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ABSTRACT

We adapt stochastic discount factor (SDF) valuation methods for venture capital (VC)
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(PME) method and it allows statistical inference in the presence of cross-sectionally
dependent, skewed VC payoffs. We relax SDF restrictions implicit in the PME so that the
SDF can accurately reflect risk-free rates and returns of public equity markets during the
sample period. This generalized PME yields substantially different abnormal performance
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Venture capital (VC) investments play an important role in supporting the formation of

young enterprises in the economy. Assessing the risk and return from this type of invest-

ments has thus far proven difficult for a number of reasons: payoffs are infrequent, realized

over multiple periods with varying time horizons, highly skewed, and cross-sectionally depen-

dent. Linear factor model techniques that are common in the mutual funds and hedge funds

literature are not easily applicable unless one is willing to impose strong assumptions on the

return-generating process as, for example, in Cochrane (2005) and Korteweg and Sorensen

(2010). Much of the literature therefore relies on heuristic performance metrics such as the

Public Markets Equivalent (PME) measure of Kaplan and Schoar (2005).

While the PME method has many desirable features that make it suitable for irregularly-

spaced and skewed private-equity cash flow data, the method still suffers from two deficiencies

compared with standard methods in mutual fund and hedge fund performance evaluation.

The first is that the PME does not correctly adjust for the extent to which high-beta as-

sets mechanically outperform a public market index in times of rising public equity markets.

The second is that so far no methods exist to conduct statistical inference in a PME-style

performance evaluation. Our objective in this paper is to address both challenges and to ana-

lyze empirically how much these methodological improvements alter performance evaluation

results.

To address the first challenge, we propose a generalization of the PME that we label the

Generalized Public Market Equivalent (GPME). The GPME can account for the mechanical

relationships between VC payoffs and contemporaneous risk factor realizations—just like a

linear factor model would. At the same time, it retains the desirable feature of the PME

method that it can accommodate irregularly-spaced, skewed payoffs without relying on strong

distributional assumptions. In our baseline approach we value VC payoffs with a stochastic

discount factor (SDF) of the form

Mt+1 = exp(a− brm,t+1), (1)
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where rm,t+1 is the log return on the public equity market portfolio and a and b are param-

eters. We also consider extensions to multiple factors.

To fix ideas, consider the simplified case of a one-dollar investment in start-up company

i at time t that will lead to a single uncertain payoff, or gross return, Rt+1 one period later.

Under the null hypothesis of no abnormal performance, the present value of a one-dollar

investment in any asset should equal one dollar, which means

1 = E[Mt+1 ·Rt+1]. (2)

We choose a and b in (1) so that (2) holds for the public equity market portfolio return

and the risk-free asset return. We then apply the SDF to VC payoffs with (2) as the null

hypothesis. Our approach nests the PME of Kaplan and Schoar (2005) as the special case of

(1) with the parameter restrictions a = 0 and b = 1 so that Mt+1 = 1/Rm,t+1. The problem

with imposing this restriction is that it prevents the SDF from properly adjusting for market

risk exposure.

To see how the GPME method works and how it relates to the PME, it is useful to

consider the special case in which Rt+1 and Rm,t+1 = exp(rm,t+1) are jointly log-normal. In

this case, the GPME method is equivalent to performance evaluation with the CAPM in a

conventional (log-)linear beta-formulation. Taking logs of (2), with a and b chosen to match

the public equity market return and risk-free asset returns, and using the properties of the

log-normal distribution,1 we get

logE[Rt+1] = rf + β(logE[Rm,t+1]− rf ), (3)

where rf is the log risk-free rate and β ≡ Cov (rt+1, rm,t+1)/σ
2
m, and σ2m ≡ Var (rm,t+1).

Although it is not directly apparent from (2), the expression for the log-normal case in (3)

1See Online Appendix A for a detailed derivation. While the log-normality assumption is useful for illus-
tration, there is no need to rely on this assumption when applying the valuation model (1) and (2). With
irregularly-spaced and skewed cash flow data from VC investments, it is not straightforward to apply the
log-normal model (3) and the strong distributional assumptions are questionable.
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makes it transparent that our method accounts for an asset’s beta exposure to the market

factor just like standard factor models in the mutual funds and hedge funds literatures do.

To illustrate the assumptions implicit in the PME, we follow the same steps as above,

but now imposing the restrictions a = 0 and b = 1. We get

logE[Rt+1] = logE[Rm,t+1]− σ2m + βσ2m. (4)

Thus, comparing (4) and (3), we see that the PME implicitly restricts the equity premium to

σ2m and the log risk-free rate to logE[Rm,t+1] − σ2m.2 These restrictions are inconsequential

for assets with β = 1 because the errors from imposing the wrong risk-free rate and mar-

ket risk premium cancel out in this case: the right-hand sides of both (4) and (3) become

logE[Rm,t+1] in this special case. But these restrictions do matter if β 6= 1. The magnitude

of the bias depends on how much the PME’s implied restrictions are violated in the data

that a researcher analyzes. For example, since VC investments typically have β > 1, they

mechanically outperform the market index in times of a rising equity market.3 By fixing the

equity premium at logE[Rm,t+1]− rf = σ2m, the PME does not take this into account, which

results in an overstatement of abnormal performance in times of strongly rising public equity

markets. Furthermore, if payoffs are not jointly log-normal with Rm,t+1, then even β = 1 no

longer guarantees that the performance assessment with the PME is accurate.

These violations can be substantial. For example, many VC studies use data sets concen-

trated in the 1990s. From the beginning of 1990 to the end of 1999, the annualized log return

from rolling over one-month T-bills was 4.81%, the log average return on the CRSP value-

2The fact that the PME restricts the equity premium and risk-free rate can also be seen by recognizing
that (2) is equivalent to valuation with the SDF from the log-utility CAPM, where Rm,t+1 is the return on
aggregate wealth. In the log-utility model, relative risk aversion is restricted to a value of one, which restricts
the equity premium. Under joint log-normality, this is the restriction logE[Rm,t+1] − rf = σ2

m that is built
into (4). See also independent and contemporaneous work by Sorensen and Jagannathan (2013) that points
out the log-utility assumption behind the PME.

3Recent β estimates in the literature include Gompers and Lerner (1997) who find values from 1.1 to 1.4,
while Peng (2001) finds 1.3 to 2.4, Cochrane (2005) finds 1.9, Woodward (2009) finds 2.2, Korteweg and
Sorensen (2010) find 2.8, Driessen, Lin, and Phalippou (2012) find 2.7, and Ewens, Jones, and Rhodes-Kropf
(2013) find 1.2.
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weighted index was 15.71%, while its annualized variance was 1.86%. As a consequence, an

asset with β = 2 would have a benchmarked return of 4.81%+2×(15.71%−4.81%) = 26.61%

according to the standard factor model in (3), while the PME-implied benchmarked return

following (4) is 15.71%+(2−1)×1.86% = 17.57%, a difference of almost 10 percentage points.

In such samples, the PME could therefore lead to the conclusion that VC payoffs were abnor-

mally high when, in fact, the performance was just in line with properly risk-matched public

markets benchmarks.

To implement the GPME, we need to estimate the SDF parameters. To ensure that the

SDF valuation properly benchmarks against contemporaneous stock market performance, a

and b should be chosen to correctly price stock market index and T-bill returns during the

sample period from which VC payoffs are drawn. Under log-normality, this is equivalent to

evaluating performance with the sample version of (3). Thus, this approach is analogous to

the standard method of estimating factor risk premia in linear factor models with the average

excess return of the factor during the performance evaluation period.

The second challenge that we aim to address in this paper is statistical inference. Re-

ported PMEs in the literature are typically simple point estimates without standard errors.

Statistical inference is difficult, because changes in start-up company valuations between

funding rounds, or the cash flows of VC funds over the fund life, are overlapping in time to

varying degrees and are likely subject to similar common factor shocks that induce positive

cross-sectional correlation. To conduct statistical inference, we implement the GPME estima-

tion within a GMM framework. To derive test statistics that are robust to cross-correlation

between VC payoffs, we borrow methods from the spatial GMM literature. In applying these

methods, we treat the degree of time-overlap between a pair of payoff series as analogous to

a spatial distance that determines the level of correlation.

We apply our method to a data set of VC funds from 1979 to 2012, and a data set of

start-up company financing rounds from 1987 to 2005. The VC fund payoffs are measured

net of fees and carried interest, whereas the payoffs in the start-up company data reflect the
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returns from VC investments before fees and carried interest are paid to the fund managers.

In our baseline estimation, we use the public equity market return as the risk factor in (1). In

line with our discussion above, the GPME differs substantially from the PME during sample

periods such as the 1980s and 1990s, in which the public equity markets earned high realized

returns. For example, for VC funds of pre-1998 vintages, the PME overstates the fund NPV

by roughly 21 percentage points. For investments in pre-1998 start-up funding rounds, the

PME overstates the NPV by about 42 percentage points. In contrast, in sample periods in

which the parameter restrictions implicit in the PME method are, coincidentally, more or less

in line with the data on realized equity market returns and risk-free rates, the discrepancies

between PME and GPME are much smaller.

We further illustrate this crucial difference between the GPME and PME by analyzing

artificially levered investments in VC funds and start-up rounds. Artificial leverage creates

high-beta assets. With proper risk-adjustment, levering up an investment by a factor k should

raise the NPV by the same factor k. We show that the GPME satisfies this requirement.

The PME, however, does not. The NPV estimates delivered by the PME method increase

by more than k. This is a reflection of the fact that the PME does not correctly price the

risk-free asset during the sample period. Levering up the VC payoffs builds this pricing error

into the abnormal performance measured by the PME.

Thus, depending on the public markets returns during the sample period and the degree of

systematic risk of the assets, performance metrics based on the PME can be severely distorted.

