tax rate is associated with greater utility.  The Table’s first two 

rows are the benchmarks with unspecified functional forms.  The first row refers to a 

generic production function f(n) that satisfies (23) and (24) as well as the elasticity 

restriction ((wLnL  wHnH)(nL  nH)  0).56  As shown in Table 3, the decision time with 

REDLOG software is 190 milliseconds.57  The largest power on any one variable in the 

polynomial system is only two, and no more than three variables are multiplied together 

at the same time.  For additional comparability with Cobb-Douglas, Table 4’s second row 

also imposes that the elasticity is constant (i.e., labor’s share of output is the same at 

allocations L and H).  The second row shows a decision time of 380 milliseconds. 

 The third and fourth rows use the production functions n1/2 and n2/3, respectively, 

and results in the shorted decision times because quadratic and cubic formulas can be 

used.  The decision time is about the same with an exponent of 3/4.  Several orders of 

magnitude are added to decision times by using more complicated rational exponents, 

such as 3/5 or 4/7.  The table also shows how a more complicated rational exponent adds 

to the degree of the polynomial system. 

 As noted by Brown and Kubler (2008), any specific rational exponent allows 

Cobb-Douglas production to fit into the Tarski framework.  An irrational exponent would 

not.  A symbolic exponent, e.g., , cannot be processed with Tarski and Collins 

procedures either, because the degree of every polynomial must be known and specific in 

order to apply the algorithms.  But the generic functional form f(n) fits in the Tarski 

framework as long as f and its relevant derivatives (at one or more points, as needed) are 

each treated as a separate variable, because the production function restrictions take the 

form of polynomials of a degree that is specific, known, and relatively low.  This is an 

example of the computation gains from “rais[ing] the level of abstraction” (Kroening and 

Strichman 2008, p. v). 

 

 

                                                
56 The elastic restriction is imposed on the non-semi-algebraic benchmarks because (a) Cobb-
Douglas production functions satisfy it and (b) it affects the result (see above). 
57 Mathematica has more overhead computation – e.g., syntax processing and graphic renderings 
– that make it less reliable for measuring decision times for decisions that are quick (the overhead 
time is large in comparison to the actual calculations). 
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V. Conclusions 
 
 A number of economic hypotheses are, interpreted in the right space, quantified 

(“for all”) statements about Tarski formulas, each of which is a quantifier-free Boolean 

combination of polynomial inequalities.58  In order for an economic hypothesis to fit in 

this framework, it must be stated in terms of properties of the model that are expressed as 

a finite number of relationships among real numbers.  For example, the hypothesis that, 

for any supply-demand equilibrium in which the two curves have their usual slopes, a 

downward supply shift increases the equilibrium quantity and decreases the equilibrium 

price (Marshall 1895, Book V, Chapter XII) can be expressed in terms of the demand and 

supply slopes in the neighborhood of an arbitrary equilibrium point, the quantity impact, 

and the price impact, each of which is a real number.  The same hypothesis can 

alternatively be expressed in terms of relationships between two arbitrary points on the 

supply curve and two corresponding points on the demand curve, without reference to 

derivatives (see also Appendix IV).  Either way, given that the equilibrium points are 

arbitrary, and that the statements refer to all possible values of the real numbers, the truth 

or falseness of the hypothesis tells us about the properties of supply and demand 

functions on the parts of their domains that satisfy the slope assumptions. 

 In other words, when Alfred Marshall and other early pioneers of formal 

economic reasoning made (correct) if-then statements about human behavior, they were 

implicitly eliminating “for all” quantifiers from a True sentence.59  The contribution of 

this paper is to make the quantifier elimination explicit and thereby bringing to bear 

applicable tools from real algebraic geometry. 

