
1053-5888/11/$26.00©2011IEEE

[social SCIENCES]
Alexander Todorov and   
Nikolaas N. Oosterhof

Modeling Social Perception of Faces

I
n Baboon Metaphysics, a detailed 
investigation of the complexities of 
baboon life, primatologists Dorothy 
Cheney and Robert Seyfarth write, 
“Any way you look at it, most of the 

problems facing baboons can be 
expressed in two words: other baboons.” 
This statement applies with even greater 
force to humans. Navigating the social 
world requires many cognitive feats, 
including keeping the identities of 
countless people straight, as well as the 
dynamics of their relationships. Our 
inferences about the social status, 
beliefs, desires, and intentions of other 
people determine whether we decide to 
approach or avoid them, what to say to 
them, and how to say it. Social complex-
ity is one of the key factors driving brain 
evolution. Across primates, the size of 
the neocortex increases with the size of 
the group, and there is recent evidence 
that the quality of one’s relationships 
has direct evolutionary benefits [1]. 
Maintaining suitable relationships 
requires sophisticated social cognition. 
At the basis of social cognition are the 
abilities to represent conspecifics as 
unique individuals and to perceive their 
intentions. In light of this, it should not 
come as a surprise that primates have 
specialized brain regions for the pro-
cessing of faces and (in the case of 
humans) information about others’ 
mental attributes [2]. 

SOCIAL PERCEPTION OF FACES
The face is our primary source of visual 
information for identifying people and 
reading their emotional and mental 
states. With the exception of prosopag-
nosics (who are unable to recognize 

faces) and those suffering from such 
disorders of social cognition as autism, 
people are extremely adept at these two 
tasks. However, our cognitive powers in 
this regard come at the price of reading 
too much into the human face. The face 
is often treated as a window into a per-
son’s true nature. References to this 
belief can be found in all ancient cul-
tures, and the belief has persisted into 

modern times. The Swiss pastor Johann 
Kaspar Lavater, who pioneered the 
pseudoscience  o f  phys iognomy, 
described in detail how to read the true, 
inner nature of a person from facial fea-
tures (e.g., “The nearer the eyebrows 
are to the eyes, the more earnest, deep, 
and firm the character” [3, p. 59]). 
Although attempts to characterize per-
sonality based on external appearance 
have largely fallen out of favor in sci-
ence, the ideas continue to appeal at an 
intuitive, implicit level. Lavater was 
probably wrong about most of his spe-
cific claims, but research strongly sup-
ports his contention that: “Whether 
they are or are not sensible of it, all 
men are daily influenced by physiogno-
my.” [3, p. 9]. First, people tend to 
agree in their social judgments based 
on faces, indicating that faces provide 
information that is consistently inter-
preted [4], [5]. Second, such judgments 
are made rapidly, without much mental 
effort: as little as 33 ms exposure to a 

face is sufficient for people to decide 
whether a face looks trustworthy or not 
[6]. Third, recent functional magnetic 
resonance imaging (fMRI) studies have 
shown that regions in the brain critical 
for emotion and decision making are 
activated when participants look at neg-
atively perceived faces (untrustworthy  
and aggressive looking) even when the 
participants have not been asked to 
evaluate these faces [7]. Thus it appears 
that our brains automatically categorize 
faces. Finally, many studies have shown 
that social judgments based on faces 
predict important social outcomes, 
ranging from sentencing decisions to 
electoral success [8]. 

STATISTICAL MODELS 
FOR FACE REPRESENTATION
Given the agreement in social perception 
of faces (see Table 1), it should be possi-
ble to model this perception. What dif-
ferences in facial structure lead to 
appearance-based social inferences? For 
example, based on what perceptual infor-
mation do people decide that a face looks 
trustworthy or untrustworthy? Human 
faces share the same spatial layout and 
differences between faces are subtle, 
making it difficult to characterize what 
differences trigger specific social infer-
ences. In this respect, data-driven 
approaches that do not impose any  a pri-
ori constraints on face perception can be 
particularly useful for modeling social 
perception. There are two basic tasks in 
these approaches: creating a statistical 
model of face representation and using 
this model to derive the changes in facial 
features that lead to corresponding 
changes in social judgments. There are 
several statistical approaches for charac-
terizing the commonalities and differ-
ences among individual faces. They all 
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attempt to reduce high-dimensional face 
representations [e.g., pixel values of pho-
tographs, or three-dimensional (3-D)
points that define the skin surface] to a 
lower-dimensional “face space.” The 
dimensions of the face space define 
abstract, global properties of faces that 
are not reducible to single features. Here 
we use the face space model implement-
ed in Facegen (www.facegen.com), a 
derivative of Blanz and Vetter’s work [9]. 
This model uses 50 dimensions to repre-
sent face shape and 50  dimensions to 
represent face reflectance (brightness, 
color, and texture variations on the sur-
face map of the face). The face model in  
Facegen is based on a database of 
N5 271 faces laser-scanned in 3-D and 
subsequently aligned so that all faces 
share the same skin surface mesh topol-
ogy (for details, see [9]). The ith face is 
represented by a shape vector 

