Market Expectations in the Cross Section of Present Values

by Kelly, B., and S. Pruitt

Stefan Nagel

Stanford University, NBER, CEPR

January 2013

The problem tackled by this paper

- Market return
 \[r_{mt+1} = \mu_t + \eta_{t+1} \]
- Present-value decomposition of market M/B ratio
 \[x_{mt} \approx a - b\mu_t + b_gg_t \]
 with VAR(1) dynamics of book ROE, \(g_t \), and expected return, \(\mu_t \)
- Presence of \(g_t \) obscures “signal” \(\mu_t \)
- This paper: Cross-sectional information helps filter out \(\mu_t \) to improve predictive regressions
- Much of my discussion focuses on Kelly and Pruitt (2012, “3PRF”, WP), the paper that supplies the methodology
Figure 1: Out-of-Sample R^2 by Sample Split Date, One Year Returns

Notes: Out-of-sample R^2 across sample split dates. Forecasts are based on a single PLS factor from 100 book-to-market ratios of size and value-sorted portfolios, the aggregate book-to-market ratio, the cross-section premium of Polk et al. (2006), the consumption-wealth ratio of Lettau and Ludvigson (2001), and the first three principal components of the 100 book-to-market ratio cross section.

Figure 3: Out-of-Sample R^2 by Sample Split Date, One Month International Returns

Notes: Out-of-sample percentage R^2 across sample split dates for forecasts of one month international stock returns using a single PLS factor from 42 price-dividend ratios of high value and low value portfolios across 21 countries (Fama and French (1998)). See Section III.A.5 for list of countries.
How does it work? Example

- Define: $g_t \equiv \text{ROE component orthogonal to expected returns}$
- Assume: Three-asset cross-section where M/B ratios load on μ_t and g_t with cross-sectionally **uncorrelated** loadings

 \[
 \begin{align*}
 x_{1t} &= 2\mu_t - 1.5g_t & \tilde{x}_{1t} &= \mu_t - 0.5g_t \\
 x_{2t} &= \mu_t & \tilde{x}_{2t} &= g_t \\
 x_{3t} &= -1.5g_t & \tilde{x}_{3t} &= -\mu_t - 0.5g_t
 \end{align*}
 \]

- First-stage t.s. regressions of x_{it} on r_{mt+1} (large T): slopes proportional to

 \[
 \begin{align*}
 \phi_1 &= 2 & \tilde{\phi}_1 &= 1 \\
 \phi_2 &= 1 & \tilde{\phi}_2 &= 0 \\
 \phi_3 &= 0 & \tilde{\phi}_3 &= -1
 \end{align*}
 \]

- Second-stage c.s. regressions of \tilde{x}_{it} on $\tilde{\phi}_i$ each t: slopes

 \[
 F_t = \text{const.} \times \left[(\mu_t - 0.5g_t) + 0 - (\mu_t - 0.5g_t) \right] = \text{const.} \times \mu_t
 \]

How does it work? Crucial assumption

- Assumption that loadings on μ_t and g_t are c.s. **uncorrelated** is important: Second stage regression slopes F_t are then...
 - “Long” in assets with positive M/B loadings on μ_t
 - “Short” in assets with negative M/B loadings on μ_t
 - “Long” and “short” in assets with M/B that load similarly on g_t: g_t exposure cancels out
 - As $N \to \infty$, sample c.s. correlation closer to zero population c.s. correlation: μ_t consistently estimated

- But what if loadings on μ_t and g_t are c.s. **correlated**?
 - Lucky: For stock market application in JF paper, correlation seems to be close to zero
 - But this may not be true in other applications
 - Remedy: Use proxies for g_t in addition to μ_t proxy
 - But that means we have to take a stand on all of the systematic factors driving M/B ratios
Concern: Large N, small T

- What are the properties of the estimator under the null hypothesis of no predictability?
- Simulation: No-predictability & pure-noise M/B null

\[
\begin{align*}
 r_{mt+1} &= \eta_{t+1} \\
 x_t &= \epsilon_t
\end{align*}
\]

where

\[
\begin{pmatrix}
 \eta_{t+1} \\
 \epsilon_t
\end{pmatrix} \sim \mathcal{N}(0, I_{N+1})
\]

Large N, small T: Spurious fit as N grows

Mean third-stage R-squared under no-predictability null (100 simulations for each (N, T) pair)
Large N, small T: Example with $T = 3$ and $N = 9$

<table>
<thead>
<tr>
<th>r_{mt+1}</th>
<th>0.91</th>
<th>-1.49</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{it}</td>
<td>-1.35</td>
<td>0.91</td>
</tr>
<tr>
<td>$\hat{\phi}_i$</td>
<td>-0.52</td>
<td>-1.26</td>
</tr>
<tr>
<td></td>
<td>-0.82</td>
<td>-0.44</td>
</tr>
<tr>
<td></td>
<td>-0.20</td>
<td>1.07</td>
</tr>
<tr>
<td>\tilde{F}_t</td>
<td>-0.93</td>
<td>-2.62</td>
</tr>
<tr>
<td></td>
<td>0.40</td>
<td>-0.06</td>
</tr>
<tr>
<td>π_{t+1}</td>
<td>1.94</td>
<td>-1.14</td>
</tr>
<tr>
<td>\tilde{y}_t</td>
<td>0.40</td>
<td>-0.22</td>
</tr>
<tr>
<td>R^2</td>
<td>0.0044</td>
<td>0.0040</td>
</tr>
</tbody>
</table>

Pure noise returns

First stage (sorted)

Pure noise M/B

Second stage

Third stage (fitted)

N and T grow simultaneously: Spurious fit with $N = T^2$

Mean third-stage R-squared under no-predictability null with $N = T^2$

(100 simulations for each (N, T) pair)
Spurious predictability

- Thus, when N is not small relative to T, there is a bias that overstates predictability
- It seems that this is not just a small-sample bias: also asymptotic bias if N grows sufficiently fast relative to T
 - Theorem 1 in Kelly and Pruitt (2012, “3PRF”) seems to need additional assumption: N cannot grow too fast relative to T
- Not a concern for the empirical results in the JF paper, as out-of-sample tests are not affected by this bias
- But concern underscores importance of out-of-sample testing
- Calls for further study of small-sample and asymptotic properties of this estimator

Summing up

- Nice idea
- Impressive empirical results: Strong out-of-sample predictability of stock market returns
- Some further work necessary on the properties of the 3PRF estimator
 - Correlated factor loadings
 - Small-T/large-N behavior
 - Asymptotic behavior when N grows fast relative to T
- These concerns do not affect out-of-sample tests: results in the JF paper are robust