
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=pers20

Download by: [Princeton University] Date: 16 October 2017, At: 06:37

European Review of Social Psychology

ISSN: 1046-3283 (Print) 1479-277X (Online) Journal homepage: http://www.tandfonline.com/loi/pers20

Visualising mental representations: A primer
on noise-based reverse correlation in social
psychology

L. Brinkman, A. Todorov & R. Dotsch

To cite this article: L. Brinkman, A. Todorov & R. Dotsch (2017) Visualising mental
representations: A primer on noise-based reverse correlation in social psychology, European
Review of Social Psychology, 28:1, 333-361, DOI: 10.1080/10463283.2017.1381469

To link to this article:  http://dx.doi.org/10.1080/10463283.2017.1381469

© 2017 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 16 Oct 2017.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=pers20
http://www.tandfonline.com/loi/pers20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10463283.2017.1381469
http://dx.doi.org/10.1080/10463283.2017.1381469
http://www.tandfonline.com/action/authorSubmission?journalCode=pers20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=pers20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10463283.2017.1381469
http://www.tandfonline.com/doi/mlt/10.1080/10463283.2017.1381469
http://crossmark.crossref.org/dialog/?doi=10.1080/10463283.2017.1381469&domain=pdf&date_stamp=2017-10-16
http://crossmark.crossref.org/dialog/?doi=10.1080/10463283.2017.1381469&domain=pdf&date_stamp=2017-10-16


ARTICLE

Visualising mental representations: A primer on
noise-based reverse correlation in social psychology
L. Brinkman a, A. Todorovb and R. Dotscha

aDepartment of Psychology, Utrecht University, Utrecht, The Netherlands; bDepartment of
Psychology, Princeton University, Princeton, New Jersey, USA

ABSTRACT
With the introduction of the psychophysical method of reverse correlation, a
holy grail of social psychology appears to be within reach – visualising mental
representations. Reverse correlation is a data-driven method that yields visual
proxies of mental representations, based on judgements of randomly varying
stimuli. This review is a primer to an influential reverse correlation approach in
which stimuli vary by applying random noise to the pixels of images. Our
review suggests that the technique is an invaluable tool in the investigation of
social perception (e.g., in the perception of race, gender and personality traits),
with ample potential applications. However, it is unclear how these visual
proxies are best interpreted. Building on advances in cognitive neuroscience,
we suggest that these proxies are visual reflections of the internal representa-
tions that determine how social stimuli are perceived. In addition, we provide
a tutorial on how to perform reverse correlation experiments using R.

ARTICLE HISTORY Received 4 March 2016; Accepted 15 September 2017

KEYWORDS Reverse correlation; social perception; classification image; predictive coding; top-down
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Introduction

People rapidly infer social characteristics, such as race, gender, age and
traits from faces (Todorov, Olivola, Dotsch, & Mende-Siedlecki, 2015).
Because inferred properties are not directly observable, the cognitive system
has to perform operations on the perceptual input to generate these infer-
ences. It is often assumed that people do this by matching visual input to
mental templates (Dotsch, Wigboldus, & van Knippenberg, 2011; Freeman
& Ambady, 2014). For example, if you see someone’s face for the first time,
what makes you perceive that face as male or female, or as trustworthy or
untrustworthy? Presumably, the visual input matches with your mental
representation of male, female, trustworthy or untrustworthy faces. Thus,
the way a person is seen in the mind’s eye – that is, one’s subjective
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experience of the person – hinges on the content of mental representations.
However, the content of mental representations has never been directly
observed, let alone visualised. The field of social psychology has recently
embraced a psychophysical technique called “reverse correlation” that aims
to do just that: To provide visual proxies of the content of mental repre-
sentations. The reverse correlation method (or the “classification image
technique”, as it has also been called) is a data-driven method that origi-
nated in the field of psychophysics and has its roots in signal detection
theory and auditory perception (Ahumada & Lovell, 1971; Beard &
Ahumada, 1998; Eckstein & Ahumada, 2002). In signal detection para-
digms, participants see stimuli that sometimes contain signal, and always
contain noise. They respond to the presence of signal and their accuracy is
computed based on their hits (correctly detecting the signal) and false
alarms (mistakenly responding that signal was present). False alarms are
particularly interesting cases, because participants might see signal in noise.
The noise just happens to match the expected signal to some degree.
Reverse correlation was invented to identify those features of the noise
that trigger false alarms. Contemporary reverse correlation paradigms are
essentially signal detection paradigms, but consist of stimuli for which the
intended signal is not specified by the experimenter. The stimulus set is
random and it is the participant who decides whether signal is present in a
stimulus or not. This is why the technique is called “reverse correlation”:
Tthe standard procedure where an experimenter specifies signal in stimuli
for participants to identify is reversed.

The basic reverse correlation paradigm works as follows: Participants are
presented with a large set of variations within a specific stimulus class, for
instance, faces with superimposed random noise (Figure 1(a)). Participants
judge each variation on its similarity to a mental representation of interest.
Typically, participants complete 300–1000 trials and the judgements and
the corresponding noise are used to compute a model or so-called classifi-
cation image (CI). The CI shows the stimulus features that drive the social
judgement of interest and is therefore regarded as an approximation of the
mental representation that was tapped into.

There are two reasons why reverse correlation is better than traditional
paradigms to identify the visual features that drive social judgements. First,
social stimuli are complex objects that can vary in many ways. As has been
argued earlier (Dotsch & Todorov, 2012; Todorov, Dotsch, Wigboldus, &
Said, 2011), researchers aiming to identify the features that drive a specific
social judgement therefore take on a great challenge: They traverse an
infinitely large space of hypotheses specifying which features influence
judgement. Even if a set of features was found, the researcher cannot be
certain without further investigation that this set is the only and strongest
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Figure 1. (a) Stimuli are created by overlaying random noise patterns on a base
image. (b) Typical paradigms used in reverse correlation experiments are two-
image forced choice (2IFC, left) and four-alternative forced choice (4AFC, right)
tasks. Participants either select (2IFC) or rate (4AFC) stimulus material according
to a social judgement of interest (here: Perceived gender). (c) Classification
images (CIs) are computed by (weighted) averaging of the selected images.
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predictor of that particular judgement. Moreover, it is not clear what makes
up a feature: A mouth, a single lip or the corner of the lip? For some
features labels do not even exist, further complicating the problem of
formulating hypotheses. Reverse correlation does not suffer from these
problems; because it is a data-driven method, it does not hinge on a priori
hypotheses. By presenting random variations of social stimuli, no single
hypothesis is tested, but an entire space of hypotheses, spanned by the
variations in the stimulus set.

