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Abstract

We study time variation in the shape of the distribution of stock returns. In a global

sample covering 17 countries, returns are more left skewed and fat tailed during good

times than during bad times. This pattern creates pro-cyclical variation in conditional

tail risk, which is the risk of losing several conditional standard deviations of returns.

The variation in higher-order moments is hard to reconcile with the idea that disaster

risk is elevated in bad times, which is otherwise a basic premise of leading disaster-based

asset pricing models.
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1 Introduction

The shape of the distribution of stock returns plays a key role in asset pricing. A large

literature documents how deviations of the return distribution from the normal distribution

induces tail risk and that exposure to such tail risk is being compensated in asset markets

(see e.g. Kelly and Jiang, 2014; Giglio, Kelly, and Pruitt, 2016; Bali and Murray, 2013; Bali,

An, Ang, and Cakici, 2014; Jiang, Wu, Zhou, and Zhu, 2020). Another line of research on

disaster-based asset pricing argues that the deviation from the normal distribution helps

justify the high and time varying equity risk premium (Barro, 2006; Gabaix, 2012; Wachter,

2013).

We document strong cyclical variation in the shape of the return distribution. In a broad

global sample, we consistently find that the shape of the return distribution is more left

skewed and fat tailed during good times than during bad times. We illustrate this variation

in Figure 1, in which we define good and bad times based on the ex ante volatility of stock

return. The figure plots the risk-neutral return distribution for S&P 500 for a day with low

volatility and for a day with high volatility. The distribution is notably more left skewed and

fat tailed on the low volatility day (good times) than on the high volatility day (bad times).

The shape of the distribution of stock returns is thus riskier during good times than during

bad times, in the sense that there is relatively more mass in the left tail of the distribution.

This pattern generalizes across our sample and across different measures of good and bad

times.

We document our results in a broad global sample covering stock market indexes in 17

countries. Through most of the paper, we study and summarize the shape of the return

distribution by the behavior of its higher-order moments. We focus particularly on the third

and fourth standardized moments, which capture the skewness and kurtosis of a distribution.1

We study the behavior of both ex post realized moments and ex ante expected moments as

estimated in a broad global sample of option prices. Our sample of option prices runs from

1996 and contains 20 different stock markets spread across the US, Europe, and Asia.

We first document a strong comovement between skewness and kurtosis. The two mo-

ments are strongly negatively correlated, which suggests there are periods where the return

distribution is both more left skewed and more fat tailed. Both of these characteristics makes

the shape of the return distribution riskier in the eyes of most risk averse investors, in the

sense that they would lead to a lower expected utility than a normal distribution with the

1We consider standardized, as opposed to raw, moments throughout, as raw moments reflects both the
shape of the return distribution and the level of variance.
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Figure 1: Standardized risk-neutral distributions. The figure shows the (standardized)
risk neutral distribution for the S&P 500 on December 29, 2017 (left) and on March 31, 2009
(middle). Standardized returnt = (returnt −meant)/standard deviationt. The standardized distri-
butions are re-scaled to integrate to one. The distributions are for quarterly horizon returns.

same mean and variance would.2 On the other hand, there are periods where the shape of

the return distribution is relatively safe, in the sense that it is close to a normal distribution

and thus does not contain any “excess” probability of tail losses. The result holds both for

realized and expected moments, and it is statistically significant on the quarterly horizon in

each of the 20 stock markets we study.

More importantly, there are strong cyclical fluctuations in the higher-order moments of

the return distribution. During good times, the distribution is more left skewed (skewness

is more negative) and fat tailed (kurtosis more positive) than during bad times. The shape

of the distribution is thus riskier during good times than bad times. This result holds across

expected and realized moments and across many different definitions of good and bad times,

including definitions based on volatility, valuation ratios, recessions, and measures of real

economic activity. Higher-order moments thus tend to make the distribution of returns

riskier during good times than bad times. This cyclical variation in higher-moment risk is

opposite that of the second moments, which makes the distribution riskier during bad times

(i.e., variance increases during bad times).

The variation in higher-order moments influence the tail risk in the distribution of market

returns. It is useful to separate between two different types of tail risk. One measure of tail

risk is the probability of an unconditional tail loss. This could, for instance, be the probability

of observing an unexpected loss of 30% or more over the subsequent month. This probability

is influenced by the variance of the distribution as well as the skewness, kurtosis, and other

2For some investors, such as investors with quadratic utility, the expected utility is not influenced by the
variation in higher-order moments.
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higher-order moments. The literature has carefully studied this type of tail risk, finding

that it generally peaks in bad times (Kelly and Jiang, 2014; Bollerslev and Todorov, 2011b).

It would be natural to conjecture that this increase in tail risk is, at least in part, driven

by the distribution becoming more left skewed and fat tailed, but this is not the case. We

show that the increase in unconditional tail risk during bad times is driven by an increase in

the standard deviation, not by the higher-order moments of the distribution. Higher-order

moments, in fact, serve to reduce the total amount of tail risk during bad times.

In contrast to the above literature, we focus on conditional tail risk, which is the proba-

bility of observing a loss of X conditional standard deviations. This tail probability is driven

by the higher-order moments, and is informative about the riskiness of the shape of the

distribution. This tail probability has broad implications for investors and regulators, as

discussed shortly.

We document that the conditional tail risk is pro-cyclical, as expected given the variation

in higher-order moments. We estimate tail loss probabilities from option prices using both a

non-parametric method based on Breeden and Litzenberger (1978) as well as a parametric

approach from Bollerslev, Todorov, and Xu (2015). Both methods produce conditional tail

probabilities that are larger when skewness is more negative and kurtosis is more positive.

The tail probabilities are pro-cyclical as they increase during good times and decrease during

bad times, hitting the lowest values during the global financial crisis. During bad times, the

conditional tail loss probabilities come close to those predicted by a normal distribution,

which is to say that there is very little risk coming from higher-order moments during these

periods.

The fact that higher-moment risk disappears in bad times is hard to reconcile with the

idea that these are periods with high disaster risk, as argued by a large literature in asset

pricing (Tsai and Wachter 2015). Disaster risk is often thought of as an elevated probability

of observing very negative returns (driven by large, negative jumps). The possibility of

such disastrous returns should, everything else equal, make the return distribution more left

skewed and fat tailed. However, the return distribution is close to the normal distribution

during bad times, which means that very positive returns are as likely as very negative returns

during these periods. We show, through studies of leading disaster models by Gabaix (2012)

andWachter (2013), that such variation in the shape of the distribution is difficult to reconcile

with the notion that bad times are periods of elevated disaster risk. In these models, elevated

disaster risk indeed results in a more left skewed and fat tailed distribution of returns. The

results thus question whether bad times are periods with elevated disaster risk – and by

3



extension, whether the high risk premia observed during bad times are compensation for

elevated disaster risk.

Our findings on disaster risk are consistent with recent research by Baron, Xiong, and

Ye (2023). The authors construct an objective measure of disaster risk across a global panel

of 20 countries from 1870 to 2021. The authors find that disaster risk is not elevated during

what is usually referred to as “bad times” in asset pricing, namely periods with low valuation

ratios and high equity risk premia. Instead, disaster risk appears to be elevated a few years

before bad times materialize, which is consistent with our finding that higher-moment risk

peaks during good times, such as just before the global financial crisis.3 The results are also

consistent with Dew-Becker and Giglio (2023), who show that the largest observed crashes in

the market portfolio are not driven by jumps. Instead, the authors argue that these crashes

are predated by a substantial increase in diffusive volatility, and that the crashes are driven

by the diffusive element in returns rather than jumps.

While the fluctuations in higher-order moments are fundamentally at odds with disaster

models, they are straightforward to account for in reduced-form jump diffusion models. The

fluctuations in skewness, for instance, can qualitatively be accounted for with a jump diffusion

model with stochastic volatility and constant jump intensity in returns (with jumps being

negative on average). In such a model, the skewness is generally a product of two opposing

forces: the negative jumps push towards a more left skewed distribution while the diffusive

volatility push towards a more symmetric distribution. When diffusive volatility is elevated,

the diffusive volatility plays a relatively larger role and the distribution thus becomes more

symmetric. On the other hand, when diffusive volatility is very low, the jump component

plays a relatively larger role and the distribution thus becomes more left skewed. Eraker,

Johannes, and Polson (2003) estimate a series of jump diffusion models to stock returns

and find that a model with stochastic volatility and constant jumps provides the best fit.

The variation in skewness that we uncover is thus consistent with findings of the previous

literature based on jump diffusion models (see Section 4 for further discussion).

The cyclical fluctuations in higher-moment risk has direct implications for investors and

regulators. Regulators are often interested in measuring and controlling the probability of

tail events. For instance, the Basel regulation requires banks and other financial institutions

to report and control the value-at-risk for their assets. Our results suggest that measures only

based on variance are likely to understate the true risk of portfolios that contain equities.

3Muir (2017) further questions the extent to which financial fluctuations are driven by macroeconomic
risks.
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More importantly, this mistake is going to be the largest during good times with low variance

and high prices, which are potentially periods where regulators should worry about over-

accumulation of risk in the economy. Moreover, many investors follow volatility-managed

strategies (Moreira and Muir 2017) in the hope of keeping portfolio risk constant over time.

However, the cyclical fluctuations in higher-moment risk translates directly into cyclical

fluctuations in riskiness of such portfolios, which we show can be substantial.

The paper proceeds as follows. Section 2 explains our main methodology and data.

Section 3 documents time variation in higher-order moments. Section 4 estimates conditional

tail risk. Section 5 relates our findings to disaster-based asset pricing models. Section 6

concludes.

2 Methodology

We summarize the shape of the return distribution through the behavior of the standard-

ized moments. As is well known, the third standardized moment captures the skewness of

a distribution while the fourth standardized moment captures the mass in the tails of a

distribution. We estimate the conditional moments of stock market returns in two ways: (i)

we infer the ex ante moments of stock market returns using the forward-looking information

in current and observable asset prices and (ii) we estimate the ex post realized moments

of stock market returns using the backward-looking information in past realized returns.

Section 2.1 explains how we estimate ex ante moments from option prices and Section 2.2

explains how we estimate ex post realized moments. In Section 2.3, we discuss summary

statistics of the inferred moments and run predictive regressions of realized moments onto

expected moments.

2.1 Inferring Ex Ante Stock Market Moments from Asset Prices

Breeden and Litzenberger (1978), Bakshi and Madan (2000), and Bakshi, Kapadia, and

Madan (2003) shows that the arbitrage free price of a claim to a future (twice differentiable)

payoff can be expressed in terms of a continuum of put and call option prices. Specifically,

we can write the n’th risk-neutral raw moment of stock market returns, Rt,T , as:

Et[R
n
t,T ] = (Rf

t,T )
n +Rf

t,T [p(n) + c(n)] , (1)
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with

p(n) =

∫ Ft,T

0

n(n− 1)

Sn
t

(
StR

f
t,T − Ft,T +K

)n−2

putt,T (K)dK (2)

c(n) =

∫ ∞

Ft,T

n(n− 1)

Sn
t

(
StR

f
t,T − Ft,T +K

)n−2

callt,T (K)dK, (3)

where Ft,T is the forward price, Rf
t,T is the gross risk-free rate, and callt,T (K) and putt,T (K)

are call and put option prices written on the stock market at time t with horizon T − t and

strike K.

Since we do not observe a continuum of call and put option prices, we numerically ap-

proximate the integrals in Equation (2) in the data. We write the price at time t of an

out-of-the money option with strike K and maturity T as

Ωt,T (K) =

{
callt,T (K) if K ≥ Ft,T

putt,T (K) if K < Ft,T .
(4)

We let K1, ..., KN be the (increasing) sequence of observable strikes for the N out-of-the

money put and call options and define ∆Ki =
Ki+1−Ki−1

2
with

∆Ki =

{
Ki+1 −Ki if i = 1

Ki −Ki−1 if i = N .
(5)

With this notation, we approximate the integrals in Equation (2) by observable sums such

that the n’th risk-neutral raw moment becomes:

Et[R
n
t,T ] = (Rf

t,T )
n +Rf

t,T

[
N∑
i=1

n(n− 1)

Sn
t

(StR
f
t,T − Ft,T +Ki)

n−2Ωt,T (Ki)∆Ki

]
(6)

We obtain the standardized moments by combining Equation (6) for different values of n

and using the standardized moment formula. Specifically, the ex ante risk-neutral skewness

is:

Skewnesst,T =
Et[R

3
t,T ]− 3Et[Rt,T ](Et[R

2
t,T ]− Et[Rt,T ]

2)− Et[Rt,T ]
3

(Et[R2
t,T ]− Et[Rt,T ]2)3/2

(7)
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and the ex ante risk-neutral kurtosis is:

Kurtosist,T =
Et[R

4
t,T ]− 3Et[Rt,T ]

4 + 6Et[Rt,T ]
2Et[R

2
t,T ]− 4Et[Rt,T ]Et[R

3
t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)2

(8)

We use data from the Ivy DB databases from OptionMetrics to extract information on

vanilla call and put options written on the stock market indexes. We consider a total of

twenty stock market indexes around the world. The data on US indexes spans the period

from January 1996 to December 2020, the European data spans the period from January

2002 to January 2021, and the Asian data is from August 2004 to December 2019.

We do not observe options on all maturities. We therefore interpolate (or extrapolate if

needed) standardized moments across maturities. As a robustness check, we also consider

the alternative of estimating moments using the interpolated option prices in the volatility

surface files from the Ivy DB US database in OptionMetrics. This database contains infor-

mation on options written on US indexes that have standardized maturities and strikes (in

the form of option deltas). Table A3 reports the pairwise correlations between the implied

moments using either the standardized option data or the raw data. The correlations are

lower for higher-order moments than for variances because the standardized data set contains

fewer observations in the tails of the distributions and the higher-order moments are likely

underestimated using this database. Nevertheless, we find that our main results, which we

present in the next section, still hold when using the standardized option database.4

We also do not observe options for all strike prices. Throughout the paper, we use all

observable prices. However, the number of available strikes increases over time, which might

cause our moments to trend through time.5 We consider several approaches to address this

issue as explained in Appendix A. Overall, our results are robust to alternative choices related

to the use of the observable option prices.

4See Table A4 for the US results using the standardized option database.
5As an example of this increase in traded option strikes throughout our sample, consider the S&P 500

index. In the beginning of our sample (Jan 1996), we observe option prices with strikes ranging from the spot
price plus/minus three risk-neutral standard deviations. At the end of our sample (Dec 2020), we observe
option prices with strikes as far as sixteen risk-neutral standard deviations into the tails of the distribution.
This increase in options traded at different strikes might lead the estimated moments to be trending over
time when we use all observable option prices simply because we have more information at the end of our
sample than in the beginning. This fact is related to concerns put forth by Andersen and Bondarenko (2007)
who note that option implied volatilities can be hard to measure accurately because of sparse coverage of
option prices with strikes in the tails of the distribution.
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2.2 Inferring Ex Post Realized Stock Market Moments

We compute conditional realized moments at the monthly and quarterly horizon. For vari-

ance, we apply the common method and use the sum of squared daily returns over the period

as a measure of realized variance:

Realized variancet,T =
T−1∑
s=t

r2s,s+1 (9)

where rs,s+1 = log(Rs,s+1) is the log-returns of the stock market between dates s and s+ 1.

We follow the methods of Neuberger (2012) and Bae and Lee (2021) to estimate realized

skewness and kurtosis on monthly and quarterly horizon using daily data. In particular, we

compute conditional realized skewness as

Realized skewnesst,T =

∑T−1
s=t r3s,s+1 + 3× rs,s+1∆M2,s+1,T

Realized variance
3/2
t,T

, (10)

where ∆M2,s+1,T = (M2,s+1,T −M2,s,T ) and M2,s,T = Es[r
2
s,T ] is the expected variance of log

returns from time s to T ,6 and realized kurtosis as

Realized kurtosist,T =

∑T−1
s=t r4s,s+1 + 6× r2s,s+1∆M2,s+1,T + 4× rs,s+1∆M3,s+1,T + 3× (∆M2,s+1,T )

2

Realized variance2t,T
(11)

where ∆M3,s+1,T = (M3,s+1,T − M3,s,T ) and M3,s,T = Es[r
3
s,T ] is the expected third raw

moment between times s and T .

In estimating the realized skewness and kurtosis, we need the expected raw moments in

∆M2,s+1,T and ∆M3,s+1,T . These quantities are not directly observable in the data and we

therefore follow Bae and Lee (2021) and compute these expectations under the risk-neutral

measure using option prices as in Equation (6). We use moments for options with 30-day

(90-day) maturity when inferring monthly (quarterly) horizon realized moments.7

6Neuberger (2012) uses a slightly different formulation of the third standardized moment than in Equation
(10). We choose this formulation, which is used in Bae and Lee (2021), to describe skewness and kurtosis
with similar mathematical formulation.

7In principle, the formula for the realized moments says that the horizon of the raw moments changes over
the period. However, options are not available for all horizons on all days, which mean we cannot perfectly
match the target horizons, leading us to the pragmatic solution of using 30-day (90-day for quarterly realized
moments) options. We have experimented using expected raw moments with different horizons and we found
that alternative choices have little impact on the realized moments. This conclusion aligns with results and
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We note that these are proxies for the true realized moments as discussed in Bae and Lee

(2021). In some cases, the estimates of realized kurtosis turns negative, which is a direct

consequence of not observing the physical expected moments in ∆M2,s+1,T and ∆M3,s+1,T

and not having data to perfectly match the horizons on these moments. Removing data

points where the kurtosis is negative has little impact on the results.

2.3 Summary Statistics

Table 1 reports the average variance (annualized and in percentages), skewness, and kurtosis

for the 20 stock markets in our sample. The table reports moments at the monthly and

quarterly horizon for both the expected and realized moments. The table shows substantial

dispersion in the average variance across stock markets. This is true for both implied and

realized variance and at both the monthly and quarterly horizons. We find that both implied

and realized skewness on average is negative for all indexes and at all horizons, suggesting

that the stock market return distributions around the world feature the same directional

tilting. Similarly, we find excess kurtosis (kurtosis> 3) for all stock markets in our sample,

implying the return distributions on average have fatter tails than the normal distribution.

Before we head into our main empirical analysis, we ensure the ex ante implied moments

predict the ex post realized moments. This serves both as a sanity check of the methodology

and alleviates the concern that risk-neutral moments are poor proxies of realized moments.

Previous work by Neuberger (2012), Bae and Lee (2021), and Dew-Becker (2021) already

shows that ex ante option implied moments predict realized moments in the US, but we need

to ensure that this result also holds in our broader international sample.

