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Machine Learning

I ML ≈ Automated detection of patterns in data

Data Learner Prediction

I ML emphasizes
I prediction rather than statistical inference
I algorithms for practical application
I distribution-free approaches



Example: Image recognition

I Food image classification task: Classify yi ∈ { Hot dog, Not
hot dog }

I Features: X i = matrix of image pixels

I Example

Machine Learning

I Supervised learning: Approximate yi = f (x i ).
I Regression
I Classification: Support Vector Machines, Trees, Random

Forests,
I Nonlinearity: Neural Networks, Deep Learning

I Unsupervised learning: Summarize {x i}, dimension
reduction

I Clustering
I Principal components analysis

I Recent surge due to
I data availability (’Big Data’)
I computational power
I development of algorithms for computationally efficient

implementation



Asset Pricing and Machine Learning

I Applicability of ML in asset pricing?
I Prediction central to ML and also essential to asset pricing

(AP)
I Forecasting returns
I Forecasting cash-flows
I Forecasting default
I Forecasting risk exposures

I Machine learning (ML) offers potentially useful toolbox for
prediction

High-dimensional prediction problems in asset pricing

I Fundamental asset pricing equation for asset with excess
return R and SDF M:

E[Rt+1Mt+1|x t ] = 0

I Empirical implementation involves function approximation

x t 7→ (Co-)moments of Rt+1,Mt+1

i.e., a supervised learning problem
I plus dimension reduction in joint distribution of (Rt+1,Mt+1)

may be useful: unsupervised learning

I Pre-ML literature: x t typically low-dimensional, but little
real-world justification for this



Big Data in asset pricing: Example of corporate financial
reports data
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Application of ML methods in asset pricing research

Two ways in which ML can help us think about

E[Rt+1Mt+1|x t ] = 0

1. Econometrician as outside observer of financial market data:
Approximate E[Rt+1Mt+1|x t ]

I understand determinants of expected returns
I construct an SDF that summarizes investment opportunities
I link result to economic models

2. Modeling of investors inside the financial market: Investors as
using ML to form E[Rt+1Mt+1|x t ]



Outline

1. More on ML techniques relevant for asset pricing

2. ML used by econometrician outside the market: SDF
extraction in high-dimensional setting

3. ML used by investors inside the market: Rethinking market
efficiency in the age of Big Data (tomorrow)

4. Conclusion: Agenda for further research (tomorrow)

Prior knowledge in ML

I On one hand, ML emphasizes distribution-free, flexible,
data-driven approach, but there are limits

I No free lunch theorem of ML (Wolpert 1996) ≈ A universal
learner does not exist

I Without prior knowledge, we can’t have confidence that
generalization beyond training data set will work

I Therefore, some prior knowledge required, e.g,
I parametric distributional assumptions
I restricting set of entertained models, hypotheses
I temporal stability assumptions



Prior knowledge ⇒ Regularization

I Consider supervised learning problem: find yi = f (x i ) where
i = 1, 2, ...,N and x i has dimension J × 1.

I When x i high-dimensional (e.g, J > N), standard methods
(e.g., OLS) would horribly overfit in-sample ⇒ bad
out-of-sample prediction performance

I Regularization: Penalize estimation results that are regarded
as implausible based on prior knowledge

I Example: If big magnitudes of regression coefficients a priori
unlikely, penalize big coefficient estimates

A framework that encompasses much of ML

I Many ML methods can be derived as penalized estimators

θ̂ = arg min
θ

∑
i

L {yi − f (x i ,θ)}+ λR(θ)

for loss function L(.) and penalty function R(.).
I R(θ) = ||θ||1: Lasso
I R(θ) = ||θ||22: Ridge regression
I R(θ) = α||θ||1 + (1− α)||θ||22: Elastic net

I Penalty forces regularization: Well-behaved estimates, useful
for prediction, even if J > N

I Penalty is crucial for prediction performance



Bayesian foundations

I Penalty function and penalty weight are a way to express prior
knowledge about θ

I Examples
I Laplace prior + normal likelihood ⇒ Posterior mode = Lasso
I Normal prior + normal likelihood ⇒ Posterior mean = Ridge

regression

I In asset pricing (AP) applications, economic reasoning my
yield informative prior specification and penalty choice (rather
than ’off-the-shelf’ ML method)

ML in asset pricing

I How do typical AP applications compare to typical ML
applications?