The second strength of reverse correlation is that it visualises near
spontaneous use of information. Participants are free to adopt whatever
criteria they want for their judgements (in fact, participants might not
even be aware of the criteria they adopt). For instance, in traditional
social judgement paradigms, faces are typically rated explicitly on a
dimension of interest (e.g., Black and White faces on aggression).
Participants are thus forced to process faces on both the varied factors
(Black and White) and the dimension of interest (aggression) to make
their judgement. It is doubtful whether people use the same information
in real-life encounters, where these dimensions are not necessarily sali-
ent. For indirect measures, the same argument can be made. For
instance, in an Implicit Association Test (Greenwald, McGhee,
Schwartz, & Attitudes, 1998; Greenwald, Nosek, & Banaji, 2003), parti-
cipants classify category exemplars (e.g., Black and White faces) and
attribute words (e.g., bad or good) using two response keys, each corre-
sponding to a combination of a category and an attribute. Participants
may rely on a Black = bad and White = good bias to facilitate response
time. However, it is unclear whether this bias would also emerge spon-
taneously in real life. Mentioning the relevant attribute dimension may
prompt biases that may not always be present in social perception.
Reverse correlation does not suffer from this limitation, because partici-
pants use whatever comes to mind for their judgements.

Here is an illustrative example. In a “Moroccan” reverse correlation task,
participants repeatedly select from two random variations of faces the most
Moroccan-looking face (Dotsch, Wigboldus, Langner, & Van Knippenberg,
2008). Moroccans are a stigmatised outgroup in The Netherlands, asso-
ciated with criminality (Coenders, Lubbers, Scheepers, & Verkuyten, 2008;
Verkuyten & Zaremba, 2005). If participants happen to select those faces
that look a bit more criminal, the resulting CIs will visualise this bias and
look more criminal than CIs of participants who do not have this bias.
There is no mention of criminality in the task. The only concept mentioned
is the category of interest (here: Moroccan). Any information encoded into
the CI is used spontaneously in the process of deciding which of the two
faces is more Moroccan-looking. Importantly, if participants spontaneously
use information on a dimension that researchers did not expect a priori
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(e.g., competence information), the CI will reflect that dimension, whether
or not the researcher is interested in it.

The reverse correlation approach can be implemented in many ways.
The basic principles common to all classes of reverse correlation tasks
are random variation in stimulus parameters and the estimation of the
relative weight of each stimulus parameter in judgements of those
stimuli. The visualisation of those weights yields the outcome: the CI.
Here, we focus on one specific implementation prevalent in the field of
social psychology: The noise-based reverse correlation task. This imple-
mentation uses random instantiations of noise patterns superimposed on
a constant base image to obtain stimuli that are variations of the base
image. In its simplest form, participants repeatedly select from two
random stimuli the one that best fits the mental representations of
interest and CIs are computed by averaging the selected noise patterns.

Compared to other implementations, such as photo averaging
(reviewed in Sutherland, Oldmeadow, & Young, 2016) or those using
computer-generated faces (reviewed in Jack & Schyns, 2017; Todorov
et al., 2011), the noise-based implementation places the least constraints
on the stimulus set. This allows the most freedom for features to appear
in the CI that researchers did not deem relevant a priori. For instance,
in a reverse correlation study where mental templates of “dominance”
and “submissiveness” were investigated (Dotsch & Todorov, 2012), the
CI of the dominant face showed strong contrast around the contours of
the face, whereas the submissive face practically blended in with the
background (see Figure 2). This feature would have probably been
missed when using photos or computer-generated faces as stimulus
material, although it reflects an important aspect of our subjective
experience of dominant and submissive faces. Moreover, the noise-
based implementation is very accessible to researchers, because the
necessary software is freely available as a package in R: One needs
only R (R Core Team, 2016), the rcicr package (Dotsch, 2017), and
minimal coding skills.

The present review is a primer in noise-based reverse correlation. In
the first section, we describe methodological details and provide a
tutorial on the rcicr R package to create stimulus material and analyse
reverse correlation data. In the second section, we highlight major
achievements of the technique in social psychological research. In the
discussion, we elaborate on future directions and limitations of the
technique. In addition, we put forward a novel account to interpret
CIs: as visual proxies of internal representations that determine how
social stimuli are perceived.
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Methodological details

A reverse correlation paradigm consists of four steps: (1) constructing sti-
mulus material with random variations, (2) acquiring data by asking partici-
pants to select the images that are congruent with their mental
representation, (3) computing CIs based on the responses of the participants
and (4) evaluating the CIs. Here we detail these steps for the noise-based
reverse correlation approach. A tutorial on how each step can be achieved
using the rcicr package (Dotsch, 2017) in R is provided in the appendix.

Stimulus material

As described above, reverse correlation employs randomly varying stimuli.
The implementation we discuss here uses random visual noise to create
stimulus variations on some constant base image. Two main considerations
at this point are which base image and what type of noise to use.

For faces, typical base images are average faces from databases (Langner
et al., 2010; Lundqvist & Litton, 1998). The base face should be tailored to the

Figure 2. CIs for dominance, submissiveness, and (un)trustworthiness (adopted with
permission from Dotsch & Todorov, 2012).
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particular research question and could, for example, be male, female, gender
neutral or have a particular emotional expression. Importantly, the base face
should match the power spectrum of the added noise as best as possible. This
can be accomplished by smoothing the base image (e.g., by using a low-pass
filter or Gaussian blur), which can be done with most image editing pro-
grammes. The advantage of using an averaged face as base image is that the
contours of the face are often blurred while the other features of the face (eyes,
mouth, nose, etc.) are in focus, making it ideal for optimal blending with the
superimposed noise. Other considerations are the resolution of the base images
(the more detail you want, the more trials you will need) and making the face
area span as large a part of the image as possible. For sine-wave-based noise
(see below), the image needs to be a perfect square and the height (and width)
in pixels needs to be a power of 2. Using an inappropriate base image may lead
to inadequate sampling of the information space: A base face with a closed
mouth will make it hard (but not necessarily impossible) to sample the
information used by social judgements requiring an open mouth.