Figure 2 shows scatter plots of the average ex ante implied moments up against the re-

spective average ex post realized moments. We find a strong positive and linear relationship

between average ex ante variance and ex post realized variance. For monthly horizon vari-

ances, the slope coefficient is 0.73 and the adjusted R2 is 53.7%. (A slope for variance that is

less than one is expected due to the variance risk-premium, see e.g. Bollerslev, Tauchen, and

Zhou (2009)). We find similar results for skewness and kurtosis, with R2 ranging from 43%

to 70% depending on the moment and the horizon. Overall, in averages, there is a strong

linear relationship between the ex ante implied moments and the ex post realized moments.

To address the contemporaneous relation between the moments, Panel A of Table 2

comments in Dew-Becker (2021) who estimate realized monthly moments using 15-day maturity options to
infer proxies for the expected moments.

9



reports the results of panel regressions of the form

Realized momentit,T = αi + β Et[Momentit,T ]︸ ︷︷ ︸
Option implied

+ϵit,T . (12)

where i represent the different stock market indexes. Panel A reports the results of two

separate panel regressions. In the first panel regression, the first row, we pool the moments

from all indexes and run the regression while including index fixed effects and clustering

standard errors by time and country.8 In the second panel regression, the second row,

we first standardize the (standardized) moments within each index before we pool them

together.9 We make this small transformation because some indexes tend to have larger

moments in absolute values than others and these indexes determine most of the variation in

panel regression (i) and might drive the results. In the second panel regression, we clusters

standard errors by country and time and include index fixed effects.

The first column of Panel A reports the slope coefficient of ex post realized skewness

regressed on ex ante implied skewness. In both panel regressions, the slopes are 0.19, which

are statistically significant at the 1% level with a t-statistic of 3.01 and 3.20 respectively. The

adjusted R2’s are 3% to 15%. The results presented in the remaining columns of Panel A

support the hypothesis that the conditional ex ante implied moments predict the conditional

ex post realized moments. The results are even stronger at the quarterly horizon where the

adjusted R2 for skewness is as high as 35%.

Panel B of Table 2 reports the result of regression (12) for each stock market index indi-

vidually. The index-wise results also support the hypothesis that ex ante implied moments

predict ex post realized moments. The results are particularly strong for the US indexes,

which is not surprising as these are the indexes where we have the richest option data and

therefore are most confident in the estimated moments. All coefficients that are statistically

significant support that implied moments predict realized moments positively. The index-

wise regressions are statistically significant at the 10% level with positive slopes in 12/20

regressions for monthly skewness, 10/20 for monthly kurtosis, 16/20 for quarterly skewness,

and 11/20 for quarterly kurtosis.

8Clustering by country or by index has little effect on our results. We choose to cluster by country rather
than by index because the four US indexes might have correlated error terms.

9For example, before pooling the data for the second panel regression for realized skewness onto im-
plied skewness, we standardized both the right and the left side as: Skewnessstandardizedt,T = (Skewnesst,T −
mean(Skewnesst,T ))/variance(Skewnesst,T )

1/2 where the mean and the variance of the skewness are the
unconditional in-sample estimates for the realized or implied skewness respectively.
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Overall, we conclude that there is a strong positive linear relation between the ex ante

implied moments and the ex post realized moments, both in averages and in the time-series.

Next, we use the moments to reveal new facts about the higher-moment risk of stock market

returns.

3 Time Variation in Higher-Order Moments

This section studies time variation in the 3rd and 4th moment of the return distribution

for stock markets around the world. Section 3.1 documents comovement among the higher-

order moments over time. Section 3.2 documents cyclical fluctuations in the higher-order

moments. Section 3.3 identifies a global component in higher-moment risk.

3.1 Time Variation and Comovement in Higher-Order Moments

Figure 3 shows the time series of the ex ante option implied skewness and kurtosis at the

monthly and quarterly horizon for the S&P 500 stock market index. The skewness is negative

on almost all days and kurtosis is often well above three. The conditional distributions is

left skewed and fat tailed relative to the normal distribution. These results are consistent

with the the well-known evidence from histograms of historical returns.

Figure 3 also shows that the skewness tends to be more negative at times when the

kurtosis is more positive, suggesting that there are periods where both higher-order moments

contribute to increased probability in the left tail of the return distributions. To formally

document this between the higher-order moments, Panel A of Table 3 reports the slope

coefficients of the panel regressions across the 20 stock indexes,

Skewnessit,T = αi + βKurtosisit,T + ϵit,T (13)

where i represent the different stock market indexes. Panel A of Table 3 reports the results

of two panel regression where we. In the first regression we pool the moments of all the

indexes and in the second we standardize the (standardized) moments within each index

before pooling them. We include index fixed effects and cluster standard errors on country

and time. We find a strong negative relation between skewness and kurtosis. For ex ante

implied moments at the monthly horizon, the slope coefficients are statistically significant

at the 1% level with a t-statistic of −8.97 and −16.24 and adjusted R2’s of 56% and 77%

respectively. The results are similar for the quarterly horizon. The last six columns of Table
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3 report the results when using ex post realized moments. We find a strong negative relation

between skewness and kurtosis in the realized moments as well.

Panel B of Table 3 reports the results for the individual stock market indexes. Using

implied or realized moments at the monthly or quarterly horizons, we find a strong negative

relation between skewness and kurtosis in the time-series of individual indexes. The slopes

are negative and statistically significant in 76 of the 80 regressions. The main outlier is in

the Netherlands where skewness is positively related to kurtosis on the quarterly horizon

(for the expected moments). In fact, if we exclude the Netherlands from our first Panel

regression then the coefficient at the quarterly horizon for implied moments turns strongly

significant with a t-stat of −15.69 and an adjusted R2 of 81%.

3.2 Cyclical Fluctuations in Higher-Moment Risk

Figure 3 indicates that the higher-order moments vary with the state of the financial markets

and the economy as a whole. For example, looking at subfigure 3b, we see that during the

crisis in 2007-2009, the skewness approaches zero and the kurtosis approaches three, suggest-

ing that the conditional distribution is close to normal. However, during good times, such

as the periods leading up to the financial crisis, skewness drops substantially and kurtosis

increases, indicating substantial risk in the higher-order moment of the return distribution.

In this section, we formally study such cyclical fluctuations in higher-moment risk by linking

the fluctuations to variables that capture good and bad times.

We first consider the relation between higher-moment risk and the variance. Figure 4

displays the time-series plots of the monthly and quarterly skewness along with the variances

of the S&P 500 stock market index. Both for the monthly and the quarterly horizon, the

two times series are positively correlated: skewness is more negative when variance is low.

For instance, skewness is high (close to zero) during the burst of the tech bubble and during

the financial crisis, during which variance is somewhat high. Conversely, skewness is most

negative during the low variance period from 2004 to 2007 and the low variance period from

2012 and until 2020.

This positive relationship between variance and skewness is highly statistically significant

as shown for monthly horizon in the first three columns of Panel A of Table 4 for ex ante

implied moments and in Panel A of Table 5 for ex post realized moments. Panel A reports

panel regressions on the form:

Higher-order momentit,T = αi + βVarianceit,T + ϵit,T (14)
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where “Higher-order momentt,T” is either the conditional skewness or kurtosis and i denotes

the different indexes. We report the results of two panel regressions: (i) in the first panel

regression we pool the moments of all the indexes and (ii) in the second panel regression,

we first standardize the (standardized) moments within each index before pooling them. We

include index fixed effects and cluster standard errors on country and time. For implied

moments at the monthly horizon, skewness is positively related to variance with slope coef-

ficients of 0.08 and 0.37, t-statistic of 7.31 and 6.80, and adjusted R2’s of 0.30 and 0.13 for

raw and standardize moments. The results for implied skewness are similar at the quarterly

horizon as reported in columns seven to ten. In terms of implied kurtosis, we find a sta-

tistically significant and negative relationship with implied variance with a t-statistics from

−6.61 to −8.12 at the monthly horizon and −3.22 to −5.39 at the quarterly horizon. For ex

post realized moments, Panel A of Table 5 reports similar panel regression results as for the

implied moments, however the statistical significance is slightly lower and the adjusted R2s

are also lower.

Panels B of Tables 4 and 5 report results from regression (14) at the individual index

level using either the ex ante implied or the ex post realized moments. The overall picture for

both implied and realized moments is that skewness is positively associated with variance and

kurtosis is negatively associated with variance. The relationships are statistically significant

with the positive sign for skewness and negative sign for kurtosis 16/20 to 19/20 indexes

for ex ante implied moments and 12/20 to 17/20 indexes for ex post realized moments.

Importantly, we find statistical significance for the US indexes in all but two regressions.

The US results are particular interesting because these are the indexes for which we have

the richest data and consequently are most certain about the estimated moments.

The regressions in Equation (14) impose a linear relation between the variance and higher-

order moments, but the real relation is strongly non-linear. To illustrate the non-linearity,

Figure 5 shows a scatterplot of the ex ante variance and skewness on of S&P 500. The

skewness (y-axis) is a concave function of the variance (x-axis), increasing rapidly for low

variance and more slowly for higher variance. We find no evidence for significant non-

monotonicity, suggesting that skewness is always weakly increasing in variance. The same

holds true when considering standard deviation instead of variance on the x-axis. None of

the results presented throughout the paper are sensitive to this non-linearity. In Section 5,

we study disaster-based asset pricing models and find that these tend to produce the same

concave relation between skewness and variance.

The cyclical fluctuations documented in Tables 4 and 5 holds at both the monthly and
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quarterly horizon. However, it is not clear from these regressions whether the strength of

the cyclical fluctuations depend on the horizon of the returns. In Figure A1 in the Online

Appendix, we document that they do, as the fluctuations are slightly stronger at the shorter

horizon. This finding is consistent with the well known fact that conditional non-normality

is weaker at longer horizons due to a central limit effect (see discussion in, e.g., Eraker,

Johannes, and Polson 2003, Duffie and Pan 1997, or Das and Sundaram 1999).

We next study how higher-order moments vary with valuation ratios, which is a stan-

dard measure of good and bad times in the asset pricing literature (see, e.g., Campbell and

Cochrane 1999). We measure valuation ratios using the country-level dividend-price ratio,

with a high dividend-price ratio reflecting bad times in the given country at the given time.

In Table 6, we report results of regressions of ex ante implied moments onto the contempo-

raneous dividend yield in the given country,

Higher-order momentit,T = αi + β(D/P )it + γt+ ϵit,T . (15)

We include time trend in the regressions to account for a potential trend in dividend yields

and higher-order moments. Panel A again reports the results of two panel regressions. In

the first regression, we pool the moments of all the indexes, and in the second regression,

we first standardize the (standardized) moments within each index before pooling them.

We find that ex ante implied skewness is less negative when the dividend-price ratios are

higher (i.e., during bad times). Similarly, we find that kurtosis tends to be less positive when

dividend-price ratios are higher. Panel B of Table 6 reports the results of regression (15)

at the individual index level. The results are broadly consistent for the US and European

indexes, that is, skewness becomes less negative when the dividend-price ratio goes up while

kurtosis becomes less positive. Table 7 reports similar results for ex post realized moments.

Finally, we also consider cyclicality relative to three U.S.-specific measures of good and

bad times. We find similar results using other measures of bad times. In particular, Table 8

reports U.S. results, in which we measure bad times based on the consumption-wealth ratio

’cay’ from Lettau and Ludvigson (2001), the Chicago Fed national activity index ’CFNAI’,

and NBER recessions. Panel A reports the results for the cay variable. Here we regress

the higher-order moments on cay, again including a time trend to account for trend in

higher-order moments and cay over the sample. For both ex ante implied and ex post

realized moments, we find strong and statistically significant relationships between cay and

the subsequent higher-order moments. During periods where cay is low, i.e. good times with

high wealth relative to consumption, the distribution is more left skewed and fat tailed. Panel

14



B reports the results for the CFNAI variable. During good times with more economic activity,

as measured by CFNAI, the distribution is again more left skewed and fat tailed. Finally,

Panel C reports the results for NBER recessions. During expansions, the distribution is more

left skewed and fat tailed than during recessions. Taken together, these results emphasize

the robustness of our results with respect to definitions of good and bad times.

3.3 The Global Factor Structure in Higher-Order Moments

This section documents a global component in higher-moment order of stock market index

returns. For the purpose of this analysis, we estimate the principal components of the space

spanned by moments of the international stock markets. For example, the first column of

Panel A in Table 9 reports the coefficients of the first principal component of the space

spanned by ex ante variances for the twenty stock market indexes. The first principal com-

ponent of ex ante variance explains as much as 83% of the joint variation in variances across

stock market indexes, which suggests that there is a strong common component in stock

market variance around the world.

In column five of Panel A, we report the results of a similar analysis but for ex ante

skewness. There is strong common component in the skewness across stock market returns

around the world. The global skewness factor (the first principal component of the space

spanned by the skewness of the twenty stock market indexes) explains 41% of the joint

variation in skewness around the world. Similarly, column nine reports that the global

kurtosis factor explains 43% of the joint variation in individual stock market kurtosis.

To further investigate if the individual index moments relate to the common factors, we

regress the first principal component of the moment onto the moment of each index. For

example, for skewness, we regress:

Skewnessit,T = αi + βiSkewness PC1t,T + ϵit,T (16)

where i indicates the indexes and Skewness PC1t,T is the first principal component of skew-

ness for the twenty indexes. The sixth to eight columns of Panel A reports the results for

skewness. The coefficients are positive in all regressions and statistically significant for 18/20

indexes. The adjusted R2 are also high and typically range from 0.30 to 0.60. Columns two

to four report results of similar index-wise regressions but for variance and columns ten to

twelve investigate the regressions for kurtosis. Overall, the individual indexes load positively

and statistically significant on the global moment factors.
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Lastly, in Panel B of Table 9, we report the results when regressing the first principal

component of skewness or kurtosis onto the first principal component of variance:

Higher moment PC1t,T = α + βVariance PC1t,T + ϵt,T (17)

where “Higher moment PC1t,T” is either the first principal component of skewness or kurto-

sis. We find that the common skewness factor is positively related to the common variance

factor. The slope of the regression is 0.54, which is statistically significant with a t-statistic

of 10.40 and the adjusted R2 is 0.59. Similarly, the global variance factor also explains a large

fraction of the global kurtosis factor with a negative slope coefficient of −0.69, a t-statistic

of −6.28, and an adjusted R2 of 0.42.

These results suggests that there is strong global component in higher-moment risk and

thus the shape of distribution of returns. The global component suggests that the variation

in higher-moment risk we are uncovering is driven, to a large extent, by a global economic

factor and not by market micro-structure issues or idiosyncratic trading patterns in individual

countries.

4 Higher-Moment Risk and Conditional Tail Probabil-

ities

The previous section documents strong cyclical variation in the shape of the distribution of

stock returns. This variation influences the probability of tail events, or tail risk, which we

study in this section.

It is useful to separate between two different types of tail risk. One measure of tail risk

is the probability of an unconditional tail loss. This could, for instance, be the probability

of observing a loss of 30% or more over the subsequent month (relative to the expected

value). This probability is influenced by the variance of the distribution as well as the

skewness, kurtosis, and other higher-order moments. We instead focus on the probability of

a conditional tail loss. This is the probability of observing a loss of X conditional standard

deviations. This measure nets out the effect of the standard deviation, which means that

this probability is driven by higher-order moments.

In this section, we estimate time variation in such conditional tail loss probabilities. We

do so in two ways. In Section 4.1, we extract the probabilities directly from option prices

using Breeden and Litzenberger (1978). In Section 4.2, we extract the probabilities using
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econometric techniques developed by Bollerslev, Todorov, and Xu (2015). In both settings,

we find that probabilities of conditional losses are substantially elevated in good times when

the distribution is more left skewed and fat tailed. The conditional tail-loss probabilities

similarly drop in bad times.

These cyclical patterns in conditional tail-loss probabilities provide robustness to our

findings on higher-moment risk in Section 3: across multiple ways of measuring tail loss

probabilities, we consistently find evidence consistent with the distribution being more left

skewed and fat tailed in good times. The tail loss probabilities also help flesh out the direct

implications of our results for investors, regulators, and other economic agents. The results

on tail loss probabilities, for instance, suggest that value-at-risk type estimates underestimate

risk during good times, such as the run up to the global financial crisis. The results also

suggest that volatility-managed portfolios – such as those studied by Moreira and Muir

(2017) – are exposed to cyclical fluctuations in risk that is induced by variation in higher-

order moments.

4.1 Conditional Tail Loss Probabilities from Option Prices

We first estimate conditional tail loss probabilities directly from option prices by using Bree-

den and Litzenberger (1978). We employ the same assumptions as in Section 2.1 and intro-

duce the notation Dt,T to capture the dividends paid on the risky asset between time t and

time T . Using Breeden and Litzenberger (1978), we can write the risk-neutral expectation

that returns are below a certain threshold as

Pt(Rt,T < α) = Rf
t,Tput

′
t,T (αSt −Dt,T ), (18)

where put′t,T (αSt−Dt,T ) is the first derivative of the put option price with strike αSt−Dt,T .

Equation (18) shows that we can estimate the probability of tail losses by estimating the

first derivative of put options. We discuss the empirical restrictions and considerations for

the estimation of these first derivatives in Appendix B. Using equation (18), we estimate the

probability of conditional tail losses. We define conditional tail losses as the probability of

incurring a loss that is larger than 5 conditional standard deviations of returns. We consider

risk-neutral standard deviations estimated as outlined in Section 2.1.

Figure 6 shows these tail probabilities estimated on the monthly horizon for the S&P 500.

Figure 6a to the left shows the conditional probability in a solid blue line. The probability

clearly declines during the global financial crisis and during the stock market draw-down of
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the early 2000s. It also drops during March 2020 as the Covid crisis unfolds. On the other

hand, the probability is substantially elevated during the seemingly calm periods of 2005-

2007 and the end of the 2010s. For comparison, the figure also plots the probability of the

loss according to the normal distribution (dashed line), which is close to 0 (and constant).

It is worth contrasting the procyclical behavior of the conditional tail loss probabilities

to the behavior of the unconditional tail loss probabilities. To this end, Figure 6b shows in

the blue solid line the unconditional probability of a −3 unconditional standard deviation

event. At the monthly horizon, three unconditional standard deviations are approximately

18%. The probability of an unconditional tail loss of this size is greatly enhanced during bad

times, such as the global financial crisis. The countercyclical variation in the unconditional

tail loss probabilities is, as we shall see, driven by the countercyclical variation in volatility.

To better understand the role of volatility and higher-order moments, Figure 6b also

plots the probability of the loss according to the normal distribution (dashed line). The

shaded area between this line and the estimated probability is the part of the probability

coming from higher-order moments. In many parts of the sample, higher-order moments

constitute the majority of the probability of the 18% percent drop. However, most of the

variation in tail risk comes from variation in the conditional volatility. The spike observed

during the global financial crisis is, for instance, solely driven by a spike in the volatility.