However, in the full samples, the differences between GPME and PME are relatively small,

because the assumptions underlying the PME are not grossly violated by the data. Our full-

sample results are broadly in line with earlier literature: Based on the GPME we find slightly

negative (equally-weighted) abnormal returns of VC funds and strongly positive abnormal

returns of VC investments in start-up companies.4

4For comparison, Ljungqvist and Richardson (2003), Kaplan and Schoar (2005), Woodward (2009), Robin-
son and Sensoy (2011), Stucke (2011), and Ewens, Jones, and Rhodes-Kropf (2013) report VC fund returns
that are equal to or slightly above the return on the market portfolio. Conversely, Phalippou and Zollo (2005),
Phalippou and Gottschalg (2009), and Driessen, Lin, and Phalippou (2012) find below-market returns. Har-
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In interpreting our results, one must keep in mind that venture capital data is usually

subject to some degree of selection bias, and this paper is no exception. Our method can

address some of the existing empirical challenges—such as adjustment for systematic risk and

tools for statistical inference—but it does not remove the residual selection biases in the data

set.

Regarding the economic interpretation of an SDF like (1), the standard asset-pricing

perspective would be to view this SDF as a CAPM that arises within a representative-

agent IID economy under the assumption of constant relative risk aversion (Giovannini and

Weil 1989). However, in a performance measurement application like ours, the objective is

not to test an equilibrium asset pricing model but to ask whether an available investment

opportunity would, at the margin, improve the risk-return tradeoff of a particular investor

who is not necessarily a representative agent. Following this interpretation, the SDF valuation

equation (2) represents the first-order condition of an investor whose wealth is invested in

the public equity market. This interpretation is analogous to the typical interpretation of

performance measures in the mutual funds and hedge funds literature.

One could augment the SDF with additional risk factors to capture other assets that

the investor may have access to and state-variable risks that he or she may care about. We

explore this route by adding the return on a portfolio of small growth stocks to the SDF in (1)

to allow for a comparison of VC payoffs with the returns of publicly traded companies that

share some of the characteristics of start-up companies. Augmenting the SDF with this factor

raises the abnormal returns of VC funds and start-up company investments in some samples

in which small growth stocks in public markets performed relatively poorly. One could add

additional factors such as those in Longstaff (2009), Franzoni, Nowak, and Phalippou (2012),

and Sorensen, Wang, and Yang (2014).

Our method can be applied to other infrequently traded asset classes with highly levered

ris, Jenkinson, and Kaplan (2014), using what is probably the most comprehensive data set on VC funds
currently available, report that VC funds outperformed public equities in the 1990s but underperformed in
the 2000s. Cochrane (2005), Hall and Woodward (2007), and Korteweg and Sorensen (2010) find positive
abnormal round-to-round returns (gross of fees) from VC investments in start-up companies.

6



or option-like returns, such as leveraged buyouts or real estate. Our approach also has im-

plications for the risk and reward to entrepreneurs (Moskowitz and Vissing-Jorgensen 2002),

and the performance of different types of limited partners (Lerner, Schoar, and Wongsunwai

2007) or general partners (Ewens and Rhodes-Kropf 2013) in private equity investments.

The paper is organized as follows. Section I outlines our SDF pricing approach to risk-

adjusting VC returns. Section II presents our VC fund results. Section III presents our

start-up company results, and Section IV concludes.

I. Risk-Adjusting Venture Capital Returns

We start by describing our approach in more detail. Throughout the paper, we use lower

case letters for logs. For example Rt is an arithmetic return, and rt is a log return (i.e.,

rt = log(Rt)). The time-t value, Vt, of an asset that pays a single cash flow at time t + 1 is

the expected value of the cash flow, Ct+1, discounted with an SDF, Mt+1,

Vt = Et[Mt+1 · Ct+1]. (5)

If the asset has a continuation value, Vt+1, at time t+ 1, then

Vt = Et [Mt+1 · (Ct+1 + Vt+1)] . (6)

Dividing both sides of the above equation by Vt yields the pricing relation

1 = Et[Mt+1 ·Rt+1], (7)

where Rt+1 ≡ (Ct+1 + Vt+1) /Vt is a gross return.

Our specification of the single-period SDF is exponentially-affine,

Mt+1 = exp(a− bft+1). (8)

7



As we discussed in the introduction, in the log-normal special case this specification implies

the standard CAPM beta-pricing relationship that is commonly used as a basic performance

benchmark in the mutual funds and hedge funds literature. However, the CAPM specification

(8) is also valid more generally when asset payoffs are not log-normal. Additional risk factors,

such as those of Fama and French (1993), can be added easily, but to keep notation simple,

we focus on the single-factor case to lay out our approach. In a performance-evaluation

application like ours, the relevant interpretation of an SDF like (8) is not as an equilibrium

asset pricing model, but rather as the reflection of the return on wealth and the state-variable

risks of an investor who is evaluating whether the performance of the assets in question would

add value to his or her wealth portfolio.

One particularly pressing problem with payoffs on non-public equity—and illiquid asset

classes more generally—is the multi-period nature of the payoffs. Cash flows of VC funds

occur at irregularly spaced points in time throughout the life of the fund. The timing of

funding rounds and exit events of VC-backed start-up companies (times at which valuation

estimates are available) is similarly irregular. The exponentially-affine SDF setup is partic-

ularly well-suited for multi-period payoffs measured over varying time horizons, because the

pricing relation holds for longer horizons

Vt = Et[M
h
t+h · Ct+h], (9)

where Mh
t+h, the multi-period SDF from t to t + h, simply compounds the single-period

discount factors

Mh
t+h ≡

h∏
i=1

Mt+i (10)

= exp(ah− bfht+h), (11)
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where

fht+h ≡
h∑
i=1

ft+i. (12)

A common approach in the VC and private equity literature is to work with linearized ver-

sions of the SDF, which imply a linear beta-pricing relationship (see, for example, Ljungqvist

and Richardson (2003), Hall and Woodward (2007), Driessen, Lin, and Phalippou (2012),

Ewens, Jones, and Rhodes-Kropf (2013)). Our approach avoids this linearization. In On-

line Appendix B we show that linearizing the model leads to problems with multi-period

discounting. Moreover, it can lead to specification errors when applied to highly non-linear,

option-like payoffs.

Applying the SDF valuation to a whole series of cash flows from a fund or company i,

including all cash distributions to investors and capital takedowns into the fund, we obtain

the realized GPME as

GPMEi ≡
J∑
j=1

M
h(j)
t+h(j) · Ci,t+h(j), (13)

where t is the date of the first cash flow, and Ci,t+h(j) is the net cash flow (distributions minus

takedowns) for fund i at date t+h(j). The number of cash flows, J , and the initial cash flow

date, t, vary by fund, but we suppress dependence on i for notational simplicity. Since the

cash flow series includes the initial investment, the valuation equation (9) implies, under the

null hypothesis, that E[GPMEi] = 0, i.e., the NPV is zero.

Our approach nests the PME of Kaplan and Schoar Kaplan and Schoar (2005) as the

special case with a = 0 and b = 1 in (8). As discussed in the introduction, fixing a and

b in this way implicitly restricts the equity premium and risk-free rate, which leads to the

undesirable feature that the performance benchmark does not properly reflect the mechanical

dependence of asset payoffs on the public market return. In our generalized method, a and

b are chosen so that the SDF perfectly prices the stock market and risk-free asset payoffs

during the sample period in direct analogy to linear factor models where the average realized

excess return on a factor during the sample period pins down the estimate of the factor’s
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risk premium. In this way, the GPME allows the SDF to properly account for the returns

available in public markets during the sample period. At the same time, because a and b are

pinned down by moments of public market returns and are not chosen to fit VC payoffs, the

GPME does not offer more degrees of freedom than the PME in explaining VC payoffs.

The PME measure is traditionally defined as the sum of cash distributions discounted

at the realized public market return, divided by the sum of capital takedowns, while we

work with the difference between discounted values of inflows and outflows for each fund,

rather than their ratio. Asset pricing theory implies that the expected difference (the NPV)

is zero, but when inflows are stochastic there are no clear predictions about the expected

ratio because of a Jensen’s inequality effect.5 Working with the difference also simplifies the

econometrics. From here on, when we use the label PME, we refer to this redefined PME.

If we find abnormal performance with the GPME method, this means that the VC in-

vestments under evaluation would, at the margin, add value to the investor’s portfolio that

is not attainable from the public market factors in the SDF. Whether it would be a good

idea for a specific investor to invest in VC assets of course depends on the particular sit-

uation of this investor. An economic reason why abnormal performance could exists and

persist is that the typical VC investor’s wealth portfolio return and state-variable risks are

not spanned by the factors in the SDF or that VC investors require compensation for the

illiquidity of private-equity investments.6 Our goal in developing the GPME method is to de-

vise a properly risk-matched public markets benchmark for VC payoffs so that we can gauge

to what extent payoffs from VC investments just replicate what’s available in public markets

and to what extent they expand the investment opportunity set. The GPME estimates then

5If there is only one initial investment that occurs at the time of the valuation (as in the case of round-
to-round returns of start-up companies) the initial inflow is non-stochastic, and hence the Jensen’s inequality
problem does not arise. In the case of VC funds, however, investors typically make multiple capital contribu-
tions during the life of the fund. The amounts and timing of these contributions are initially uncertain, which
implies that the inflows are stochastic.

6While VC investments are clearly illiquid, it does not automatically follow that there must be a large
illiquidity discount. For example, investors focusing on VC may be patient long-horizon investors with little
need to trade, requiring only small compensation for illiquidity, as in Constantinides (1986). We thank an
anonymous referee for pointing this out.
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allow researchers to assess and further investigate the potential role of illiquidity effects and

other channels that may give rise to abnormal performance, relative to public markets, in

equilibrium.

