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OUTLINE
§ Agent-based modeling
§ Team-based research for complex/interconnected problems in public health
§ Applications

– Hepatitis C
• Importance of retreatment
• Computational discovery of combination interventions

– Medication for Opioid Use Disorder (+ Hepatitis C)
§ Additional Applications Overview

– HIV in YBMSM + Justice Contexts (BARS)
– Health Information Intervention (CommunityRx ABM)
– COVID-19 Spread and Effectiveness of Interventions (CityCOVID)

§ Ongoing work on Health Inequities
– Justice Community Circulation Model (MAARC)
– COVID-19 Social Determinants of Health (C3 DTI)
– HIV Disparities in Racial, Ethnic and Sexual Minorities (ChiSTIG)
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AGENT-BASED MODELS (ABMS)
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§ Disaggregated description of complex systems: 
– Method of computing the potential system-level consequences of the behaviors 

of sets of individuals
– Effects of interventions can be run with different assumptions



AGENT-BASED MODELS (ABMS)
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§Agents
– Agents have individual attributes
– Agents have individual behaviors
– Agents are autonomous (no central authority) so, 
– Agents are decentralized

§ Interactions
– Agents have interactions
– Can act on local Information

• Not everyone interacts with everyone else, all 
of the time.

– Agents live in a dynamic environment, which 
can define the possible interactions
• Geographic, network-based, or other, abstract 

environments



AGENT-BASED MODELS (ABMS)

5

§Emergence
– Even simple rules can lead to complexity

• But modern ABMs have many, data-
driven, complex rules

– Self-organization of patterns and structure
– Phenomena emerge in agent-based 

models that you did not explicitly 
program into the models



UTILITY OF AGENT-BASED MODELING IN PUBLIC 
HEALTH APPLICATIONS

§ Analytical platform for integrating disparate data sources governing individuals, 
networks, geography, resources

§ Can incorporate hypothesized causal mechanisms (theories) for complex processes 
at multiple and interacting scales (micro, meso, macro), which pose challenges to 
traditional epidemiologic and statistical methods

§ Computational approach enables sensitivity analyses that can guide 
(expensive/difficult) data collection

§ With improved methods for large-scale computation, ABMs can be used for 
uncertainty analyses of input parameters and outcomes of interest

§ Evaluate interventions and combinations/sequences of interventions that would be 
difficult to implement (cost, effort, ethics, logistical considerations)

§ Modeling can identify priority subpopulations for intervention focus



TEAM-BASED SCIENCE + DECISION SUPPORT
§ Agent-based modeling is inherently interdisciplinary and team-based
§ Modeling projects combine expertise across subject matter areas (e.g., for this 

lecture):
– Hepatitis C
– Opioid use disorder
– HIV
– COVID-19
– Clinical
– Public health
– Epidemiology

§ Supports increasingly complex/interconnected systems/problems faced in public 
health

§ Exploits advances in simulation, machine learning and high-performance 
computing for application to public health
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Simulation Technologies

Collier, Nicholson, Jonathan Ozik, Eric Tatara. 2020. "Experiences in Developing a Distributed 
Agent-based Modeling Toolkit with Python." 9th Workshop on Python for High-Performance and 
Scientific Computing @ Supercomputing 2020.



Machine Learning for Simulations

Active Learning of Viable Regions* Multi-objective Optimization**
* Ozik, Jonathan, Nicholson T. Collier, Justin M. Wozniak, Charles M. Macal, and Gary An. 2018. “Extreme-Scale Dynamic Exploration of a Distributed Agent-Based 
Model With the EMEWS Framework.” IEEE Transactions on Computational Social Systems 5 (3): 884–95. https://doi.org/10.1109/TCSS.2018.2859189.
** Tatara, Eric, Nicholson T. Collier, Jonathan Ozik, Alexander Gutfraind, Scott J. Cotler, Harel Dahari, Marian Major, and Basmattee Boodram. 2019. “Multi-Objective 
Model Exploration of Hepatitis C Elimination in an Agent-Based Model of People Who Inject Drugs.” In 2019 Winter Simulation Conference (WSC), 1008–19. 
https://doi.org/10.1109/WSC40007.2019.9004747.
*** Ozik, Jonathan, Nicholson T. Collier, Justin M. Wozniak, Charles M. Macal, and Mickaël Binois. “A Population Data-driven Workflow for Covid-19 Modeling and 
Learning.” Finalists, Gordon Bell Special Prize for HPC-Based COVID-19 Research, Supercomputing 2020.