Quantifier elimination algorithms automatically decide the truth of such 

hypotheses in finite time, without approximation or functional-form assumptions.  The 

algorithms, especially Cylindrical Algebraic Decomposition (CAD), can thereby also 

help formulate and understand hypotheses by detecting inconsistent assumptions, 

                                                
58 See Davenport (2015) and Arai, et al. (2014) for a more systematic measurement of the 
prevalence of problems that can be posed in this way. 
59 I use the phrase “implicit quantifier elimination” in the same way that Brown and Kubler 
(2008, p. 4) do, but point out that it applies to if-then sentences, too, and thereby predates Afriat 
(1967) in the economic literature. 
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calculating necessary and sufficient conditions, and generating examples.  For hypotheses 

that involve optimization, inequality-intensive revealed preference expressions can, with 

quantifier elimination, be as easy to process as equation-intensive local analysis, with the 

added potential of arriving at global conclusions. 

 These results are not merely hopeful conjectures for the practice of economic 

theory.  Software is already available for automatically eliminating quantifiers, which I 

have incorporated into an economist-friendly interface running in Mathematica.60  All of 

the hypotheses in this paper were refuted or verified merely by entering them as 

assumptions (e.g., (20) – (27)) and potential implications (e.g, uL > uH).  The interface 

confirms the mutual consistency of the assumptions, returns True, False, or “True for 

some [values], False for others,” and provides push-button options for further analysis.  

Figure 5 is a Mathematica screen shot showing the processing of the monopolist’s pass-

through example. 

A wide range of economic hypotheses can be processed in this way, although 

more work is needed to expand the range, and better understand the practical limits, of 

economic hypotheses and proofs that can be automated with quantifier elimination.  One 

clear limitation of the methods in this paper is that the number of quantified variables 

must be finite which, without variable changes or additional verification strategies (e.g., 

induction, fixed point, or limit arguments), rules out hypotheses that contain integrals or 

infinite series.  As shown by the concave production function example, some economic 

hypotheses can be represented as quantifier elimination problems in multiple ways, and 

thereby present a potential tradeoff between user effort (in assembling the Tarski 

formula) and computational complexity. 

The quantifier-elimination methods in this paper deliver conclusions, but a 

conclusion is not the same as a concise proof.  The steps of cylindrical algebraic 

decomposition construction are themselves a proof, and the CAD can be displayed by 

quantifier-elimination software.  Some CADs have just one cell and thereby immediately 

show the steps of a concise proof (see subsection IV.B.3), but other CADs are 

complicated enough that the proof represented by their construction is too lengthy and 

                                                
60 The Mathematica package is obtained by executing Get["http://economicreasoning.com"] at a 
Mathematica prompt.  The package has already been used to generate substantive conclusions 
about the economy (Mulligan and Tsui 2016). 
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tedious for a human reader to appreciate or practically verify.  But even in those cases 

quantifier elimination could be of tremendous assistance to someone attempting to 

construct a concise proof by: confirming that a hypothesis is provable, investigating the 

equivalence of one hypothesis with another, incrementally eliminating or modifying 

assumptions to see which of them are binding, verifying any number of intermediate 

results that may serve as one of the steps in the proof, and automatically generating 

examples.61 

Human error can result in logically or mathematically erroneous conclusions from 

economic theory, whether those conclusions were generated with a machine or with 

pencil and paper.  In the latter approach, a diligent reader, editor, or referee, also 

operating with pencil and paper, has been required to detect and correct publication 

errors.  Human errors could in principle be embedded in quantifier-elimination software 

(Davenport & England, 2015), although CAD methods can decide any universal sentence 

with two different methods (i.e., the left- and right-hand sides of (7) involve different 

CAD software steps) and each of those decisions can be processed in N! different 

sequences (N is the number of quantified variables).  Moreover, multiple software 

packages are available to perform the same calculation (this paper uses both Mathematica 

and REDLOG), not to mention the fact that the owners of commercial software packages 

have both the opportunity and incentive to find and correct software errors.62  In some 

instances, such as the hypotheses represented with single-celled CADs, the machine-

generated output is itself a practical guide to confirming its conclusion with pencil and 

paper.  Also note that empirical economics publications already include dozens, if not 

hundreds, of matrix inversions that are never verified with pencil and paper or even with 

an alternative software package.  Perhaps economic theory will follow a similar path.  