This result emphasizes that unconditional tail risk is mostly reflective of volatility and less

so of higher-order moments.

In Figure 7a, we plot the conditional tail loss probabilities along with the skewness and

kurtosis of the return distribution. The conditional tail loss probabilities are larger when

the distribution is more left skewed and fat tailed. The correlations are −0.74 and 0.36,

respectively. These results emphasize the importance of skewness and kurtosis for tail-loss

probabilities.

4.2 Conditional Tail Loss Probabilities from a Parametric Ap-

proach

We next consider an alternative, parametric approach to estimating conditional tail-loss

probabilities. We focus on the very up-to-date approach in Bollerslev, Todorov, and Xu

(2015), but note that there is a long econometric literature using parametric methods to

estimate statistical properties of stock returns (see, e.g., Pan 2002; Aı̈t-Sahalia 2004; Er-

aker, Johannes, and Polson 2003; Bollerslev and Todorov 2011a; Christoffersen, Jacobs, and

Ornthanalai 2012; Maheu, McCurdy, and Zhao 2013).
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Bollerslev, Todorov, and Xu (2015) aims to estimate the impact of jumps on stock re-

turns. They do so by specifying a functional form for the risk-neutral jump intensity and

estimating the relevant parameters from the prices of out-of-the-money put and call op-

tions. In particular, the authors follow Bollerslev and Todorov (2014) and assume that the

risk-neutral jump intensity process takes the form

vQt (dx) = (ϕ+
t e−α+

t x1{x>|kt|} + ϕ−
t e

−α−
t |x|1{x<−|kt|}), (19)

where x refers to stock prices, α+
t and α−

t are the parameters that control the rate of decay

of the tails, and ϕ+
t and ϕ−

t are “level shifts” in the intensity process. This functional form

allows for a different shape of the left and right tails of return distribution, with the shapes

being governed by the parameters α and ϕ. The authors estimate α−
t and ϕ−

t directly from

the prices of deep out of money put options at time t. We describe how we compute the

parameters in Appendix C.10

Given the functional form in equation (19) and estimates of α and ϕ, it is straightforward

to calculate the probability of very large losses. In particular, the authors focuses on losses

that are so far into the left tail that they cannot plausibly be impacted by the diffusive

element of stock prices. The authors show that one can calculate tail loss probability of

observing such a loss, which the authors denote the left jump intensity (LJI), as

LJIt(kt) =

∫
x<−|kt|

vQt (dx) = ϕ−
t e

−α−
t |kt|/α−

t . (20)

Figure 8 plots the conditional tail probabilities of losing more than 10 conditional stan-

dard deviations over the next week. We follow Bollerslev, Todorov, and Xu (2015) and use

kt = 10σt to insure that the threshold is so far into the tail that the probabilities are not

impacted by diffusive elements.11 The figure shows that the tail probabilities increase during

good times and decrease substantially during the global financial crisis.12 Table A15 in the

Appendix further document the procyclical properties of these tail probabilities.

For comparison, we also plot the conditional tail-probabilities estimated using the non-

10Replication code and a thorough description of the data is available from the Viktor Todorov and Torben
Andersen website on tail risk: tailindex.com.

11As in Bollerslev, Todorov, and Xu (2015), for this exercise, we compute the conditional standard devia-
tion as the normalized Black-Scholes at-the-money implied volatility.

12These probabilities are also plotted in Figure 1 subplot C in Bollerslev, Todorov, and Xu (2015). However,
the authors do not mention the time variation in these probabilities, nor do they they relate the probabilities
to cyclical fluctuations in the financial markets.
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parametric approach in Section 4.2 (dashed blue line). These probabilities are not expected

to be exactly the same as the non-parametric probabilities because these are for the monthly

horizon and for 5σt losses. However, one would expect the two probabilities to be highly

correlated, which the figure indeed confirms. The two probabilities track each other closely

with a correlation of 0.77.

In Figure 9, we plot the conditional tail probabilities alongside the skewness and kurtosis

of the distribution of returns. As expected, the tail probabilities are higher when the distribu-

tion is more left skewed and more fat tailed. Table A14 in the Appendix further corroborates

this relation between the conditional tail probabilities from the parametric approach and the

higher-order moments. The relations are consistent with the results in Section 3 and Section

4.2, and they emphasize the robustness of our findings across methodologies.

5 Higher-Moment Risk in Disaster Models

In this section, we relate our results to the predictions of models based on time-varying

disaster risk. We are particularly interested in the class of models in which disasters are

represented by negative jumps in prices or consumption. As a first step, we study simple jump

diffusion models where disasters are represented as jumps in returns. We then study the asset

pricing models models where disasters are represented as negative jumps in consumption.

We end with simulation studies of the leading consumption-based disaster models by Gabaix

(2012) and Wachter (2013) and with a study of how higher-order moments relate to risk

premia.

One of our main points is that disaster models produce return distributions that are

more left skewed and fat tailed when disaster risk is high. If pricing during bad times is

driven by heightened disaster risk, as disaster models argue, we should therefore expect the

distribution of returns to be more left skewed and fat tailed during bad times. However,

returns almost follow a normal distribution during bad times, which questions whether these

are indeed periods of elevated disaster risk. By extension, the findings question whether

fluctuations in risk premia and asset prices are driven by fluctuations in disaster risk.

5.1 The Impact of Jumps on the Distribution of Returns

To understand how disasters influence the distribution of stock returns, it is useful to first

understand how negative jumps in prices influence the shape of the distribution. To this

end, we focus on the jump diffusion model by Merton (1976). Stock prices evolve according
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to the process

dSt

St

= αdt+ σdBt + (ex − 1)dNt − λE(ex − 1)dt, (21)

where Bt is a Brownian motion with diffusive variance σ2 and Nt is a Poisson process with

constant jump intensity λ. The Brownian motion Bt and Poisson process Nt are assumed to

be independent. The jump size, x, is normally distributed with mean µx and variance σ2
x.

We assume that µx < 0, such that jumps are negative on average.

In this model, variance and skewness are given by,

VarMerton
t,T = (σ2 + λµx2)(T − t) (22)

SkewnessMerton
t,T =

λµx3

(σ2 + λµx2)3/2
√
T − t

(23)

where µx3 = 3µxσ
2
x + µ3

x < 0 and µx2 = µ2
x + σ2

x > 0.

A higher jump intensity (λ) and a more negative average jump size (µx) both lead to a

higher variance, as seen from equation (22). They also lead to a more left skewed distribution,

as long as the intensity and magnitude of jumps are not too large.13 The same results

hold when introducing time variation in the jump intensity and the diffusive volatility, as

illustrated in Figure 10. This figure shows the relation between skewness and jump intensity

for four different extensions of the jump diffusion model above (see Appendix D for details).

In all extensions, higher jump intensity leads to a more left skewed distribution. There is a

similar impact of jumps on kurtosis, which increases in jump intensity and jump size.

Reduced-form models in which disasters are represented as negative jumps in prices thus

predict that higher disaster risk (measured as higher jump intensity or more negative jump

size) is associated with a more left skewed and fat tailed distribution. However, most disaster

models represent disasters as negative jumps in consumption, which we turn to in Section

5.2.

Before progressing with the consumption-based disaster models, it is worth highlighting

the features needed to explain the data in the simple reduced-form framework. One straight-

forward way of generating the key relation between skewness and variance is through a jump

13Skewness decrease in λ if 2σ2 − λµx2 > 0. This is true if jumps are infrequent and if the average jump
size and variance is not too large. If jumps happen all the time (λ is very large) then the distribution will
shift to the left and be ”centered” around the mean of the jump distribution. In this case, the diffusive part
will drive up the skewness of the distribution when the jump intensity increases. This concern is unlikely to
apply for empirically relevant specifications of jump diffusion models.
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diffusion model that has stochastic volatility and constant jump intensity and i.i.d. distribu-

tion of jump sizes. This model generates a distribution that is more negatively skewed when

the volatility is higher. We illustrate this finding in Figure 11, which shows skewness as a

function of volatility for one specification of such a model. Intuitively, the skewness is a prod-

uct of two opposing forces: the negative jumps push towards a more left skewed distribution

while the diffusive volatility push towards a more symmetric distribution. When diffusive

volatility is elevated, the diffusive volatility plays a relatively larger role and the distribution

thus becomes more symmetric. On the other hand, when diffusive volatility is very low, the

jump component plays a relatively larger role and the distribution thus becomes more left

skewed.

Previous work on jump-diffusion models suggests that such a model with stochastic

volatility and constant jumps indeed fit stock returns well (Eraker, Johannes, and Polson

2003). The variation in skewness that we uncover is thus consistent with findings of the

previous literature based on jump diffusion models. The results are, however, inconsistent

with disaster-based models of asset pricing, as we emphasize in the next two subsections.

5.2 Disasters as Jumps in Consumption

Disaster-based asset pricing models introduce disasters as negative jumps to consumption.

Wachter (2013), for instance, models consumption, Ct, as following the stochastic process

dCt

Ct−
= µdt+ σdBt + (eZt − 1)dNt, (24)

where Bt is Brownian motion, µ and σ are the (constant) mean and diffusive volatility of

the consumption process, and Nt is a Poisson process with time-varying intensity λt. The

intensity λt is the probability of a disaster and evolves according to a CIR process driven

by the Brownian motion Bλ,t. The shocks Bt, Bλ,t, and Nt are all independent. The size

of the jump, or disaster, Zt follows a time-invariant process and is assumed to be negative

throughout.

Assuming a continuous time equivalent of Epstein-Zin preferences and modelling divi-

dends as levered claims to consumption (Dt = Cϕ
t ), Wachter shows that stock prices follow

the following jump diffusion process,

dSt

St−
= µS,tdt+ σS,t[dBt dBλ,t]

⊤ + (eϕZt − 1)dNt, (25)
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where µS,t is the drift of the process and the diffusive volatility σS,t = [ϕσ F (λt)] is a vector

of the scaled consumption volatility and a non-linear function of the disaster intensity, F (λt).

Time variation in the distribution of stock prices is driven by time variation in the

disaster intensity λt. A higher disaster probability shows up as a negative jump in stock

prices because it generates a negative jump in dividends (the jump in consumption scaled

by the leverage factor ϕ). However, the higher disaster intensity also increases the diffusive

volatility. The reason is that fluctuations in disaster probabilities influence stock prices even

absent jumps, and this effect shows up in the diffusive volatility. Since the fluctuations in

disaster probabilities is larger when disaster probabilities themselves are larger (recall that

the disaster probability follows a CIR process), the diffusive volatility increases as disaster

probabilities increase.

Since a higher disaster probability leads to a higher jump intensity in prices, there is a

natural mechanism through which the return distribution becomes more left skewed when

disaster probability increases (i.e., the effect of jumps on skew as per the discussion in Section

5.1). A higher disaster probability also increases the diffusive variance which, everything else

equal, would lower the skewness of the return distribution (see equation (23)). However, as

long as the impact of disaster risk on the diffusive volatility is not too large relative to the

impact on the jump intensity, the effect on the jump intensity dominates and higher disaster

probability leads to more left skewed distributions. In the upcoming section, we show that

this second effect indeed dominates in leading disaster-based models, which is to say that

higher disaster probability leads to more volatile and left skewed distributions.

It is important to emphasize that higher disaster risk does not only lead to a more left

skewed and fat tailed distribution, it also leads to a higher volatility of returns. In the above

framework, it does so through two channels. First, the higher disaster risk leads to a higher

jump intensity in returns in equation (25), which leads to higher volatility (see equation 22).

Second, the higher disaster risk also leads to higher more diffusive volatility, which similarly

increases volatility. An increase in disaster risk thus makes the distribution more left skewed

and more volatile. In Section 5.4, we further elaborate on how skewness and kurtosis on

their own are incomplete measures of disaster risk when not accompanied by volatility.

The goal of most disaster models is ultimately to explain expected stock returns. In

the consumption-based disaster models considered next, the equity premium increases when

disaster risk increases. Periods with high disaster risk are thus bad times. The relation

between disaster risk and risk premia ultimately lead to a strong relation between the equity

premium and higher order moments, which we will explore in Section 5.4.
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5.3 Higher-Moment Risk in Leading Disaster-Based Models

To get more precise results, we study the behavior of higher-order moments in simulation

studies of the leading disaster-based models by Gabaix (2012) and Wachter (2013). In both

models, higher disaster risk leads to a distribution of returns that is both more left skewed

and more volatile.

The Disaster Model by Wachter (2013). In the disaster model by Wachter (2013),

there is a time-varying disaster probability that gives rise to time variation in expected

returns as well as the distribution of stock returns. In particular, higher disaster risk leads

to: (1) higher expected returns and (2) a more left skewed and volatile return distribution.

We illustrate these results through simulation studies of the model. In Figure 12, we

plot the first four moments of stock returns as a function of the disaster intensity λ. A

higher disaster risk leads to higher expected returns and volatility. These two observations

in isolation support the narrative that the increase in expected return and volatility that

we tend to observe during bad times are driven by an increase in disaster risk. However,

the model also predicts that the distribution of returns should become more left skewed

when disaster risk increases, which runs counter to the cyclical fluctuations in higher-order

moments documented in Section 3.

The above results follow naturally from equation (24) and (25) in Section 5.2. The higher

disaster intensity leads to higher volatility through the impact on the diffusive volatility as

well as the jump intensity. The higher disaster risk also generates a left skew because of the

increased jump intensity.

More generally, the variance and skewness of the return distribution are negatively cor-

related in the model. The negative correlation is a natural product of the dynamics outlined

above. The negative correlation is plotted in Figure 13, which shows the average realized

skewness and volatility for different buckets of ex ante disaster intensity.14 When the disaster

intensity is low, the volatility is low and skewness is relatively higher (more right skewed);

when disaster intensity is high, the volatility is high and the distribution is more left skewed.

(The skewness is positive for most values of the disaster intensity; the positive average arises

from the log-normal properties of the diffusive element in stock prices, which pushes towards

a right skew on average.) The negative correlation between volatility and skewness runs

counter to the results documented in the previous sections.

14We exclude buckets with very low probability of disaster. For the very low disaster probabilities, the
distribution becomes close to log-normal and therefore skewness therefore increases in volatility given the
properties of the log-normal distribution.
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The Disaster Model by Gabaix (2012). In the disaster model by Gabaix (2012), there

is time-varying resilience of the economy towards disasters. The probability of a disaster

is assumed to be constant in the main calibration. A higher disaster risk, measured as a

lower resilience towards disasters, again leads to a more left skewed, fat tailed, and volatile

distribution of returns. It also leads to higher expected returns, conditional on the disaster

being averted.

We illustrate the results for the higher-order moments through simulation studies in

Figure 14. We simulate the model following the procedure in the paper and calculate option-

implied volatility, skewness, and kurtosis (see Appendix E.2 for detail). In the two top figures,

we plot skewness and kurtosis against volatility. A higher volatility is associated with more

left skew and kurtosis. To understand these relations, note that the variation in all three

moments is driven by time variation in the resilience towards disasters. When this resilience

is low, the expected negative jump in stock prices coming from a disaster is larger (more

negative), which increases the volatility and kurtosis and makes the distribution more left

skewed.

Periods with low resilience towards disasters are also periods where stock prices are

depressed (i.e., bad times, in our previous terminology). Combined with the dynamics

discussed above, this fact gives rise to strong relations between the dividend-price ratio of

the market portfolio and the higher-order moments. The two figures in the bottom of Figure

14 illustrate these relations. A higher resilience leads to a lower dividend-price ratio and

a more left skewed distribution of returns. It also leads to a higher kurtosis. This finding

illustrates how the distribution becomes more left skewed and fat tailed in bad times, which

runs counter to the results in our empirical section.

5.4 Higher-Moment Risk and Expected Returns

As discussed above, the shape of the return distribution and the equity premium both vary

over time with disaster risk. When disaster risk is high, the distribution of returns is more left

skewed and volatile and the equity premium is higher. We should therefore expect skewness

and volatility to predict future realized returns.

In Table 10, we explore this relation in theory as well as in the data. We first study how

future realized returns relate to the ex ante skewness in the model by Wachter. Through

simulations, we estimate slope coefficients for predictive regressions of realized returns on

ex ante skewness (see Appendix E.1 for details). We run 40,000 simulations of 300 months

length (25 years) and estimate median values and standard errors based on the simulations.
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The leftmost columns of Table 10 shows that realized returns are higher when skewness is

more negative (i.e., the distribution is more left skewed). We normalize skewness, so the

slope coefficients imply that a one standard deviation increase in skewness increases the

expected return next month by around 70 basis points, which is a large effect. The economic

significance can similarly be seen from the R2 of around 1%, which is high for monthly

returns. The effect is, however, statistically insignificant given the short sample of 25 years.

In the next two columns, we report results from similar regressions in our data. We regress

future realized stock returns on ex ante skewness in a panel consisting of the 17 countries

included in our sample (see Table 1). We include country fixed effects and we cluster the

standard errors across country and time. We again see a negative relation between skewness

and expected returns. The effect is economically meaningful, although weaker than in the

Wachter model, as risk premia increase by 20 to 27 basis points when skewness increases by

one standard deviation. The effect is statistically insignificant, but this is consistent with

our simulation study, which shows that the effect of skewness on returns is too weak to be

detected in a 25-year sample. (In principle, the panel gives us a power gain relative to the

single-country regressions in column 1 and 2; but this gain is very limited given the strong

factor structure in returns and higher-order moments documented in Section 3.3.)

Risk premia are not driven by skewness alone but may also be influenced by the volatility

of returns. In Wachter (2013), skewness and volatility are very highly correlated, as both

are driven by the same underlying state variable (disaster intensity). Including volatility in

the predictive regressions will therefore not improve the predictive ability of the model by

much. In practice, however, Section 3.1 documents that although skewness and volatility are

highly correlated, they are far from perfectly correlated. Including volatility in the predictive

regressions could thus be relevant. The regressions in column 5 and 6 do so. The inclusion

of volatility slightly increases the slope coefficients on skewness and it becomes statistically

significant in the regressions that are using raw returns. The p-value for the slope coefficient

for excess returns is 0.11.

Overall, the results above are consistent with the idea that skewness captures a risk for

which investors want to be compensated. The results emphasize the relevance of under-

standing the cyclical behavior of skewness (and other higher-order moments) and it lends

further support to the idea that disaster risk is priced in financial markets (see also Harvey

and Siddique (2000)).
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6 Conclusion

We document new facts about time variation in the higher-order moments of the distribution

of stock returns. We show that the return distribution for the market is more left skewed

and fat tailed during good times than during bad times. This pattern holds across the 17

countries we study in our sample, across multiple measures of higher-order moments, and

across many definitions of good and bad times.