Thus far we have treated the payoff horizon, h, as given. In reality, start-ups endogenously

decide when to raise new financing, and venture funds have the option to extend their life

for several years beyond the typical ten-year limit, making h an endogenous variable. For

example, projects that are more successful may come back to investors for a new financing

round sooner, in order to scale up the business model. The return horizon is thus endogenous

in the sense that it is correlated with the unexpected degree of success of the project or the

fund. For valuation purposes within the SDF framework, this endogeneity does not present a

problem as long as the realized payoffs are ultimately observed. Even if there is an endogenous

state-dependence cash flows, the appropriate valuation a payoff in a certain state is still the

product of the state’s probability and the SDF in that state. The endogeneity concerns that

remain relevant in our approach are those that may cause a right-censoring problem and a

sample selection problem. We discuss in the data sections below how we deal with these two

remaining problems.

A. Setting up public markets benchmarks

Application of our method requires estimates of the SDF parameters a and b that reflect

the risk-free rate and market risk premium. For the method to work well, we want these

estimates to reflect the risk-free rate and market risk premium during the investment period.

This requires a careful structuring of the data.

For the start-up companies data, this is relatively simple, because we can easily match

each individual round-to-round return with public markets returns. We pool the data across

firms and funding rounds. For each round-to-round observation i = 1, ..., N we observe

returns, Rhi,t+h, between t and t + h, where t and h can be different for each i. We match

each return with returns on the CRSP value-weighted market index, F ht+h, and the return of
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one-month Treasury Bills, Rhf,t+h, over the same horizon from t to t+h.7 Thus, we work with

N observations of Yi = (Rhi,t+h, F
h
t+h, R

h
f,t+h)′.8 Let θ denote the parameters of the SDF, and

define the vector

ui(θ) ≡Mh
t+h(θ) · Yi − 1. (14)

The first element of ui is the GPMEi of equation (13) for funding round i. In other words,

its expected value is the NPV of investing $1 in round i.

For the VC funds data, this is more complicated, because each fund has a long series of

cash in- and outflows at various points in time. There is no simple definition of an investment

period, because the amount invested varies depending on the timing and magnitude of in-

and out-flows. For example, if a fund has paid out almost all of its capital towards the end of

its life, the total NPV of the fund will no longer be sensitive to risk factor realizations after

this point. More generally, the sensitivity to risk-factor realizations depends on how much

capital the fund has at a given point in time. Thus, the realized market risk premium and

risk-free rate that we should benchmark a fund against must be weighted according to funds’

typical pattern of capital accumulation and payout. To accomplish this, we match each fund

with artificial benchmark funds that invest in T-bills and the public equity market index

(and benchmark funds for additional risk factors in expanded versions of the SDF). We then

estimate the SDF parameters a and b to price these benchmark funds.

More precisely, in the VC funds data, we observe cash flows realized at j = 1, ..., J to

and from each fund i = 1, ..., N , and possibly a final net asset value (NAV) if the fund is

not yet liquidated. The first cash flow of the fund occurs at date t. As before, we suppress

the dependence of t and J on i for notational simplicity. As a first step, we normalize

each fund’s cash flows by fund size so that estimation gives each fund equal weight and the

normalized cash flows, Ci,t+h(j), can be interpreted as resulting from an investment with a

7We use subscript t + h for the Treasury Bill return, not t, as one typically would with a conditionally
risk-free asset, because it is the return on rolling over short-term Treasury Bills from t to t+h, and hence the
return is not known until t+ h.

8Note that in Y we use gross arithmetic (not log) returns to conform to the pricing equation (7).
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total commitment of $1. Since t is defined as the time at which the first cash flows into the

fund, we have h(1) = 0.

We then set up two benchmark funds matched to each VC fund i. One invests in T-bills

and the other in the CRSP value-weighted index. We take the inflows into these funds to be

exactly identical in magnitude and timing to those of the VC fund that we match. If fund i

makes a payout at t + h(j), then we assume that the benchmark funds also make a payout

equal to the sum of two components. The first component is equal to the return accumulated

since the last cash flow date t + h(j − 1). The second component pays out a fraction πj of

the capital that was in the benchmark fund after the last cash flow at t+ h(j − 1) occurred.

The payout ratio is determined as

πj = min

(
h(j)− p
10− p

, 1

)
, (15)

where p is the time (measured relative to fund inception) of the most recent payout prior to

time t + h(j). If there was no prior payout yet, then p = 0. Time periods are measured in

years. For example, if one year has passed since the last payout, and at the date of this last

payout the fund had been in existence for 2 years, then πj = 1/8. This assumption effectively

sets the fund life-time to roughly 10 years (positive returns towards the end of the benchmark

fund’s life can lengthen the life-time to some extent because the second payout component

is based on the lagged, not current level of capital in the fund). With this assumption, the

pattern of payouts over the life-cycle of the average benchmark fund resembles the pattern

of payouts of the average VC fund quite well.

With the benchmark fund cash flow streams set up, we now match each VC fund cash

flow, Ci,t+h(j), with the market return benchmark fund cash flow, CM,t+h(j), and the Treasury

13



Bill benchmark fund cash flow, Cf,t+h(j), collected in the vector

Yi,t+h(j) ≡


Ci,t+h(j)

Cif,t+h(j)

CiM,t+h(j)

 , (16)

We define

ui(θ) ≡
J∑
j=1

M
h(j)
t+h(j)(θ) · Yi,t+h(j). (17)

Unlike in (14), the price vector here is a vector of zeros and hence it does not appear in (17).

Prices are zero because each cash flow series already includes the initial investment. Hence,

the expected discounted sum of these payoffs represents the NPV, which is zero if there is no

abnormal performance.

B. GMM estimation

For both the VC fund and start-up company data, we employ the GMM estimator

θ̂ = arg min
θ

(
1

N

∑
i

ui(θ)

)′
W

(
1

N

∑
i

ui(θ)

)
. (18)

Our objective is to evaluate how venture investment payoffs compare, on a risk-adjusted basis,

to investments in publicly traded securities. Consistent with this objective, we estimate the

SDF parameters, θ, from public capital market data alone. More precisely, we choose as a

weighting matrix a diagonal matrix with entries of zero for the element corresponding to VC

payoffs (the first element in ui) and ones for the remaining elements. This leads to exact

identification and parameter estimates that allow the SDF to price the public equity markets

and Treasury Bill benchmarks with zero pricing errors.

For the estimation of GPME to work well, the data set needs to have sufficiently many non-

overlapping time-windows over which the payoffs of the cross-sectional units, i, are realized.

More formally, application of the usual asymptotic results for GMM estimation requires large
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T ; a large number of cross-sectional units is not sufficient. This can be seen most clearly in the

extreme hypothetical case in which all VC payoffs are observed over the same time-window.

In this case, the realization of the SDF is exactly the same for each cross-sectional unit.

Asset-pricing theory does not predict that the cross-sectional average of returns multiplied

by this single realization of the SDF value equals one. Instead, it predicts that the expected

cross-product of the SDF and the return equals one. Precise estimation of this expected

value requires sufficiently large T . Online Appendix C conducts Monte Carlo experiments

that assess the performance of our estimator for various values of T .

To estimate the SDF parameters from public markets data, one could potentially choose

a sample that is longer in the time dimension than the typical data set on VC investments.

In a performance evaluation application like ours, there is, however, no benefit from doing so.

A longer sample of public markets data would allow the SDF parameters to more precisely

reflect the ex-ante equity premium, but for the purpose of performance evaluation of funds

or fund investments the relevant benchmark is the ex-post equity premium during the per-

formance evaluation period.9 Consider, for example, the evaluation of an investment fund’s

performance. For simplicity, assume that the risk-free rate is zero and that the fund has a

beta of one so that its returns follow rt = α+ft+εt, where α is the fund’s expected abnormal

performance, ft is the market factor return, with µ ≡ E[ft], and εt is a mean-zero residual

uncorrelated with ft. Comparing this fund’s sample mean return, r̄t, to the mean market

return, f̄t, over the same period, i.e., r̄t − f̄t = α + ε̄t, yields a less noisy estimate of α than

a comparison with the ex-ante equity premium µ, i.e., r̄t − µ = α+ f̄t − µ+ ε̄t. The latter is

more noisy because it does not remove the uncertainty stemming from differences between f̄t

and µ. Following this reasoning, tests that use the ex-post equity premium as a performance

benchmark should be more powerful than tests that use the ex-ante equity premium. In

the Online Appendix, Section D, we present Monte Carlo evidence that confirms this point:

9This point has been noted, for example, by Shanken (1992), p. 11. Linear factor model regression estimates
of abnormal performance in the mutual funds and hedge funds literature also use the ex-post equity premium
as a benchmark.
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tests in which the SDF parameters are estimated using data from the performance evalua-

tion period have greater power to detect abnormal performance than tests in which the SDF

parameters are set to their true population values.

To conduct statistical inference, we need a metric to assess the magnitudes of the pricing

errors, i.e., the GPME, associated with the venture investment payoffs. A key ingredient of

the standard GMM formulas is the spectral density matrix

S =
+∞∑

k=−∞
E[uiu

′
k]. (19)

The complication here is that there is likely to be substantial correlation between ui and

uk if they are measured over fully or partly overlapping time periods. Earlier work in the

existing literature either does not report PME standard errors, or assumes uncorrelatedness

across funds or start-up firms. In our framework, GMM techniques allow us to avoid this

implausible assumption.

The typical application of our estimator will feature a short sample with small T . To

ensure reasonable small-sample properties, it is useful to impose some economically motivated

restrictions on S. Specifically, we exploit the implications of the null hypothesis that the

SDF correctly prices the assets. Under this assumption, the realized pricing errors, ui, are

increments of a martingale difference sequence, i.e., they are mutually uncorrelated unless

they are measured over overlapping time periods. Under this assumption, the spectral density,

or long-run covariance matrix, in (19) simplifies. Decompose S as

S = Λ
1
2 ΓΛ

1
2 , (20)

into a 3 × 3 matrix of correlations, Γ, and a diagonal matrix of variances, Λ. For serially

uncorrelated variables x and y, the long-run correlation of multiperiod sums of x and y is

equal to the contemporaneous correlation. Thus, Γ can be estimated consistently as the

correlation matrix component of E[uiu
′
i], without adding the additional summation terms
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where k 6= i in (19).10 Accordingly, our estimator for Γ is

Γ̂ =

[
1

N

N∑
i=1

diag(ui ◦ ui)

]− 1
2
(

1

N

N∑
i=1

uiu
′
i

)[
1

N

N∑
i=1

diag(ui ◦ ui)

]− 1
2

, (21)

where ◦ denotes an elementwise (Hadamard) product.