 

 

  

                                                
61 Some of the non-CAD methods for deciding existential sentences do routinely provide proofs, 
but those methods so far appear to be more limited in the practical range of economic problems 
that they can process. 
62 If the machine-generated conclusion is that either an example or counter example exists, then 
this can readily be verified with pencil and paper because the software provides the example (see 
also Appendix I). 
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Appendix I.  A non-monotonic Laffer curve 
 

In the Laffer-curve model shown in the main text, it is possible for a higher tax 

rate to be associated with more utility, holding revenue constant, if leisure is not a normal 

good and the production function is concave enough in labor.  This appendix illustrates 

this possibility by taking a specific production function that is piecewise linear, and 

therefore especially concave at the point where the marginal product of labor changes.  It 

also takes a specific utility function for which leisure is an inferior good over some range 

that includes the kink in the production function. 

The utility function is: 

𝑢(𝑐, 𝑛) =
3

4
ln𝑐 −

𝑛

50
−
2

3
(2𝑐 − 1)2𝑛3 + 1 (50) 

 

The production function is (for n > 0): 

 

𝑓(𝑛) = min {𝐴𝑛 +
1

5
,
4

5
𝑛} (51) 

 

where A is normalized so that the efficient amount of labor is one and greater than the 

labor at the kink point: 

−
𝜕𝑢/𝜕𝑛

𝜕𝑢/𝜕𝑐
|
𝑐=𝐴+

1
5
,𝑛=1

= 𝐴 <
4

5
 (52) 

 

Note that, everywhere along the production function, consumption is a good, labor is a 

bad, and preferences are convex. 

The Laffer curve for this economy can be calculated parametrically by mapping 

each point (n,c) on the production function with n  (0,1), except the kink, to a point on 

the Laffer curve.  The tax rate  at a point is the percentage gap between the marginal rate 

of substitution and the marginal product w.  The transfer amount at the same point is the 

product wn. 

A range of wage rates, tax rates and transfer amounts are consistent with a 

competitive equilibrium at the production function kink.  All of these points have the 

same equilibrium work, consumption, and utility. 
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Utility rises with n along the production function as long as n < 1.  At the kink 

point, utility is ukink.63  Figures 6a and 6b show the resulting Laffer curve with differing 

degrees of detail, using red to show utility (and therefore labor) that is less than its value 

at the kink point.  Utility at (above) the kink are shown as black and green, respectively.  

Of course, utility at a zero tax rate (on the green part of the Laffer curve) is greater than it 

is at a 100 percent tax rate (on the red part).  Nevertheless, the fine-detail Figure 6b 

shows most clearly that the green (low-utility) part of the Laffer curve is sometimes to 

the left of the red part.  This possibility shows why (20) through (27) by themselves are 

not sufficient to imply that uL > uH. 

 

Appendix II.  The remainder of the sets from subsections III.C and 

IV.B 
 Equation (36), using the condensed notation of Table 1 and reproduced below, 

shows a set representing the (not necessarily True) hypothesis CAD that quasiconcave 

two-input production functions are concave. 

 

∀{𝑣1, 𝑣2, 𝑣3, 𝑣5}[(𝑣1 > 0 ∧ 𝑣2 > 0 ∧ 𝑣3 > 0 ∧ 𝑣5 > 0 ∧ 𝑣3
2𝑣7 + 𝑣5

2𝑣4 < 2𝑣3𝑣5𝑣6)

⇒ (𝑣4 ≤ 0 ∧ 𝑣7 ≤ 0 ∧ 𝑣4𝑣7 ≥ 𝑣6
2)]

= {(𝑣4, 𝑣6, 𝑣7) ∈ ℝ
3: ((𝑣4 = 0 ∨ 𝑣7 = 0) ∧ 𝑣6 = 0)  ∨ 𝐺(𝑣4, 𝑣6, 𝑣7)} 

(36) 

 

The quantifier-free representation of the set is the disjunction of two terms.  The details 

of the second term are: 

 

𝐺(𝑣4, 𝑣6, 𝑣7) = (𝑣4 ≥ 0 ∧ 𝑣7 ≥ 0 ∧ 𝑣6 ≤ 0) ∨ (𝑣4𝑣7 ≥ 𝑣6
2 ∧ 𝑣4𝑣7 > 0) (53) 

   

Equation (48), reproduced below (and also using the condensed notation from Table 1), is 

a CAD for the set representing the intersection of the assumption and hypothesis above. 