 s
S

i5 3x1, y1, z1, . . . , xNs
, yNs

, zNs
4T 

with coordinates for Ns vertices, and a 
reflectance vector 

 t
S

i5 3r1, g1, b1, . . . , rNt
, gNt

, bNt
4T

with red, green, and blue color values of 
the Nt pixels in the color bitmap that is 
projected on the skin surface (in Facegen, 
Ns5 2,043 and Nt5 256 3 256 2 . 

The face vectors are submitted to a 
principal component analysis (PCA), a 
data-driven dimensionality reduction 
technique that allows for characterizing 
the most common variations in face 
shape and face reflectance. In this 
approach, shape variations are represent-

ed by an average face s
S
5 1/N # gm 

S
sm 

and a set of k5 50 orthogonal principal 
components  (shape  e igenfaces) 
v
S

1, . . . , v
S

k that have the greatest eigen-
values of the covariance matrix of the 
face coordinates. The shape of a face can 
then be approximated by a k dimensional 
weight vector p

S
i ,  yielding shape 

 coordinates 
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where s
S

 is the average shape and 
V5 3v1 

c

  vk 4 the matrix with principal 
components. Variations in reflectance are 
treated similarly, also with 50 components. 

Thus, faces are represented as an average 
face plus a weighted sum of the principal 
components (eigenfaces). This gives rise 
to the concept of face space, which is the 
space containing the faces that can 
be represented. 

Assuming that shape and reflectance 
are approximately multinormally dis-
tributed, new faces that are plausible in 
the population can be generated in face 
space by constructing new weight 
 vectors with random Gaussian values. A 

practical implication is that a virtually 
unlimited amount of faces can be gener-
ated using this approach, which makes 
it an attractive alternative to using a 
da tabase  o f  f ace  photographs . 
Furthermore, as described in detail 
below, face properties related to shape 
and reflectance (the surface map of the 
face) can be independently manipulated. 
These qualities of the models allow for 
the constructions of vectors in face 
space that approximate specific social 
judgments and for tests of psychological 
hypotheses. 

MODELING SOCIAL 
JUDGMENTS OF FACES
With the aid of a statistical face model, it 
is relatively straightforward to uncover 
the variations in the structure of faces 
that lead to specific social judgments [4], 
[10], [11]. Here, we describe models of 
nine different social judgments. The first 
task is to collect judgments of faces ran-
domly generated by the statistical model 
and to show that these judgments are 
reliable. If the judgments are unreli-
able—there is a low or no agreement 
among judges—it is futile to try to 
model these judgments. As a rule of 
thumb, the reliability of the judgments 
sets the ceiling of their predictability. 
The second task is to test whether the 
statistical model of face representation 
can account for a meaningful proportion 
of the variance of these judgments. 
Assuming that this is the case, the third 
task is to construct new dimensions in 
face space that account for the maxi-
mum variability in the judgments. These 
dimensions then can be used to visualize 
the differences in facial structure that 
lead to specific judgments (Figures 1–3) 
and to manipulate faces along these 
dimensions [10], [11]. Table 1 lists nine 
different social judgments of 300 faces 
randomly generated by the statistical 
model described in the previous section. 
The most common measure of reliability 
used in psychological testing is 
Cronbach’s alpha (a). This measure indi-
cates the expected correlation between 
the ratings of the faces averaged across 
raters and the ratings of a new sample 
with the same number of raters. All 

[TABLE 1] INTERRATER AGREEMENT AND RELIABILITY OF NINE SOCIAL 
J UDGMENTS OF EMOTIONALLY NEUTRAL FACES.