The second consideration is to choose the type of noise to create random
variations on the base image. Three types of noise have been used in the
literature: White noise (values are drawn from a uniform distribution), sine-
wave noise and Gabor noise (Figure 3). In white noise, each pixel can take a
completely random value without any constraints. The other two types of noise
implement constraints that narrow the possible configurations that a noise
pattern in a stimulus can have. The rationale for the constraints is that they
allow the researcher to more efficiently sample relevant parts of the stimulus
space (e.g., stimuli that constitute meaningful variations of faces).

In a pioneering study, Gosselin and Schyns (2003) studied the mental
templates of the letter “S” using no constraints at all: Using white noise and
no base image (Gosselin & Schyns, 2003). Participants were asked whether
they recognised a letter “S” in stimuli that consisted of 50 × 50 pixel image of
white noise. By averaging the noise patterns in the subset of trials where
participants indicated that they saw the letter “S” in the stimulus, a CI was
obtained which showed the letter S. The number of trials required for this
task was vast: 20,000 trials. Note that the mental template of a letter is visually
several orders of magnitude less complex than social stimuli. Without the
constraint of a base image, the stimulus space is too large and would there-
fore require too many trials for typical social psychological research.

To constrain the stimulus space, subsequent studies have included a base
image (a face) underneath the white noise (Figure 3(a)). Using this
approach, Jack, Caldara, and Schyns (2012) visualised mental representa-
tions of emotions in Western Caucasian and East Asian participants (Jack
et al., 2012). The CIs showed clear differences between the two groups.
However, the number of trials in this study was still high (12,000 per
participant).
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To further reduce the stimulus space, a different type of noise was
developed, based on superimposed sine-wave patches (Figure 3(b)), which
depend on fewer parameters and match the frequency spectrum of faces
(Mangini & Biederman, 2004). Detailed descriptions of how these noise
patterns are constructed are provided elsewhere (Dotsch & Todorov, 2012;
Mangini & Biederman, 2004). Briefly, the noise pattern is the average of five
layers of sine-wave patches (2D gratings going from grey to bright to dark
to grey again in a single cycle), that differ per layer in the number of cycles
of the sine-wave patch (2, 4, 8, 16 or 32 cycles per patch). Each layer
consists of patches that are themselves averages of 12 sine-wave patches
(differing in six orientations and two phases). As such, the noise pattern is
specified by 4092 parameters,1 each specifying the contrast (amplitude) of a
sine-wave patch. Hence, this type of noise allows one to efficiently sample

Figure 3. Stimuli for noise-based reverse correlation (right column) consist of a noise
pattern (left column) superimposed on a base image (middle column). The top (a),
middle (b) and bottom (c) rows represent white-, sinusoid- and Gabor-noise,
respectively.

1In comparison, the number of parameters for patches of white noise is equal to the number of pixels,
which typically amounts to 512 × 512 = 262,144 parameters.

340 L. BRINKMAN ET AL.

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 0
6:

37
 1

6 
O

ct
ob

er
 2

01
7 



portions of the stimulus space that vary in dimensions relevant for faces,
but at the same time makes it impossible to represent visual information
that cannot be encoded by sine-wave noise. Most reverse correlation studies
in social psychology currently use sine-wave patches (see the following
section for examples).

Recently, a third type of noise was introduced, based on Gabor patches
(Figure 3(c)). The procedure to generate the noise is identical to that of
sine-wave noise, but uses Gabor patches instead of sine-wave patches and is
specified by 16,380 parameters2 (van Rijsbergen, Jaworska, Rousselet, &
Schyns, 2014). This approach yielded vivid CIs using 3240 trials per parti-
cipant, with the advantage that the square artefacts visible at the border of
sine-wave patches are absent. Whether Gabor noise outperforms sine-wave
noise, or vice versa, has not been empirically addressed.

Once a researcher has decided on the base image and the type of noise,
generating the stimuli in the rcicr package is straightforward. The required
R code is provided in the Appendix (steps 1 and 2).

Data acquisition

There are various ways to set up a reverse correlation task. Specific con-
siderations are the number of stimuli that are simultaneously presented on
the screen, the number of response options, and the number of trials. Two
prevalent implementations are two-image forced choice (2IFC) and four-
alternative forced choice (4AFC) paradigms (Figure 1(b)). In a 2IFC task,
each trial consists of two images presented side by side where participants
select the image that best reflects their mental representation. The noise
pattern in the image on one side of the screen is often the mathematical
inverse of the noise patterns of the image on the other side of the screen.

In a 4AFC task, one image is presented per trial and participants rate the
image on a 4-point scale on one (or more) dimension(s) of interest.
Initially, the 4AFC task was used to rate images on a bipolar dimension
(e.g., “probably male”, “possibly male”, “possibly female”, “probably male”)
but the approach can equally well be used to provide weighted responses
within a unipolar dimension (e.g., masculinity on a scale from 1–4). In
4AFC tasks, only the noise patterns that are categorised in one of the
“probably” responses are taken into account to compute a CI. Noise
patterns classified as “possibly” are usually ignored.

Formally, the 2IFC and 4AFC implementations have never been com-
pared. The reason the 2IFC variant was originally introduced by Dotsch
et al. (2008) is that in cases where the base image does not come close to the

2Note that in this study, six layers of noise were specified, which allows for more local (high-frequency)
modulations of the base image. It is this extra layer that increases the number of parameters, not the
noise type per se.
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mental representation of interest (like visualising a Moroccan and Chinese
face from a Scandinavian base image, as in Dotsch et al., 2008), it is very
likely that none of the random stimuli will look anything like that mental
representation. The result is that none of the stimuli would be classified in
the “probably” category in a 4AFC task and no CI can be computed. A 2IFC
task on the other hand forces each trial to be maximally diagnostic of the
mental representation of interest and capitalises on the idea that after
averaging, stimuli that contain no diagnostic information will compensate
each other due to their randomness. The advantage of the 4AFC task is that
it allows participants to include certainty judgements in their responses,
which can be incorporated when calculating the CIs, as described below.

Computing CIs

The rationale for computing CIs is to visualise the parameter estimates that
participants deem relevant for the classification of the stimuli. We first
explain how CIs are computed for individual participants from data
acquired with 2IFC tasks, and then expand to 4AFC tasks and group-
level CIs.