This new result is surprising given our knowledge about tail risk. Indeed, tail risk, defined

as the probability of losing a fixed percentage on your portfolio, tends to increase during bad

times where variance is high (Kelly and Jiang, 2014; Bollerslev and Todorov, 2011b). Given

this finding, one might conjecture that the return distribution is more left skewed and fat

tailed during bad times, but we show that the opposite is the case. Rather, the increase in

tail risk we observe during bad times comes from the fact that the variance of the return

distribution increases, with the higher-order moments moving in way that reduces overall

tail risk.

When looking at conditional tail risk, we document tail probabilities that strongly pro-

cyclical. During bad times, the probability of a 5-sigma loss is highly elevated, given the

left skewed and right tailed distribution. But during the global financial crisis, however, the

probability of a 5-sigma loss is substantially dampened, and close to that predicted by a

normal distribution.

The fact that higher-moment risk disappears during bad times is hard to reconcile with

the notion that disaster risk is elevated during these periods. We show that, according to

standard asset pricing models, higher disaster risk should be associated with more higher-

moment risk, in the sense that the distribution of return should be more left skewed and

more fat tailed. The fact that we see the opposite in the data questions whether disaster risk

is truly elevated during bad times, and by extension, whether counter-cyclical variation in

risk premia and valuation ratios is driven by time-varying disaster risk. These results echo

recent findings by Baron, Xiong, and Ye (2023), who argue that disaster risk is not elevated

during periods that the asset pricing literature refers to as bad times.
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Figure 2: Average Implied and Average Realized Stock Market Moments. The figure
shows the average time-series values of the option implied moments plotted against the average
time-series values of the realized moments. 31
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Figure 3: Ex ante stock market skewness and kurtosis. The figures show time series plots of
monthly and quarterly horizon ex ante implied skewness and the ex ante implied kurtosis for the
S&P 500 index.
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Figure 4: Ex ante stock market skewness and variance. The figures show time series plots
of monthly and quarterly horizon ex ante implied skewness and the ex ante implied variance (an-
nualized %) for the S&P 500 index.
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Figure 5: Non-linear relation between higher-moment risk and variance. The figures show
scatterplots of monthly horizon ex ante skewness and ex ante variance (a) or volatility (b) for the
S&P 500 index.
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Figure 6: Conditional and unconditional left-tail probabilities. The figures show time
series plots for the S&P 500 index of the end of month and monthly horizon left-tail probabilities.
Subfigure (a) shows conditional probabilities of a −5 conditional standard deviation event and
subfigure (b) shows the unconditional probability of a −3 unconditional standard deviation event,
which is a −17.85% event. The probabilities are computed using the methods described in Section
4.1.
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Figure 7: Higher order moments and conditional left-tail probabilities. The figures show
time series plots of the S&P 500 monthly horizon ex ante skewness and kurtosis up against the
ex ante probabilities of a −5 conditional standard deviation event computed from option prices as
described in Section 4.1.

34



2000 2005 2010 2015 2020

0.
00

00
0.

00
10

0.
00

20

0.
00

0
0.

00
2

0.
00

4

Bollerslev, Todorov, and Xu (JFE 2015) left tail probabilities
Option implied left tail probabilities (right axis)

cor = 0.77

Figure 8: Left-tail probabilities and jump tail probabilities. The figure shows the option-
implied −5 conditional standard deviation probability computed using the methods described in
Section 4.1 and the within month average daily left-tail probabilities of weekly horizon “large”
jumps in the Bollerslev, Todorov, and Xu (2015) jump diffusion model. We fix a “large” jump to
be a −10 Black-Scholes at-the-money implied volatility shock. Both probabilities are for the S&P
500 index.
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Figure 9: Higher order moments and conditional jump tail probabilities. The solid black
lines in the subfigures is the end of month and monthly horizon ex ante skewness or kurtosis for
the S&P 500 index. The dashed blue lines are the within month average left-tail probabilities of
weekly horizon “large” jumps in the Bollerslev, Todorov, and Xu (2015) jump diffusion model. We
fix a “large” jump to be a −10 Black-Scholes at-the-money implied volatility shock.
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Figure 10: Skewness in jump diffusion models. The figure shows model implied skewness as
a function of the jump intensity (a) or the average jump size (b) in various jump diffusion models
of increasing complexity. We describe parameter values and computation in Appendix D. In solid
black are the skewness for the Merton jump diffusion model. In brown square are the skewness for
the Merton model augmented with stochastic jump intensity in returns. In blue diamond are the
skewness from the ”brown” model augmented with stochastic diffusive variance. In grey square,
we augment the ”blue” model with a non-zero correlation between returns and diffusive variance.
In orange cross, we augment the ”grey” model with jumps in variance.
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Figure 11: Skewness and variance in an SVJ model. This figure shows the skewness and
variance in a stochastic volatility model with jumps in returns. The parameters are set as in
Appendix D.
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Figure 12: Market return moments and the jump intensity in Wachter (2013). Panel (a)
shows a scatterplot of average simulated stock market expected returns for different values of the
jump intensity, λWachter

t . Panel (b) shows a scatterplot of average simulated stock market volatility
for different values of the jump intensity. Panel (c) shows a scatterplot of average simulated stock
market skewness for different values of the jump intensity. Panel (d) shows a scatterplot of average
simulated stock market kurtosis for different values of the jump intensity. Simulation details are in
Appendix E.1.
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Figure 13: Higher-moment risk, volatility, and dividend/price ratios in Wachter (2013).
Panel (a) shows a scatterplot of simulated stock market skewness and volatility. Panel (b) shows
a scatterplot of simulated stock market kurtosis and volatility. Panel (c) shows a scatterplot of
simulated stock skewness and the dividend/price ratio. Panel (d) shows a scatterplot of simulated
kurtosis and the dividend/price ratio. Simulation details are in Appendix E.1.

39



0.04 0.06 0.08 0.1 0.12 0.14 0.16

Volatility

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

S
ke

w
ne

ss

(a)

0.04 0.06 0.08 0.1 0.12 0.14 0.16

Volatility

2

3

4

5

6

7

8

9

10

11

K
ut

os
is

(b)

0.028 0.03 0.032 0.034 0.036 0.038 0.04 0.042 0.044 0.046

Dividend/Price

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

S
ke

w
ne

ss

(c)

0.028 0.03 0.032 0.034 0.036 0.038 0.04 0.042 0.044 0.046

Dividend/Price

2

3

4

5

6

7

8

9

10

11

K
ur

to
si

s

(d)

Figure 14: Higher-moment risk, volatility, and dividend/price ratios in Gabaix (2012).
Panel (a) shows a scatterplot of simulated stock market skewness and volatility. Panel (b) shows
a scatterplot of simulated stock market kurtosis and volatility. Panel (c) shows a scatterplot of
simulated stock market skewness and the dividend-price ratio. Panel (d) shows a scatterplot of
simulated stock market kurtosis and the dividend-price ratio. Simulation details are in Appendix
E.2.
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Table 1: Average Implied and Realized Stock Market Moments. This table reports the average monthly and quarterly
horizon values of the ex ante risk-neutral and ex post realized variance (annualized and in percentages), skewness, and kurtosis
of the return distributions for twenty stock market indexes around the world. See Section 2 for a discussion on how we infer the
implied and realized moments from options or realized returns.

Monthly horizon Quarterly horizon

Implied moments Realized moments Implied moments Realized moments

var skew kurt var skew kurt var skew kurt var skew kurt Sample start Sample end

United States

SP500 4.25 −1.87 21.78 3.63 −2.23 17.70 4.41 −1.45 8.19 3.74 −2.63 15.60 1996-01-31 2020-12-31
NASDAQ 7.76 −1.05 11.27 7.53 −1.47 8.07 7.78 −0.95 5.32 8.01 −1.80 6.92 1996-01-31 2020-12-31
DowJ 4.20 −2.06 31.21 3.43 −1.99 12.15 4.29 −1.50 8.95 3.59 −2.40 13.04 1997-10-31 2020-12-31
Russell 5.90 −1.17 10.11 5.19 −1.64 10.71 5.97 −1.03 5.12 5.47 −1.89 8.36 1996-01-31 2020-12-31

Europe

BEL 5.47 −1.30 11.34 3.41 −1.57 18.26 5.47 −1.29 6.24 3.41 −2.01 24.30 2002-01-31 2020-12-31
CHE 4.72 −3.02 36.01 2.63 −2.62 29.86 4.62 −2.19 14.14 2.85 −3.18 34.67 2002-01-31 2021-01-29
DEU 6.85 −2.48 27.21 3.41 −3.10 29.68 7.26 −2.14 16.62 3.49 −4.08 41.12 2002-01-31 2021-01-29
ESP 7.68 −1.52 13.93 4.54 −2.05 18.01 7.60 −1.42 7.49 4.72 −2.66 22.53 2007-02-28 2021-01-29
FIN 7.23 −0.82 4.32 6.27 −0.39 3.80 4.71 −0.69 2.90 4.43 −0.57 9.26 2002-02-28 2020-09-30
FRA 6.18 −2.14 16.74 3.41 −3.12 29.32 6.35 −2.10 12.16 3.50 −3.68 36.63 2003-06-30 2021-01-29
GBR 5.60 −3.58 46.91 3.09 −2.79 25.48 5.26 −2.94 25.73 2.98 −3.45 41.80 2002-01-30 2020-12-31
ITA 8.53 −2.19 21.79 4.94 −1.87 20.99 8.83 −2.42 19.95 5.14 −2.53 30.57 2006-11-30 2021-01-29
NLD 6.27 −2.90 37.49 3.21 −3.08 31.79 7.21 −2.11 24.47 3.82 −3.47 32.10 2002-02-28 2021-01-29
SWE 6.17 −2.84 29.39 3.79 −2.22 21.21 6.64 −2.07 12.98 4.24 −2.40 23.23 2007-07-31 2021-01-29

Asia

AUS 4.40 −2.59 26.96 2.02 −2.85 39.09 4.10 −2.34 17.37 2.22 −2.73 36.09 2007-02-28 2019-12-31
CHN 9.28 −0.97 9.37 6.38 −0.89 15.42 9.98 −1.03 6.69 8.01 −0.97 15.14 2006-03-31 2019-12-31
HKG 7.22 −1.26 11.83 4.64 −1.82 20.50 6.73 −1.29 6.71 4.91 −1.95 18.67 2006-03-31 2019-12-31
JPN 7.25 −2.86 34.84 3.49 −2.43 37.33 6.85 −2.12 18.57 3.91 −2.69 34.37 2004-08-31 2019-12-30
KOR 5.02 −1.34 10.38 2.67 −1.59 8.19 3.78 −0.93 4.29 3.06 −1.26 3.50 2004-08-31 2019-12-30
TWN 4.34 −1.68 8.99 2.13 −1.72 16.00 4.52 −1.36 5.16 2.81 −1.65 10.83 2005-10-31 2019-12-31
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Table 2: Ex ante moments predict ex post realized moments. The first row of Panel A reports the slope coefficients from
panel regressions of the form:

Realized momentit,T = αi + βEt[Momentit,T ] + ϵit,T

where i represent the different indexes. We include index fixed effects and cluster standard errors by time and country. The
second row of Panel A reports a similar panel regression, but here we standardize the (standardized) moments within each index
before pooling them together and running the regression. Panel B reports univariate regressions of realized moments onto expected
moments for each individual index. We infer the expected moments from option prices and we use methods described in Neuberger
(2012) and Bae and Lee (2021) to infer realized moments (see Section 2). The t−statistics in the individual index-wise regressions
are corrected for autocorrelation and heteroscedasticity using Newey-West standard errors with 12 lags. We report statistical
significance at the 10% level in bold.

Month Quarter

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Pooled panel regressions

Raw moments 0.19 3.01 0.15 0.16 1.91 0.05 0.40 3.42 0.35 0.25 2.51 0.12
Standardized moments 0.19 3.20 0.03 0.14 4.03 0.01 0.39 6.19 0.14 0.29 4.42 0.07

Panel B: Index-wise regressions

United States

SP500 0.46 5.34 0.16 0.20 1.91 0.06 1.02 5.94 0.40 1.82 3.94 0.34
NASDAQ 0.56 5.73 0.20 0.16 1.71 0.02 0.88 8.25 0.43 1.64 6.73 0.34
DowJ 0.18 2.41 0.05 0.14 3.39 0.08 0.72 5.49 0.28 1.26 2.88 0.15
Russell 0.42 5.12 0.07 −0.04 −0.24 0.00 0.72 4.59 0.21 0.98 2.33 0.03

Europe

BEL 0.42 2.34 0.10 0.12 0.58 0.00 1.16 4.39 0.27 1.89 1.35 0.01
CHE −0.02 −0.25 −0.01 −0.09 −0.80 0.00 0.72 3.10 0.16 1.19 3.57 0.09
DEU −0.01 −0.06 0.00 0.08 0.30 0.00 0.95 1.55 0.06 0.50 1.42 −0.01
ESP −0.13 −0.67 0.00 −0.36 −0.92 0.00 0.74 1.69 0.09 2.66 2.10 0.13
FIN −0.02 −0.07 −0.02 −0.96 −1.16 0.00 0.88 4.14 0.16 4.94 3.67 0.01
FRA 0.36 1.95 0.02 0.19 0.91 0.00 0.51 0.90 0.02 0.92 0.84 0.01
GBR 0.16 2.51 0.03 −0.03 −0.23 −0.01 0.20 1.26 0.03 0.04 0.16 −0.01
ITA 0.18 2.50 0.02 0.61 2.57 0.07 0.26 2.07 0.09 0.53 2.51 0.16
NLD 0.25 3.01 0.03 0.21 1.78 0.01 0.18 5.36 0.09 0.05 1.02 −0.01
SWE 0.08 0.93 0.00 0.51 1.67 0.06 0.29 2.06 0.04 0.23 1.58 0.00

Asia

AUS 0.25 2.11 0.03 0.30 3.17 0.05 0.20 2.74 0.02 0.15 1.25 −0.01
CHN 0.51 1.51 0.01 0.09 0.20 −0.01 0.47 1.41 0.02 0.62 1.18 0.01
HKG 0.08 0.37 −0.01 0.14 1.40 0.00 0.69 2.45 0.02 0.35 0.28 −0.02
JPN 0.34 3.19 0.06 0.82 4.97 0.17 0.61 3.10 0.13 0.93 3.28 0.15
KOR 0.16 2.98 0.02 0.37 9.19 0.15 0.71 4.31 0.11 2.07 5.93 0.47
TWN 0.06 0.23 −0.01 1.06 1.78 0.03 1.25 4.39 0.26 2.95 7.14 0.32
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Table 3: Comovements in higher-moment risks. The first row of Panel A reports the slope coefficients from panel regressions
of the form:

Skewnessit,T = αi + βKurtosisit,T + ϵit,T

where i represent the different indexes. We include index fixed effects and cluster standard errors by time and country. The
second row of Panel A reports a similar panel regression, but here we standardize the (standardized) moments within each index
before pooling them together and running the regression. Panel B reports univariate regressions of skewness onto kurtosis for each
individual index. We infer the expected moments from option prices and we use methods described in Neuberger (2012) and Bae
and Lee (2021) to infer realized moments (see Section 2). The t−statistics in the individual index-wise regressions are corrected
for autocorrelation and heteroscedasticity using Newey-West standard errors with 12 lags. We report statistical significance at the
10% level in bold.

Ex ante implied moments Ex post realized moments

Monthly Quarterly Monthly Quarterly

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Pooled panel regressions

Raw moments −0.04 −16.24 0.77 −0.01 −0.42 0.26 −0.02 −12.85 0.47 −0.03 −4.17 0.58
Standardized moments −0.75 −8.97 0.56 −0.71 −7.87 0.01 −0.63 −21.93 0.39 −0.72 −10.57 0.52

Panel B: Index-wise regressions

United States

SP500 −0.03 −4.69 0.39 −0.14 −15.50 0.76 −0.05 −12.17 0.56 −0.07 −7.43 0.71
NASDAQ −0.02 −1.48 0.07 −0.18 −7.33 0.46 −0.08 −7.35 0.51 −0.11 −5.38 0.69
DowJ −0.03 −15.28 0.63 −0.12 −11.93 0.69 −0.04 −5.42 0.26 −0.04 −3.21 0.42
Russell −0.05 −5.29 0.25 −0.13 −4.84 0.26 −0.02 −1.37 0.10 −0.05 −3.35 0.44

Europe

BEL −0.05 −10.48 0.69 −0.16 −4.87 0.50 −0.02 −2.32 0.19 −0.03 −7.59 0.56
CHE −0.04 −14.73 0.88 −0.08 −11.54 0.84 −0.02 −8.57 0.45 −0.03 −6.14 0.58
DEU −0.04 −18.24 0.88 −0.05 −9.55 0.77 −0.02 −5.84 0.48 −0.03 −16.40 0.89
ESP −0.07 −3.94 0.44 −0.07 −2.94 0.24 −0.02 −3.89 0.32 −0.03 −3.59 0.50
FIN −0.15 −7.36 0.54 −0.41 −8.32 0.58 −0.02 −1.14 0.15 −0.03 −23.68 0.53
FRA −0.05 −8.85 0.76 −0.08 −5.68 0.77 −0.04 −15.49 0.66 −0.03 −8.49 0.83
GBR −0.04 −28.14 0.94 −0.05 −23.09 0.94 −0.02 −7.37 0.54 −0.02 −2.26 0.31
ITA −0.07 −22.72 0.87 −0.06 −22.97 0.94 −0.02 −8.99 0.45 −0.02 −2.56 0.37
NLD −0.04 −17.30 0.82 0.05 6.32 0.65 −0.02 −3.04 0.39 −0.04 −7.63 0.64
SWE −0.06 −33.88 0.94 −0.06 −10.50 0.86 −0.02 −5.88 0.53 −0.04 −7.95 0.71

Asia

AUS −0.03 −6.59 0.65 −0.05 −17.60 0.90 −0.02 −3.60 0.25 0.01 0.72 0.04
CHN −0.05 −6.85 0.41 −0.06 −8.37 0.52 −0.04 −7.29 0.46 −0.05 −10.04 0.67
HKG −0.04 −12.18 0.57 −0.08 −3.04 0.26 −0.05 −4.82 0.55 −0.08 −7.64 0.76
JPN −0.06 −15.17 0.89 −0.07 −11.20 0.87 −0.03 −9.14 0.54 −0.05 −7.43 0.70
KOR −0.07 −16.22 0.79 −0.12 −12.21 0.71 −0.05 −6.79 0.40 −0.05 −4.94 0.30
TWN −0.10 −8.52 0.66 −0.20 −4.40 0.62 −0.04 −6.65 0.45 −0.11 −18.69 0.78
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Table 4: Tail-risk is high when variance is low — Ex ante implied moments. The first row of Panel A reports the slope
coefficients from panel regressions of the form:

Et[Momentit,T ] = αi + βEt[Variance
i
t,T ] + ϵit,T

where i represent the different indexes. Variances are annualized and in percentages. We include index fixed effects and cluster
standard errors by time and country. The second row of Panel A reports a similar panel regression, but here we standardize the
(standardized) moments within each index before pooling them together and running the regression. Panel B reports univariate re-
gressions of expected moments onto expected variance for each individual index. We infer the expected moments from option prices
(see Section 2). The t−statistics in the individual index-wise regressions are corrected for autocorrelation and heteroscedasticity
using Newey-West standard errors with 12 lags. We report statistical significance at the 10% level in bold.