JUDGMENT 
NUMBER OF 
RATERS (n) 

INTERRATER 
AGREEMENT (r) RELIABILITY (a) 

DOMI NANT 23 .36 .92 
THREATENING 21 .26 .87 
ATTRACTIVE 35 .23 .91 
FRIGHTENING 28 .17 .84 
MEAN 27 .17 .83 
TRUSTWORTHY 29 .15 .81 
EXTROVERTED 33 . 14 .84 
COMPETENT 44 .11 .84 
LIKEABLE 31 .10 .76 

RATERS (n) WERE ASKED TO MAKE JUDGMENTS OF 300 RANDOMLY GENERATED FACES ON A SCALE FROM 1 (NOT AT 
ALL [TRAIT TERM]) TO 9 (EXTREMELY [TRAIT TERM]).
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judgments show sufficiently high 
 reliability, ranging from .76 to .92. 
Because Cronbach’s a is a function of 
the sample size of raters and the inter-
rater agreement, it could be a misleading 
measure of the actual rater agreement 
(e.g., a large sample of raters with a low 
agreement will result in reliable judg-
ments). As shown in the third column of 
Table 1, the interrater agreement varies 
as a function of the specific judgment. 
Whereas for some judgments, the agree-
ment is relatively high (e.g., dominance), 
for others it is relatively low (e.g., like-
ability). As we show below, this agree-
ment is an important constraint on the 
ability of statistical models to explain 
social judgments. 

Table 2 lists the proportion of vari-
ance of the social judgments accounted 
for by the shape and reflectance compo-
nents of the statistical model. Four 
things should be noted about these data. 
First, the model does a good job of 
explaining the variance of judgments. In 
all cases, the amount of explained vari-
ance is statistically significant. Second, 
there is a high correlation between the 
amount of variance accounted for by 
shape components and the amount of 
variance accounted for by reflectance 
components (r5 .86). Third, the vari-
ance accounted for by the model that 
includes both shape and reflectance com-
ponents is substantially smaller than the 
sum of the variances accounted for by 
shape components alone and reflectance 
components alone. This finding suggests 
that there is redundancy in shape and 
reflectance information. For example, a 
face with a dominant shape is likely to 
have dominant reflectance. Finally, there 
is a strong relationship between the 
inter-rater agreement in judgments 
(Table 1) and the amount of variance 
accounted for by shape and reflectance 
components (r5 .61 and r5 .82, respec-
tively). That is, the statistical model bet-
ter explains judgments for which there is 
a high interrater agreement. Although 
this is not surprising, it indicates a sensi-
ble behavior of the model. 

Before we describe the construction 
of new social dimensions in face space, 
we note that introducing nonlinear, 

quadratic predictors in the statistical 
models can improve the predictability 
of social judgments. The quadratic 
models capture the intuition that 
extreme faces can be evaluated nega-
tively. In fact, for seven out of nine 
judgments, the quadratic shape model 
accounted for significantly more vari-
ance than the linear model (Table 3). In 
contrast to shape, the quadratic reflec-
tance model accounted for significantly 
more variance only for two judgments 

(Table 4). This finding is consistent 
with prior findings on attractiveness 
showing that averageness is more 
important for shape than reflectance 
information [12]. 

COMPUTING SOCIAL 
VECTORS IN FACE SPACE
Having shown that the statistical model 
of face representation accounts for 
meaningful variance of social judg-
ments, we now describe the construction 

[TABLE 2] PROPORTION OF VARIANCE OF SOCIAL JUDGMENTS OF FACES 
ACCOUNTED FOR BY SHAPE COMPONENTS, REFLECTANCE COMPONENTS, 
AND SHAPE AND REFLECTANCE COMPONENTS OF STATISTICAL MODEL OF 
FACE  REPRESENTATION.

JUDGMENT SHAPE REFLECTANCE SHAPE AND REFLECTANCE 

DOMINANT .751 .810 .906 
THREATENING .729 .691 .8 46 
ATTRACTIVE .393 .395 .603 
FRIGHTENING .498 .523 .730 
MEAN .696 .562 .811 
TRUSTWORTHY .486 .381 .640 
EXTROVERTED .692 .524 .800 
COMPETENT .355 .4 37 .623 
LIKEABLE .358 .329 .559 

[TABLE 3] PROPORTION OF VARIANCE OF SOCIAL JUDGMENTS OF FACES 
ACCOUNTED FOR BY LINEAR AND QUADRATIC SHAPE COMPONENTS OF 
 STATISTICAL MODEL OF FACE REPRESENTATION.