The computation of a CI from 2IFC data of a single participant starts
with averaging the selected noise patterns (Figure 1(c)). The average noise
pattern is then superimposed on the base image. However, the numerical
values of the average noise patterns are typically very small (due to aver-
aging noise patterns that contain little signal and mostly random values),
sometimes orders of magnitudes smaller than the range of the pixel inten-
sities of the base image. Therefore, before overlaying the average noise
pattern on the base image, the average noise pattern is scaled such that
the minimum and maximum pixel intensities in the resulting CI match
those of the base image.

When CIs are computed for several participants, there are two ways in
which this scaling can be applied. Either we scale and maximise each CI
independently or we apply a dependent scaling. The latter entails identify-
ing the individual CI with the largest range of pixel intensities, maximising
the pixel intensities for that CI by the largest scaling factor needed to match
the range of the base image and then scaling the remaining CIs by that
same scaling factor. The two approaches (independent versus dependent
scaling) yield differences for individuals who have relatively little signal in
their responses. Independent scaling will amplify the small signal present,
which is accompanied by amplification of noise. Dependent scaling will
lead to relatively little amplification of signal and noise for those same
participants, resulting in CIs that closely resemble the original base image.
Which scaling method is preferable depends on the needs of a researcher. If
the researcher wants to take the strength of the signal in the CI into

342 L. BRINKMAN ET AL.

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 0
6:

37
 1

6 
O

ct
ob

er
 2

01
7 



account, they need to use dependent scaling. Otherwise, independent scal-
ing makes as much signal as possible visible in the CIs, at the cost of
amplified noise. Both scaling options are implemented in rcicr, as demon-
strated below.

Computation of CIs from 4AFC data follows the same logic, but allows
the four response options to be weighted differently (Figure 1(c)). In their
seminal work, Mangini and Biederman (2004) averaged the noise patterns
that were classified at one (or the other) end of the response scale, although
it has been shown that using appropriate weights for the different response
categories can result in a higher signal-to-noise ratio (Murray, Bennett, &
Sekuler, 2002). Apart from this difference, the manner in which CIs are
computed for 4AFC data is identical to that of 2IFC data, with the same
considerations regarding scaling.

Depending on the research question, one may be interested in CIs of
groups of participants (e.g., those in one particular cell of an experimental
design), rather than those of individual participants. To compute a group
average CI, the unscaled noise patterns that constitute the individual-level
CIs are averaged across participants in a group or condition and scaled.
Importantly, computing a group-level CI in this way assumes that there is
homogeneity in the mental representation of interest across subjects, which
may not always be true.

The R code to generate a CI is provided in the Appendix (step 3).

Evaluating CIs

Once CIs are computed, the final step is to evaluate the CIs. Depending on
the research question, this can either be done on the level of CIs of
individual participants or on group aggregate CIs. A common approach
to evaluate CIs is to have an independent sample of participants rate the CIs
on some judgement of interest. These judgements can be used for con-
firmatory hypothesis testing, but only when the set of judgements have been
decided on prior to seeing the CIs and when there is high inter-rater
reliability. The researcher should bear in mind that a large sample of
independent raters will make even the smallest differences between CIs
appear significant. This is especially dangerous when independent scaling is
used to compute the CIs, amplifying noise as well as signal, yielding
significant differences between CIs that may very well be just noise.

An alternative approach is to objectively quantify the amount of infor-
mation of a certain dimension present in a CI. This can be done by
independently obtaining CIs of the dimensions the CIs are to be rated on.
For example, if we are interested in the amount of trustworthiness in the
CIs of male faces, we can independently collect data to compute the CI of
“trustworthiness” using a standard reverse correlation task, with the same
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base image as used in the male reverse correlation task. We can now
objectively assess the amount of trustworthiness in the male face, by
correlating the male CI with the trustworthiness CI (e.g., Imhoff &
Dotsch, 2013).

There are also statistical approaches that are agnostic about the specific
information researchers expect to be present in CIs. One is to use pixel tests
to find the pixels that significantly predict the judgement. The results can,
for instance, be visualised using a z-map where each pixel represents
z-scores rather than brightness, so areas of the face diagnostic for the
judgement can be identified visually (e.g., Dotsch & Todorov, 2012; Jack
et al., 2012; van Rijsbergen et al., 2014). The R code for computing z-maps
is provided in the Appendix (step 4).

Another approach is the recently developed informational value
(infoVal) statistic that quantifies the probability that an observed CI devi-
ates from CIs generated by a purely random process. The infoVal statistic
can be interpreted as a z-score. CIs without informational value
(infoVal < 1.96) contain no detectable signal and should be discarded.
Computation of infoVal scores of CIs is implemented in that latest version
of the “rcicr” package (version 0.4.0, Dotsch, 2017). The R code to compute
informational value is provided in the Appendix (step 5).

Achievements of reverse correlation

In social psychology, reverse correlation has been primarily used to identify
diagnostic features that are relevant for social perception and to visualise
top-down biases in social perception.

Diagnostic features

Reverse correlation’s original strength was in visualising the diagnostic
features that are predictive of specific social judgements: Which facial
features make someone look more male or female, more Chinese or more
Moroccan, more trustworthy or more dominant? The question of which
features are diagnostic can and has been posed for many social judgements,
such as race, gender, age, internal states, group membership and personality.
Below we review each briefly. Researchers have used reverse correlation
tasks to identify features diagnostic for Black and White faces (Fiset, Wagar,
Tanaka, Gosselin, & Bub, 2007; Krosch & Amodio, 2014), Moroccan faces
(Dotsch et al., 2008, 2011), Chinese faces (Dotsch et al., 2008), European
and Australian (Imhoff, Dotsch, Bianchi, Banse, & Wigboldus, 2011), as
depicted in Figure 4. Various studies have focused on visualising the gender
of faces (see Figure 5; Mangini & Biederman, 2004; Nestor & Tarr, 2008;
Dotsch et al., 2011) and of bodies (Johnson, Iida, & Tassinary, 2012; Lick,
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Carpinella, & Preciado, 2013). To our knowledge, there is only one study
that visualised age (van Rijsbergen et al., 2014). Internal states communi-
cated through facial expressions, such as emotions, have lent themselves
well to the reverse correlation technique, as they require only slight altera-
tions of an emotionally neutral base face. Much early reverse correlation
work addressed emotional expressions, visualising happy/unhappy expres-
sions (Mangini & Biederman, 2004) or the secret to Mona Lisa’s smiling
eyes (Kontsevich & Tyler, 2004). Jack, Caldara, and Schyns (2012) used
reverse correlation to identify the facial information diagnostic for the six
basic expressions of emotions as a function of perceiver culture (Jack et al.,
2012). Going beyond emotions, researchers have employed reverse correla-
tion to visualise facial expression of other internal states, like sexual interest
(Lick, Cortland, & Johnson, 2016).