 

                                                
63 Approximately 0.384. 
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{
(𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7) ∈ ℝ

5:

(𝑣3 > 0 ∧ 𝑣5 > 0 ∧ 𝑣3
2𝑣7 + 𝑣5

2𝑣4 < 2𝑣3𝑣5𝑣6) ∧ (𝑣4 ≤ 0 ∧ 𝑣7 ≤ 0 ∧ 𝑣4𝑣7 ≥ 𝑣6
2)
}

= {
(𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7) ∈ ℝ

5:
(𝑣4 = 𝑣6 = 0 ∧ 𝑣7 < 0 ∧ 𝑣3 > 0 ∧ 𝑣5 > 0) ∨ 𝛤(𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7)

} 
(48) 

 

The CAD is a disjunction of two terms.  The details of the second term are: 

 

𝛤(𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7) = 𝑣3 > 0∧ 𝑣4 < 0

∧

{
 

 
[𝑣5 > 0 ∧ 𝑣6 ≥ 0 ∧ 𝑣4𝑣7 ≥ 𝑣6

2] ∨

[
 
 
 
 

𝑣6 < 0 ∧ [(𝑣4𝑣7 = 𝑣6
2)

∧ ((𝑣5 > 0 ∧ 𝑣5 + √
𝑣3
2

𝑣4
2
(𝑣6

2 − 𝑣4𝑣7) <
𝑣3𝑣6
𝑣4

)

∨ 𝑣4𝑣5 + 𝑣4√
𝑣3
2

𝑣4
2
(𝑣6

2 − 𝑣4𝑣7)−𝑣3𝑣6 < 0)]

]
 
 
 
 

}
 

 
 

(54) 

 

Appendix III.  A 41-dimensional example from growth theory 
 This is a two period version of the neoclassical growth model with fiscal policy.  

Output in each period is an additively separable function of capital k and labor n.64  Given 

an initial capital stock k1, first period output can be used to consume (privately c, or 

publicly g) or accumulate capital.  Second period output and capital are consumed: 

 

𝑓(𝑛1) + ℎ(𝑘1) = 𝑐1 + 𝑔1 + (𝑘2 − 𝑘1) (55) 

 

𝑓(𝑛2) + ℎ(𝑘2) + 𝑘2 = 𝑐2 + 𝑔2 (56) 

 

with 

                                                
64 A separable, rather than homogeneous, production function adds to the algebraic complexity of 
the problem.  A nonseparable-nonhomogeneous production function would be more complex than 
either of these. 
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𝑓(𝑛𝑡) > 0, 𝑓
′(𝑛𝑡) > 0, 𝑓

′′(𝑛𝑡) ≤ 0,
𝜕

𝜕𝑛𝑡
[𝑛𝑡𝑓

′(𝑛𝑡)] > 0    𝑡 = 1,2 (57) 

 

ℎ(𝑘𝑡) > 0, ℎ′(𝑘𝑡) > 0    𝑡 = 1,2 (58) 

 

ℎ′′(𝑘2) ≤ 0 (59) 

 

These resource constraints themselves introduce nineteen variables (from the algebraic 

perspective): {𝑓(𝑛1), 𝑓(𝑛2), ℎ(𝑘1), ℎ(𝑘2), 𝑐1, 𝑐2, 𝑔1, 𝑔2, 𝑘1, 𝑘2, 𝑛1, 𝑛2, 𝑓′(𝑛1), 𝑓′(𝑛2), 

𝑓′′(𝑛1), 𝑓
′′(𝑛2), ℎ

′(𝑘1), ℎ
′(𝑘2), ℎ′′(𝑘2)} .  The representative agent’s utility over time 

series for consumption and labor are: 

 

𝑢(𝑐1, 𝑛1) +
𝑢(𝑐2, 𝑛2)

1 + 𝜌
 (60) 

 

𝜌 > −1 ,   
𝜕𝑢(𝑐𝑡, 𝑛𝑡)