For variances, however, the cross-products of ui and uk with i 6= k are important, even

under the null hypothesis. Our estimator for Λ takes these into account. We assume that

the correlation of payoffs i and k depends on the degree of overlap of the time-windows over

which these payoffs are measured. In analogy to spatial GMM methods (Conley (1999)), we

treat the degree of overlap as a measure of distance, assuming that correlation declines with

distance. Let t(i) and t(k) be the start, and t(i) +h(i) and t(k) +h(k) be the end of the time

windows for observation i and k, respectively. Define the distance as

d(i, k) ≡ 1− min[t(i) + h(i), t(k) + h(k)]−max[t(i), t(k)]

max[t(i) + h(i), t(k) + h(k)]−min[t(i), t(k)]
. (22)

If the return measurement windows exactly overlap, then d(i, k) = 0, if they are adjacent,

but non-overlapping, then d(i, k) = 1, and d(i, k) > 1 if there is a gap between them. To

ensure that S is positive semidefinite, we apply Bartlett-type weights that decline with greater

distance,

Λ̂ =
1

N

N∑
k=1

N∑
i=1

max(1− d(i, k)/d̄, 0) diag(ui ◦ uk), (23)

where d̄ is a constant. In our empirical work, we set d̄ = 1.5, which means that observation-

pairs with a gap between return measurement windows still get some weight in the calculation

10For example, consider two serially uncorrelated random variables x and y with pairwise contemporaneous
correlation ρ and variances σ2

x and σ2
y. If data is observed as overlapping sums ut = (xt + xt−1, yt + yt−1)′,

then the off-diagonal elements of the spectral density (19) are Sxy = Cov (xt+xt−1, yt+yt−1)+2Cov (xt, yt) =

4σxσyρ. The diagonal elements are Sxx = 4σ2
x and Syy = 4σ2

y. Thus, we can write S = Λ
1
2 ΓΛ

1
2 as in (20),

where Λ has 4σ2
x and 4σ2

y on the diagonal and Γ has ones on the diagonal and ρ, i.e., the simple correlation of
xt and yt as off-diagonal elements.
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of Λ̂. The estimator of S then follows as

Ŝ = Λ̂
1
2 Γ̂Λ̂

1
2 . (24)

In small-sample Monte Carlo simulations, we found that imposing the restrictions on Γ

that lead to the specification of Γ̂ in (21) helps to substantially reduce size distortions of

the test. If one does not impose this assumption, the addition of cross-products of ui and

uk with i 6= k in the correlation estimator often results in extreme off-diagonal entries in S

that appear to distort small-sample inferences. As we show in the Online Appendix C, the

S matrix estimator (24) performs reasonably well even with very small T .

Finally, we follow standard practice and use a centered version of S where we demean the

ui before computing Γ̂ and Λ̂. While not necessary under the null hypothesis, doing so tends

to lead to greater power of the test under misspecification (Hall (2000)).

With Ŝ in hand, we can use standard GMM formulas to compute a J-statistic for a

test that the pricing error for venture investment payoffs (the first element of ui) is zero,

which is equivalent to a test that GPME = 0, taking into account the estimation error in

the SDF parameters. Since the SDF parameters are estimated using only information on

pricing factor and T-Bill returns, but not venture investment payoffs, this J-statistic has an

asymptotic χ2(1) distribution.

II. VC Funds

We now apply the GPME method to data on VC investments. We start with VC funds.

A. Data

We use a large sample of VC fund cash flows between 1979 and 2012, obtained from Preqin.

The data contain capital calls by the fund from LPs (also known as capital takedowns, these

are cash flows into the private equity partnership), cash distributions from the fund to LPs,
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and quarterly Net Asset Values (NAVs). For comparison to the prior literature, we follow

Kaplan and Schoar (2005) and restrict the sample to U.S. funds with committed capital of at

least $5 million in 1990 dollars. We also drop funds that are raised after 2008, as very few of

their investments will have realized by the end of the sample period, and their performance

is therefore likely to be misleading. For funds that are not yet liquidated by the end of the

sample period, performance metrics are calculated using self-reported Net Asset Value (NAV)

at the end of the sample period proxy for a final cash flow. These NAVs are known to have

issues.11 In Online Appendix E we describe a subsample of funds that were close to fully

liquidated by the end of our sample period, and Appendix F shows robustness of our main

results in this subsample.

Panel A of Table I shows descriptive statistics for the sample of funds. The sample

comprises 545 funds, raised by 278 VC firms. The median (average) VC firm in our sample

raised one (two) fund(s), with a total commitment of $226 ($358) million. There is a long

right tail in the distribution of fund sizes, mostly due to older VC firms that have raised

more than one fund, as these firms tend to raise funds that are increasingly larger. The

median (average) fund has 26 (30.28) unique cash flows (including both capital calls and

distributions) during the sample period. The time between the first and last observed cash

flow for the median (average) fund is 11.09 (10.40) years. The median (average) fund has an

internal rate of return (IRR) of 4.37% (8.84%) and a total value to paid-in capital (TVPI,

which is defined as the sum of cash distributions to the fund’s limited partners (LPs) plus any

net asset value remaining in the fund divided by the sum of capital takedowns, that is, cash

transfers from LPs to the fund) of 1.16 (1.57). Panel B shows the distribution of funds by

vintage year. Most of the funds are of post-1990 vintages. The highest returns are realized in

the 1990s vintages before 1999. Performance from 1999 until the end of the sample period is

poorer, with average IRRs in the single digits and even sometimes negative. We will discuss

11Woodward (2009) and Phalippou and Gottschalg (2009) suggest that NAVs may be stale. Jenkinson,
Sousa, and Stucke (2013) and Brown, Gredil, and Kaplan (2013) show that most GPs tend to be conservative
in reporting NAVs, while bottom GPs tend to be aggressive during fundraising periods.

19



Table I
Summary Statistics: VC Fund Data

This table reports descriptive statistics of the sample of U.S. VC funds with cash flow data from Preqin,

for vintages between 1979 and 2008, eliminating funds with committed capital below $5 million in

1990 dollars. Fund size is the total commitment to the fund, in millions of dollars. Fund vintage year

is the calendar year in which the fund is raised. Fund effective years is the time between the first and

the last observed cash flow of a fund. The fund IRR is computed using the final observed NAV of the

fund. TVPI stands for total value to paid-in capital, and is computed as the sum of cash distributions

to Limited Partners plus final NAV divided by the sum of cash takedowns by the fund from LPs.

Panel A: Descriptive statistics

mean median st.dev.
# Funds 545
# VC firms 278
# Funds / VC firm 1.96 1.00 1.42
Fund size ($m) 358.46 226.00 450.35
Fund effective years 10.40 11.09 4.32
# Cash flows / fund 30.28 26.00 16.96
IRR (%) 8.84 4.37 37.11
TVPI 1.57 1.16 2.26

20



Table I - Continued

Panel B: Performance statistics by vintage year

# funds IRR TVPI
mean median mean median

1979 1 18.49 18.49 2.23 2.23
1980 1 15.26 15.26 2.22 2.22
1981 1 27.04 27.04 2.63 2.63
1982 3 8.83 8.50 1.73 1.74
1983 2 9.04 9.04 1.74 1.74
1984 3 11.49 11.82 1.91 1.99
1985 4 13.17 14.31 2.05 1.95
1986 7 5.89 6.33 1.50 1.44
1987 5 14.69 14.84 2.36 2.32
1988 5 17.84 15.72 2.43 2.33
1989 5 19.61 15.44 2.55 1.66
1990 7 17.67 14.16 2.17 2.19
1991 2 21.04 21.04 2.46 2.46
1992 12 27.87 25.32 3.32 2.64
1993 9 38.98 32.13 3.88 3.40
1994 13 34.78 32.12 5.16 2.74
1995 16 46.27 19.95 3.56 1.72
1996 16 33.33 12.95 3.24 1.71
1997 22 28.93 11.32 1.92 1.35
1998 29 19.94 0.74 1.66 1.03
1999 40 -3.24 -5.72 0.82 0.74
2000 67 -3.10 -2.56 0.91 0.88
2001 43 1.04 2.85 1.20 1.13
2002 25 -1.68 -1.84 0.98 0.91
2003 19 2.00 3.08 1.07 1.13
2004 26 2.65 0.74 1.36 1.03
2005 28 2.09 4.81 1.18 1.21
2006 52 1.12 2.31 1.07 1.08
2007 46 8.06 6.26 1.29 1.18
2008 36 7.53 4.77 1.19 1.09

21



this in more detail below.12

B. GMM Results

Table II shows the GPME estimates for various specifications of the SDF. Column (i) shows

the PME measure, expressed as a difference between in- and outflows rather than the tradi-

tional ratio. Panel A shows that the PME estimate across all funds is 0.048. This means that

on a $1 fund commitment, the abnormal profit is 4.8 cents, or 4.8%. Note that this is the

present value of the abnormal cash flow for the fund, i.e., the net present value, and not an

annualized number. This PME is not statistically significantly different from zero, though,

as indicated by the p-value of the J-test. As with IRR and TVPI, the literature reports a

wide range of average PMEs (bearing in mind that a PME of zero in our method corresponds

to a traditional PME of one): Kaplan and Schoar (2005) report 0.96, Robinson and Sensoy

(2011) find 1.06 (1.03 for fully liquidated funds), and Harris, Jenkinson, and Kaplan (2014)

1.36. The latter number is from the most comprehensive and, likely, most representative

sample of VC funds in the literature. This is comparable to our PME estimate of 0.276 in

a sample of nearly liquidated funds, as reported in Online Appendix E, which is statistically

significantly different from zero, though we caution against broad generalizations based on

our smaller sample. Rather, we focus on our main empirical contribution, analyzing the

impact of changing the SDF on abnormal performance estimates.13

The second column in Table II shows the estimates for the more general CAPM SDF in

equation (8). This specification relaxes the equity premium and risk-free rate restrictions

implicit in the PME. In contrast to column (i), the GPME estimate of −0.103 in column

12Preqin also provides a larger data set of VC funds that report multiples and IRRs, but not individual
cash flows between limited partners and the fund. Our sample funds tend to be larger, and the median IRR
is 3.5 percentage points lower. Performance is comparable across the subsamples of liquidated funds. Online
Appendix E compares our sample to this larger data set in more detail, as well as to other popular data sets
in the literature. Given the variation in reported performance between the various data sets, one should be
cautious in generalizing our findings.