JUDGMENT NONLINEAR MODEL 

CHANGE IN 
ACCOUNTED 
 VARIANCE 

SIGNIFICANCE 
OF CHANGE 

DOMINANT .824 .073 p , .008 
THREATENING .784 .055 p5 .46
ATTRACTIVE .632 .239 p , .0001
FRIGHTENING .654 .156 p , .003
MEAN .758 .062 p5 .45
TRUSTWORTHY .674 .188 p , .0001
EXTROVERTED .802 .110 p , .0001
COMPETENT .612 .257 p , .0001
LIKEABLE .578 .220 p , .0002
THE CHANGE IN ACCOUNTED VARIANCE SHOWS THE DIFFERENCE BETWEEN THE VARIANCE ACCOUNTED FOR BY THE 
QUADRATIC MODEL AND THE VARIANCE ACCOUNTED FOR BY THE LINEAR MODEL.

[TABLE 4] PROPORTION OF VARIANCE OF SOCIAL JUDGMENTS OF FACES 
ACCOUNTED FOR BY LINEAR AND QUADRATIC REFLECTANCE COMPONENTS 
OF STATISTICAL MODEL OF FACE REPRESENTATION.

JUDGMENT NONLINEAR MODEL 
CHANGE IN 
ACCOUNTED VARIANCE 

SIGNIFICANCE 
OF CHANGE 

DOMINANT .855 .045 P = .16
THREATENING .739 .048 P = .90
ATTRACTIVE .530 .135 P = .26
FRIGHTENING .627 .104 P = .30
MEAN .646 .084 P = .58
TRUSTWORTHY .502 .121 P = .54
EXTROVERTED .638 .114 P = .14
COMPETENT .597 .160 P 6 .015
LIKEABLE .524 .195 P , .010
THE CHANGE IN ACCOUNTED VARIANCE SHOWS THE DIFFERENCE BETWEEN THE VARIANCE ACCOUNTED FOR BY THE 
QUADRATIC MODEL AND THE VARIANCE ACCOUNTED FOR BY THE LINEAR MODEL. 
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of new dimensions in face space that 
account for the maximum  variability in 
the judgments. 

Consider a set of randomly generated 
faces that have been judged on some 
characteristic [for example, trustworthi-
ness rated on a scale from 1 (untrust-
worthy) to 9 (trustworthy) averaged over 
a group of participants]. A normalized 
linear face control D

S
r to manipulate this 

characteristic is constructed by 

 D
S
5 P # r

S
,    D

S
r5D

S
/||D

S
||,

where Pij is the weight of component j 
for face i and r

S
the ratings vector where 

the mean has been subtracted. 
Intuitively, D r

S
 can be considered as a 

normalized vector of correlations 
between the weights of each face compo-
nent and the ratings. To justify this 
approach, consider that the face dimen-
sions are, by construction, independent, 
and thus the obtained value for D r

S
 is 

optimal in the least square sense. 
Using the face control D

S
r, an individ-

ual face with component weights p
S

can 
be manipulated by a units by 

 p
S r5 pS1a # DS r.

With the average shape s
S

 and principal 
component matrix V  described earlier, 
this changes the coordinates of the shape 
vertex components from 

 sS 5 s
S
1a # D

S
r

to 

 s
Sr5 s

S
1 V # p

S r

 5 s
S
1V # 1Sp1a # D

S
r2

 5 sS1a # V #D r
S

,

i.e., coordinates change linearly with 
changes in a. Reflectance is manipulat-
ed similarly. Face controls can be con-
structed for any face characteristic as 
long as a rating is associated with each 
face. Examples of face controls include 
hooked versus flat nose, masculine ver-
sus feminine [9], and the traits present-
ed in this article [10], [11]. These 
methods uncover structural differences 
in appearance that predict differences in 

Shape

Dominant

Attractive

Trustworthy

Extroverted

[FIG1] Variations of face shape on four social dimensions derived from 
judgments of dominance, attractiveness, trustworthiness, and extroversion. 
The perceived value of the faces on the respective dimensions increases from 
left to right.