𝜕𝑐𝑡
> 0 ,   

𝜕𝑢(𝑐𝑡, 𝑛𝑡)

𝜕𝑛𝑡
< 0 ,   

𝜕2𝑢(𝑐𝑡, 𝑛𝑡)

𝜕𝑛𝑡
2 < 0 ,   

𝜕2𝑢(𝑐𝑡, 𝑛𝑡)

𝜕𝑐𝑡
2 < 0 (61) 

 

𝜕2𝑢(𝑐𝑡 , 𝑛𝑡)

𝜕𝑛𝑡
2

𝜕2𝑢(𝑐𝑡, 𝑛𝑡)

𝜕𝑐𝑡
2 − (

𝜕2𝑢(𝑐𝑡, 𝑛𝑡)

𝜕𝑐𝑡𝑛𝑡
)

2

> 0 (62) 

 

𝜕𝑀(𝑐𝑡, 𝑛𝑡)

𝜕𝑐𝑡
> 0 ,   

𝜕𝑀(𝑐𝑡, 𝑛𝑡)

𝜕𝑛𝑡
> 0    𝑡 = 1, 2 (63) 

 

where M is the intratemporal marginal rate of substitution function − 𝜕𝑢/𝜕𝑛

𝜕𝑢/𝜕𝑐
. 65   Not 

including (60), the preference restrictions introduce eleven more variables, where are  

and the various partial derivatives above. 

 The representative agent chooses consumption, labor, and capital.  He pays labor 

income taxes in each period at constant rates 1 and 2, respectively.  In addition to the 

resource constraints above, the equilibrium conditions are: 

                                                
65 The restrictions (63) are that consumption and leisure are normal goods in the relevant range. 
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𝑀(𝑐𝑡, 𝑛𝑡) = (1 − 𝜏𝑡)𝑓
′(𝑛𝑡),   𝑔𝑡 = 𝜏𝑡𝑛𝑡𝑓

′(𝑛𝑡)    𝑡 = 1, 2 (64) 

 

(1 + 𝜌)
𝜕𝑢(𝑐1, 𝑛1)

𝜕𝑐1
/
𝜕𝑢(𝑐2, 𝑛2)

𝜕𝑐2
= 1 + ℎ′(𝑘2) (65) 

 

These conditions add two more variables, the tax rates, to the previous thirty.  In their 

comparative static form (i.e., total derivatives with respect to g), there are eleven more 

variables: 𝑑𝑐𝑡
𝑑𝑔
,
𝑑𝑛𝑡

𝑑𝑔
,
𝑑𝑘𝑡

𝑑𝑔
,
𝑑𝜏𝑡

𝑑𝑔
,
𝑑𝑔𝑡

𝑑𝑔
, 𝑡 = 1,2  and 𝑑𝜌

𝑑𝑔
.  This makes a total of 43 variables, 

although two of them (k1 and k2) are not part of the hypothesis because it involves the 

total derivative of the resource constraints rather than the resource constraints themselves. 

 The hypothesis is that – assuming (57)-(59), (61)-(63), 0 < t < 1, ct > 0, nt > 0, gt 

 0, the total derivatives of (55), (56), (64), and (65) – that a permanent increase in 

government consumption (𝑑𝑔1
𝑑𝑔

=
𝑑𝑔1

𝑑𝑔
= 1,

𝑑𝜌

𝑑𝑔
=

𝑑𝑘1

𝑑𝑔
= 0)  beginning from an allocation 

that is not on the upward-sloping part of the Laffer curve (𝑑𝜏1
𝑑𝑔
≤ 0,

𝑑𝜏2

𝑑𝑔
≤ 0)   must 

increase the amount of labor in period one (𝑑𝑛1
𝑑𝑔

> 0).  Quantifier elimination, taking less 

than 300 milliseconds (see the final row of Table 3), shows that the hypothesis is True.  It 

also shows that the hypothesis is not always True if either the Laffer curve assumptions 

or the normal-goods assumptions are removed.66 

  

                                                
66 Intuitively, a permanent increase in government consumption has both a wealth effect and a 
substitution effect.  The Laffer curve and normal goods assumptions guarantee that both effects 
on labor are in the same direction. 
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Appendix IV.  Two Classic Examples 
 Economics is replete with hypotheses that can be expressed in the real quantifier 

elimination framework (5).  This appendix briefly shows two more of them, drawn from 

some of the most famous hypotheses in economics: Alfred Marshall’s equilibrium 

comparative statics and Anthony Downs’ Median Voter Theorem. 