13Online Appendix E also shows that, though the PME and GPME estimates are higher in the liquidated
funds subsample than in the full sample reported here, the relative differences between PME and GPME—
which is our main focus—are robust.
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(ii) is negative and we can reject the null of zero pricing errors. The difference between the

estimates in column (i) and (ii) is sizable. It amounts to about 15 cents per dollar of fund

commitment. The origin of this discrepancy can be seen by inspecting the SDF parameters.

The point estimate of the coefficient b1 in column (ii) is 2.65, substantially above the value of

1.0 imposed by the log-utility model in column (i) that the PME method is based on. This

means that in this sample period the PME implicitly understates the public markets equity

premium, which, together with the fact that VC funds have β > 1, overstates the abnormal

return.

The intuition for this can be obtained from the log-normal special case discussed in the

introduction. Taking the difference of the log expected returns implied by the GPME and

PME, respectively, in equations (3) and (4), we get

(β − 1)(logE[Rm,t+1]− rf − σ2m) (25)

Thus, if the equity premium is high so that logE[Rm,t+1] − rf > σ2m (which is true in our

sample), then β > 1 implies that the PME overstates the abnormal return. Without log-

normality, this does not hold exactly, but the intuition should still apply approximately.

In column (iii), the SDF includes the log return on a small-growth factor in excess of the

log market return. The small-growth factor portfolio is one of the six portfolios underlying

the Fama and French (1993) factors.14 The estimated price of risk coefficient, b2, is close

to zero for this factor. As a consequence, the addition of this factor has little effect on the

GPME compared with the CAPM in column (ii).

To illustrate the source of the differences between the PME and the GPME, we split the

sample into one sub-sample during which the public equity market had high returns and one

in which the market returns were more moderate. Since funds have long and varying life-

times, an exact split by time periods is not possible. However, splitting it by fund vintage into

pre-1998 vintages (Panel B) and vintages 1998 and later (Panel C) achieves some separation

14We thank Ken French for providing the data on his website.
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Table II
Generalized Public Market Equivalents for VC Funds

We estimate the Generalized Public Market Equivalent (GPME) by discounting VC fund cash flows
with the stochastic discount factor

Mh
t+h = exp(ah− b1rhm,t+h − b2rhx,t+h),

summing each fund’s discounted cash flows, and averaging across all funds. Fund cash flows are

normalized by fund size to a total commitment of $1. The log-utility CAPM special case in column

(i) with a = 0, b1 = 1, and b2 = 0 corresponds to the Public Market Equivalent of Kaplan and Schoar

(2005). In column (iii), the second factor, rhx,t+h, is the log return of the small-growth portfolio in

excess of the log market return. The SDF parameters are chosen, with exact identification, to correctly

price benchmark funds that receive the same inflows as the VC funds, but which invest in the CRSP

value-weighted index, Treasury Bills, and, in column (iii), the small-growth portfolio. Standard errors

of the SDF parameter estimates and the GPME are in parentheses, and p-values of the J-test of

GPME = 0 are in square brackets. The spectral density matrix used in the computation of the

J-statistic takes into account error dependence arising from overlapping fund life times as described

in the text.

(i) (ii) (iii)
Log-utility CAPM CAPM w/

CAPM small growth

Panel A: All funds (N = 545)

GPME 0.048 -0.103 -0.106
(0.061) (0.042) (0.039)
[0.430] [0.015] [0.007]

SDF parameters

a 0 0.088 0.090
(0.037) (0.036)

b1 1 2.650 2.680
(0.560) (0.526)

b2 -0.154
(0.913)

Panel B: All funds of vintage < 1998 (N = 134)

GPME 0.423 0.111 0.148
(0.109) (0.142) (0.604)
[0.000] [0.434] [0.626]

SDF parameters

a 0 0.309 0.596
(0.094) (0.227)

b1 1 4.361 5.655
(0.992) (1.866)

b2 -8.068
(6.446)
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Table II - Continued

(i) (ii) (iii)
Log-utility CAPM CAPM w/

CAPM small growth

Panel C: All funds of vintage ≥ 1998 (N = 411)

GPME -0.074 -0.144 -0.105
(0.030) (0.040) (0.045)
[0.015] [0.000] [0.019]

SDF parameters

a 0 0.062 0.024
(0.044) (0.033)

b1 1 2.361 1.199
(0.768) (0.689)

b2 3.773
(1.555)

Panel D: GPME of funds by stage

Generalist 0.075 -0.142 -0.157
(N = 301) (0.090) (0.062) (0.050)

[0.408] [0.022] [0.002]

Early -0.069 -0.180 -0.160
(N = 145) (0.046) (0.045) (0.049)

[0.129] [0.000] [0.001]

Late 0.205 0.107 0.133
(N = 41) (0.071) (0.109) (0.119)

[0.004] [0.323] [0.263]

Mezzanine 0.095 0.175 0.175
(N = 58) (0.036) (0.038) (0.038)

[0.009] [0.000] [0.000]

Panel E: GPME of funds by size

Small 0.165 -0.049 -0.060
(< median) (0.090) (0.064) (0.062)
(N = 268) [0.067] [0.449] [0.332]

Large -0.066 -0.152 -0.126
(≥ median) (0.035) (0.040) (0.049)
(N = 256) [0.055] [0.000] [0.010]
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of funds that had their investments concentrated in the two “bull market” decades leading up

to the year 2000 from those that were exposed to the declines in equity markets in 2000 and

2007 to 2009. Accordingly, the SDF parameter estimates in column (ii) of Panel B feature

a much higher price of risk coefficient b1 at almost twice the magnitude of the estimate in

Panel A. As a consequence, the difference between the PME in column (i) and the GPME

in column (ii) is about twice as high as in Panel A. Moreover, the GPME in column (ii) of

Panel B is not statistically significant, while the PME in column (i) is.

These facts are consistent with our earlier discussion that one would expect the PME

to overstate abnormal performance of VC investments during times of strongly rising public

equity markets. The estimation of the SDF parameters in column (ii) from public markets

data lets the SDF adapt to the high realized market returns during the sample period. The

PME in column (i) with fixed a = 0 and b1 = 1 does not adjust the performance benchmark

in this manner. These restrictions do not allow the model to properly adjust for the fact that

VC fund returns for pre-1998 vintages are quite high simply because public equity markets

were buoyant during much of the lifetime of these funds.

The results in Panel C are quite similar to those on Panel A because most of the ob-

servations in the full sample in Panel A are from funds with vintages 1998 and later. The

difference between the PME in column (i) and the CAPM GPME in column (ii) is slightly

smaller than in Panel A, consistent with the slightly smaller estimate of the price of risk

coefficient b1 in the ≥ 1998 sub-sample.

Panels D and E explore cross-sectional cuts of the data by the type of fund and the size of

the fund. With regards to differences between the PME and the GPME, which is our focus

here, the picture is quite homogeneous. One exception are Mezzanine funds in Panel D. They

are the only category for which the GPME is higher than the PME. This is exactly what

one would expect. Many of these funds’ investments are structured as debt claims. The debt

usually comes with “equity-kickers” in the form of warrants or other equity-like features, but

its beta should still be quite low and likely below one. Evidence that mezzanine investments
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Table III
Generalized Public Market Equivalents for Artificially Levered VC Funds

We use the VC funds, with cash flows Ci,t+h(j), and the matched Treasury Bill benchmark funds, with
cash flows Cif,t+h(j) to create artificially levered VC funds with cash flows

Li,t+h(j) = Ci,t+h(j) + k
(
Ci,t+h(j) − Cif,t+h(j)

)
.

We apply the SDFs from Table II, Panel A, to these artificially levered funds for a range of different

leverage ratios k and we report the resulting GPME estimates. Standard errors of the GPME are in

parentheses, and p-values of the J-test of GPME = 0 are in square brackets. The spectral density

matrix used in the computation of the J-statistic takes into account error dependence arising from

overlapping fund life times as described in the text.

(i) (ii)
k Log-utility CAPM

CAPM

-0.8 -0.053 -0.021
(0.016) (0.026)
[0.001] [0.428]

-0.6 -0.027 -0.041
(0.023) (0.041)
[0.234] [0.320]

0 0.048 -0.103
(0.061) (0.042)
[0.430] [0.015]

1 0.174 -0.205
(0.131) (0.121)
[0.182] [0.089]

2 0.301 -0.308
(0.201) (0.209)
[0.135] [0.141]

have lower risk than other VC investments also point in this direction (see, e.g., Schmidt

(2006)). Following equation (25), one should therefore expect the PME to understate rather

than overstate the abnormal performance of Mezzanine funds in samples like ours in which

the estimated b1 is greater than one due to a relatively high realized equity premium.