I Consider return prediction problem: Cross-section of stocks
i = 1, ...,N, with J × 1 characteristics vector (observable
predictors) x i ,t .

E[ri ,t+1|x i ,t ] = f (x i ,t , θ)

I Observations r t = (r1,t , ..., rN,t)
′ for t = 1, ...,T .

I Could ML techniques be useful?



Example: Predicting returns with past returns

I Predict monthly return of individual U.S. stocks where x i ,t

contains
I 120 lags of monthly returns, ri,t , ri,t−1, ..., ri,t−120

I 120 lags of monthly squared returns, r2
i,t , r

2
i,t−1, ..., r

2
i,t−120

where all returns are cross-sectionally demeaned each month
(i.e., cross-sectional focus) and x i ,t is standardized.

I Estimate during 1980 - 2000. Evaluate forecasts OOS during
2001 - 2019.

I Ridge regression

θ̂ = arg min
θ

∑
i

(ri ,t+1 − θ′x i ,t)
2 + λθ′θ

where λ = 0 implements OLS.

Example: Forecast MSE in predicting month-ahead return
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⇒ OLS (λ = 0) produces terrible forecasts



Example: Ridge Regression coefficients estimates for past
returns
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ML in asset pricing: Issues

Typical ML application Asset pricing

Signal-to-noise Outcome observable Very noisy observation
e.g. { hotdog, not hotdog } of outcome

e.g. {high E[r ], low E[r ]}

Big Data dimensions N and J big J big, N not so much

Sparsity Often sparse Unclear
e.g., some regions of

image irrelevant

Lucas critique Often not an issue Investors learn from
e.g. hotdogs don’t change data and adapt

shape in response
to image classification



Adapting ML for asset pricing

I Low signal-to-noise ratio, high J/N ⇒ Imposition of prior
knowledge more important than in typical ML application

I Functional forms and distributional assumptions
I Penalty function

I Views about what is implausible should be guided by economic
reasoning ⇒ e.g., express absence of near-arbitrage in prior

I Not obvious that methods striving for sparsity (e.g., Lasso)
are necessarily appropriate

Outline

1. More on ML techniques relevant for asset pricing

2. ML used by econometrician outside the market: SDF
extraction in high-dimensional setting

I Based on joint work with Serhiy Kozak and Shrihari Santosh:
Kozak, S., S. Nagel, and S. Santosh, 2019, Shrinking the
Cross-Section, Journal of Financial Economics, forthcoming.

3. ML used by investors inside the market: Rethinking market
efficiency in the age of Big Data

4. Conclusion: Agenda for further research



Factor models and the cross-section of expected stock
returns

I Multi-decade quest: Describe cross-section of N excess stock
returns, E[r ], with small number (K ) of factor excess returns
f in SDF

Mt = 1− b′(f t − E f t) with E[Mtr t ] = 0

where factors are returns on portfolios constructed based on
firm characteristics (size, B/M, momentum, ...).

I Popular factor models are sparse in characteristics, e.g:
Fama-French 3-, 4-, 5-factor models

I But can a characteristics-sparse representation of the SDF be
adequate?

I Taking into account all anomalies that have been discovered
I Plus potentially hundreds or thousands of additional stock

characteristics, including interactions
I High-dimensional problem!

Seemingly simple back then...