Most of the judgements discussed so far (race, gender, age, emotions
portrayed by facial expressions) are in many cases easily and accurately
discerned from faces. However, there is a subset of social judgements for
which it is less clear that people can depend on visual information, namely
judgements of visually (or perceptually) ambiguous groups (Tskhay & Rule,

Figure 4. CIs of Black, Moroccan, Chinese, Australian and European faces (adopted
from Dotsch et al., 2008, 2011; Imhoff et al., 2011; Krosch & Amodio, 2014), figures
adopted with permission.
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2012). For instance, it is hard to accurately infer religion, sexual orientation,
political affiliation or profession from the face alone. Although people might
not be very accurate in determining people’s membership of such groups
(Todorov et al., 2015), there may be a shared visual basis on which people
rely to make these inferences. If so, reverse correlation should be able to
identify it. Researchers have used reverse correlation to visualise diagnostic
features for various professions (Hehman, Flake, & Freeman, 2015; Imhoff,
Woelki, Hanke, & Dotsch, 2013), such as athletes, bankers, business men,
doctors, drug dealers, financial advisors, nursery teachers, nurses, power-lifters
and rappers, as well as sexual orientation (Dotsch et al., 2011; Hinzman &
Maddox, 2017; Tskhay & Rule, 2015), political orientation (liberal vs. conser-
vative; Tskhay & Rule, 2015) and various castes and religions in India
(Dunham, Srinivasan, Dotsch, & Barner, 2014). Finally, Brown-Iannuzzi,
Dotsch, Cooley and Payne (2017) visualised faces of welfare recipients
(Brown-Iannuzzi, Dotsch, Cooley, & Payne, 2017).

A final example of diagnostic features is that reverse correlation has been
used to visualise the facial features diagnostic of personality trait judgements.
Dotsch and Todorov (2012) visualised trustworthiness and dominance, the
two primary dimensions of face evaluation (Dotsch & Todorov, 2012).
Trustworthy faces wore a subtle smile and had slightly more feminine

Figure 5. CIs of male (left column) and female (right column) faces and bodies (top
row from Mangini & Biederman, 2004; bottom row from Johnson et al., 2012).
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features, whereas untrustworthy faces wore subtle angry expressions and
slightly more masculine features (Figure 2). Dominance was very much
related to facial masculinity. Similar efforts within this domain are the
visualisation of stereotype content dimensions of warmth and competence
(Imhoff et al., 2013), criminality (Dotsch et al., 2011), attractiveness (Said &
Todorov, 2011), trustworthiness and dominance (Hehman et al., 2015),
dominance and physical strength (Toscano, Schubert, Dotsch, Falvello, &
Todorov, 2016), trustworthiness as a function of age (Éthier-Majcher,
Joubert, & Gosselin, 2013) and sexual promiscuity (Lick et al., 2016).

Top-down biases

The second major use of the reverse correlation technique has been to
discover top-down biases in social perception (i.e., the distortion of a
mental representation due to pre-existing knowledge or motivation).
Although this issue has been pursued in fewer studies, we expect to see
more studies in social psychology employing reverse correlation for this
purpose in the future, given the field’s traditional interest in bias.

To our knowledge, the first work to demonstrate any bias using reverse
correlation was research on visual stereotypes. In two studies, Dotsch et al.
(2008) showed that Dutch participants’ CIs of Moroccan faces were biased
in line with their implicit evaluation of Moroccans (Figure 6; Dotsch et al.,
2008). The more participants negatively evaluated Moroccans, the more
criminal and less trustworthy their Moroccan CIs appeared. These results
demonstrate that evaluative associations may bias people’s decisions in
reverse correlation tasks. A similar bias has also been demonstrated for
political candidates: Participants who supported Mitt Romney, and pre-
sumably had positive associations with him, generated CIs of Romney that
appeared more positive (trustworthy) than those generated by participants
who did not support him (Young, Ratner, & Fazio, 2014). Similar top-down
biases have been observed for stereotype content dimensions: Visualisations

Figure 6. CIs of Moroccan faces for subgroups of participants with different levels of
prejudice against Moroccans (adopted with permission from Dotsch et al., 2008).
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of faces of male nursery teachers and managers yielded faces that were
judged relatively warm-incompetent and cold-competent, respectively
(Imhoff et al., 2013), as would be predicted by the stereotype content
model (Fiske, Cuddy, Glick, & Xu, 2002).

Some biases in social perception might not even require existing associa-
tions with the visualised person’s group. Ratner, Dotsch, Wigboldus, Van
Knippenberg, and Amodio (2014) showed that whether a person belongs to
the ingroup or an outgroup affects participants’CI of that person (Ratner et al.,
2014). Specifically, participants were first subjected to a minimal groupmanip-
ulation using a dot estimation paradigm. In this task, participants were asked
to estimate the number of dots appearing on the screen several times, after
which they received false feedback that they were either an “over-estimator” or
“under-estimator”. The feedback was in fact randomised and manipulated
between subjects. Over-estimators and under-estimators then completed a
reverse correlation task in which they were asked to select the face that looked
the most like either an over-estimator or an under-estimator. Of interest were
the ingroup CI (based on the data of over-estimators selecting over-estimators
and under-estimators selecting under-estimators) and the outgroup CI (based
on over-estimators selecting under-estimators and under-estimators selecting
over-estimators), as depicted in Figure 7. Generally, the ingroup CI was judged
more positively than the outgroup CI by independent raters. This work was
extended by Paulus, Rohr, Dotsch and Wentura (2016), who visualised the
interpretation of an ingroup vs. outgroup smile after assignment to minimal
groups (Paulus et al., 2016). The CIs showed that smiles of ingroup members
signal more benevolence than those of outgroup members.

