Overview

Focus: Connection monetary policy – risk premia?
This paper (revision in progress): To hold risky assets with deposit funding, banks require a liquidity reserve in the form of non-interest bearing reserves
- Cost depends on level of nominal interest rate
- Sort of like Bernanke and Blinder (1998) bank lending channel, but with regards to asset purchases and asset risk premia

Main comments/questions: Is this a potentially important channel of how monetary policy affects asset risk premia?
Main alternatives: CB policy affects path of future interest rates, which has follow on effects through
- Intermediary balance-sheet channel: Expected real rates affect net worth (Bernanke and Gertler 1989, 1999). which in turn affects intermediary risk-taking (He and Krishnamurthy 2013, Brunnermeier and Sannikov 2014)
- Risk-taking of asset managers subject to performance-flow relationship (Morris and Shin 2014)
Simple binomial model to illustrate key mechanism

- Equi-probable states \(U \) and \(D \)
- **Endowments**
 - \(e_0 \)
 - \(e_U \)
 - \(e_D \)
- **Asset**
 - \(d_U \)
 - \(d_D \)

- Two agents: A ("averse") and B ("brave")
 - Identical endowment stream
 - Additionally, A owns one unit of the asset initially
- Agent B can borrow (collateralized) from A to purchase asset
 - Only asset dividends can serve as collateral: Max. repayment promise = \(d_D \) (similar to Fostel and Geanakoplos 2012)
 - Consider case in which collateral use maxed out

Objective

\[
\max \mathbb{E}_0 \left[\sum_{t=0}^{1} C_t - \frac{\alpha h}{2} C^2_t \right]
\]

with \(\alpha_B > \alpha_A \),

- **Tax on borrowing:** \(\theta \times \) Amount borrowed
 - Equivalent to reserve requirement w/ zero interest on reserves: \(\theta = \) nominal interest rate \(\times \) reserve requirement
- Consider case with max. leverage. Parameters: \(\alpha_A = 0.7 \), \(\alpha_B = 0.1 \), \(e_0 = 1.4 \), \(e_U = e_D = 1 \), \(d_U = 2 \), \(d_D = 1 \).
- Look at asset risk premium: \(E[R] - R_f \), where \(R_f = \) cost of debt paid by B to A
Thus: change in $E[R] - R_f \approx \text{change in reserves “tax”}$

Figure 3 from the paper
(blue: no “tax”; red: reserves “tax” = 0.10 × 5%)

Thus: change in $E[R] - R_f \approx \text{change in reserves “tax”}$
Comment 1: Magnitudes

- Changes in risk premia induced by changes in reserves “tax” seem small
 - 1 pct point change in nominal interest rate ≈ 0.1 pct point change in risk premium
 - Paper emphasizes that change looks big relative to level of risk premium, but that level is small (< 0.10%) and the effect seems to be additive, not multiplicative, so relative comparison not useful
- Small effects even though the model is already an extreme case
 - banks are the only buyers of risky assets
 - banks have no access to non-deposit term funding
- Leaves me skeptical on the relevance of this channel compared with alternative ones (intermediary balance sheets, asset manager agency problems, ...)

Comment 2: Liability-side frictions

- Second key friction in the model (not emphasized): Risk-averse agents cannot bypass reserves “tax” when lending to risk tolerant agents, i.e., no bond market, no non-depository lending, ...
- Without this assumption: because $R_{Deposit} < R_{Lending} \Rightarrow$ incentive to raise illiquid term funding that does not require reserve holdings as liquidity buffer
- Sustaining $R_{Deposit} < R_{Lending}$ in equilibrium without hardwiring it would require that deposits offer a liquidity benefit that is commensurate with this wedge
- Liquidity benefits from holding deposits are therefore necessary, not just an “alternative” to get the results in the paper.
- Use model in Appendix C as baseline model?
Comment 3: Interest on reserves

- In many countries, CB have, for a while now, paid interest on reserves (IOR) at level close to interbank rates
 - ⇒ Reserves “tax” to close to zero
 - ⇒ Reserves “tax” de-linked it from level of nominal interest rate.
- Consequence in this model: monetary policy would not affect risk premia anymore
- Is this plausible? Is this empirically true (e.g., Canada, UK, NZ, ...)?
- Or is the reserves “tax” channel just not the important link between monetary policy and risk premia?
 - Alternative channel (balance sheet) still works even if IOR = interbank rates

Summary

- Link monetary policy - risk premia is an important question
- Elegant and clean model
- Not entirely convincing that the channel emphasized in the paper is an important channel of how monetary policy affects risk premia