The Mezzanine funds results are suggestive, but the sample is relatively small. Further-

more, based on fund cash flow data it is difficult to ascertain the beta, or, more generally the

covariance between risk factors and fund returns. For this reason, we explore an alternative
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route to show that it is important to relax the parameter restrictions implicit in the PME

to properly adjust for systematic risk exposure. We create artificially levered funds. With

leverage, we can achieve any desired level of systematic risk and we can explore the effect on

PME and GPME. We use the VC funds, with cash flows Ci,t+h(j), and the matched Treasury

Bill benchmark funds, with cash flows Cif,t+h(j), to create artificially levered VC funds with

cash flows

Li,t+h(j) = Ci,t+h(j) + k
(
Ci,t+h(j) − Cif,t+h(j)

)
. (26)

The parameter k controls leverage. With k = 0 there is no leverage, k = 1 implies that

the VC fund assets are levered two-to-one. A negative k generates a portfolio that is partly

invested in the VC fund and partly in a long position in Treasury Bills.

Table III presents estimates of the PME and our GPME when we apply the SDFs from

Table II, Panel A, to these artificially levered funds for a number of different values of k. A

necessary condition for a risk-adjustment to be accurate is that levering up, say, two-to-one

should raise the abnormal performance by the same factor of two. As Table III shows, the

GPME satisfies this requirement: Going from no leverage (k = 0, same as in Table II) to

two-to-one leverage (k = 1) exactly doubles the (negative) GPME. In contrast, the PME in

column (i) rises more than three-fold.

By choosing k to be far below zero, we can also reproduce the Mezzanine funds result from

Table II where the PME was lower than the GPME. For example, with k = −0.8, the beta

of the resulting VC fund/T-bill portfolio should be lower than one. In this case, following

equation (25), the PME should understate rather than overstate the abnormal performance.

As the table shows, this is what we find.

Overall, the findings in Tables II and III illustrate the benefits of our proposed perfor-

mance evaluation approach. The estimation of SDF parameters with public markets data—

rather than fixing them at a = 0 and b1 = 1 as in the PME method—allows the GPME

performance benchmark to reflect public market returns during the sample period in a risk-

adjusted manner. Our evidence indicates that the PME overstates VC fund performance in
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the past few decades, except for funds focusing on low-beta mezzanine investments.

III. VC-backed Start-up Companies

A. Data

We use data of financing rounds for VC-backed start-up companies, provided to us by Sand

Hill Econometrics (SHE). SHE has combined two commercially available databases, Ventur-

eXpert (from Thomson Venture Economics) and VentureSource (formerly Venture One), and

invested substantial time and effort to track down exits for companies not previously shown

as exited, which are mostly shutdowns or disappointing acquisitions, and to fill in missing

private financing rounds.15 To ensure accuracy of the data, SHE has removed duplicate

investment rounds and consolidated rounds, such that each round corresponds to a single

investment by one or more VCs.

The full SHE dataset contains 61,356 financing rounds for 18,237 unique start-ups between

1987 and 2005. Of these start-ups, 1,891 (10.4%) ultimately went public in an IPO, 4,271

(23.4%) were acquired, and 2,892 (15.9%) were liquidated. The ultimate outcome for the

remaining 9,183 firms (50.4%) was unknown by the end of the sample. Some of these firms

were still operating as private firms, but many of them have likely been liquidated (the so-

called “zombie” firms). For these firms, the average (median) time since the last financing

round was 57 (41) months by the end of the sample. Of the 52,302 rounds in which new

venture capital was raised (i.e., non-IPO, non-acquisition, non-liquidation rounds), 1,393

(2.7%) were seed rounds, 34,066 (65.1%) were early rounds, 16,466 (31.5%) were late rounds,

and 377 (0.7%) were designated as mezzanine rounds.16

We construct round-to-round returns as the change in valuation of the start-up from the

15Gompers and Lerner (1999) and Kaplan, Sensoy, and Strömberg (2002) find that missing investments in
VentureXpert are predominantly smaller and more idiosyncratic ones.

16The label “early” versus “late” is somewhat subjective, and the mezzanine round designation is even more
fuzzy. Typically a mezzanine round is the financing round that bridges the 6 to 12 month gap to a liquidity
event—IPO, or sometimes acquisition—but sometimes refers to the round between the early and late stage.
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post-money valuation in a given round to the pre-money valuation in the subsequent round.

Post-money is a term used in the VC industry to denote the value of the start-up including

the new investment. Pre-money is defined as the post-money valuation minus the amount

invested in that round. With consecutive financing rounds at time t and t+ h, the return is,

Rht+h =
V PRE
t+h

V POST
t

, (27)

where V PRE
t is the pre-money valuation for a financing round that takes place at time t,

and V POST
t is the post-money valuation of that same round. The return to a buy-and-hold

investor who holds on to her initial investment, and does not invest any additional money in

future rounds, is simply the compounded return across rounds.17

Not all rounds have valuations filled in, so we can compute round-to-round returns only

for a subset of the data. We observe 6,861 round-to-round returns (after dropping one return

that was less than -100%) for 3,497 unique firms. Table IV Panel A reports summary statistics

for this sample.

This sample suffers from two potential forms of selection bias, which are both ultimately

related to the endogeneity of financing rounds. First, there could be a right-censoring prob-

lem: we observe financing rounds between 1987 and 2005, so for firms that were started

towards the mid-2000s we only observe financing rounds for a relatively short time period.

Since the most successful firms are likely those that proceed most quickly through the VC

funding process towards exit, we are more likely to observe the final outcomes for these suc-

cessful firms. Less successful firms might not have a final valuation available, and the values

17Consider a simple example of a buy-and-hold investor. Suppose an investor invests $40 into a series A
round, for 100 shares of stock, representing 40% of the equity of the firm, implying a post-money valuation
of $100. In the next, series B round, another investor purchases 150 shares of new stock (i.e., a stake of
150/(250+150) = 37.5%) at $1 per share, for a total investment of $150. The post-money B-round valuation
is $400 (400 shares at $1 each), and the pre-money round B valuation is $400-$150=$250. The return to our
buy-and-hold investor from round A to B is $250/$100 = 2.5 (of course we could more easily compute the
return from the share prices, but these are usually not reported in the SHE data). Now suppose the start-up
is acquired a few months later, at a share price of $2. The return for round B to IPO is $2 · 400 / $400 = 2.
Our buy-and-hold investor initially bought her shares at $0.40/share, and she realized a total return on her
investment of $2/$0.40 = 5. This exactly equals the compounded return over the rounds, 2.5 times 2.
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Table IV
Summary Statistics: VC Rounds Data

Descriptive statistics for the sample of VC financing rounds of start-up companies from Sand Hill

Econometrics over the period 1987 to 2005. Panel A reports statistics for the sample of round-to-

round returns. The top row of Panel B shows the sampling frequencies by funding stage for the

sample with observed end-of-round events. The second row shows the frequencies for the sample if we

assume that companies with unobserved exits are assumed to be liquidated, while the third row uses

only observations that have data on round-to-round returns available or which are liquidations (for

which we assume a liquidation return). Panel C shows the mean gross round-to-round returns in the

resampled sample that matches the frequencies in the second row of Panel B (see the text for details),

where the unobserved liquidation returns are assumed to be -90% (first row), -70% (second row), and

-50% (third row). Panel D reports the mean gross return on investments in the CRSP value-weighted

index that are matched in time to the resampled round-to-round returns, and Panel E shows the mean

return horizons (in years), by funding stage.

quantile
mean st.dev 10 50 90

Panel A: Raw VC financing rounds data (rounds with a return)

# Rounds 6,861
# Start-up companies 3,497
# Rounds / company 2.96 1.30 2.00 2.00 5.00
Time between rounds (yrs) 1.01 0.83 0.25 0.83 1.92

Panel B: Sampling frequencies

Seed Early Late Mezz Acq IPO Liq

Observed end-of-round event 0.005 0.414 0.363 0.008 0.099 0.044 0.067
Unobs. end-of-round event treated as liq. 0.004 0.341 0.299 0.007 0.082 0.036 0.231
Observed return or assumed liq. return 0.001 0.325 0.217 0.017 0.048 0.094 0.297

Panel C: Mean gross round-to-round returns (in resampled sample)

Ass. liq.ret. = -90% 1.256 2.389 1.710 2.410 3.190 3.331 0.101
Ass. liq.ret. = -70% 1.256 2.389 1.710 2.410 3.190 3.331 0.301
Ass. liq.ret. = -50% 1.256 2.389 1.710 2.410 3.190 3.331 0.501

Panel D: Time-matched payoffs on CRSP value-weighted index (in resampled sample)

Mean gross return 1.110 1.138 1.125 1.203 1.221 1.189 1.191

Panel E: Round-to-round time horizon (in resampled sample)

Mean (in years) 0.589 0.955 0.916 1.076 1.675 1.056 2.166
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Table V
Summary Statistics: VC Rounds Data by End-of-Round Year

This table shows the distribution of observations across end-of-round years for the sample of round-

to-round returns in the Sand Hill Econometrics data, by end-of-round event (Seed, Early, Late, Mez-

zanine, Acquisition, IPO, or Liquidation). The sample corresponds to the sample used in the first line

in Panel B of Table IV.