Another example of bias visualised with reverse correlation is projection,
in which participants use information about smaller more concrete social
units (e.g., one’s own country in the case of ingroup-projection, or the self
in the case of self-projection) in order to understand more abstract super-
ordinate social units (e.g., inhabitants of continents). Both ingroup-

Figure 7. CIs of ingroup and outgroup members (adopted with permission from
Ratner et al., 2014).
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projection (Imhoff et al., 2011) and self-projection (Imhoff & Dotsch, 2013)
have been investigated by asking European participants to complete a
reverse correlation task to visualise a European face. In Imhoff et al.
(2011), there were two participant samples: German and Portuguese. The
visualised European CI looked more German than Portuguese for German
participants, and vice versa for Portuguese participants (Figure 4). When in
a second study other German and Portuguese participants were instructed
to visualise the unrelated superordinate group of Australians as control, no
difference between the samples was observed in the CIs.

Because German participants tend to look more like Germans and
Portuguese participants tend to look more like Portuguese people, the
resulting European CI could have been biased toward the typical appear-
ance for the respective countries through self-projection, ingroup-projec-
tion or both. To tease apart the influence of representations of self and
representations of the ingroup in this projective bias, Imhoff and Dotsch
(2013) asked German participants to complete three reverse correlation
tasks yielding three CIs: Of self, German and European. They then com-
puted the pixelwise correlation between each pair of CIs, as an index of
similarity. Their analyses indicated that both the self and the German CIs
independently explained variance in the European CIs, which can be inter-
preted as evidence that both self-projection and ingroup projection inde-
pendently play a role when people visualise their superordinate group.
Although our earlier discussion of associative and intergroup biases may
have painted a picture of reverse correlation as a tool that can only tap into
evaluative biases, the work on visual projection demonstrates that reverse
correlation can also tap into non-evaluative biases.

Reverse correlation can also be used to investigate memory biases.
Karremans, Dotsch and Corneille (2011) investigated whether being in a
committed romantic relationship versus being single affects memory of the
face of potential alternative partners (Karremans et al., 2011). Female
participants who were in a relationship or single were first asked to mem-
orise the face of a male. Subsequently, they completed a reverse correlation
task with the instruction to select on each trial out of two noisy faces the
one that looked the most like the face they had memorised. Note that the
task never mentioned attractiveness, potential mates or relationships. CIs of
the memorised face looked more attractive to single participants than to
participants in a relationship. Female participants in a committed relation-
ship either did not use the attractiveness dimension to encode the male face
or the information was lost at retrieval. The authors speculated that this
distortion may function as a relationship maintaining device, causing those
who are in a committed relationship to be less motivated to approach
alternative attractive mates.
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General discussion

Reverse correlation has only recently been adopted in the field of social psychol-
ogy, but even in these early stages the technique has proven to be an invaluable
tool in the investigation of social perception (e.g., in perception of race, gender,
personality traits, and internal states such as emotions). In the coming years, we
expect the reverse correlation technique to become even more popular, because
there are numerous potential applications of the reverse correlation approach.
We elaborate on this topic in the first part of the discussion. We then briefly
discuss a second reason for the increasing popularity, that is, that it is becoming
increasingly easy to use reverse correlation paradigms. Third, we turn to a
discussion of limitations and pitfalls. For the technique to reach its full potential,
it is important to be aware of these limitations and to discuss how to deal with
them. A key conceptual limitation of the technique is that it is unclear what can
and cannot be inferred fromCIs. In the final part of the discussion, we advance a
novel perspective on how CIs can be interpreted.

Potential applications

The potential applications for reverse correlation experiments are numerous.
One intriguing application is that it could give us a glimpse of what goes on in
the mind of a person with mental disability. The approach can, for example, be
used in clinical psychology to visualise how patients with mental disorders
subjectively perceive the world (e.g., Langner, Becker, & Rinck, 2009; Richoz,
Jack, Garrod, Schyns, & Caldara, 2015). We are currently running pilots to
visualise aberrant mental representations in schizophrenia patients, with pro-
mising results. Identifying aberrant mental representations may provide
insights into the nature of mental disorders; the images may convey aspects
of the subjective experiences of patients that would otherwise be difficult to
communicate. Because reverse correlation can also be applied to body images,
reverse correlation can also be applied to visualise ideal and actual body images
in patients suffering from Anorexia Nervosa. Pilot data from our lab suggest
that reverse correlation is better able to capture features of body image than
traditional measures of body image. Another potential application is in the
domain of self-image where reverse correlation could be used to visualise how
we (implicitly) see ourselves. Such images could serve as a diagnostic tool and
could even be used in a therapeutic setting; being confronted with one’s CI of
the self might result in a better understanding of oneself or one’s condition.

Ease of use

Another reason why we expect reverse correlation to become more popular
in the coming years is that it is becoming increasingly easy to set up and use
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reverse correlation paradigms. Since 2015, the freely available open source
R-package (Dotsch, 2017) makes the generation of stimuli and the compu-
tation of CIs very user friendly. As demonstrated in the Appendix, any
researcher with a small amount of R knowledge should be able to compute
stimuli and analyse reverse correlation data using just a few lines of code.
This R-package is frequently updated with new features. Updates in the
near future include functions to compute z-maps for diagnostic regions in
CIs and metrics to assess data quality. The rcicr package has an active
community of users and contributors, which allows users (i.e., researchers)
to indicate desired features (at http://github.com/rdotsch/rcicr) to be
included in later versions of the package. This makes the package versatile
and able to address various outstanding research questions.

Limitations

While the findings summarised in the previous sections highlight the strengths
and potential of the reverse correlation approach, it is also important to
acknowledge the limitations and pitfalls of the technique. First of all, there
are technical limitations that make reverse correlation less suited to address
particular research questions. Second, there are no guidelines on good practice
to design reverse correlation experiments or analyse reverse correlation data.
Third, there is no consensus on how CIs are best interpreted.

While reverse correlation aims to visualise the content of mental represen-
tations, it can, by definition, only provide an approximation of the true mental
representations. The end-product of any reverse correlation experiment (the
CI) is a combination of the true mental image, the stimulus set and the
performance of the participant. Even disregarding the latter, the extent to
which a CI reflects true mental images is limited by the characteristics of the
stimulus set. This also means that when the true mental image deviates
strongly from the stimulus set, it will not be reflected accurately in the CI.
For this reason, reverse correlation using noise-based stimulusmaterial has not
been very successful in the visualisation of specific person identities. Only
when the base image resembles a particular individual, accurate CIs are
obtained (Mangini & Biederman, 2004). Reverse correlation approaches that
use computer-generated faces (instead of variants of one and the same base
face)may fare better in the visualisation of person identities. In a recent study it
was shown that individual faces were successfully reconstructed frommemory
using a reverse correlation approach that uses 3D computer-generated faces as
stimulus material (Zhan, Garrod, Van Rijsbergen, & Schyns, 2017). By the
same token, CIs from the noise-based reverse correlation approach are seldom
as crisp as actual photos or computer-generated faces – they always contain
residual noise. Moreover, the CIs are in greyscale. Adding colour to the images
is technically possible (Nestor & Tarr, 2008), but the number of stimuli needed
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to adequately sample the stimulus space grows with each added colour dimen-
sion, making this approach less feasible.