 Marshall (1895, Book V, Chapter XII) concluded that, for any supply-demand 

equilibrium in which the two curves have their usual slopes, a downward supply shift 

increases the equilibrium quantity q and decreases the equilibrium price p.  A local-

comparative-statics version of Marshall’s result is: 

 

∀ {𝑑′(𝑞), 𝑠′(𝑞),
𝕕𝑞

𝕕𝑎
,
𝕕𝑝

𝕕𝑎
} 

[(𝑑′(𝑞) < 0 ∧ 𝑠′(𝑞) ≥ 0 ∧
𝕕

𝕕𝑎
[𝑠(𝑞) − 𝑎] =

𝕕𝑝

𝕕𝑎
=
𝕕

𝕕𝑎
𝑑(𝑞)) ⇒ (

𝕕𝑞

𝕕𝑎
> 0 ∧

𝕕𝑝

𝕕𝑎
< 0)]

= 𝑇𝑟𝑢𝑒 

(66) 

 

where the inverse demand and supply curves are d(q) and s(q)  a, respectively (i.e., the 

parameter a shifts the supply curve down).  The first two assumptions are local slope 

assumptions.  The third says that a perturbs the equilibrium.  A global version of the 

result requires nine variables rather than four: 

 

∀{𝑎, 𝑑(𝑞𝐻), 𝑠(𝑞𝐻), 𝑞𝐻 , 𝑝𝐻 , 𝑑(𝑞𝐿), 𝑠(𝑞𝐿), 𝑞𝐿 , 𝑝𝐿} 

[([𝑑(𝑞𝐿) − 𝑑(𝑞𝐻)](𝑞𝐿 − 𝑞𝐻) < 0 ∧ [𝑠(𝑞𝐿) − 𝑠(𝑞𝐻)](𝑞𝐿 − 𝑞𝐻) ≥ 0 ∧ 𝑎 > 0

∧ 𝑠(𝑞𝐻) = 𝑝𝐻 = 𝑑(𝑞𝐻) ∧ 𝑠(𝑞𝐿) − 𝑎 = 𝑝𝐿 = 𝑑(𝑞𝐿)) ⇒ (𝑞𝐿 > 𝑞𝐻 ∧ 𝑝𝐿 < 𝑝𝐻)] = 𝑇𝑟𝑢𝑒 

(67) 

 

The first two assumptions are global slope assumptions.  The last three say that the L 

equilibrium differs from the H equilibrium by a downward supply shift in the amount a. 

 In Downs’ (1957) model, public policy g is one dimensional.  Voters are 

heterogeneous, with single-peaked policy preferences that align them from left to right.  

The continuous CDF F(g) denotes the fraction of the electorate whose preferred policy is 
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no greater than g.  Each of two candidates L, R proposes a policy, which for brevity I take 

to be distinct with gL < gR.67  The proof by quantifier elimination is:  

 

∀{𝑣𝐿 , 𝐹(𝑔𝐿), 𝑣𝑅 , 𝐹(𝑔𝑅)} 

[(0 ≤ 𝐹(𝑔𝐿) < 𝐹(𝑔𝑅) ≤ 1 ∧ 𝑣𝐿 + 𝑣𝑅 = 1 ∧ [𝐹(𝑔𝐿) < 𝐹(𝑔𝑅) ⇒ 𝐹(𝑔𝐿) < 𝑣𝐿 < 𝐹(𝑔𝑅)])

⇒ ([𝐹(𝑔𝐿) =
1

2
⇒ 𝑣𝐿 > 𝑣𝑅] ∧ [𝐹(𝑔𝑅) =

1

2
⇒ 𝑣𝑅 > 𝑣𝐿])] = 𝑇𝑟𝑢𝑒 

(68) 

 

where vL and vR denote the vote shares received by the left and right candidates, 

respectively.  The first assumption is a normalization plus the relevant properties of a 

cumulative density function.  The second assumption reflects the arithmetic of vote 

shares in a two-candidate election.  The final assumption is single-peaked preferences: 

voters choose the candidate whose proposal is closest to their preference (see also 

(Acemoglu and Robinson 2006, Definition 4.1)). 68   The hypothesis asserts that 

whichever, if any, candidate’s policy is at the median is the election winner. 