Monthly horizon Quarterly horizon

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Pooled panel regressions

Raw moments 0.08 7.31 0.30 −1.19 −6.61 0.17 0.05 4.08 0.28 −0.51 −3.22 0.19
Standardized moments 0.37 6.80 0.13 −0.28 −8.12 0.07 0.33 4.86 0.10 −0.29 −5.39 0.08

Panel B: Index-wise regressions

United States

SP500 0.13 3.82 0.22 −2.14 −3.29 0.14 0.12 4.83 0.31 −0.72 −3.84 0.31
NASDAQ 0.07 6.99 0.51 −0.25 −2.05 0.05 0.07 9.11 0.62 −0.17 −2.95 0.26
DowJ 0.20 4.42 0.30 −3.10 −3.15 0.13 0.16 4.91 0.52 −0.93 −4.37 0.35
Russell 0.07 5.44 0.20 −0.20 −0.98 0.01 0.06 4.71 0.20 −0.12 −1.07 0.04

Europe

BEL 0.03 2.78 0.02 −0.38 −2.38 0.01 0.05 3.53 0.12 −0.12 −1.77 0.03
CHE 0.12 4.84 0.07 −2.59 −4.46 0.06 0.08 3.34 0.17 −0.95 −4.86 0.19
DEU 0.07 7.14 0.16 −1.38 −5.93 0.13 0.04 3.58 0.18 −0.74 −4.94 0.20
ESP 0.05 2.32 0.03 −0.71 −3.55 0.06 0.04 3.04 0.08 −0.26 −5.60 0.09
FIN 0.02 1.31 0.02 −0.10 −1.84 0.02 0.05 1.28 0.04 −0.07 −0.71 0.01
FRA 0.06 3.91 0.09 −0.97 −4.47 0.11 0.04 2.62 0.07 −0.57 −3.02 0.11
GBR 0.18 4.24 0.16 −3.77 −3.51 0.12 0.15 4.06 0.19 −2.23 −2.98 0.13
ITA 0.08 5.15 0.08 −1.21 −6.59 0.09 0.08 2.69 0.06 −1.18 −2.30 0.06
NLD 0.10 6.20 0.15 −2.26 −4.77 0.12 0.03 0.80 −0.01 −1.64 −2.68 0.05
SWE 0.10 4.28 0.07 −1.60 −3.60 0.08 0.05 3.11 0.04 −0.71 −2.33 0.02

Asia

AUS 0.07 2.77 0.03 −1.15 −1.85 0.01 0.08 3.00 0.03 −0.80 −1.43 0.00
CHN 0.02 3.57 0.05 −0.38 −3.81 0.09 0.01 0.92 0.00 −0.16 −2.17 0.06
HKG 0.04 6.01 0.07 −0.77 −4.01 0.07 0.01 1.72 0.01 −0.17 −5.75 0.23
JPN 0.06 2.24 0.06 −1.35 −2.44 0.10 0.01 0.17 −0.02 −0.67 −1.22 0.02
KOR 0.03 2.76 0.03 −0.45 −2.24 0.03 0.06 2.73 0.14 −0.41 −1.84 0.12
TWN 0.07 4.19 0.20 −0.61 −3.47 0.24 0.10 4.75 0.28 −0.44 −3.68 0.38
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Table 5: Tail-risk is high when variance is low — Ex post realized moments. The first row of Panel A reports the slope
coefficients from panel regressions of the form:

Realized momentit,T = αi + βRealized varianceit,T + ϵit,T

where i represent the different indexes. Variances are annualized and in percentages. We include index fixed effects and cluster
standard errors by time and country. The second row of Panel A reports a similar panel regression, but here we standardize the
(standardized) moments within each index before pooling them together and running the regression. Panel B reports univariate
regressions of realized moments onto the realized variance for each individual index. We use methods described in Neuberger
(2012) and Bae and Lee (2021) to infer realized moments (see Section 2). The t−statistics in the individual index-wise regressions
are corrected for autocorrelation and heteroscedasticity using Newey-West standard errors with 12 lags. We report statistical
significance at the 10% level in bold.

Monthly horizon Quarterly horizon

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Pooled panel regressions

Raw moments 0.03 5.73 0.15 −0.62 −3.12 0.17 0.05 5.66 0.32 −0.97 −3.47 0.14
Standardized moments 0.14 4.07 0.01 −0.16 −4.13 0.02 0.25 4.47 0.05 −0.25 −5.05 0.05

Panel B: Index-wise regressions

United States

SP500 0.02 3.21 0.02 −0.53 −2.76 0.05 0.06 2.94 0.07 −0.75 −2.54 0.10
NASDAQ 0.02 4.77 0.08 −0.23 −4.46 0.10 0.04 6.06 0.28 −0.28 −3.54 0.20
DowJ 0.02 3.52 0.02 −0.29 −2.25 0.02 0.06 3.61 0.10 −0.76 −2.33 0.06
Russell 0.02 2.36 0.02 −0.29 −1.94 0.02 0.03 2.24 0.05 −0.31 −1.72 0.03

Europe

BEL 0.04 2.63 0.02 −0.73 −2.26 0.01 0.07 1.47 0.01 −1.70 −1.62 0.02
CHE 0.04 1.34 0.00 −1.69 −2.05 0.01 0.09 2.40 0.08 −2.64 −4.39 0.10
DEU 0.05 3.51 0.02 −0.99 −1.74 0.00 0.08 2.46 0.02 −1.93 −1.73 0.01
ESP 0.03 1.51 0.00 −0.71 −1.66 0.00 0.07 3.82 0.06 −1.53 −4.09 0.06
FIN 0.05 2.90 0.06 −0.18 −0.41 −0.02 0.13 3.44 0.16 −1.28 −1.45 0.01
FRA 0.06 3.50 0.04 −1.26 −2.79 0.03 0.08 3.98 0.04 −1.91 −2.76 0.02
GBR 0.04 2.54 0.01 −0.75 −1.23 0.00 0.08 3.78 0.04 −3.18 −4.10 0.06
ITA 0.03 2.35 0.01 −0.90 −2.31 0.01 0.07 4.50 0.11 −1.93 −4.22 0.09
NLD 0.07 2.95 0.03 −1.71 −2.80 0.01 0.08 2.36 0.07 −1.53 −2.60 0.05
SWE 0.04 3.20 0.02 −1.25 −2.27 0.00 0.09 3.37 0.09 −1.46 −2.41 0.05

Asia

AUS 0.05 1.30 0.00 −4.48 −3.06 0.05 −0.04 −1.32 −0.01 −2.72 −1.93 0.00
CHN 0.01 0.87 −0.01 −0.57 −2.52 0.01 0.01 0.53 −0.02 −0.45 −2.24 0.02
HKG 0.01 0.59 −0.01 −0.43 −2.61 0.01 0.02 0.90 −0.01 −0.47 −2.60 0.03
JPN 0.02 0.79 −0.01 −2.05 −2.24 0.03 0.01 0.56 −0.01 −1.37 −2.18 0.03
KOR 0.01 0.73 −0.01 −0.63 −1.59 0.01 0.08 5.92 0.09 −0.41 −1.29 0.01
TWN −0.05 −0.58 −0.01 −1.70 −1.58 0.01 0.16 2.81 0.09 −1.45 −4.84 0.10

45



Table 6: Cyclicality in higher-moment risks — Divided-Price Ratio (Ex ante implied moments). The first row of
Panel A reports the slope coefficients from panel regressions of the form:

Et[Momentit,T ] = αi + βDividend-Price Ratioit + γt+ ϵit,T

where i represent the different indexes and Dividend-Price Ratioit dividend-price ratio at time t for index i. We include index fixed
effects and cluster standard errors by time and country. The second row of Panel A reports a similar panel regression, but here
we standardize the (standardized) moments and the past returns within each index before pooling them together and running the
regression. Panel B reports univariate regressions of realized moments onto the past returns for each individual index. We use
methods described in Neuberger (2012) and Bae and Lee (2021) to infer realized moments (see Section 2). The t−statistics in the
individual index-wise regressions are corrected for autocorrelation and heteroscedasticity using Newey-West standard errors with
12 lags. We report statistical significance at the 10% level in bold.

Monthly horizon Quarterly horizon

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Pooled panel regressions

Raw moments 7.16 1.53 0.00 −100.75 −1.28 0.00 1.85 2.46 −0.00 −20.05 −1.00 −0.00
Standardized moments 0.17 4.78 0.02 −0.10 −2.96 0.01 0.14 2.33 0.01 −0.12 −2.64 0.00

Panel B: Index-wise regressions

United States

SP500 45.09 1.56 0.23 −912.49 −2.25 0.04 49.95 1.54 0.41 −261.26 −2.49 0.38
NASDAQ 5.07 0.22 0.28 −120.26 −0.49 0.00 5.74 0.30 0.35 −42.57 −0.89 0.46
DowJ 108.67 4.17 0.24 −279.83 −0.44 0.10 51.38 2.77 0.39 −237.56 −1.71 0.21
Russell 45.78 2.14 0.16 213.76 1.64 0.13 43.43 2.36 0.12 38.18 0.72 0.35

Europe

BEL −2.13 −0.51 0.02 −68.90 −1.28 0.00 −3.74 −1.17 −0.01 18.73 1.86 −0.01
CHE 57.81 4.13 0.10 −1210.43 −2.79 0.04 16.08 3.26 0.54 −175.36 −2.26 0.40
DEU 26.68 3.48 0.08 −598.61 −3.16 0.06 7.07 1.77 0.26 −166.44 −2.73 0.09
ESP 16.46 1.50 0.01 −225.61 −2.42 0.10 15.99 3.78 0.13 −76.51 −3.90 0.04
FIN 2.02 3.47 0.11 −6.04 −1.92 0.00 2.07 4.90 0.07 −3.41 −3.82 0.13
FRA 33.44 3.93 0.24 −494.24 −3.05 0.13 30.19 6.64 0.28 −277.08 −4.51 0.17
GBR 74.43 4.17 0.38 −1259.79 −3.14 0.36 46.43 6.92 0.26 −593.54 −3.55 0.20
ITA 39.14 2.89 0.08 −516.65 −2.88 0.08 29.33 2.32 0.21 −324.07 −1.66 0.16
NLD 22.47 2.76 0.12 −502.41 −2.71 0.06 −20.86 −1.15 0.13 −519.17 −1.95 0.00
SWE 20.57 1.93 0.07 −264.98 −1.46 0.04 17.87 2.86 0.11 −190.20 −2.41 0.04

Asia

AUS 23.96 1.26 0.02 −279.36 −0.71 −0.01 10.08 0.55 0.02 31.98 0.10 −0.02
HKG 8.82 1.76 0.05 −141.48 −2.06 0.02 6.46 1.63 0.03 −63.79 −2.97 0.13
JPN −25.75 −1.23 0.64 435.42 0.95 0.55 −48.03 −2.25 0.63 118.54 0.46 0.45
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Table 7: Cyclicality in higher-moment risks — Divided-Price Ratio (Ex post realized moments). The first row of
Panel A reports the slope coefficients from panel regressions of the form:

Realized momentit,T = αi + βDividend-Price Ratioit + γt+ ϵit,T

where i represent the different indexes and Dividend-Price Ratioit dividend-price ratio at time t for index i. We include index fixed
effects and cluster standard errors by time and country. The second row of Panel A reports a similar panel regression, but here
we standardize the (standardized) moments and the past returns within each index before pooling them together and running the
regression. Panel B reports univariate regressions of realized moments onto the past returns for each individual index. We use
methods described in Neuberger (2012) and Bae and Lee (2021) to infer realized moments (see Section 2). The t−statistics in the
individual index-wise regressions are corrected for autocorrelation and heteroscedasticity using Newey-West standard errors with
12 lags. We report statistical significance at the 10% level in bold.

Monthly horizon Quarterly horizon

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Pooled panel regressions

Raw moments 3.11 1.18 0.13 −25.53 −0.59 0.04 3.65 2.84 0.26 −93.51 −1.95 0.10
Standardized moments 0.04 1.07 0.00 −0.02 −0.84 0.00 0.05 1.03 −0.00 −0.10 −2.39 −0.00

Panel B: Index-wise regressions

United States

SP500 18.09 0.83 0.09 −560.07 −1.69 0.10 22.12 0.72 0.31 −555.27 −1.96 0.28
NASDAQ −9.23 −0.66 0.19 −112.79 −1.13 0.20 −17.97 −1.00 0.45 −62.60 −0.45 0.47
DowJ 3.79 0.19 0.02 −102.14 −0.53 0.03 7.04 0.33 0.20 −393.02 −1.46 0.17
Russell −18.28 −0.53 0.00 432.15 0.66 0.04 −21.62 −0.46 −0.01 588.44 0.71 0.02

Europe

BEL −10.53 −1.36 0.12 262.62 2.04 0.05 −14.41 −1.53 0.16 7.59 0.05 0.01
CHE −0.87 −0.08 0.08 238.80 0.55 0.01 26.85 2.39 0.21 −1055.26 −2.76 0.11
DEU 17.29 1.35 0.04 106.76 0.30 0.02 42.04 1.35 0.20 −1124.12 −1.09 0.15
ESP 21.19 2.59 0.02 −316.74 −1.14 −0.01 31.69 3.43 0.07 −685.23 −3.57 0.07
FIN 1.01 1.60 −0.02 −8.73 −0.62 −0.04 3.26 2.83 0.05 −49.74 −2.12 0.02
FRA 38.45 3.04 0.02 −669.13 −2.97 0.01 55.70 3.50 0.11 −1082.95 −2.62 0.08
GBR 18.72 1.59 0.00 −220.72 −0.89 −0.01 22.96 1.71 0.13 −1064.80 −3.37 0.07
ITA −1.91 −0.17 −0.01 278.23 0.85 −0.01 26.63 3.08 0.16 −898.54 −3.25 0.07
NLD 25.09 4.48 0.02 −590.87 −2.74 0.00 1.85 0.18 0.11 −265.14 −1.37 0.00
SWE 21.40 1.69 0.08 −233.56 −1.14 0.02 42.33 1.80 0.35 −799.15 −1.72 0.14

Asia

AUS 29.81 2.29 0.02 −646.49 −1.33 0.00 −20.42 −1.22 −0.02 −724.68 −1.35 −0.02
HKG 5.22 0.21 −0.01 −96.88 −0.38 −0.01 3.63 0.17 −0.02 −250.36 −1.26 0.01
JPN −14.81 −0.30 0.05 311.70 0.55 0.11 −169.92 −3.65 0.24 2071.92 3.06 0.26
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Table 8: Cyclicality in higher-moment risks — Alternative indicators of the state of
the economy. This table reports the slope coefficients from index-wise regressions on the form:

Momentt,T = α+ βIndicatort + γt+ ϵt,T

where Indicatort is: (Panel A) the consumption-wealth ratio of Lettau and Ludvigson (2001) scaled
by 100 for readability, (Panel B) the Chicago Fed National Activity Index, and (Panel C) NBER
recession periods. Momentt,T is either the expected moments or the realized moments. We infer
the expected moments from option prices and we use methods described in Neuberger (2012) and
Bae and Lee (2021) to infer realized moments (see Section 2). The t−statistics are corrected for
autocorrelation and heteroscedasticity using Newey-West standard errors with 12 lags. We report
statistical significance at the 10% level in bold.

Monthly horizon Quarterly horizon

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Consumption-wealth ratio (’cay’ from Lettau and Ludvigson (2001))

Implied moments

SP500 0.26 2.07 0.26 −4.84 −1.88 0.05 0.13 1.92 0.40 −0.76 −1.83 0.41
NASDAQ 0.09 1.03 0.33 −0.26 −0.18 0.01 0.16 1.88 0.41 −0.11 −0.42 0.55
DowJ 0.30 1.45 0.25 −5.06 −1.16 0.16 0.17 1.67 0.51 −1.21 −1.97 0.35
Russell 0.23 2.39 0.17 −0.93 −1.10 0.16 0.24 2.61 0.14 −0.50 −2.11 0.41

Realized moments

SP500 0.20 1.72 0.10 −4.27 −2.30 0.11 0.19 1.74 0.36 −2.55 −1.75 0.31
NASDAQ 0.11 1.65 0.22 −1.10 −1.70 0.22 0.09 1.27 0.49 −0.33 −0.55 0.52
DowJ 0.16 1.27 0.03 −1.92 −1.17 0.04 0.17 1.68 0.27 −0.92 −0.63 0.22
Russell 0.09 0.81 0.00 1.19 0.49 0.04 0.15 1.31 0.00 0.44 0.27 −0.01

Panel B: Chicago Fed National Activity Index (CFNAI)

Implied moments

SP500 −0.51 −3.58 0.06 7.32 3.08 0.03 −0.47 −4.15 0.14 2.19 3.27 0.08
NASDAQ −0.24 −2.01 0.02 −0.14 −0.10 0.00 −0.29 −2.76 0.06 0.47 1.19 0.00
DowJ −0.75 −4.25 0.07 8.38 2.13 0.01 −0.45 −4.77 0.13 2.67 3.53 0.09
Russell −0.38 −3.36 0.07 −0.74 −0.67 0.00 −0.41 −6.34 0.13 0.28 0.67 −0.01

Realized moments

SP500 −0.19 −1.36 0.00 6.32 3.52 0.03 −0.30 −1.63 0.01 4.86 2.05 0.03
NASDAQ −0.02 −0.18 0.00 0.69 0.67 0.00 −0.13 −1.11 0.00 1.65 1.81 0.01
DowJ −0.23 −2.17 0.01 2.75 1.68 0.00 −0.27 −2.35 0.01 4.70 2.17 0.02
Russell −0.36 −2.86 0.02 7.02 1.81 0.04 −0.43 −2.45 0.05 4.96 1.62 0.04

Panel C: NBER recessions

Implied moments

SP500 0.88 3.19 0.08 −12.48 −4.07 0.04 0.83 2.89 0.18 −3.82 −2.89 0.10
NASDAQ 0.63 2.76 0.08 −3.33 −1.75 0.01 0.49 2.29 0.08 −1.28 −1.83 0.03
DowJ 1.46 5.08 0.13 −19.37 −3.65 0.04 0.82 4.48 0.18 −4.84 −3.73 0.12
Russell 0.65 4.23 0.09 −2.51 −1.39 0.01 0.51 3.13 0.08 −1.00 −1.49 0.01

Realized moments

SP500 0.29 1.20 0.00 −6.88 −1.63 0.01 0.57 1.97 0.03 −8.32 −2.29 0.04
NASDAQ 0.21 1.34 0.00 −2.58 −1.62 0.01 0.30 1.35 0.01 −3.26 −1.81 0.02
DowJ 0.42 2.77 0.01 −5.95 −3.23 0.02 0.54 2.60 0.03 −8.61 −2.48 0.03
Russell 0.48 2.95 0.02 −5.37 −2.01 0.01 0.60 2.97 0.05 −5.32 −2.03 0.01
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Table 9: The common tail-risk component in international stock markets. The first column of Panel A reports: (i) the
coefficients of the first principal component of the space spanned by monthly horizon ex ante variance for the twenty stock market
indexes and (ii) the percentage of the variation explained by the first principal component. The second column reports the slope
coefficient of index-wise regressions of the form:

Varianceit,T = αi + βiVariance PC1t,T + ϵit,T

Where Variance PC1t,T is the first principal component of variances for the twenty indexes. The third column reports t−statistics
that we correct for autocorrelation and heteroscedasticity using Newey-West standard errors with 12 lags. The fourth column
reports the adjusted R2. Columns five to twelve report the results of a similar analysis for ex ante skewness and ex ante kurtosis.
Panel B reports the slope, t−statistics, and adjusted R2 of the regression: Skew PC1t,T = α + βVar PC1t,T + ϵt,T and similarly
for kurtosis instead of skewness. Significance at the 10% level is shown in bold.