Apart from the technical limitations, the current use of noise-based
reverse correlation in social psychology is hampered by the lack of
methodological work addressing validity, reliability, and guidelines for
best practice. As a consequence, it is unclear how many trials and/or
participants are necessary to derive robust CIs. The lack of formal
criteria to make such informed decisions often leads researchers to
adopt the task parameters used in previous studies, but the required
task parameters may differ extensively for different mental constructs.
To make informed decisions about these task parameters, one needs an
objective metric to assess whether CIs contain signal and how the
amount of signal depends on the number of trials in the experiment.
We have recently developed such a metric, infoVal, which assessed the
amount of signal relative to reverse correlation data with random
responses. The metric is implemented in the latest version of the
“rcicr” package (version 0.4.0) and can be used to inform the number
of trials and participants in future reverse correlation experiments.

A third limitation deals with the interpretation of the CI. One of the
strengths of reverse correlation is that it provides output in a visual format.
These images may capture features that would otherwise be difficult to be put
in words. However, this also presents a challenge, because how these images
are best interpreted is not a trivial issue. In the previous section, we have seen
that in social psychology results from reverse correlation studies are inter-
preted as either visualising top-down biases or diagnostic features. This
implicit dichotomy in the interpretation of CIs is unsatisfactory and is pre-
sumably the result of different lines of research that use reverse correlation to
answer different kinds of research questions. To overcome this dichotomy, we
propose a more general account how CIs can be best understood.

A neurally inspired perspective on the interpretation of CIs

We propose that CIs reflect internal representations that determine how
social stimuli are perceived. This notion builds on recent advances in
cognitive and computational neuroscience that formalise how perception
is instantiated in the brain, formally described in the theoretical framework
of “predictive coding” (Clark, 2013; Friston, 2005; Summerfield & De
Lange, 2014).3 The premise of this framework is that perception is all
about making inferences; sensory inputs are processed and interpreted by

3In a recent preprint, Zhan et al. (2017) have also interpreted CIs in the context of the predictive coding
framework. Their emphasis is on memories as the source of predictions and how these are reflected
in the mental representations of person identities. This account does not discuss the possibility of
causal influences of CIs on social perception, which is key to the suggestion we put forward here.
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inferring their likely causes. This notion can be traced back to seminal work
by Helmholtz (1878). In the framework of predictive coding, these ideas are
formalised as the interplay of (bottom-up) sensory inputs and (top-down)
inferences, described in computational models with plausible neural sub-
strates (Bastos et al., 2012; Spratling, 2017). In particular, these models
describe how top-down predictions or inferences are matched to incoming
sensory inputs across different levels of the cortical hierarchy. Different
levels of the cortical hierarchy represent different levels of abstraction at
which predictions and inferences are instantiated: Lower levels implement,
for example, the continuation of regular spatial patterns behind occlusions
or in the blind spot of our retina (Komatsu, 2006; Shimojo, 2014), whereas
higher levels implement how we mentally represent others and their
expected behaviour (Koster-Hale & Saxe, 2013). When there is a mismatch
between the predicted and the received sensory inputs, a prediction-error
signal is fed forward up the cortical hierarchy, which in turn evokes new or
updated inferences that better match the sensory inputs. The manner in
which this updating takes place hinges on the relative weights (or precision)
of the sensory data and the inference, respectively. When one receives
highly precise sensory inputs that do not match what one expected, this
may lead to large updates of the initial inference. For example, when one
expects to see a dog, but visual input is more congruent with a cat, we
quickly adapt our inference to the creature being a cat. On the other hand,
when sensory input is noisy and we have good reasons to expect a specific
object, such as our couch in our darkened living room, we may cling more
strongly to our initial inference. Through the process of prediction-error
minimisation, the system converges on the most likely interpretation.

Key to this framework is the notion of a generative model, which is
where all predictions and inferences originate (Friston, 2010). The genera-
tive model comprises everything that we have mentally internalised:
Concepts, contingencies and representations of our current bodily and
mental state. It predicts anticipated sensory inputs, consistent with our
current understanding of what is out there in the world and, by the same
token, allows us to converge on the most likely interpretation of sensory
inputs by updating our initial inferences. While most research in the
domain of predictive coding is focused on the first part (how expectations
shape perception, as reviewed in Summerfield & De Lange, 2014), for
present purposes the second part is crucial: How inferences are updated
during convergence. The updating of inferences is determined by the range
of possible inferences and the estimated likelihood of those inferences,
which together form the unique instantiation of the generative model of a
person. The generative model can also be described as the collection of all
mental representations. As such, social perception is shaped by the content
of mental representations of socially relevant dimensions, where
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interindividual differences in social perception can be attributed to differ-
ences in those mental representations. In previous sections, we argued that
CIs reflect the contents of such mental templates. We therefore propose
that CIs reflect internal representations that determine how social stimuli
are perceived. This suggestion is fully compatible with the notion that CIs
reflect top-down biases, as discussed in previous sections. However, the
current notion goes one step further: Given the profound role of top-down
effects in determining the contents of perception in the framework of
predictive coding, we propose that the top-down biases reflected in CIs
have a causal influence on social perception.

To return to the example in the introduction, when we determine
whether we can trust someone or not, we match our mental template of
trustworthiness to the facial appearance of the stranger. If there is a match,
we infer that the stranger can be trusted. What we perceive is determined
by our mental representation, of which the CI is a visual reflection.