Complex today...
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Table 1
Factor classification

Risk type Description Examples

Common
(113)

Financial
(46)

Proxy for aggregate financial market movement, including market
portfolio returns, volatility, squared market returns, among others

Sharpe (1964): market returns; Kraus and Litzenberger (1976): squared
market returns

Macro
(40)

Proxy for movement in macroeconomic fundamentals, including
consumption, investment, inflation, among others

Breeden (1979): consumption growth; Cochrane (1991): investment
returns

Microstructure
(11)

Proxy for aggregate movements in market microstructure or financial
market frictions, including liquidity, transaction costs, among others

Pastor and Stambaugh (2003): market liquidity; Lo and Wang (2006):
market trading volume

Behavioral
(3)

Proxy for aggregate movements in investor behavior, sentiment or
behavior-driven systematic mispricing

Baker and Wurgler (2006): investor sentiment; Hirshleifer and Jiang
(2010): market mispricing

Accounting
(8)

Proxy for aggregate movement in firm-level accounting variables,
including payout yield, cash flow, among others

Fama and French (1992): size and book-to-market; Da and Warachka
(2009): cash flow

Other
(5)

Proxy for aggregate movements that do not fall into the above
categories, including momentum, investors’ beliefs, among others

Carhart (1997): return momentum; Ozoguz (2009): investors’ beliefs

Characteristics
(202)

Financial
(61)

Proxy for firm-level idiosyncratic financial risks, including volatility,
extreme returns, among others

Ang et al. (2006): idiosyncratic volatility; Bali, Cakici, and Whitelaw
(2011): extreme stock returns

Microstructure
(28)

Proxy for firm-level financial market frictions, including short sale
restrictions, transaction costs, among others

Jarrow (1980): short sale restrictions; Mayshar (1981): transaction costs

Behavioral
(3)

Proxy for firm-level behavioral biases, including analyst dispersion,
media coverage, among others

Diether, Malloy, and Scherbina (2002): analyst dispersion; Fang and
Peress (2009): media coverage

Accounting
(87)

Proxy for firm-level accounting variables, including PE ratio,
debt-to-equity ratio, among others

Basu (1977): PE ratio; Bhandari (1988): debt-to-equity ratio

Other
(24)

Proxy for firm-level variables that do not fall into the above categories,
including political campaign contributions, ranking-related firm
intangibles, among others

Cooper, Gulen, and Ovtchinnikov (2010): political campaign
contributions; Edmans (2011): intangibles

The numbers in parentheses represent the number of factors identified. See Table 6 and http://faculty.fuqua.duke.edu/∼charvey/Factor-List.xlsx.
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Harvey, Liu, and Zhu (2015)

The high-dimensionality challenge

I Why not just throw in hundreds of factor portfolio returns
into vector f and estimate price-of-risk coefficients b in

Mt = 1− b′f t ?

I Naive approach:
I With population moments, using E[Mtr t ] = 0, we can solve for

b = Σ−1µf

I Estimate with sample equivalent

b̂ = Σ̂
−1 1

T

T∑
t=1

f t ,

I Naive approach would result in extreme overfitting of noise ⇒
Terrible out-of-sample performance.



Regularization through economically motivated priors

I Consider normally distributed factor returns

f t |µ ∼ N (µ, Σ)

where we assume that Σ is known.

I To regularize, we need to effectively tell the estimator which
aspects of the data to regard as implausible and likely spurious

I Prior: Economic restriction that links first (µ) and second
moments (Σ)

µ ∼ N
(
0, κΣ2

)

Regularization through economically motivated priors

I To understand intuition: Prior implies that Sharpe ratios of
principal component (PC) portfolios are distributed

µi
σi
∼ N (0, κσ2)

I Reflects two economic restrictions

1. absence of near-arbitrage opportunities (extremely high Sharpe
Ratios)

2. high Sharpe Ratios more likely to originate from high- than
from low-variance principal components

⇐⇒ bounded MVE portfolio weights
I These restrictions hold in

I rational asset pricing models with “macro” factors
I behavioral model with sentiment-driven investors co-existing

with arbitrageurs (Kozak, Nagel, Santosh 2018)



Posterior

I With sample of mean factor returns f̄ , we get the posterior
mean

b̂ = (Σ + γIK )−1 f̄

where γ = 1
κT

I Equivalently, we can rewrite this as

b̂ =
(
ΣΣ−1Σ + γIK

)−1
ΣΣ−1f̄

i.e., a GLS version of cross-sectional ridge regression of f̄ on
columns of Σ

I Economically motivated prior based on properties of Sharpe
Ratios lead us to estimator that differs from off-the-shelf ML
estimators