Panel A: First principal component and index-wise regressions

Ex ante log(variance) Ex ante skewness Ex ante kurtosis

Var PC1 β t-stat. R2 Skew PC1 β t-stat. R2 Kurt PC1 β t-stat. R2

United States

SP500 0.24 0.17 31.98 0.92 0.28 2.36 10.32 0.64 0.21 3.31 5.26 0.39
NASDAQ 0.22 0.14 16.57 0.83 0.20 3.09 3.87 0.32 0.07 0.59 1.99 0.03
DowJ 0.23 0.15 22.57 0.89 0.27 1.55 8.07 0.58 0.24 8.43 6.48 0.49
Russell 0.23 0.15 30.60 0.90 0.25 3.18 7.11 0.49 0.14 1.32 4.06 0.17

Europe

BEL 0.22 0.14 14.61 0.79 0.05 0.57 0.97 0.01 0.19 1.67 4.73 0.29
CHE 0.23 0.14 26.63 0.90 0.27 1.26 7.31 0.61 0.29 11.51 10.01 0.70
DEU 0.23 0.14 21.73 0.89 0.28 2.03 9.56 0.65 0.30 7.01 13.35 0.75
ESP 0.21 0.13 12.28 0.72 0.08 0.42 1.56 0.04 0.21 3.27 3.51 0.36
FIN 0.20 0.13 14.81 0.68 0.14 1.89 2.70 0.15 0.09 0.23 2.77 0.07
FRA 0.23 0.15 17.12 0.89 0.28 2.97 8.85 0.65 0.29 3.66 9.38 0.73
GBR 0.24 0.15 47.02 0.94 0.26 0.95 6.41 0.55 0.24 12.45 7.64 0.48
ITA 0.18 0.10 8.84 0.53 0.24 1.32 7.42 0.47 0.26 5.32 9.60 0.60
NLD 0.24 0.16 30.25 0.93 0.29 1.70 10.64 0.71 0.29 9.81 18.22 0.71
SWE 0.24 0.15 42.39 0.91 0.25 1.05 7.67 0.51 0.27 8.03 9.43 0.61

Asia

AUS 0.23 0.16 21.45 0.89 0.13 0.67 2.48 0.14 0.10 4.14 1.71 0.08
CHN 0.22 0.15 15.18 0.78 0.15 1.43 4.74 0.18 0.20 2.45 10.28 0.33
HKG 0.22 0.16 14.40 0.79 0.16 1.08 4.01 0.19 0.18 4.08 3.70 0.28
JPN 0.20 0.12 9.38 0.66 0.23 1.29 5.18 0.44 0.22 5.85 5.62 0.40
KOR 0.22 0.16 16.34 0.81 0.18 1.50 4.72 0.25 0.22 2.74 2.83 0.41
TWN 0.22 0.17 24.57 0.82 0.25 2.90 7.58 0.51 0.28 1.62 11.14 0.65

Variation explained 83% 41% 43%

Panel B: Higher-moment PC1 regressed onto variance PC1

β t-stat. R2

Skew PC1 0.54 10.40 0.59
Kurt PC1 −0.69 −6.28 0.42
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Table 10: Higher-moment risk and risk premia in theory and in the data. This table
reports the results of regressions of ex post realized returns onto the ex ante skewness. The first
two columns shows results on simulated data from the Wachter (2013). We estimate expected
skewness by projecting realized daily skewness for the upcoming month onto the ex ante disaster
intensity. We then regress ex post realized returns of a given month based on the (normalized)
ex ante skewness in 40,000 samples of 30-year length each and report median slope coefficients.
Standard errors are obtained as the standard deviation of the simulated parameters. We refer to
Appendix E.1 for details on this procedure. In column 3-6, we project realized monthly returns
on ex ante risk-neutral skewness in our panel of 17 countries. We include country fixed effects
and double cluster standard errors by country and date. We normalize skewness by dividing by
the standard deviation of the skewness in the given country. Returns are in percent. The sample
includes the 17 countries listed in Table 1. Standard errors are reported in parentheses below the
parameters and statistical significance at the 5-percent level is reported in bold.

Wachter (2013) Regression results in global panel

Ex. ret Raw ret Ex. ret Raw ret Ex. ret Raw ret

Skewness −0.75 −0.73 −0.20 −0.27 −0.30 −0.31
(normalized) (0.85) (0.96) (0.23) (0.18) (0.18) (0.14)

Variance 0.32 0.12
(normalized) (0.53) (0.38)

R2 0.012 0.012 0.003 0.005 0.005 0.005
N 300 300 3,380 3,398 3,380 3,398
FE NA NA Country Country Country Country
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Appendix

Appendix A Alternative choices for excluding/including

data in the estimation of implied moments

In the following, we describe four alternative ways in which we have excluded/included option

data to fit implied moments. Tables A5 to A9 in the online appendix, report the robustness

results of our analysis in Tables 2, 3, 4, and 6 where we use the alternative methods to

estimate moments. Overall, we find that our results are robust to the alternative choices of

excluding/including option data into our analysis.

Detrended moments using all observable prices. As a first robustness test of our

results, we rerun our analysis using detrended moments. That is, we first estimate moments

using all observable option prices and thereafter we linearly detrend the moments using

calendar dates as our detrending variable. The detrending is meant to capture the effect

that the moments are mechanically increasing over time in our sample due to the increasing

number of options traded at different strikes. Panel A of Tables A5 to A9 in the online

appendix report the results of the panel regressions in Tables 2, 3, 4, and 6 using the

detrended implied moments.

Dynamic bounds with extrapolation. Let σt,T be the time t risk-neutral volatility of

market returns. In this method, we first use all available option prices for a given index

to estimate a time-series of σt,T using the methods described in Section 2.1. Thereafter,

on each date, we select the observed options that are within the range from spot−5σt,T to

spot+5σt,T . If on a given date there are no options traded with strikes as far as ±5σt,T from

the spot price then we extrapolate prices using a nearest neighbor methodology on implied

volatilities. In the end, we end up with a homogeneous dataset meant in the sense that we

have option data that span the same number of conditional risk-neutral volatilities on each

date. Panel B of Tables A5 to A9 in the online appendix report the results of the panel

regressions in Tables 2, 3, 4, and 6 using the dynamic bounds to estimate implied moments.

Static bounds without extrapolation. In this method, we use the observable options

with strikes in the range from spot×0.65 to spot×1.35. All observations outside this range

are excluded and we do not extrapolate to obtain prices for the entire range if these are not
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in the data. Panel C of Tables A5 to A9 in the online appendix report the results of the

panel regressions in Tables 2, 3, 4, and 6 using the static bounds without extrapolation to

estimate implied moments.

Static bounds with extrapolation. Lastly, we consider use the observable options with

strikes in the range from spot×0.75 to spot×1.25 for monthly horizon and the range from

spot×0.55 to spot×1.45 for the quarterly horizon. All observations outside this range are

excluded. We use a nearest neighbor extrapolation method to extrapolate data to cover the

entire range if these are not in the data. Panel D of Tables A5 to A9 in the online appendix

report the results of the panel regressions in Tables 2, 3, 4, and 6 using the static bounds

with extrapolation to estimate implied moments.

Appendix B Comments on the estimation of Tail Prob-

abilities

To estimate the first derivative of the put option price written on the risky asset at strike

αSt −Dt,T and to handle a sparse and discrete set of observed option prices, we smoothen

observed option prices using a polynomial prediction of observed implied volatilities (IV)

onto their option strikes. Specifically, in the spirit of Dumas, Fleming, and Whaley (1998),

we regress observed implied volatilities onto their respective strikes:

IVi = β0 + β1Strikei + β2Strike
2
i + β3Strike

3
i + ηi (26)

It is important to note that we run this regression on the put side of the implied volatility

surface only. That is, we use observations from the put with the lowest observable strike to

the put with the strike that is closest to the forward price but still lower than the forward

price. We disregard the call side of the implied volatility surface because we do not need

this part in our estimation of left-tail probabilities. The fact that we only have to smoothen

the put side of the implied volatility surface is a huge advantage simply because we only

have to fit the left side of the well-known implied volatility smirk. It is a lot easier to fit

one side of the surface accurately than the entire surface because most of the non-linearity

in the surface arises around the forward price.

We also note that we fit a third degree polynomial to the put-side of the implied volatility

surface only when we have more than 50 put options with different strikes. If we have between
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10 and 49, we fit a second degree polynomial and if we have less than 10 put options with

different strikes for a given day and horizon, we use a first order polynomial. The cut-off

points for when we use the different polynomials is quite ad-hoc and choosing other thresholds

has little importance for our results. The important thing is that we do not overfit the surface

when we have only a few observations. Figure A2 in the online Appendix shows examples

of fitted implied put volatilities and the option prices.

Now, given a smooth set of option prices around the strike αSt −Dt,T , we compute the

first derivative as the slope between the two adjacent prices:

put′t,T (αSt −Dt,T ) =
putt,T (αSt −Dt,T + h)− putt,T (αSt −Dt,T − h)

2h
(27)

where h is the chosen grid step size in the discretization.

Appendix C Computing Bollerslev, Todorov, and Xu

(2015) parameters

According to Bollerslev, Todorov, and Xu (2015), the left tail parameters can be computed

from out-of-the-money put options in the following way:

α−
t = median2≤i≤N

∣∣∣∣∣∣1−
ln

Ot,T (ki,t)

Ot,T (ki−1,t)

ki,t − ki−1,t

∣∣∣∣∣∣ (28)

and

ϕ−
t = median2≤i≤N

∣∣∣∣lnert,TOt,T (ki,t)

(T − t)Ft,T

− (1 + α−
t )ki,t + ln(α−

t + 1) + ln(α−
t )

∣∣∣∣ (29)

where N is the number of available options, Ot,T (ki,t) is the mid-price of the i’th option

ordered according to the log-moneyness, ki,t, and rt,T is the risk-free interest rate. Code and

detailed empirical description can be found on the Torben Andersen and Viktor Todorov

derivatives-based market indicators website: tailindex.com. We follow the description out-

lined on the website step-by-step.
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Appendix D Skewness in jump diffusion Models

In this section, we discuss the skewness of various jump diffusion models. Our analysis

springs from the results of Zhen and Zhang (2020), who derives the theoretical skewness in

a five-factor jump diffusion model with stochastic variance and jump intensity, correlated

variance and returns, and jumps in prices and variances. We investigate a particular version

of their model, where returns are given as:

dSt

St

= αdt+ σtdB
S
t + (ex − 1)dNt − λtE(ex − 1)dt (30)

dσ2
t = kσ(σ̄

2 − σ2
t )dt+ σσ

√
σ2
t dB

σ
t + ydNt − λtµydt (31)

dλt = kλ(λ̄− λt)dt+ σλ

√
λtdB

λ
t (32)

where St is the price of the asset, α is the expected return, and kσ and kλ capture the speed of

mean reversion for the variance and the jump intensity who have long-term means of σ̄2 and

λ̄. The Bσ
t and BS

t are Brownian motions with correlation ρ and Bλ
t is a Brownian motion

that is independent of the other Brownian motions. Nt is a Poisson counter with intensity λt

that is independent of the Brownian motions. The average jump size is x, which is normally

distributed with mean µx and variance σ2
x. The jump size in variance, y, is exponentially

distributed with mean µy. Jump sizes are independent of each other and on Nt, and they

are independent over time.

Zhen and Zhang (2020) shows that for short horizons, which they find to be less than a

year, the following expression is a good approximation of the theoretical skewness:15

SKt,T =
λtµx3

(σ2
t + λtµx2)3/2

√
T − t

+
√
T − t

3ρσσσ
2
t + 3λtµxy − 3

2
λtµx2y

2(σ2
t + λtµx2)3/2

(33)

+ µx3

3λt(kσ(σ
2
t − σ̄2) + ρσσσ

2
t + λtµxy) + kλ(λt − λ̄)(λtµx2 − 2σ2

t )

4(σ2
t + λtµx2)5/2

(34)

where µx3 = 3µxσ
2
x + µ3

x, µx2y = (µ2
x + σ2

x)µy, and µxy = µxµy.

In Figure 10, we choose parameter values: σx = 0.05, µx = −0.2, σ = 0.2 average

annualized volatility of 20%, T − t = 1/12, kλ = 3, λ̄ = 0.0355 (as in the Wachter (2013)

model), kσ = 2, σ̄2 = 0.06, ρ = −0.7, σσ = 0.6, µy = 0.1.

In the following, we investigate the skewness in several sub-models.

15Remark 1 of the paper.
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D.1 Merton jump diffusion model

In a standard Merton jump diffusion model, the return process takes the form:

dSt

St

= αdt+ σdBS
t + (ex − 1)dNt − λE(ex − 1)dt (35)

This model implies a return skewness over the period from t to T :

SKMerton
t,T =

λµx3

(σ2 + λµx2)3/2
√
T − t

(36)

where µx3 = 3µxσ
2
x + µ3

x < 0 and µx2 = µ2
x + σ2

x > 0. The first derivative of the skewness

wrt. the jump intensity λ is:

dSKMerton
t,T

dλ
=

µx3(2σ2 − λµx2)

2
√
T − t(λµx2 + σ2)5/2

(37)

Since µx3 < 0, then
dSKMerton

t,T

dλ
< 0 if 2σ2−λµx2 > 0. This is true if jumps are infrequent and

if the average jump size and jump variance is not too large. If jumps happen all the time (λ

is very large) then the distribution will shift to the left and be ”centered” around the jump

distribution. In this case, the diffusive part will drive up the skewness of the distribution

when the jump intensity increases.

D.2 Adding time varying intensity

The return process is now:

dSt

St

= αdt+
√
σdBS

t + (ex − 1)dNt − λtE(ex − 1)dt (38)

with a mean-reverting jump intensity process:

dλt = kλ(λ̄− λt)dt+ σλ

√
λtdB

λ
t (39)
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This model implies an approximate return skewness over the period from t to T :

SKλ
t,T =

λtµx3

(σ2 + λtµx2)3/2
√
T − t

(40)

+ µx3

√
T − t

kλ(λ̄− λt)[2σ
2 − λtµx2 ]

4(σ2 + λtµx2)5/2
(41)

D.3 Adding time varying diffusive variance

The return process is now:

dSt

St

= αdt+
√
σtdB

S
t + (ex − 1)dNt − λtE(ex − 1)dt (42)

with a mean-reverting diffusive variance process:

dσ2
t = kσ(m− σ2

t )dt+ σσ

√
σ2
t dB

σ
t (43)

This model implies an approximate return skewness over the period from t to T :

SKλ,σ
t,T =

λtµx3

(σ2
t + λtµx2)3/2

√
T − t

(44)

+ µx3

√
T − t

kλ(λ̄− λt)[2σ
2
t − λtµx2 ]

4(σ2
t + λtµx2)5/2

(45)

− µx3

√
T − t

3λtkσ(σ̄
2 − σ2

t )

4(σ2
t + λtµx2)5/2

(46)

D.4 Adding correlation between diffusive variance and returns

The return process is now:

dSt

St

= αdt+
√
σtdB

S
t + (ex − 1)dNt − λtE(ex − 1)dt (47)

56



with a a non-zero correlation between the Brownian motions BS
t and Bσ

t . This model implies

an approximate return skewness over the period from t to T :

SKλ,σ,ρ
t,T =

λtµx3

(σ2
t + λtµx2)3/2

√
T − t

(48)

+ µx3

√
T − t

kλ(λ̄− λt)[2σ
2
t − λtµx2 ]

4(σ2
t + λtµx2)5/2

(49)

− µx3

√
T − t

3λtkσ(σ̄
2 − σ2

t )

4(σ2
t + λtµx2)5/2

(50)

+
√
T − t

3ρσσσ
2
t (λt(2µx2 + µx3) + 2σ2

t )

4(σ2
t + λtµx2)5/2

(51)

D.5 Adding jumps in diffusive variance (contemporaneous with

jumps in returns)

The return process is now:

dSt

St

= αdt+
√
σtdB

S
t + (ex − 1)dNt − λtE(ex − 1)dt (52)

with a mean-reverting diffusive variance process with jumps:

dσ2
t = kσ(m− σ2

t )dt+ σσ

√
σ2
t dB

σ
t + ydNt − λtµydt (53)

This model implies an approximate return skewness over the period from t to T :

SKλ,σ,ρ,y
t,T =

λtµx3

(σ2
t + λtµx2)3/2

√
T − t

(54)

+ µx3

√
T − t

kλ(λ̄− λt)[2σ
2
t − λtµx2 ]

4(σ2
t + λtµx2)5/2

(55)

− µx3

√
T − t

3λtkσ(σ̄
2 − σ2

t )

4(σ2
t + λtµx2)5/2

(56)

+
√
T − t

3ρσσσ
2
t (λt(2µx2 + µx3) + 2σ2

t )

4(σ2
t + λtµx2)5/2

(57)

+
√
T − t

3λt(−λtµx2µx2y + 2λtµx2µxy + λtµx3µxy − µx2yσ
2
t + 2µxyσ

2
t )

4(σ2
t + λtµx2)5/2

(58)
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Appendix E Details on Simulation Studies of Disaster

Models

E.1 Wachter (2013)

In the Wachter (2013) model, we simulate a time series of 252,000,000 daily jump intensities,

stock market returns, treasure bond returns, and dividend/price ratios.16 This corresponds

to 1,000,000 years of data. We then cut the sample into months, where each month is 21

days long (similar to the average number of business days in a month). Within each month,

we compute the: (i) expected excess return, (ii) variance, (iii) skewness, and (iv) kurtosis.