Bayesian Optimization***
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High-performance Computing
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Ozik, Jonathan, Nicholson T. Collier, Justin M. Wozniak, Charles M. Macal, and Mickaël Binois. “A Population Data-driven 
Workflow for Covid-19 Modeling and Learning.” Finalists, Gordon Bell Special Prize for HPC-Based COVID-19 Research, 
Supercomputing 2020.
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HEPATITIS C (HepCEP)



HepCEP Interdisciplinary Team 
Basmattee BoodramHarel Dahari

Marian MajorJonathan Ozik
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“Computational discovery of effective hepatitis C intervention strategies”
NIH award R01GM121600 (NIGMS)



HEPATITIS C ELIMINATION IN PWID (HepCEP) 
ABM APPROACH
§ABM to simulate the PWID population in 
metropolitan Chicago including the social 
interactions that result in HCV infection 

§Use ABM to account for the complex 
interplay of demographic factors, risk 
behaviors, social networks, and geographic 
location for HCV transmission

§Goal: To identify and optimize detailed 
implementations of direct acting antiviral 
(DAA) therapy scale-up and treatment 
strategies needed for PWID

§HepCEP was developed with Repast HPC

Lines represent co-injection links and color 
indicates HCV infection state: blue, uninfected
PWID or PWID successfully treated with DAAs; 
red, chronic HCV PWID; green, PWID who 
spontaneously cleared acute HCV infection



§Agents:
–32,000 PWID (sampled from 100,000 CNEP+ database, new PWID added 
as agents leave model)

–Age, age started injecting drugs, gender, race, zip code, syringe source 
(harm reduction), HCV infection status, drug sharing network degree, and 
parameters for daily injection rates and syringe sharing

§PWID networks:
–Network formation is determined by the probability of two persons 
encountering each other in their neighborhood of residence, in outdoor drug 
purchasing market areas in Chicago, or random interaction with any other 
individual

–Empirical data provides numbers of in-network PWID partners who provide 
syringes and out-network PWID partners who receive syringes from them 
(directionality determines HCV transmission)

–Network connections have an average lifespan after which they are 
destroyed, and new connections are probabilistically formed

HepCEP AGENTS AND NETWORKS



Gutfraind, Alexander, Basmattee Boodram, Nikhil Prachand, Atesmachew Hailegiorgis, Harel Dahari, and Marian E. Major. 2015. “Agent-Based 
Model Forecasts Aging of the Population of People Who Inject Drugs in Metropolitan Chicago and Changing Prevalence of Hepatitis C Infections.” 
PLOS ONE 10 (9): e0137993. https://doi.org/10.1371/journal.pone.0137993.

DATA SOURCES FOR PWID POPULATION



§Project the frequency of retreatment and DAA cost needed to achieve WHO 
goals (90% reduction of chronic infection incidence by 2030)* 

–While DAA treatment is highly efficacious, some payors still restrict access 
to DAAs** and prohibit DAA re-treatment of those who become re-infected 
once cured by DAA therapy.

§Treatment success, sustained virologic response (SVR), set at 90% (i.e., 
treatment failure 10%)

§Possible treatment adherence rates (i.e., DAA cure rates) of 60%-90% with 
DAA treatment enrollment rates of 2.5%-10% 

§Retreatments per PWID of 0 (retreatment prohibited), 1, 2, 3, or no retreatment 
restriction were simulated. 

§DAA cost is assumed $25,000 (USD) per treatment.

