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Background and significance

 More Americans will likely die of drug overdose than will die from COVID-19 over the course
of the Biden administration.

e Substanceuse disorder treatment--particularly medication opioid use disorder treatment
(MOUD)--is a key, albeit imperfect tool to reduce mortality and morbidity associated
with substance use.

* |dentifying SUD patients likely to experience unfavorable treatment outcomes may
* Inform the allocation of harm reduction efforts (e.g. naloxone) to specific subgroups at risk.

* Generate hypotheses for improved service delivery through provision of complementary or
focused resources.

 |dentified features may inform hypotheses or identify specific subgroups for future study designs that
inform causal inference.

* Analyses mayinform changing treatment patterns and outcomes over time.

* A growing literature identifies patterns (e.g. poly-substance use) associated with fatal
overdose. Less well-known is whether and how these patterns may be associated
with adverse treatment outcomes.



Overdose Death Rates Involving Opioids, by Type, United States, 1999-2018
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Figure 2
Opioids Involved in Cocaine-Related Overdose Deaths, 2010-2018
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Figure 1
Overdose Deaths Involving Benzodiazepines and Opioids, 2008-2018
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Age-Adjusted Death Rates* Attributable to Alcohol-Induced Causes, by
Race/Ethnicity — United States, 1999-2015

12.0
me  All Origins and races
11.0 4 == == Hispanic
- = = = White, non-Hispanic
mﬂ-.‘ ‘\\ = = Black, non-Hispanic *
. N \\ — /”,‘
9.0 - “ ~ 7 T e i

Rate per 100,000 U.S. standard population

] | ] ] 1 ] ] ]
1999 2001 2003 2005 2007 2009 2011 2013 2015
Year



* National data system of annual admissions/discharges from
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% successful completion of residential treatment for opioids, 2010-2018
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P red |Ct| ﬂg Understandingwho is succeeding in treatment helps direct
treatment outcomes resources to those who aren’t.

Binary classification: Vi (S {0,1}, Xi =@mgraphics, other substances, paymentinfo,@

l

Design decisionsinfluence outcomes
(e.g. handling missing data)

Goal: Classify unseen sample y; given X;

Trainingdata (75%) > Evaluate performance




Evaluation metrics

True False

Positive Positive
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True Positive + True Negative ©
Accuracy = @
Total a
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Actual
. True Positive iti icht?
Precision (PPV) = — T Oof w.h.at the_model labeled positive, how many were right-
rue Positive + False Positive Precision is important when one wants to allocate scarce

resources to those with this particularlabel.

— True Positive
Recall = Of actual positive samples, how many were correctly identified?

(sensitivity) True Positive + False Negative

Soecificity = True Negative Of actual negative samples, how many were correctly identified?
PECITICItY = Trye Negative+ False Positive
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Logistic Regression vs. “Machine Learning”

Xi— — {0,1}

Linear model with interpretable coefficients “Black box”
Optimizes for interpretability Optimizes for predictability



Decision Tree Classifier

X; = {demographics, other substances, paymentinfo, etc.}

Splitthe data on the feature

demographics that results in the largest
information gain
\“ other substances

paymentinfo

Tend to overfit the training data



Random Forest Classifier
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Predictive boost
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Predictive boost consistent but
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Year: 2018

Are they interpretable? Sabstance: Opioids

Treatment: Residential rehab

. - : Response: Treatment completion
Coefficients from Logistic regression
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Substantive guestions to answer with TEDS

How do predictability and emergent predictors differ between substances?

Has predictability changed over time?

Can we identify predictors of mortality?

What are the key differences between short-term rehab and non-intensive
outpatient?

Do secondary substances impact predictability?



Year: 2018
Substance: Opioids, Cocaine, Alcohol
Treatment: Residential rehab

Total peoplein treatment per substance, by race and education level

Hispanic Latino Hispanic College |Hig school [college [school

Alcohol 92275 1735 298258 50877 219789 25887 108695 74028

Cocaine 37154 336 39151 4433 43073 5426 17448 20624
Opioids 58004 1813 368718 23522 252166 27616 104645 93706



Predictability across substances
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Variable importance ranks, 2018
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Logistic regression coefficients for
Opioids, 201
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Are the predictions fair?
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_ Divisions Variable importance ranks for Opioids 2010-2018
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Variable importance ranks for Alcohol 2010-2018
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Year: 2010-2018
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AUC

Short-term rehab vs.
non-intensive outpatient treatment
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REFERRAL SOURCE

Variables whose importance ..
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Deaths
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When one of the classes
makes up just a small
fraction of the training

Downsampling for imbalanced classes
data, the model will spend

most of its time learning

from the other class .

Solution: dowsampling \ /




MOUD & Mortality
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Year: 2018
Substance: Opioids
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Conclusions

* Machine learning offers modest but real predictive boost

* Important variables emerge from the model to help direct further
analyses

* Predictability of successful completion of opioid residential treatment has
increased since 2010; not true for alcohol/cocaine.

* Geography consistently emerges as a strong predictor

* Note for further studies: this could potentially be linked to reporting bias. Should treat
carefully.

 MOUD + age/length of stay linked to opioid mortality—not a causal link, but
an important marker and clinical reality in this space.