This gives us four time-series of length 12,000,000 months. We then sort the moments into

50 equal size buckets based on the ex ante (start of each month) jump intensity. Within each

bucket, we compute the average expected return, variance, skewness, and kurtosis. Figure

12 shows the moments as function of the ex ante jump intensity. Figure 13 shows the average

skewness and kurtosis against the average variance or dividend/price ratio within each jump

intensity bucket. Table A1 shows the parameter values used in the simulation. These are

the same as in the published version of the Wachter (2013) paper.

Table A1: Parameter values used in the simulation of the Wachter (2013) model.

Parameter Value
Relative risk aversion, γ 3
Rate of time preferences, β 0.012
Average growth in consumption (normal times), µ 0.0252
Volatility of consumption growth (normal times), σ 0.02
Leverage, ϕ 2.6
Average probability of a rare disaster, λ̄ 0.0355
Mean reversion, κ 0.08
Volatility parameter, σλ 0.067

E.2 Gabaix (2012)

Within the Gabaix (2012) disaster model, we estimate the markets risk-neutral moments

by: (i) simulating option prices, (ii) converting these prices into a risk-neutral density using

16We thank Jessica Wachter for providing replication code.
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Breeden and Litzenberger (1978), (iii) compute moments of the risk-neutral distribution. In

our simulation, we let variation in option prices arise from a time varying recovery rate of

the market in case of a disaster. Specifically, we let the size of recovery in case of a disaster

be uniform on the interval from 0.1 to 0.95, i.e., if a disaster occurs then the value of the

stock market drops by 10% to 90%. Table A2 summarizes monthly horizon parameter values

used in the simulation.

Table A2: Parameter values used in the simulation of the Gabaix (2012) model.

Parameter Value
Time preference parameter 0.0055
Risk aversion 3
Growth rate of dividends 0.0021
Volatility of dividends 0.032
Probability of disaster 0.0363
Normal time stock volatility 0.04
Stocks recovery rate Varies from 0.10 to 0.95
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Figure A1: The term structure of skewness in good and bad times. This figure shows the
average ex ante skewness at different horizons on high/low volatility days. High volatility days are
the days in our sample with the 25% highest ex ante variance. Low volatility days are those with
the 25% lowest ex ante variances.
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Figure A2: Examples of fitted implied volatilities. Subfigures (a) and (b) are from March 31,
2009 using options with a maturity of 46 calendar days. Subfigures (c) and (d) are from Dec. 29,
2017 using options with a maturity of 31 calendar days. The lines in figures (a) and (c) are the
fitted implied volatilities from regression (26).
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Figure A3: Skewness in variance buckets. This figure shows the average ex ante skewness
at the monthly horizon for 10 buckets based on the contemporaneous ex ante variance. The low
bucket are months with the lowest 10% of ex ante variances, the high bucket is the bucket with the
highest 10% of ex ante variance months. The bars represent 95% confidence intervals.

Table A3: Robustness: Standardized option data versus raw option data. This table
reports the pairwise correlations between the option implied moments while using: (i) all observable
option prices and (ii) the volatility surface file from OptionMetrics, which contains option prices
with standardized maturities and strikes (in the form of option deltas). For example, the value
in ’var’ in the SP500 row is the correlation between the option implied variance using (i) and the
option implied variance using (ii). The volatility surface contains less observations in the tails of
the distributions and therefore the higher-order moments are typically underestimated, which leads
to lower correlations for these moments.

Monthly horizon Quarterly horizon

var skew kurt var skew kurt

SP500 0.997 0.794 0.399 0.997 0.908 0.932
NASDAQ 0.993 0.834 0.371 0.987 0.826 0.881
DowJ 0.998 0.751 0.590 0.997 0.951 0.880
Russell 0.995 0.829 0.583 0.987 0.794 0.870
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Table A4: Robustness: Standardized option data. This table reports the robustness results using standardized option prices
from the volatility surface file from OptionMetrics rather than the raw option data. Panel A reports the results when regressing
realized moments onto implied moments (as in Table 2). Panel B reports the result when regressing implied higher-order moments
onto the implied variance (as in Table 4). Panel C reports the results when regressing implied moments onto the past two-year
returns (as in Table 6). Panel D reports the results when regressing implied moments onto the consumption-wealth ratio of Lettau
and Ludvigson (2001) (as in Table 8). Variances are annualized and in percentages. We infer expected moments from option prices
as discussed in Section 2. The t−statistics are corrected for autocorrelation and heteroscedasticity using Newey-West standard
errors with 12 lags. We report statistical significance at the 10% level in bold.

Monthly horizon Quarterly horizon

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Implied moments predict realized moments

SP500 1.89 11.18 0.27 14.76 10.63 0.39 2.40 15.22 0.52 16.14 6.55 0.64
NASDAQ 1.53 9.12 0.27 10.73 10.34 0.28 1.68 9.43 0.63 14.86 8.35 0.69
DowJ 1.27 8.38 0.13 7.69 3.96 0.17 2.00 10.88 0.47 14.08 4.81 0.39
Russell 1.49 5.92 0.13 3.82 1.54 0.01 1.13 5.41 0.14 7.96 4.17 0.05

Panel B: Tail-risk is high when variance is low

SP500 0.04 3.88 0.20 −0.10 −3.76 0.25 0.02 4.77 0.32 −0.04 −4.20 0.35
NASDAQ 0.03 11.07 0.54 −0.03 −7.21 0.41 0.01 10.92 0.64 −0.01 −4.52 0.36
DowJ 0.04 4.11 0.23 −0.09 −3.00 0.16 0.02 4.96 0.36 −0.04 −4.93 0.39
Russell 0.03 4.57 0.20 −0.04 −2.89 0.18 0.01 4.15 0.23 −0.02 −3.27 0.24

Panel C: Cyclicality in higher-moment risk — Past returns

SP500 −0.36 −2.07 0.09 0.59 1.66 0.05 −0.30 −1.46 0.06 0.45 1.23 0.03
NASDAQ 0.03 0.24 0.00 −0.10 −0.77 0.02 0.11 0.73 0.02 −0.03 −0.32 0.00
DowJ −0.54 −2.86 0.13 0.55 1.32 0.02 −0.43 −1.93 0.09 0.68 1.60 0.05
Russell −0.28 −2.14 0.06 0.20 1.10 0.01 −0.25 −1.87 0.05 0.29 1.58 0.03

Panel D: Cyclicality in higher-moment risk — Cay

SP500 12.87 5.78 0.46 −28.34 −5.35 0.44 14.38 6.54 0.57 −28.20 −5.88 0.55
NASDAQ 13.05 6.12 0.50 −16.80 −6.09 0.47 17.68 7.58 0.62 −16.48 −9.49 0.64
DowJ 12.99 5.08 0.36 −29.26 −5.04 0.32 15.06 6.02 0.55 −30.83 −5.81 0.54
Russell 6.96 3.98 0.19 −13.31 −3.71 0.27 10.04 5.53 0.38 −15.07 −5.23 0.47
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Table A5: Robustness: Ex ante moments predict ex post realized moments. This table replicates the results in main
Table 2 while using alternative data choices in the estimation of implied moments as discussed in Appendix A. The first rows of
each panel reports the slope coefficients from panel regressions of the form:

Realized momentit,T = αi + βEt[Momentit,T ] + ϵit,T

where i represent the different indexes. We include index fixed effects and cluster standard errors by time and country. The
second row of each panel reports a similar panel regression, but here we standardize the (standardized) moments within each index
before pooling them together and running the regression. We infer the expected moments from option prices and we use methods
described in Neuberger (2012) and Bae and Lee (2021) to infer realized moments (see Section 2). We report statistical significance
at the 10% level in bold.

Month Quarter

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Detrended moments using all observable prices

Raw moments 0.13 2.24 0.15 0.13 1.61 0.05 0.27 3.11 0.31 0.12 2.11 0.12
Standardized moments 0.14 2.62 0.01 0.11 3.46 0.01 0.26 5.41 0.05 0.17 3.88 0.02

Panel B: Dynamic bounds with extrapolation

Raw moments 0.61 5.42 0.22 1.96 6.50 0.09 0.91 5.84 0.37 2.79 7.22 0.12
Standardized moments 0.25 7.76 0.06 0.25 7.71 0.06 0.34 7.35 0.11 0.28 6.95 0.07

Panel C: Static bounds without extrapolation

Raw moments 0.29 3.35 0.17 0.55 4.45 0.07 0.88 6.76 0.44 0.92 1.47 0.10
Standardized moments 0.20 5.09 0.04 0.20 4.12 0.04 0.39 8.47 0.14 0.34 5.40 0.11

Panel D: Static bounds with extrapolation

Raw moments 0.49 4.46 0.22 0.92 3.48 0.08 0.63 5.20 0.39 0.93 2.06 0.10
Standardized moments 0.24 5.88 0.06 0.26 5.68 0.07 0.32 7.61 0.09 0.26 4.69 0.06
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Table A6: Robustness: Comovements in higher-moment risks. This table replicates the
results in the first six columns of main Table 3 while using alternative data choices in the estimation
of implied moments as discussed in Appendix A. The first rows of each panel reports the slope
coefficients from panel regressions of the form:

Et[Skewness
i
t,T ] = αi + βEt[Kurtosisit,T ] + ϵit,T

where i represent the different indexes. We include index fixed effects and cluster standard errors
by time and country. The second row of each panel reports a similar panel regression, but here
we standardize the (standardized) moments within each index before pooling them together and
running the regression. We infer the expected moments from option prices (see Section 2). We
report statistical significance at the 10% level in bold.

Ex ante implied moments

Monthly Quarterly

β t-stat. R2 β t-stat. R2

Panel A: Detrended moments using all observable prices

Raw moments −0.04 −12.90 0.69 −0.01 −0.21 0.00
Standardized moments −0.74 −8.59 0.54 −0.67 −7.34 0.44

Panel B: Dynamic bounds with extrapolation

Raw moments −0.10 −12.86 0.64 −0.10 −9.17 0.73
Standardized moments −0.76 −24.15 0.58 −0.80 −18.10 0.64

Panel C: Static bounds without extrapolation

Raw moments −0.07 −16.21 0.83 −0.01 −0.21 0.33
Standardized moments −0.84 −22.25 0.71 −0.74 −6.54 0.54

Panel D: Static bounds with extrapolation

Raw moments −0.07 −8.00 0.69 −0.02 −0.36 0.32
Standardized moments −0.77 −22.48 0.59 −0.70 −6.37 0.49

65



Table A7: Robustness: Tail-risk is high when variance is low — Ex ante implied moments. This table replicates the
results in main Table 4 while using alternative data choices in the estimation of implied moments as discussed in Appendix A. The
first rows of each panel reports the slope coefficients from panel regressions of the form:

Et[Momentit,T ] = αi + βEt[Variance
i
t,T ] + ϵit,T

where i represent the different indexes. We include index fixed effects and cluster standard errors by time and country. The second
row of each panel reports a similar panel regression, but here we standardize the (standardized) moments within each index before
pooling them together and running the regression. We infer the expected moments from option prices (see Section 2). We report
statistical significance at the 10% level in bold.

Month Quarter

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Detrended moments using all observable prices

Raw moments 0.07 7.63 0.08 −1.02 −5.30 0.05 0.03 3.42 0.02 −0.45 −2.55 0.01
Standardized moments 0.33 6.17 0.11 −0.24 −8.33 0.05 0.29 4.82 0.08 −0.24 −5.76 0.05

Panel B: Dynamic bounds with extrapolation

Raw moments 0.01 2.29 0.27 −0.14 −4.26 0.34 0.02 2.07 0.37 −0.18 −3.54 0.39
Standardized moments 0.15 3.95 0.02 −0.28 −6.38 0.08 0.24 3.72 0.07 −0.32 −5.61 0.09

Panel C: Static bounds without extrapolation

Raw moments 0.06 5.27 0.32 −0.84 −5.22 0.29 0.05 4.32 0.43 −0.39 −3.89 0.30
Standardized moments 0.35 7.62 0.12 −0.40 −7.34 0.16 0.45 7.31 0.20 −0.55 −9.01 0.30

Panel D: Static bounds with extrapolation

Raw moments 0.04 3.95 0.35 −0.44 −3.82 0.29 0.03 3.66 0.36 −0.41 −3.79 0.32
Standardized moments 0.36 5.54 0.13 −0.45 −5.97 0.20 0.34 5.48 0.11 −0.47 −8.05 0.21
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Table A8: Non-linear relation between moments. The table reports the slope coefficients from regressions of the form:

Et[Momentt,T ] = α+

β1β2
β2

T Et[Variancet,T ]
Et[Variancet,T ]

2

Et[Variancet,T ]
3

+ ϵt,T

where Et[Momentt,T ] is either the ex ante skewness or the ex ante kurtosis of the S&P 500 index. We infer the expected moments
from option prices, The t−statistics are corrected for autocorrelation and heteroscedasticity using Newey-West standard errors
with 12 lags. We report statistical significance at the 10% level in bold.

Month Quarter

Skewness Kurtosis Skewness Kurtosis

β1 0.13 0.36 0.73 −2.14 −6.43 −12.92 0.12 0.35 0.69 −0.72 −2.50 −5.17
(3.82) (5.18) (5.79) (−3.29) (−4.77) (−5.44) (4.83) (3.50) (2.97) (−3.84) (−3.85) (−3.18)

β2 −0.01 −0.06 0.21 0.99 −0.02 −0.07 0.12 0.56
(−3.84) (−4.71) (3.80) (4.63) (−2.65) (−2.36) (3.42) (2.73)

β3 0.00 −0.02 0.00 −0.02
(4.19) (−4.18) (2.04) (−2.49)

R2 0.22 0.36 0.44 0.14 0.25 0.30 0.31 0.40 0.43 0.31 0.47 0.51
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Table A9: Robustness: Cyclicality in higher-moment risks — Ex ante implied moments. This table replicates the
results in main Table 6 while using alternative data choices in the estimation of implied moments as discussed in Appendix A. The
first rows of each panel reports the slope coefficients from panel regressions of the form:

Et[Momentit,T ] = αi + βrit−24,t + ϵit,T

where i represent the different indexes and rit−24,t is the return on index i from t−24 to t. We include index fixed effects and cluster
standard errors by time and country. The second row of each panel reports a similar panel regression, but here we standardize
the (standardized) moments within each index before pooling them together and running the regression. We infer the expected
moments from option prices (see Section 2). We report statistical significance at the 10% level in bold.

Month Quarter

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Detrended moments using all observable prices

Raw moments −0.85 −4.31 0.04 9.01 2.17 0.01 −0.49 −3.65 0.01 5.98 2.50 0.01
Standardized moments −0.24 −6.17 0.05 0.11 3.09 0.01 −0.27 −5.18 0.06 0.21 5.27 0.03

Panel B: Dynamic bounds with extrapolation

Raw moments −0.14 −1.79 0.26 1.29 1.91 0.31 −0.18 −1.39 0.37 2.31 2.18 0.37
Standardized moments −0.09 −2.28 0.01 0.11 2.14 0.01 −0.13 −1.91 0.01 0.19 2.84 0.03

Panel C: Static bounds without extrapolation

Raw moments −0.65 −3.22 0.27 8.15 2.98 0.22 −0.42 −2.99 0.36 3.04 2.54 0.21
Standardized moments −0.21 −3.85 0.04 0.20 3.34 0.03 −0.27 −3.80 0.07 0.29 3.66 0.08

Panel D: Static bounds with extrapolation

Raw moments −0.45 −3.09 0.30 4.42 2.78 0.21 −0.26 −1.84 0.32 3.77 2.44 0.24
Standardized moments −0.23 −4.25 0.05 0.22 3.57 0.05 −0.17 −2.33 0.02 0.25 3.42 0.05
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Table A10: Cyclicality in higher-moment risks — Book-to-Market (Ex ante implied moments). The first row of Panel
A reports the slope coefficients from panel regressions of the form:

Et[Momentit,T ] = αi + βBook-to-marketit + γt+ ϵit,T

where i represent the different indexes and Book-to-marketit is the book-to-market ratio of index i at timet. We include index fixed
effects and cluster standard errors by time and country. The second row of Panel A reports a similar panel regression, but here
we standardize the (standardized) moments and the past returns within each index before pooling them together and running the
regression. Panel B reports univariate regressions of expected moments onto the past returns for each individual index. We infer
the expected moments from option prices (see Section 2). The t−statistics in the individual index-wise regressions are corrected
for autocorrelation and heteroscedasticity using Newey-West standard errors with 12 lags. We report statistical significance at the
10% level in bold.