Penalized regression representation

I Equivalently, we can rewrite this as minimizing the
Hansen-Jagannathan distance subject to an L2-norm penalty:

b̂ = arg min
b

{(
f̄ −Σb

)′
Σ−1

(
f̄ −Σb

)
+ γb′b

}
I Penalty parameter γ to be chosen by cross-validation or based

on prior views about the maximum squared Sharpe Ratio



Allowing for sparsity: Characteristics-sparse SDF

I A large collection of stock characteristics may contain some
that are “useless” or redundant

I Calls for prior that reflects possibility that many elements of
the b vector may be zero: Sparsity in characteristics

I Laplace prior ⇒ L1 norm penalty

I Two-penalty Specification

b̂ = arg min
b

(
f̄ −Σb

)′
Σ−1

(
f̄ −Σb

)
+ γ1b′b + γ2

H∑
i=1

|bi |

I Similar to elastic net, but with different loss function

Alternative: PC-sparse SDF

I Not clear that sparsity necessarily in terms of characteristics
I Recall our prior: High Sharpe Ratios more likely for

high-variance principal components (PCs)
I i.e., the PCs q1,q2, ... from eigendecomposition of covariance

matrix

Σ = QDQ ′ with Q = (q1,q2, ...,qN)

I Plus empirical fact : Typical sets of asset returns have
covariance matrix dominated by a few PCs with high variance

⇒ A PC-sparse SDF with first few (K ) PC-factor portfolio
returns

Mt = 1− b1q ′1r t − b2q ′2r t − ...− bkq ′K r t

should capture most risk risk premia.



Empirical application

I Dimension reduction prior to analysis: aggregate into
characteristics-based stock portfolios

I Conditional moments should relate to characteristics of a firm,
not its “name”

I Stock characteristics portfolios
I 50 anomaly characteristics portfolios
I 1,375 portfolios based on powers and pairwise interactions of

50 anomaly characteristics

I Two sets of analyses for each set of characteristics
I Characteristics-weighted portfolio returns
I Principal component portfolio returns

I Questions
I Can we find an SDF sparse in characteristics?
I Can we find an SDF sparse in PCs?

List of 50 Characteristics

Size Investment Long-term Reversals 
Value Inv/Cap Value (M) 
Profitability Investment Growth Net Issuance (M) 
Value-Profitability Sales Growth SUE 
F-score Leverage Return on Book Equity 
Debt Issuance Return on Assets (A) Return on Market Equity 
Share Repurchases Return on Equity (A) Return on Assets 
Net Issuance (A) Sales/Price Short-term Reversals 
Accruals Growth in LTNOA Idiosyncratic Volatility 
Asset Growth Momentum (6m) Beta Arbitrage 
Asset Turnover Industry Momentum Seasonality 
Gross Margins Value-Momentum Industry Rel. Reversals 
D/P Value-Prof-Momentum Industry. Rel. Rev. (LV) 
E/P Short Interest Industry Momentum-Rev 
CF/P Momentum (12m) Composite Issuance 
Net Operating Assets Momentum-Reversals Stock Price 

 



Empirical implementation

I Daily returns on characteristics-based factor portfolios 1974 -
2017; all in excess of the market index return

I Drop very small stocks (market caps < 0.01% of agg. market
cap.)

I 3-fold cross-validation
I Sample split in 3 blocks
I 2 blocks used for estimation of b
I Remaining block used for out-of-sample evaluation: R2 in

explaining average returns of test assets with fitted value
µ̂ = b̂Σ.

I Reshuffle blocks and repeat

⇒ we report average R2 across 3 validation blocks as CV-R2

50 anomalies: CV R2 from dual-penalty specification
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50 anomalies: L2 shrinkage and Sparsity
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50 anomalies: Interpretation

I Summary of key results

1. Shrinkage is extremely important
2. Very little redundancy in original characteristics space:

Characteristics-sparse SDF not achievable
3. But PC-sparse SDF based on a few (high-variance) PCs prices

well

I Result (2) could be partly a consequence of looking at a set of
data-mined anomalies

I Could there be more characteristics-sparsity if we include
some unexplored factors, or factors that are not known to be
associated with return premia?