Year Seed Early Late Mezz Acq IPO Liq

1987 0.0003 0.0036 0.0050 0.0000 0.0004 0.0002 0.0000
1988 0.0003 0.0109 0.0111 0.0000 0.0011 0.0005 0.0000
1989 0.0003 0.0131 0.0146 0.0002 0.0017 0.0008 0.0000
1990 0.0003 0.0126 0.0148 0.0002 0.0017 0.0009 0.0001
1991 0.0003 0.0107 0.0156 0.0005 0.0017 0.0023 0.0002
1992 0.0003 0.0121 0.0160 0.0006 0.0021 0.0033 0.0003
1993 0.0003 0.0096 0.0141 0.0009 0.0026 0.0033 0.0001
1994 0.0001 0.0112 0.0130 0.0007 0.0028 0.0027 0.0003
1995 0.0003 0.0123 0.0143 0.0010 0.0035 0.0035 0.0012
1996 0.0004 0.0215 0.0159 0.0008 0.0046 0.0056 0.0003
1997 0.0006 0.0285 0.0169 0.0004 0.0050 0.0031 0.0053
1998 0.0003 0.0322 0.0217 0.0002 0.0061 0.0019 0.0038
1999 0.0003 0.0442 0.0297 0.0012 0.0083 0.0064 0.0028
2000 0.0000 0.0668 0.0331 0.0011 0.0123 0.0053 0.0062
2001 0.0000 0.0443 0.0299 0.0001 0.0117 0.0007 0.0216
2002 0.0007 0.0214 0.0273 0.0000 0.0103 0.0005 0.0121
2003 0.0001 0.0214 0.0265 0.0000 0.0086 0.0005 0.0076
2004 0.0001 0.0215 0.0253 0.0001 0.0094 0.0018 0.0050
2005 0.0000 0.0163 0.0179 0.0000 0.0054 0.0008 0.0003
Total 0.0049 0.4143 0.3626 0.0080 0.0992 0.0438 0.0672
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from the last available financing round before the end of the sample are likely out of date. To

mitigate the censoring problem, we treat firms with unobserved valuations at the end of the

sample as liquidations, and we explore how our results depend on the assumed liquidation

return of -90%, -70%, or -50%. As this assumption may understate VC payoffs, we also per-

form robustness checks where we only include companies with initial financing rounds before

January 2000, such that it is more likely that we have seen most of the final outcomes by the

end of the sample (see Online Appendix F).

Second, throughout the whole sample, data is missing for reasons that are likely to be

related to performance. Two types of missing data concerns are relevant here: missing in-

formation on the end-of-round event and missing returns. Concerning the nature of the

end-of-round event, the first row of Panel B in Table IV shows observed frequencies of dif-

ferent investment and outcome stages (Seed, Early, Late, Mezzanine, Acquisition, IPO, or

Liquidation) without correcting for the missing outcomes, and Table V shows the distribu-

tion of these outcome stages across sample years. However, the ultimate fate of a substantial

number of firms is unknown (these firms are also known as “zombie” firms). These tend

to be companies with bad outcomes: unsuccessful start-ups do not return for new financing

rounds, and it is difficult to find data on liquidations of such small firms. As a first step

to dealing with the missing data problem, we treat zombie rounds (where the final observed

round for a firm is not an exit, i.e., an IPO, acquisition, or known liquidation) as liquidations.

The observed frequencies for the resulting sample are shown in the second row of Panel B in

Table IV.

Concerning the availability of round-to-round returns, the problem is that data is more

likely to be missing for unsuccessful outcomes. This is due to the fact that IPO and acquisi-

tions data tend to be more widely publicized and thus easier to find and backfill (for example

using S-1 registration documents) than information about unsuccessful firms. To illustrate

the success bias, we have the full return history (i.e., where we observe valuations for every

single round) for only 742 firms. Of these firms, 524 ultimately went public, and 218 were
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ultimately acquired, and none were liquidated. After assuming a liquidation return for known

liquidations and “zombies,” the success bias is not as strong anymore, but, as shown in the

third row of Panel B of Table IV, the observed frequencies are still not quite the same as

those in the second row.

We correct for this remaining selection bias by resampling round-to-round returns with re-

placement (including their time-matched risk-factor payoffs) to match the distribution across

investment stages of the full sample that includes the missing liquidation returns in the second

row of Panel B of Table IV. More precisely, we take 9,651 draws from the 9,651 observations

for which we either observe a round-to-round return or which are liquidations (with an as-

sumed liquidation return), and for which we have put factor returns.18 The sample size of

9,651 after resampling is arbitrary. Our cross-correlation robust spectral density matrix in

the GMM estimation ensures that the choice of this sample size does not affect the results.

Drawing a greater number of observations would make it more likely that the same obser-

vation is drawn more often into the sample, raising the cross-sectional correlation of pricing

errors, but the cross-correlation robust estimator adjusts for this.

This procedure corrects for the oversampling of stages for which returns are more likely

to be observed. Still, within each stage of investment, there may remain some residual

selection bias, for example, if the acquisitions with observed returns are more successful

than unobserved acquisitions. Our resampling procedure assumes that the missing returns

of each stage come from the same distribution as the observed returns. This is a particular

concern for acquisitions. Unlike IPO returns, which are quite comprehensively observed,

many acquisition returns are not known. We therefore check the robustness of our results

under the assumption that unknown acquisition returns are either 0% or liquidated (see

Online Appendix F).

The mean gross returns per funding round category are shown in Panel C of Table IV.

18Due to the later start date here compared with the VC funds data, we are only missing put returns for
around 1% of observations. Considering this small number, we conduct the estimation of all models, not only
the one with put factor returns, based on the sample with available put factor data.
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For robustness, we estimate the GPME in our analysis below assuming that liquidations

with unknown returns (including the zombie rounds) can have a -90%, -70% or -50% return.

The final column of Panel C in Table IV shows how this affects the average return in the

liquidation category.

B. GMM Results

Table VI reports the GPME estimates for a variety of models. Panel A shows results for the

full sample. The PME estimate is 0.544 under the assumption that liquidation returns are

-90%. For higher liquidation returns of -70% and -50%, we find PME estimates of 0.589 and

0.633, respectively. Relaxing the SDF restrictions to the more general CAPM specification

(8) in column (ii) lowers the GPME by between 0.019 and 0.028, depending on the liquidation

return assumption. Relative to the magnitude of the GPME point estimate, this is a small

decrease. However, in terms of absolute economic magnitudes this is actually a significant

reduction. For example, a reduction of the pricing error by 0.02 for investments that have

a roughly one-year horizon, on average, corresponds roughly to a reduction of the annual

abnormal return by about 2 percentage points. The reason why the GPME and PME results

do not differ to a greater extent is that the SDF parameter estimates obtained from public

market data, as shown in the lower part of column (ii), are very close to a = 0 and b =

1. In other words, the performance of public markets during the full sample periods is,

coincidentally, almost consistent with the assumptions underlying the PME.

The magnitudes of the GPME estimates are big, but they are roughly consistent with

the arithmetic alphas that Cochrane (2005) (32% annualized) and Korteweg and Sorensen

(2010) (3.5% monthly) obtain by combining a log-normal model with a selection model for

endogenous funding and exit events. The approach that we propose here delivers these results

in a much simpler and more robust fashion without the need for the specific distributional

assumptions and the rather cumbersome estimation of a selection model. Without correct-

ing for selection, Cochrane (2005) and Korteweg and Sorensen (2010) obtain much higher
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Table VI
Generalized Public Market Equivalents for VC Round-to-Round Returns

We match each start-up company round-to-round gross return, measured over horizon h from time t
to t+h, with the return of the CRSP value-weighted index (rhm,t+h in logs) from t to t+h, the return

from rolling over 1-month T-bills, and the return on a small-growth portfolio, rhx,t+h. We estimate
the Generalized Public Market Equivalent (GPME) by discounting the round-to-round gross returns
with the stochastic discount factor

Mh
t+h = exp(ah− b1rhm,t+h − b2rhx,t+h)

and averaging across all observations. The log-utility CAPM special case in column (i) with a = 0,
b1 = 1, and b2 = 0 corresponds to the Public Market Equivalent of Kaplan and Schoar (2005). In
column (iii), the second factor, rhx,t+h, is the log return of the small-growth portfolio in excess of
the log market return. The SDF parameters are chosen, with exact identification, to correctly price
benchmark funds that receive the same inflows as the VC funds, but which invest in the CRSP value-
weighted index, Treasury Bills, and, in column (iii), the small-growth portfolio. Standard errors of the
SDF parameter estimates and the GPME are in parentheses, and p-values of the J-test of GPME = 0
are in square brackets. The spectral density matrix used in the computation of the J-statistic takes
into account error dependence arising from overlapping fund life times as described in the text.

(i) (ii) (iii)
Log-utility CAPM CAPM w/

CAPM small growth

Panel A: Full sample (N = 9, 651)

Ass.: Unobserved liquidation returns = -90%
GPME 0.544 0.516 0.598

(0.195) (0.180) (0.283)
[0.000] [0.004] [0.034]

Ass.: Unobserved liquidation returns = -70%
GPME 0.589 0.565 0.648

(0.183) (0.167) (0.277)
[0.000] [0.001] [0.019]

Ass.: Unobserved liquidation returns = -50%
GPME 0.633 0.614 0.698

(0.172) (0.155) (0.272)
[0.000] [0.000] [0.010]

SDF parameters

a 0 0.033 0.096
(0.101) (0.132)

b1 1 1.444 1.484
(1.204) (1.402)

b2 -2.057
(1.357)
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Table VI - Continued

(i) (ii) (iii)
Log-utility CAPM CAPM w/

CAPM small growth

Panel B: Round start date < 1998 (N = 3, 896)

Ass.: Unobserved liquidation returns = -90%
GPME 0.672 0.250 0.179

(0.085) (0.213) (0.308)
[0.000] [0.240] [0.563]

SDF parameters

a 0 1.054 2.454
(0.147) (0.322)

b1 1 10.345 21.225
(1.252) (4.089)

b2 -30.498
(6.411)

Panel C: Round start date ≥ 1998 and < 2001 (N = 4, 268)

Ass.: Unobserved liquidation returns = -90%
GPME 0.907 1.173 1.092

(0.368) (0.569) (0.523)
[0.000] [0.039] [0.037]

SDF parameters

a 0 -0.053 -0.076
(0.019) (0.035)

b1 1 -0.918 -1.305
(1.792) (2.137)

b2 1.284
(2.460)
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Table VI - Continued

(i) (ii) (iii)
Log-utility CAPM CAPM w/

CAPM small growth

Panel D: Round start date ≥ 2001 (N = 1, 487)

Ass.: Unobserved liquidation returns = -90%
GPME -0.323 -0.326 -0.248

(0.045) (0.084) (0.154)
[0.000] [0.000] [0.108]

SDF parameters

a 0 -0.016 -0.052
(0.299) (0.060)

b1 1 -0.299 -5.001
(1.748) (3.089)

b2 10.178
(4.963)

Panel E: GPME by stage

Ass.: Unobserved liquidation returns = -90%
Seed 1.353 1.246 0.909
(N = 398) (0.167) (0.344) (0.407)

[0.000] [0.000] [0.026]
Early 0.543 0.553 0.625
(N = 6,230) (0.238) (0.256) (0.319)

[0.000] [0.031] [0.050]
Late 0.283 0.255 0.310
(N = 2,804) (0.170) (0.154) (0.221)

[0.000] [0.097] [0.161]
Mezzanine 0.312 0.299 0.447
(N = 219) (0.158) (0.151) (0.169)

[0.000] [0.048] [0.008]
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estimates of arithmetic alphas.