Monthly horizon Quarterly horizon

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Pooled panel regressions

Raw moments 1.29 2.52 0.02 −13.59 −2.02 0.00 0.16 0.4 −0.01. −5.70 −1.20 −0.00
Standardized moments 0.18 4.36 0.03 −0.06 −1.10 −0.00 0.13 1.86 0.00 −0.09 −1.63 −0.00

Panel B: Index-wise regressions

United States

SP500 3.00 3.18 0.29 −23.88 −1.38 0.02 2.19 2.05 0.44 −9.84 −2.02 0.38
NASDAQ 0.30 0.36 0.29 22.07 2.35 0.06 0.88 1.43 0.37 0.80 0.28 0.45
DowJ 3.14 1.84 0.21 −1.85 −0.06 0.10 1.26 1.14 0.35 −3.99 −0.54 0.19
Russell 2.11 2.52 0.19 7.73 1.20 0.13 2.49 3.60 0.22 −2.23 −0.69 0.35

Europe

BEL −0.14 −0.62 0.02 −3.83 −1.25 0.00 −0.18 −0.70 −0.02 1.19 1.54 −0.01
CHE 5.75 3.98 0.11 −115.74 −3.11 0.05 1.76 2.74 0.55 −20.17 −3.04 0.41
DEU 2.99 3.52 0.10 −61.97 −3.40 0.07 1.30 2.32 0.30 −23.53 −3.19 0.12
ESP 1.42 2.12 0.03 −15.53 −2.77 0.12 0.99 3.37 0.17 −4.84 −3.49 0.06
FIN 0.95 4.77 0.07 −1.97 −1.77 −0.03 1.94 4.00 0.13 −2.65 −2.95 0.13
FRA 1.89 4.67 0.22 −26.46 −3.23 0.11 1.39 2.97 0.23 −9.50 −2.10 0.11
GBR 5.54 4.41 0.38 −91.74 −3.17 0.36 2.17 2.33 0.21 −28.07 −1.82 0.18
ITA 3.25 3.74 0.13 −40.47 −3.50 0.11 2.46 2.92 0.25 −31.12 −2.13 0.20
NLD 0.91 1.24 0.10 −9.97 −0.55 0.03 −1.89 −1.55 0.13 −29.84 −1.65 −0.01
SWE 2.08 1.65 0.08 −31.33 −1.52 0.05 1.59 2.65 0.11 −18.25 −2.21 0.05

Asia

AUS −1.36 −0.51 0.01 58.56 1.00 0.01 −3.01 −1.36 0.06 50.32 1.29 0.02
HKG −0.06 −0.10 0.03 2.83 0.38 0.02 0.06 0.14 0.01 −0.97 −0.39 0.08
JPN −0.44 −0.72 0.64 7.25 0.60 0.54 −1.54 −2.34 0.65 7.08 0.88 0.46
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Table A11: Cyclicality in higher-moment risks — Book-to-Market (Ex post realized moments). The first row of Panel
A reports the slope coefficients from panel regressions of the form:

Realized momentit,T = αi + βBook-to-marketit + γt+ ϵit,T

where i represent the different indexes and Book-to-marketit is the book-to-market ratio of index i at timet. We include index fixed
effects and cluster standard errors by time and country. The second row of Panel A reports a similar panel regression, but here
we standardize the (standardized) moments and the past returns within each index before pooling them together and running the
regression. Panel B reports univariate regressions of expected moments onto the past returns for each individual index. We infer
the expected moments from option prices (see Section 2). The t−statistics in the individual index-wise regressions are corrected
for autocorrelation and heteroscedasticity using Newey-West standard errors with 12 lags. We report statistical significance at the
10% level in bold.

Monthly horizon Quarterly horizon

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Pooled panel regressions

Raw moments 0.40 0.89 0.13 −4.80 −0.55 0.04 0.28 0.43 0.26 −20.40 −1.61 0.10
Standardized moments 0.05 1.39 −0.00 −0.05 −1.73 −0.00 0.06 0.90 −0.01 −0.12 −2.54 0.00

Panel B: Index-wise regressions

United States

SP500 1.56 2.20 0.11 −45.67 −3.61 0.15 0.93 0.83 0.31 −31.05 −2.33 0.31
NASDAQ −0.33 −0.57 0.19 −4.24 −0.95 0.20 −0.59 −0.78 0.45 −2.14 −0.34 0.47
DowJ 0.41 0.53 0.02 −11.39 −1.25 0.03 0.09 0.09 0.19 −16.80 −1.04 0.18
Russell 0.59 0.76 0.00 −16.78 −1.71 0.04 0.88 0.99 0.00 −9.50 −0.75 −0.01

Europe

BEL −0.70 −1.75 0.12 20.50 3.17 0.06 −0.92 −1.54 0.16 5.80 0.59 0.01
CHE −0.11 −0.11 0.08 7.42 0.24 0.00 2.91 2.56 0.23 −103.13 −3.54 0.13
DEU 2.07 2.09 0.05 −8.79 −0.36 0.02 2.15 1.01 0.17 −63.16 −0.91 0.13
ESP 1.04 2.22 0.02 −21.01 −1.42 −0.01 2.12 3.52 0.12 −40.69 −3.24 0.08
FIN 0.03 0.04 −0.03 −9.41 −0.67 −0.03 3.18 3.34 0.08 −30.15 −1.19 0.02
FRA 1.93 2.50 0.01 −25.23 −1.43 0.00 2.89 2.26 0.09 −65.31 −1.59 0.08
GBR 0.11 0.11 −0.01 −4.35 −0.18 −0.01 −0.34 −0.26 0.11 −71.64 −2.74 0.07
ITA 0.60 1.32 0.00 −4.56 −0.25 −0.01 2.21 3.04 0.20 −62.21 −3.58 0.08
NLD 1.27 1.79 0.00 −17.73 −1.01 −0.01 0.44 0.46 0.11 −30.91 −1.59 0.03
SWE 1.98 1.76 0.08 −32.52 −1.33 0.02 3.96 2.20 0.37 −66.71 −1.92 0.13

Asia

AUS 1.12 1.20 0.01 −25.05 −0.58 −0.01 −3.86 −2.24 0.04 −20.62 −0.59 −0.03
HKG −1.28 −0.52 0.00 11.99 0.50 0.00 −1.82 −0.93 0.01 12.26 0.71 0.00
JPN 0.17 0.10 0.05 5.74 0.24 0.11 −3.37 −2.05 0.18 48.34 1.74 0.25
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Table A12: Cyclicality in higher-moment risks — Past two-year return (Ex ante implied moments). The first row of
Panel A reports the slope coefficients from panel regressions of the form:

Et[Momentit,T ] = αi + βrit−24,t + ϵit,T

where i represent the different indexes and rit−24,t is the return on index i from t−24 to t. We include index fixed effects and cluster
standard errors by time and country. The second row of Panel A reports a similar panel regression, but here we standardize the
(standardized) moments and the past returns within each index before pooling them together and running the regression. Panel B
reports univariate regressions of expected moments onto the past returns for each individual index. We infer the expected moments
from option prices (see Section 2). The t−statistics in the individual index-wise regressions are corrected for autocorrelation and
heteroscedasticity using Newey-West standard errors with 12 lags. We report statistical significance at the 10% level in bold.

Monthly horizon Quarterly horizon

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Pooled panel regressions

Raw moments −0.84 −3.39 0.26 9.74 2.00 0.17 −0.53 −2.87 0.24 6.01 2.07 0.17
Standardized moments −0.21 −4.97 0.04 0.10 2.18 0.01 −0.23 −3.85 0.04 0.15 2.61 0.01

Panel B: Index-wise regressions

United States

SP500 −1.30 −2.91 0.12 8.01 1.28 0.01 −0.84 −1.88 0.11 2.79 0.97 0.03
NASDAQ −0.24 −0.78 0.03 −4.45 −3.44 0.08 −0.26 −1.26 0.06 −0.75 −1.13 0.03
DowJ −2.29 −2.99 0.13 9.01 0.56 0.00 −1.29 −2.02 0.17 4.66 1.08 0.04
Russell −1.04 −3.46 0.13 1.97 0.39 0.00 −0.97 −3.64 0.16 0.75 0.70 0.00

Europe

BEL −0.70 −1.30 0.03 13.60 1.58 0.03 −0.63 −1.56 0.09 3.13 2.13 0.07
CHE −2.64 −4.17 0.10 52.23 3.16 0.07 −0.89 −1.73 0.11 11.33 2.03 0.11
DEU −1.57 −6.17 0.14 26.79 5.44 0.09 −0.92 −2.88 0.24 15.78 3.79 0.22
ESP −0.10 −0.15 0.00 0.09 0.01 0.00 −0.42 −1.24 0.05 3.45 2.32 0.05
FIN −0.19 −0.59 0.00 −0.93 −0.49 0.00 −0.60 −1.98 0.08 0.85 1.13 0.03
FRA −1.23 −5.31 0.14 16.27 4.92 0.08 −0.92 −2.87 0.16 11.32 2.43 0.17
GBR −3.16 −2.85 0.08 44.72 1.71 0.03 −2.47 −2.49 0.12 34.65 1.97 0.07
ITA −1.55 −3.45 0.07 19.61 3.78 0.06 −1.87 −3.55 0.12 24.90 3.22 0.08
NLD −2.20 −5.39 0.13 38.75 3.83 0.07 −0.36 −0.37 −0.01 35.10 2.27 0.04
SWE −0.91 −0.78 0.00 10.59 0.54 0.00 −0.55 −1.23 −0.01 4.35 0.96 −0.01

Asia

AUS −0.60 −0.57 0.00 23.28 0.90 0.01 0.07 0.07 −0.01 −2.63 −0.21 −0.01
CHN 0.16 1.47 0.02 −3.46 −2.96 0.05 0.02 0.23 −0.01 −1.22 −1.28 0.00
HKG 0.18 0.86 0.00 −3.11 −0.69 0.00 0.12 0.79 0.00 −0.72 −0.61 0.00
JPN −0.28 −0.31 0.00 2.56 0.18 0.00 0.13 0.13 −0.01 4.03 0.40 0.00
KOR 0.25 0.63 0.00 −8.99 −1.85 0.02 0.07 0.29 −0.01 −2.55 −1.40 0.02
TWN 0.05 0.11 0.00 1.82 0.47 0.00 −0.16 −0.41 −0.01 0.54 0.35 −0.01
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Table A13: Cyclicality in higher-moment risks — Past two-year return (Ex post realized moments). The first row of
Panel A reports the slope coefficients from panel regressions of the form:

Realized momentit,T = αi + βrit−24,t + ϵit,T

where i represent the different indexes and rit−24,t is the return on index i from t−24 to t. We include index fixed effects and cluster
standard errors by time and country. The second row of Panel A reports a similar panel regression, but here we standardize the
(standardized) moments and the past returns within each index before pooling them together and running the regression. Panel
B reports univariate regressions of realized moments onto the past returns for each individual index. We use methods described in
Neuberger (2012) and Bae and Lee (2021) to infer realized moments (see Section 2). The t−statistics in the individual index-wise
regressions are corrected for autocorrelation and heteroscedasticity using Newey-West standard errors with 12 lags. We report
statistical significance at the 10% level in bold.

Monthly horizon Quarterly horizon

Skewness Kurtosis Skewness Kurtosis

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: Pooled panel regressions

Raw moments −0.34 −1.63 0.13 6.35 1.70 0.04 −0.21 −0.77 0.30 9.82 1.86 0.12
Standardized moments −0.08 −2.19 0.00 0.07 2.52 0.00 −0.07 −1.06 0.00 0.10 2.07 0.00

Panel B: Index-wise regressions

United States

SP500 −0.59 −1.59 0.02 14.94 3.63 0.05 −0.70 −1.15 0.02 10.43 1.91 0.04
NASDAQ 0.07 0.49 0.00 0.16 0.11 0.00 −0.08 −0.33 −0.01 −0.64 −0.35 −0.01
DowJ −0.70 −1.73 0.01 12.73 3.29 0.03 −0.85 −1.27 0.03 10.55 1.37 0.01
Russell −0.58 −1.75 0.01 13.88 1.67 0.03 −1.06 −2.12 0.08 12.68 1.59 0.06

Europe

BEL −0.25 −0.51 0.00 4.75 0.42 0.00 −0.89 −1.23 0.03 21.33 1.44 0.03
CHE −0.25 −0.39 0.00 7.83 0.34 0.00 −1.16 −1.57 0.06 38.66 2.64 0.10
DEU −0.56 −0.98 0.01 8.55 0.43 0.00 −0.20 −0.34 −0.01 0.81 0.07 −0.01
ESP −1.41 −2.51 0.03 19.08 1.80 0.00 −0.12 −0.26 −0.01 6.52 0.88 0.00
FIN −0.14 −0.32 −0.01 19.35 1.35 0.13 −1.25 −1.35 0.06 31.56 1.45 0.04
FRA −1.33 −2.33 0.03 23.33 1.64 0.02 −0.65 −0.85 0.01 12.80 0.85 0.01
GBR −0.91 −1.47 0.01 35.66 1.90 0.01 −0.40 −0.42 0.00 37.86 2.33 0.03
ITA −0.23 −0.49 0.00 −4.41 −0.38 0.00 −0.88 −1.12 0.04 39.24 2.12 0.09
NLD −2.00 −2.72 0.06 23.88 1.47 0.00 −1.95 −2.99 0.13 37.55 2.38 0.09
SWE −0.91 −2.13 0.01 15.38 0.87 0.00 −0.88 −1.20 0.02 16.85 1.76 0.01

Asia

AUS −1.94 −2.66 0.04 46.02 2.29 0.03 1.81 2.39 0.06 48.39 1.61 0.02
CHN −0.30 −0.85 0.00 −2.15 −0.44 0.00 0.23 0.80 0.00 −5.27 −1.27 0.01
HKG 0.26 0.35 0.00 −6.18 −0.82 0.00 0.92 1.26 0.03 −8.11 −0.97 0.01
JPN 1.49 2.41 0.04 −23.92 −1.51 0.01 2.50 2.36 0.16 −26.80 −1.39 0.05
KOR 0.13 0.37 0.00 −4.52 −1.17 0.00 0.62 1.50 0.01 −6.77 −1.40 0.01
TWN 0.36 0.51 0.00 5.69 0.54 0.00 −0.25 −0.29 −0.01 −0.72 −0.10 −0.01
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Table A14: Ex ante higher-order moments and jump tail probabilities. This table reports the slope coefficients from
index-wise regressions on the form:

Probability of −xσBlack-Scholes ATM
t,T event

t,T
= α+ βMomentt,T ∗ + ϵt,T

where x = 7 or 10 and σBlack-Scholes ATM
t,T is the at-the-money implied Black-Scholes volatility. The

Probability of −xσBlack−ScholesATM
t,T event

t,T
is estimated using the methods in Bollerslev, Todorov, and Xu (2015). We

infer the expected moments from option prices and we use methods described in Neuberger (2012) and Bae and Lee (2021) to
infer realized moments (see Section 2). The asterisk in Momentt,T ∗ indicates that the maturity of the moments differ from those
of the probabilities as discussed in Section 4.2. The t−statistics are corrected for autocorrelation and heteroscedasticity using
Newey-West standard errors with 12 lags. We report statistical significance at the 10% level in bold.

Implied moments Realized moments

x = 10 x = 7 x = 10 x = 7

β t-stat. R2 β t-stat. R2 β t-stat. R2 β t-stat. R2

Panel A: ex ante variance

SP500 −4.09 −1.89 0.06 −0.18 −0.08 0.00 −1.94 −2.45 0.03 −1.14 −1.25 0.00
NASDAQ −2.85 −1.92 0.11 −2.46 −0.88 0.02 −1.68 −1.78 0.06 −1.43 −0.89 0.01
DowJ −4.18 −2.73 0.09 2.49 1.63 0.01 −2.49 −3.90 0.06 0.49 0.53 −0.01
Russell −2.24 −1.85 0.07 −1.03 −0.90 0.00 −1.09 −2.18 0.04 −0.71 −1.30 0.00

Panel B: ex ante skewness

SP500 −0.03 −5.21 0.42 −0.03 −3.98 0.16 −0.02 −5.55 0.16 −0.03 −7.08 0.16
NASDAQ −0.03 −8.55 0.36 −0.05 −6.97 0.20 −0.02 −5.31 0.18 −0.03 −4.90 0.17
DowJ −0.02 −5.68 0.41 −0.01 −2.00 0.05 −0.00 −0.64 0.00 −0.00 −0.82 0.00
Russell −0.03 −3.16 0.30 −0.04 −3.27 0.18 −0.01 −1.43 0.02 −0.01 −1.59 0.03

Panel C: ex ante kurtosis

SP500 0.06 1.73 0.07 0.01 0.22 0.00 0.13 4.56 0.20 0.16 5.88 0.14
NASDAQ −0.03 −0.58 0.00 −0.10 −0.95 0.01 0.15 2.90 0.14 0.29 4.08 0.13
DowJ 0.06 4.22 0.26 0.03 1.53 0.02 0.10 2.73 0.08 0.05 1.40 0.01
Russell 0.12 1.44 0.07 0.11 1.34 0.03 0.23 1.90 0.09 0.24 1.55 0.05
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Table A15: Cyclicality in conditional tail probabilities in jump diffusion models. This
table reports the results of regressions on the form:

Probability of −xσBlack-Scholes ATM
t,T event

t,T
= α+ βIndicatort + γt+ ϵt,T

where x = 7 or 10 and σBlack Scholes ATM
t,T is the at-the-money implied Black-Scholes volatility.

Indicatort is either the past 2-year return (Panel A), the consumption-wealth ratio Lettau and
Ludvigson (2001) scaled by 100 for readability (Panel B), the dividend-price ratio (Panel C),
the book-to-market ratio (Panel D), or NBER recession periods (Panel E). In regressions for
the dividend-price ratio and the book-to-market ratio, we add a time trend to the regression.
The Probability of −xσBlack−ScholesATM

t,T event
t,T

is estimated using the methods in Bollerslev,

Todorov, and Xu (2015).The t−statistics are corrected for autocorrelation and heteroscedastic-
ity using Newey-West standard errors with 12 lags. We report statistical significance at the 10%
level in bold.

x = 10 x = 7

β t-stat. R2 β t-stat. R2

Panel A: past 2-year return

SP500 0.03 1.28 0.03 0.04 1.60 0.03
NASDAQ 0.05 3.35 0.18 0.07 2.71 0.12
DowJ 0.07 3.14 0.13 0.01 0.47 0.00
Russell 0.02 1.02 0.02 0.03 0.94 0.01

Panel B: cay

SP500 −1.89 −5.65 0.41 −1.84 −5.05 0.18
NASDAQ −1.34 −3.37 0.28 −2.21 −3.69 0.20
DowJ −1.25 −1.75 0.13 0.12 0.16 −0.01
Russell −1.93 −3.69 0.39 −1.65 −2.58 0.14

Panel C: Dividend-Price Ratio

SP500 −2.18 −2.69 0.40 −0.77 −0.54 0.19
NASDAQ 1.42 2.24 0.41 3.77 2.57 0.36
DowJ −2.97 −3.71 0.08 −2.93 −1.95 0.03
Russell −1.65 −1.68 0.07 −2.61 −1.27 0.01

Panel D: Book-to-Market Ratio

SP500 −0.13 −2.96 0.43 −0.08 −1.40 0.20
NASDAQ 0.04 1.17 0.40 0.14 2.13 0.36
DowJ −0.11 −2.97 0.08 −0.14 −1.93 0.04
Russell −0.15 −2.76 0.17 −0.22 −2.42 0.06

Panel E: NBER recessions

SP500 −0.03 −1.38 0.03 −0.03 −1.12 0.02
NASDAQ −0.01 −0.99 0.01 −0.01 −0.38 −0.00
DowJ −0.04 −2.51 0.13 −0.03 −1.10 0.01
Russell −0.02 −1.66 0.03 −0.03 −1.17 0.01
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