HepCEP (RE)TREATMENT

* Tatara, Eric, Alexander Gutfraind, Nicholson T. Collier, Scott J. Cotler, Marian Major, Basmattee Boodram, Jonathan Ozik, and Harel Dahari. 2019. “Agent-Based Modeling of Persons 
Who Inject Drugs in Metropolitan Chicago Suggests That Re-Treatment with Antivirals of Persons Who Are Re-Infected with Hep C Is Critical to Achieve the WHO Incidence Reduction 
Objective by 2030.” BioRxiv, May, 653196. https://doi.org/10.1101/653196.
** Ooka, K., J.J. Connolly, and J.K. Lim, Medicaid Reimbursement for Oral Direct Antiviral Agents for the Treatment of Chronic Hepatitis C. Am J Gastroenterol, 2017. 112(6): p. 828-832.



HepCEP (RE)TREATMENT

Activity timeline for a single agent in the HepCEP model who was allowed only 4 courses of 
DAA therapy.  The colored bars indicate activities in which the agent is participating during the 
dates along the bottom of the timeline.  The activity pattern shown in the figure are typical in 
some of HCV-positive agents that are selected for DAA treatment, cured, and re-infected 
multiple times. In this example, the agent was allowed to re-enroll in DAA treatment 3 times 
(total of 4 treatment courses), had a single occurrence of failed DAA treatment in year 2022 
(orange bar) and eventually was re-infected ~1 year after SVR and remained chronically 
infected until 2030 (not shown). 



HepCEP (RE)TREATMENT

Projected mean incidence of new HCV 
chronic infections among PWID relative to the 
predicted 2020 incidence during DAA rate 
(enrollment percent is DAA rate e.g., a 
therapy rate of 10% per year), with 
retreatment prohibition and a treatment 
adherence of 90%.  The ribbons represent the 
95% confidence interval around the mean of 
20 simulation runs. The horizontal red dashed 
line represents the WHO 2030 goal of 90% 
reduction in the incidence rate.



HepCEP (RE)TREATMENT

Projected HCV mean incidence of new 
chronic infections among PWID relative 
to the predicted 2020 incidence during 
DAA rate (enrollment percent is DAA 
rate e.g., a therapy rate of 10% per 
year), without retreatment prohibition 
and treatment adherence of 60%-90%.  
The ribbons represent the 95% 
confidence interval around the mean of 
20 simulation runs. The horizontal red 
dashed line represents the WHO 2030 
goal of 90% reduction in the incidence 
rate.



HepCEP (RE)TREATMENT

DAA treatment rate of 7.5% per year when 
unlimited retreatment is allowed, and with 
treatment adherence of 90% can achieve 
WHO’s 90% incidence reduction if re-
treatment is allowed, with an estimated cost 
of $325 million

Compare with ODE approach predicting 
$430M cost*

Times Retreated Total # % Cost (1K $)

0 7,368 75.3 184,201

1 1,805 18.5 90,273

2 461 4.7 34,586

3 108 1.1 10,825

4 28 0.3 3,450

5 5 0.1 803

6 1 < 0.1 256

7 1 < 0.1 229

8 1 < 0.1 225

Totals: 9,779 100.0 324,847

* Echevarria, Desarae, Alexander Gutfraind, Basmattee Boodram, Jennifer Layden, Jonathan Ozik, Kimberly Page, Scott 
J. Cotler, Marian Major, and Harel Dahari. 2019. “Modeling Indicates Efficient Vaccine-Based Interventions for the 
Elimination of Hepatitis C Virus among Persons Who Inject Drugs in Metropolitan Chicago.” Vaccine 37 (19): 2608–16. 
https://doi.org/10.1016/j.vaccine.2019.02.081.



§Direct acting antiviral treatment enrollment methods:
–Random Recruitment: Select HCV-infected individuals from the PWID population. 

Individuals are selected until the daily enrollment target for the recruitment is met or no 
eligible PWID remain for recruitment that day

–Harm Reduction Program (HRP): Similar to random recruitment, but individuals must be 
registered in a harm reduction program, such as syringe service program (SSP) that 
provides sterile syringe injection equipment along with risk reduction counseling to 
enrollees. PWID enrolled in these programs are considered a lower risk for HCV 
transmission than those with similar injection behaviors who are not enrolled. 

–Full Network: The network recruitment methods begin by selecting a PWID via the random 
recruitment method, then subsequently enrolling all other PWID who share syringes with 
the selected individual (personal injection network).