Adding a small-growth factor to the SDF in column (iii) further raises the GPME. As

in the VC funds data, this reflects the relatively poor performance of small growth stocks

over the sample period and the positive exposure of start-up companies to the small-growth

factor.19 Across all specifications, the J-test rejects the null hypothesis that the GPME

is zero in all cases at conventional significance levels. As Panel A further shows, making

a less conservative assumption about the unobserved liquidation returns raises the GPME

estimates.

One reason why these estimates are higher than the GPMEs for VC funds is that we

are looking at the returns gross of fees to General Partners (before management fees and

carried interest), whereas fund-level GPMEs are net of fees. Another reason is that the

start-up company sample is weighed more towards earlier years, when VC performed better,

compared to the funds data, which has a higher proportion of observations after the year

2000 when VC returns were poor (see for example, Korteweg and Sorensen (2010), Harris,

Jenkinson, and Kaplan (2014)).

Although some discrepancy is to be expected since carried interest fees are higher when

performance is good, a simple back-of-the-envelope calculation suggests that fees are not

the full explanation. Assume a fund with a standard fee structure of 20% carried interest

and 2% per year management fees (Metrick and Yasuda (2010)). Suppose all of the fund’s

investments have a GPME of 0.516 (column (ii) in Table VI, Panel A), then the GPME to

LPs is roughly 80% of 0.516 = 0.413, minus the present value of the management fees of 0.154

(based on a 5% discount rate over 10 years), resulting in a pseudo fund GPME of 0.259. This

gets closer, but does not fully match the GPME of 0.111 from pre-1998 VC funds from Table

II column (ii).

In Online Appendix F we look at a sample of start-up companies that had their first round

19With more than one risk factor in the SDF, it is no longer possible, even in the log-normal special case,
to read off the sign of risk premia directly from the factors’ price of risk coefficients in the SDF (unless the
factors are uncorrelated), because translating one into the other involves multiplication with the inverse of the
factors’ covariance matrix.
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before 1998, but where we include all subsequent funding rounds for these firms. This way

of splitting the sample should generate an even closer match to the pre-1998 vintage funds

sample in Table II. We find that the GPME estimates are close to those in Panel A of Table

VI and, hence, still very different from the pre-1998 vintage funds results. This suggests that

there are still some residual sampling differences in the pre-1998 period between the funds and

round-to-round data sets. In Online Appendix F we also show that alternative assumptions

about the unobserved acquisition returns help to close the gap to the fund results.

Finally, the additional tests in Online Appendix F with firms that had their first funding

round before 1998 are also useful to evaluate performance in a way that reduces the impact of

the right-censoring problem. For these firms, it is considerably more likely that the eventual

final outcome is recorded in the data set. The right-censoring issue should therefore be much

less of a concern for this sample. The fact that we find GPME estimates that are close to

those in Panel A of Table VI suggests that the high GPME estimates in the pre-1998 period

are, at least for the most part, not a consequence of the right-censoring problem.

Panels B, C, and D of Table VI show that the sample period has a large effect on the

results. Since the time span between funding rounds is much shorter than the typical life-

time of the VC funds that we examined in Section II, the rounds data is better suited for

the construction of sub-samples with a big dispersion in public equity market performance.

Panel B limits the sample to funding rounds with start dates before 1998, while Panel C looks

at returns of rounds started after 1997 and before 2001, while Panel D looks at those started

in 2001 and later. The first sub-sample in Panel B was one with extraordinarily high public

equity market returns, which is reflected in the high price of risk coefficient b1 = 10.345. This

leads to an enormous difference of 0.422 between the GPME in column (ii) and the PME in

column (i). The latter is based on the assumption of b1 = 1, which is grossly at odds with the

data in this period and which leads the PME to strongly overstate abnormal performance of

VC investments. In contrast, public equity markets performed poorly in the sub-samples in

Panels C and D, as reflected in the negative b1 estimates. In these cases, the PME in column
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(i) understates the abnormal round-to-round returns.

Panel E examines round-to-round returns from various stages in the life-cycle of start-up

companies. With regards to differences between PME and GPME, as in the full sample, these

cross-sectional splits produce only small differences between PME and GPME.

Table VII considers artificially levered round-to-round returns. With round-to-round

returns, Rhi,t+h, and matched Treasury Bill returns, Rhf,t+h, the artificially levered round-to-

round returns are given by

Lhi,t+h = Rhi,t+h + k
(
Rhi,t+h −Rhf,t+h

)
. (28)

We apply the SDFs from Table VI Panel A, to these artificially levered funds for a range of

different leverage ratios k.

Unlike in the VC funds sample in Section II, we would expect only small discrepancies

here between the PME and the GPME because the parameter restrictions of the PME, a = 0

and b1 = 1, are close to being true in the full round-to-round returns sample (see Panel A

of Table VI). Consistent with this logic, Table VII shows that the discrepancies are small

indeed. For example, going from no leverage (k = 0) to three-to-one leverage (k = 2) raises

the GPME exactly three-fold, while the PME rises just a little more than that.

Overall, our results demonstrate that the risk-adjustment implicit in the PME is well-

behaved—for example, in the sense that abnormal returns scale correctly with the degree of

leverage—only if the assumptions of the PME are coincidentally satisfied in a sample of data.

If these assumptions are at odds with the data, as in the VC funds sample in Table III and

the pre-1998 rounds data in Table VI, the PME delivers a distorted estimate of abnormal

returns.

In addition, the analyses with artificially levered funds or round-to-round returns also

underscores that it is useful to estimate the SDF parameters in the GPME method with data

drawn from the same sample period as the VC payoffs that are being valued. The abnormal

return properly scales with leverage only if the SDF perfectly prices the Treasury Bill payoffs
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Table VII
Generalized Public Market Equivalents for Artificially Levered VC Round

Investments

We use the round-to-round returns, Rh
i,t+h, and the matched Treasury Bill returns, Rh

f,t+h to create
artificially levered round-to-round returns

Lh
i,t+h = Rh

i,t+h + k
(
Rh

i,t+h −Rh
f,t+h

)
.

We apply the SDFs from Table VI Panel A, to these artificially levered funds for a range of different

leverage ratios k and we report the resulting GPME estimates. Standard errors of the GPME are in

parentheses, and p-values of the J-test of GPME = 0 are in square brackets. The spectral density

matrix used in the computation of the J-statistic takes into account error dependence arising from

overlapping fund life times as described in the text.

(i) (ii)
Log-utility

k CAPM CAPM

-0.8 0.089 0.103
(0.040) (0.070)
[0.000] [0.142]

-0.6 0.203 0.206
(0.062) (0.069)
[0.000] [0.003]

0 0.544 0.516
(0.195) (0.180)
[0.000] [0.004]

1 1.114 1.032
(0.431) (0.432)
[0.000] [0.017]

2 1.683 1.547
(0.670) (0.688)
[0.000] [0.025]
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during the VC data sample period. If one estimated the parameters from a longer sample

(or, hypothetically, used the population values of the parameters), this would not be true.

IV. Conclusions

We propose a stochastic discount factor approach to valuation of private equity payoffs. Our

approach shares the advantages of the Public Market Equivalent (PME) method in that it

avoids strong distributional assumptions and is well-suited for irregularly-spaced, skewed, and

endogenously timed payoffs. Our method generalizes the PME by allowing the SDF to reflect

the realized equity premium and risk-free rate in public markets during the sample period.

In this way, the performance benchmark for VC payoffs properly adjusts for systematic risk

exposure. We also devise a procedure to conduct statistical inference that is robust to cross-

sectional dependence in payoffs.

We show that that there can be substantial differences in abnormal performance estimates

between the PME and our generalized PME (GPME). Unless the assumptions about equity

premium and risk-free rate implicit in the PME are coincidentally satisfied in a particular

sample, the abnormal performance estimates obtained from the PME can be severely dis-

torted. These distortions are particularly large in samples in which public equity markets

earned high rates of return such as the 1980s and 1990s. We construct artificially levered

funds to show that these distortions are especially large for assets with high-beta payoffs.

The GPME fills a methodological gap between the private equity literature and perfor-

mance evaluation methods in mutual funds and hedge funds research. With the linear factor

models that are common in the mutual funds and hedge funds literature, it is straightforward

to adjust a fund’s performance by contemporaneously realized risk factor returns multiplied

with the risk exposures to each factor. With irregularly-spaced and skewed VC cash flow

data, linear factor models are not easily applicable without strong distributional assump-

tions. The GPME method avoids these strong assumptions, but is effective in performing

risk-adjustments in a similar way as linear factor models do.
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In this paper we have focused on the risk and return to venture capital. Our methodology

can also be applied to other infrequently traded assets, in particular those with highly levered

or option-like returns, such as real estate or leveraged buyouts.
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