Reflectance

Dominant

Attractive

Trustworthy

Extroverted

[FIG2] Variations of face reflectance on four social dimensions derived from judgments 
of dominance, attractiveness, trustworthiness, and extroversion. The perceived value of 
the faces on the respective dimensions increases from left to right. 
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social perception. Figure 1 shows shape 
variations on four dimensions derived 
from judgments of dominance, attrac-
tiveness, trustworthiness, and extrover-
sion, respectively. For each dimension, 
five versions of a face are shown, manip-
ulated to decrease or increase its value 
on the respective dimension. For exam-
ple, as the dominance of the face 
increases, the face becomes more mas-
culine and mature. As the attractiveness 
increases, the face becomes thinner 
with higher cheekbones. As the trust-
worthiness increases, the face appears 
to express more positive emotions. As 
extroversion increases,  the face 
becomes wider and happier. Figure 2 
shows reflectance variations on the four 
dimensions. For example, as the domi-
nance increases, the face becomes dark-
er and more masculine. Similar 
darkness changes are also detectable for 
the other social dimensions. Figure 3 
shows both shape and reflectance varia-
tions on the dimensions. 

IMPLICATIONS OF FINDINGS
These models of social dimensions can 
be used to reveal the facial cues that 
lead to specific social judgments. For 
example, exaggerating the features that 
contribute to judgments of emotionally 
neutral faces reveals the underlying 
variations that account for these judg-
ments. In the case of trustworthiness, 
although faces are perceived as emo-
tionally neutral within the range shown 
in Figure 1, they are perceived as emo-
tionally expressive outside this range 
[10]. Whereas faces at the extreme neg-
ative end of the dimension appear to 
express anger, faces at the extreme posi-
tive end appear to express happiness. In 
terms of social perception, these mod-
els provide clues about the basis of 
social  inferences. Social inferences 
from facial appearance are based on 
resemblance to features that have adap-
tive significance—that is, to successful-
ly navigate the social world, we need to 
be able to infer the emotional states, 
gender, and age of others [4], [5]. For 
example, facial expressions of emotion 
indicate a person’s mental state and 
provide signals for appropriate behav-

iors. As a result, people with faces 
 resembling specific emotional expres-
sions, anger, for example, can be mis-
takenly judged as aggressive. When 
more sophisticated computer graphics 
and experimental methods are devel-
oped, we will have models that can be 
used not only to better understand 

social perception but also to manipulate 
images and create increasingly complex 
and lifelike avatars—knowledge that 
could be used for good or bad purposes. 
Such models can be used to manipulate 
images (not only of avatars but also of 
real people [11]) to induce specific 
 perceptions that could influence poten-

tial important decisions ranging from 
consumer to voting behavior. 

CHALLENGES AND 
FUTURE DIRECTIONS
One potential issue with the methods for 
modeling social perception of faces is 
overfitting. For example, here we used 
judgments of 300 faces to fit 50 shape 
and 50 reflectance parameters. Such 
models can perform well on the  modeled 
set of faces but may fail to generalize to 
novel faces. In principle, larger training 
data sets should alleviate such problems. 

Another potential approach is to use 
fewer parameters or face components. 
As described above, the face compo-
nents were derived from a PCA, and, 
hence, each additional component 
accounts for less and less variance of 
facial appearance. This suggests that the 
first few components could capture 
most of the variance of social judg-
ments. As shown in Figure 4, this is 
clearly the case. For example, for the 
shape model, the first ten components 

Shape and Reflectance

Dominant

Attractive

Trustworthy

Extroverted

[FIG3] Variations of face shape and face reflectance on four social dimensions 
derived from judgments of dominance, attractiveness, trustworthiness, and 
extroversion. The perceived value of the faces on the respective dimensions 
increases from left to right.
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account for more than half of the 
explained variance of the judgments. 
For the reflectance model, for many of 
the judgments, the first five compo-
nents account for more than half of the 
explained variance. 

Finally, the current models seem to 
perform rather well. First, judgments of 
faces manipulated by the models of 
these judgments agree with the models 
[10]. Second, the models predict judg-
ments of novel faces. For an unrelated 
study, we generated another set of 300 
faces that varied randomly on shape and 
were judged on trustworthiness and 

dominance. The correlations between 
the predicted trustworthiness and domi-
nance scores and the judgments of these 
novel faces were .51 and .39 for trust-
worthiness and dominance, respectively, 
using a linear shape model, and .67 and 
.55, respectively, using a quadratic shape 
model. In principle, the models of social 
perception could be further improved. 
In addition to using larger face data sets 
and relying on the most informative 
face components, approaches that 
reduce the dimensionality of social 
judgments [10] and nonlinear approach-
es could be particularly fruitful. 
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[FIG4] Explained variance of nine social judgments of faces as a function of the number 
of (a) shape and (b) reflectance components in the regression model.
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