Asset-price bubbles in history and in the lab

- Which factors contribute to emergence of an asset-price bubble?
- Here
 - Institutional features in the case of the South Sea Bubble
 - Re-create bubble conditions in the lab
- Main results: Bigger asset price bubble if
 - distribution of new issuance proceeds to old shareholders
 - debt financing of stock purchases possible
 - perhaps: debt default/forgiveness (stat. insignificant, but \neffect)
- Focus of my comments: interpretation of the institutional features in the experiment
Institutional features: Govt-debt for equity swap

- In 1720...
 - New issues of stock with govt. bonds as payments
 - Interest payments from bonds split between new and old shareholders
 - Old shareholders benefit if new issues overpriced
- In the experiment...
 - New issues of equity and distribution of 15% of total proceeds (per period) to old shareholders.
 - New issue takes place only if shares currently overpriced.
- Comment
 - in experiment, old shareholders benefit from total issue proceeds, not just from overpricing
 - this could perhaps dampen the effect on the size of the bubble because it reduces the sensitivity of the old shareholders’ benefits to the magnitude of overpricing

Institutional features: Installments/debt

- Historical data (Table 1): “NPV of subscription payments relative to the market price at time of issuance”.
 - i.e., Premium = NPV of subscription payments - market price?
 - Interpretation?

<table>
<thead>
<tr>
<th>Subscription round</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>14 April, 29 April, 16 June, 24 August, 1721, 1723, 1725, 1722</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issue Price</td>
<td>300, 400, 1000, 1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Payment Due*</td>
<td>14 August, 24 April, 2 January, 24 August, 1721, 1723, 1725, 1722</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premium**</td>
<td>-1 %, 9.7 %, 21.3 %, 27.6 %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Positive premium = default risk premium?
 - Would be relevant for experiment (where default is subsidized)
- Positive premium = financing wedge? Price premium for new issues because only new issues could be bought on installments?
 - Such a wedge did not appear in the lab (prices in Market A and B are almost identical)
Institutional features: Default

- History: To what extent were subscribers able to default? Threat of debtor’s prison?
- Experiment: In NoDefault treatment, what happens if a subject (after suffering losses) has insufficient cash to pay installments?
- Experiment: Interpretation of “Default” in baseline treatment
 - Implemented as debt forgiveness for the installment debt that is still outstanding at randomly timed end of experiment (horizon).
 - i.e., not state contingent!
 - hence, does not induce convexity in the payoff to the investor
 - hence, not the same incentives for leverage-taking with as (collateralized) debt with state-contingent default

Levered Asset Purchases: Without default

Without default, payoff to the levered investor is linear
Levered Asset Purchases: With default

- Now default in states of bad asset payoffs
- Convex payoff to the levered investor
- Risk-shifting incentives arise (debt price should take this into account ex-ante)

Levered Asset Purchases: Baseline Treatment in the Experiment

- Debt forgiven (w/ some prob.) irrespective of asset payoff state
- Payoff to investor remains linear
- Thus forgiveness is a leverage subsidy, but it does not generate risk-shifting incentives
Concluding remarks

- Ambitious undertaking: Experimental economic history
- Some questions about the economic interpretation of the institutional treatments in the experiment
- Clarification would enhance the paper
- Perhaps scope for follow-up work that considers variations on these treatments
 - e.g., Debt with (convexity-inducing) default