I Kozak, Nagel, and Santosh (2019) look at 80 WRDS financial
ratios that were (partly) not used previously in c.s. empirical
AP

I Interaction portfolios: except for a few like value and size,
value and momentum most interactions unexplored in the
literature



1,375 Interactions and powers of 50 anomalies: CV R2
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⇒ Much more characteristics-sparsity; PC-sparse model still works
well

Out-of-sample test with fully-withheld sample

I Analysis so far: Evaluation of SDFs with OOS data not used
in estimation, but penalty parameters picked to maximize
OOS performance

I Our anomaly data set likely includes data-mined anomalies
and ones that have deteriorated due to learning (McLean and
Pontiff 2016)

I Statistical significance of claim that SDF is not
characteristics-sparse?

⇒ Conduct estimation of SDF coefficients & penalty choice
based on pre-2006 data; use post-2005 for evaluation



Out-of-sample test with fully-withheld sample

I Constructing SDF is equivalent to finding the MVE portfolio

I Pre-2006 data yield SDF coefficient estimates b̂ = MVE
portfolio weights

I Apply b̂ to post 2005 returns: OOS MVE portfolio return
I Test alphas relative to restricted benchmarks

I Construct MVE portfolio weights from sparse
characteristics-based models (e.g., FF 5-factor model) in
pre-2006 data and apply weights to post-2005 returns

I Regress OOS MVE portfolio return on MVE portfolio return of
sparse characteristics-based factors to estimate OOS abnormal
return

Out-of-sample test with fully-withheld sample

MVE portfolio’s annualized OOS α (%) in the withheld sample
(2005-2017)

Annualized OOS alpha in % (s.e.)

SDF factors
Benchmark

CAPM FF 6-
factor

Char.-
sparse

PC-
sparse

50 anomaly portfolios 12.35 8.71 9.55 4.60
(5.26) (4.94) (3.95) (2.22)

1,375 interactions of 25.00 22.79 21.68 12.41
anomalies (5.26) (5.18) (5.03) (3.26)



SDF extraction in high-dimensional setting: Summary

I Characteristics-sparse SDF elusive
I Not much redundancy among “anomaly” characteristics
⇒ Debate whether we need 3, 4, 5, or 6 characteristics-based

factors in SDF seems moot

I Instead, construct an SDF directly, or extract few factors that
aggregate information from all characteristics

I E.g., principal component factors
I Risk premia earned mostly by major sources of return

covariance
⇒ Makes economic sense both in asset pricing models with

rational and in models with imperfectly rational investors

I PCs could be used as test assets and to look for correlations
with macro risk factors, sentiment, intermediary risk factors,
...

Examples from recent literature on ML methods in
cross-sectional AP

Regularization Assets Nonlinearity
SDF models
Kozak, Nagel, Santosh (2019) elastic net char. portfolios interactions

PC portfolios
Kozak (2019) elastic net char. portfolios kernels

PC portfolios
Giglio, Feng, and Xiu (2019) Lasso char. portfolios -
DeMiguel et al. (2019) Lasso char. portfolios -

Beta models
Kelly, Pruitt, Su (2018) PCA cutoff indiv. stocks -
Gu, Kelly and Xiu (2019) Lasso char. portfolios autoencoder

neural nets

Return prediction models
Freyberger, Neuhierl, Weber (2018) Group lasso indiv. stocks splines
Moritz and Zimmerman (2016) Random forest indiv. stocks interactions
Gu, Kelly, Xiu (2018) many indiv. stocks many



ML in cross-sectional AP: Summary

I ML well-suited to address challenges in cross-sectional AP

I Given the existing factor zoo, there is little point in analyzing
a few return predictors in isolation: ML methods here to stay

I Outcomes much noisier than typical ML application: bringing
in informed priors (economic restrictions & motivations)
important

I Sparsity depends on rotation: can be quite sparse with PCs,
but less so with original characteristics-based factors