–In-Partner Network: Similar to the full network recruitment, but this enrollment method only 
recruits a single social network “in” edge, i.e., a PWID who provides syringes to the 
originally selected individual. 

–Out-Partner Network: Similar to the full network recruitment, but this enrollment method 
only recruits a single social network “out” edge, i.e., a PWID who receives syringes from 
the originally selected individual.

HepCEP OPTIMAL COMBINATION INTERVENTIONS



§ Multi-objective optimization of 
combination interventions (Tatara et al. 
2019)

§ Varying enrollment rates and the 
combined types of recruitment strategies 
while optimizing incidence and treatment 
count (i.e., cost)

§ Produced Pareto front for non-dominated 
strategies using NSGA2 multi-objective 
optimization algorithm

§ Combinations of “in-partner” and “full 
network” yield the best results that meet 
the 2030 WHO goal

WHO goal

Tatara, Eric, Alexander Gutfraind, Nicholson T. Collier, Scott J. Cotler, Marian 
Major, Basmattee Boodram, Jonathan Ozik, Harel Dahari. 2019. “Multi-objective 
model exploration of hepatis c elimination in an agent-based model of people 
who inject drugs,” to appear in Winter Simulation Conference (WSC) 2019 
Proceedings. National Harbor, Maryland, USA, 2019.

HepCEP OPTIMAL COMBINATION INTERVENTIONS



OPIOID USE DISORDER



Medication for Opioid Use Disorder (MOUD) and HepCEP
§ Team:

– Marynia Kolak (1) 
– Qinyun Lin (1)
– Harel Dahari (2)
– Basmattee Boodram (3)
– John Schneider (4)
– Eric Tatara (5)
– Nicholson Collier (5)
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1) Center for Spatial Data Science, Division 
of Social Sciences, University of Chicago

2) Program for Experimental and Theoretical 
Modeling, Division of Hepatology, Department 
of Medicine, Stritch School of Medicine, Loyola 
University Chicago

§ Funding:
– NIH U2CDA050098: Methodology and Advanced Analytics Resource Center (MAARC)
– NIH R01GM121600: Computational discovery of effective hepatitis C intervention 

strategies

3) Division of Community Health 
Sciences, School of Public Health, 
University of Illinois at Chicago

4) Chicago Center for HIV 
Elimination, Department of Infectious 
Disease, UChicago Medicine

5) Decision and Infrastructure Sciences Division, Argonne 
National Laboratory and Consortium for Advanced 
Science and Engineering, University of Chicago



§Evaluated three MOUD interventions (Methadone [M], Naltrexone [N], Buprenorphine [B]) 
using different scenarios with varying levels of spatial health inequity, using the 
HepCEP model

§To approximate potential access to MOUD resources, we calculated distance to the 
nearest MOUD provider using 2019 locations from the Substance Abuse and Mental 
Health Services Administration (SAMSHA), with methadone sites cross-validated with 
locations on the current IDPH website.

§HepCEP agents periodically make decisions about continuing MOUD treatment
–Cadence of decision making is based on the typical requirements for clinic visits for 

each MOUD intervention (M: 7 days, B: 7 [or 30] days, N: 30 days)
–The decision to continue treatment is based on an agent’s access to services, where 

better access increases average agent treatment duration
–Treatment results in fewer injection drug use events, which leads to a reduction in 

disease transmission
§Differentiated the access threshold in urban versus suburban settings, and by MOUD 

type

MOUD HepCEP Spatial Health Inequity



§To understand how spatial distribution of MOUD locations affect health 
outcomes, we generate three counterfactual scenarios (CS) 

–MOUD locations are reshuffled compared to the actual locations of 
resource (Real scenario) 

–In all scenarios, the total amount of MOUD resources is limited
•all three CS only reshuffle locations so that effects of spatial 
distribution of MOUD locations can be disentangled from the effect of 
the total amount of resources

§Spatially Random (CS1): MOUDs are randomly distributed
§Need-Based 1 (CS2): assign MOUDs proportional to the adult population 
(age 18 - 39) at risk of Hepatitis C for each zip code
§Need-Based 2 (CS3): assign MOUDs proportional to the PWID population 
for each zip code: the more PWID, the more MOUD for that zip code area

MOUD HepCEP Counterfactual Scenarios



§ Spatial distributions of MOUD resources under the different CS are substantially different from one another 
and from the Real scenario

§ The figure shows how the number of B resources changes for each zip code area, when comparing the Real 
scenario with each CS

§ More MOUD resources get assigned to South and West Chicago areas in the two Need-Based scenarios (CS 
2 & 3). 