The proposal that CIs are visual proxies of determinants of social
perception is open for empirical investigation. Although this notion has
not been formally tested, several empirical observations are compatible with
this proposal. For example, if CIs truly represent determinants of social
perceptions, interindividual differences in CIs should reflect interindividual
differences in social perception. This was observed in a study in which
participants who differed in their prejudice against Moroccans yielded
qualitatively different CIs of a typical Moroccan face (Dotsch et al., 2008).
Prejudice was measured with a single-target Implicit Association Task (ST-
IAT; Bluemke & Friese, 2008), where participants categorise in parallel
words with positive and negative connotations (on valence) and
Moroccan names, using the same response options. Prejudice was inferred
from slower response times when Moroccan names were categorised with
the same response option as words with positive valance. The extent to
which CIs looked “criminal”, as judged by independent raters, correlated
with the amount of prejudice exhibited by participants. Reconsidering these
findings, we propose that the mental representation of a Moroccan face not
only reflects one’s prejudice but also determines how the person (implicitly)
perceives and evaluates Moroccan names.

Moreover, in a study on social categorisation, participants with a nega-
tive bias towards Moroccans (again measured with a ST-IAT) were more
likely to categorise criminal-looking faces as Moroccan (Dotsch et al.,
2011). Reinterpreting these findings, we suggest that the (biased) mental
representation of participants determines both the performance on the ST-
IAT and the bias in categorisation.

In a different study, Dotsch, Wigboldus, and Van Knippenberg (2013)
used reverse correlation to visualise what people expected faces of members
of novel groups to look like (Dotsch et al., 2013). In a learning phase,
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participants learned to associate positive (trustworthy) or negative (crim-
inal) behaviours with an a priori meaningless Group X. The behavioural
information about Group X members was provided alongside noisy images
of exemplar faces, identical across experimental conditions. After the learn-
ing phase, participants performed a reverse correlation task on the expected
facial appearance of a typical Group X member. The resulting CIs were in
line with the experimental manipulation: The CIs of participants who
previously learned that Group X members were more trustworthy were
rated as more trustworthy and less criminal, and vice versa. In addition, the
ratings of the CIs correlated with implicit and explicit measures of bias
toward outgroup members. Revisiting these results, we suggest that the
mental representation of Group X members determined the performance
on the tasks that measured implicit and explicit bias toward Group X
members and that the CI is a visual proxy of that mental representation.

The suggestion that CIs are visual proxies of determinants of social
perception is novel and needs further empirical investigation to establish
how fruitful and solid this notion is. A next step would be to formalise these
suggestions in a Bayesian computational model, in line with formalisations
in the predictive coding framework. Such a model would provide precise
empirical predictions about interindividual differences in social perception
and can be used to validate or falsify the suggestion that CIs truly reflect
determinants of social perception.

Conclusion

Although the noise-based reverse correlation technique has been adopted by
social psychologists only in the last decade, it has proven to be an invaluable
tool to access mental representations relevant for categorisation of race,
gender, personality traits and internal states such as emotions. Moreover,
the technique can be used to address many interesting and outstanding
questions, for example, investigating (aberrant) mental representations in
people with mental disorders. However, before the technique can be success-
fully deployed in these domains, several methodological issues need to be
resolved. The most important issue is the development of an overarching
theoretical framework for interpreting CIs. Here we have sketched the outline
of such a framework, advancing the notion that CIs are best understood as
visual read-outs of the determinants of (social) perception.
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Appendix

Tutorial for noise-based reverse correlation using the rcicr R
package

Step 1: Installing the rcicr package

The development version of rcicr (version 0.4.0) can be installed and loaded as
follows from within R.

install.packages(“devtools”)
devtools::install_github(“rdotsch/rcicr”,
ref = “development”)
library(rcicr)

Note that rcicr is under continuous development and that the syntax below may
change in the future. The up-to-date syntax is always stated in the accompany-
ing documentation, which you can access through R’s help system after instal-
ling the package.

Step 2: Generating stimuli

Assuming the base image file is called “base.jpg” and resides in your current
working directory, you can generate stimuli for 300 trials as follows:

generateStimuli2IFC(list(base=“base.jpg”),n_trials=300)

This line of code will create stimuli as .png images in a folder called “stimuli”
with a default resolution of 512 × 512 pixels (which the base image file should
match). These files can subsequently be used with your program of choice for
data acquisition. The code will also generate a .Rdata file that stores all the
parameter values corresponding to each stimulus. This file is used later in the
analysis. By default, this line of code will generate stimuli with sine-wave-based
noise. The line above can easily be adapted to generate stimuli with Gabor noise
or to set various other options for the noise, although we recommend using
default settings. To read the documentation for all the options that can be set,
use the following line:

?generateStimuli2IFC

The stimulus files generated here can be used for both a 2IFC and a 4IFC task.
The code generates two stimulus files per trial, one with “ori” in the filename,
indicating that this is the main stimulus with the original random noise pattern
for that trial superimposed, which is the one you should present in a 4IFC task.
The stimulus file with “inv” in the filename is the stimulus with the mathema-
tical opposite of that same random noise pattern superimposed (“inv” stands for
inverted: Dark noise pixels become bright and vice versa). In a 2IFC task you
would present both the original and the inverted stimuli side-by-side on a single
trial.
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Step 3: Computing classification images

The R code to generate the CI is:

# Path to rdata-file holding all stimulus parameters, cre-
ated when generating stimuli

rdata <- “stimuli/parameters.Rdata”
ci <- generateCI(S$stim, S$response, “base”, rdata)

Here, “base” refers to the name of the base image, as specified in the .Rdata file. By
default, independent scaling will be used. Dependent scaling only makes sense when
there are multiple participants in the data set. Let G be the same data frame as S,
but now with data from multiple participants and an additional column stating
subject number called “subnum”. With the development version you can now
generate all participant images with dependent scaling with the following code
(previous versions used the batchGenerateCI2IFC function):

cis <- generateCI(G$stim, G$response, “base”, rdata,
participants=G$subnum, individual_scaling = “dependent”,
save_individual_cis = TRUE)

The code will generate the individual CIs with dependent scaling as well as the
group-level CI with independent scaling as default.

Step 4: Computing z-maps

Z-maps are computed in R with the following code for an individual partici-
pant’s CI4:

ci <- generateCI(S$stim, S$response, “base”, rdata,
zmap = TRUE, zmapmethod = “t.test”)

Step 5: Computing informational value

Informational value of CIs can be computed as follows:

infoVal <- computeInfoVal2IFC(ci, rdata)

Here, “ci” and “rdata” are variables that have been declared in the previous lines of
code (see above).

4Note that there are various approaches to computing the z-map, and these are all detailed in the
documentation of rcicr.
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