  

                                                
67 I leave it to the reader to show how the Tarski formula could be amended to allow for the 
additional possibility of gL = gR. 
68 Note that, for the purposes of proving the theorem, we do not have to specify how the voters 
between gL and gR vote, except that some of them vote left and others vote right (hence the strict 
inequality surrounding vL). 



Figure 1.  Parabolas with real roots 



Figure 2.  Circle-hyperbola CAD 



Figure 3b.  Double exponential: close range Figure 3a.  Double exponential: wide range 



Figure 4.  Functional form assumptions unnecessarily 

complicate quantifier elimination 
Times for deciding universal sentences with    , 

relative to leaving f(n) unspecified. 

Note: Each observation takes  to be a rational number.  The Tarski formula has only ten inequalities.  Table 4’s Tarski formula has twenty-three. 
 

𝑛𝛼 



Figure 5.  Mathematica screen shot 

A monopolist’s pass through rate 

Note: For brevity, the three unnecessary assumptions among (10)-(12) were not entered.  As a result, the system is six dimensional rather than nine. 
 



Figure 6b.  Laffer curve example: fine detail Figure 6a.  Laffer curve example: wide range 



Table 1.  Structure of the polynomial system 
representing the concave production function problem 



Table 2.  Examples and counterexamples 
for the Laffer curve model 



Table 3.  Decision times for the economic models

Times for deciding universal sentences, in milliseconds

Model Mathematica REDLOG
Concave production function (derivatives at one point)

2 inputs 7 51 < 50
3 inputs 12 128,812 < 50
4 inputs 18 > 10^8 > 10^8

Concave production function (three-point comparisons)
Any number of inputs 10 66 60

Monopolist's pass-through 9 58 60
Laffer-curve surprises

Basic assumptions only 14 223 180
Normal goods restriction 16 725 200
Elastic labor demand restriction 14 740 190

Growth model processed in 41 dimensions 41 279 230

Dimensions 
represented

Decision time 
(milliseconds)

Note : Universal sentences state a hypotheses to be True for all N -dimensional real 
numbers, where N  is the number of dimensions needed to represent the model, and 
typically take longer to decide than existential sentences.  Computer time was 
calculated with Mathematica 10.4 and the PSL version of REDLOG (version 3562) 
on a Macbook Air Mid 2012 2GHz Interl i7, without using parallel processing or 
searching for more efficient variable-elimination orders.  The variable-elimination 
order is reverse alphabetical (as sorted by Mathematica), except for the concave 
production function models, which are alphabetical.



Table 4.  Functional form assumptions unnecessarily complicate quantifier elimination

Times for deciding universal sentences, in milliseconds, from REDLOG
Laffer curve model (14 dimensions)

Production function specification own term
No functional-form assumption

Elastic labor demand 190 2 3
Constant elastic labor demand 380 2 3

Cobb-Douglas, with exponent of:
1/2 50 2 3
2/3 120 3 4
3/4 240 4 5
3/5 > 10^8 5 7
Symbolic
Any irrational number

Max polynomial degree

Note : The elastic labor demand specification is (w1n1-w2n2)(n1-n2)>0.  The constant 
elastic labor demand specification also has (w1n1c2=w2n2c1).  Max own degree is the 
maximum exponent on any one variable in the polynomial system.  Term degree is the 
sum of exponents on all variables in a mononomial (max refers to the mononomial with 
the greatest term degree).  Note that equation (27) is not part of these systems.

Decision time 
(milliseconds)

Outside the polynomial framework
Outside the polynomial framework
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