MOUD HepCEP Spatial Distribution



§Access to MOUD resources changes greatly under different counterfactual scenarios
§The figure shows whether each zip code area has good access to the nearest Methadone 

MOUD resource – West and South Chicago areas have better access in the two Need-
Based scenarios (CS 2 & 3) and worse access in the Spatially Random (CS 1) scenario 
when compared to the Real scenario

MOUD HepCEP Access to Resources

Methadone 
Access

Whether access 
was within range of 
acceptable 
threshold or not
(<2 miles in urban, 
else <10 miles).



§The Table summarizes the number of zip code areas having good 
access versus not under each scenario
§Different spatial distributions optimize access to different types of 
medications 

MOUD HepCEP Access to Resources

Total number of zip codes that had ”good” access vs. not, for each scenario. 
Bolded entries indicate optimal scenario.



§Downstream health outcomes vary substantially in 
different experimental settings
§For example, with MOUD locations equally 
distributed through the area, the average 
treatment duration for Methadone would 
increase in 60% of zip code areas, and the 
average new HCV chronic infection rate would 
decrease in 33% of areas by 2030
§More investigation into new HCV chronic 
infections as an outcome are underway
§As health departments co-locate MOUD services 
with other existing clinical infrastructure, this work 
can inform optimal selection of locations and 
sites for integrated MOUD services based upon 
the spatial need and distribution of opioid users.

MOUD HepCEP Health Outcomes + Future



ADDITIONAL PUBLIC HEALTH APPLICATIONS 
AND ONGOING WORK



NIH/National Institute On Drug Abuse (R01DA039934): PIs John 
Schneider (UC), and Nina Harawa (UCLA), Kayo Fujimoto (UT Houston)

BARS HIV MODEL
• Black MSM are disproportionately impacted by 

HIV and criminal justice involvement, cycling 
between communities and criminal justice settings

• CJI can impact:
• Social and sexual network stability
• Employment and housing opportunities
• Access to medical care

• Disruption in the HIV prevention and care 
continuum via changes in post-incarceration ART 
and PrEP engagement 

• Impact of incarceration and release on partners 
of those with CJI

• ABM can uncover emergent dynamics resulting 
from the intersection of CJI-related changes in 
network composition and HIV prevention/care 
continuum engagement



CommunityRx ABM
§ Understand the multi-level impact of a health information technology-based 

intervention on a community

NIH/National Institute of Aging (R01 AG 047869) : PI Stacy Lindau (UC)



CityCOVID: COVID-19 SPREAD AND 
EFFECTIVENESS OF INTERVENTIONS

What mitigation strategies
should be considered?

April May June July

CityCOVID model for Chicago, 2.7 M people 
(agents) move hourly between 1.2 M locations

March

How will COVID-19
affect populations?

How does mobility affect
transmission?

How should we ease
mitigations?

How do behaviors affect
transmission?

PolicyWhat are place/occupation
based risks?

How do different age groups
behave differently?

How can we reopen
schools/universities?

Epidemiology



Ongoing ABM Work on Health Inequities

§ NIH U2CDA050098: Methodology and Advanced Analytics Resource 
Center (MAARC): Justice Community Circulation Model: PIs John 
Schneider, Harold Pollack

§ C3.ai Digital Transformation Institute: Modeling the Impact of Social 
Determinants of Health on COVID-19 Transmission and Mortality to 
Understand Health Inequities: PI Anna Hotton

§ NIH R01MD014703: Simulation Modeling to Understand and Address 
HIV Disparities in Racial, Ethnic, and Sexual Minority Populations: PI 
Michelle Birkett (Northwestern University)
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