Asset Pricing and Machine Learning

Princeton Lectures in Finance
Lecture 2

Stefan Nagel1

1University of Chicago, NBER, CEPR, and CESifo

May 2, 2019

Outline

1. More on ML techniques relevant for asset pricing
2. ML used by econometrician outside the market: SDF extraction in high-dimensional setting
3. ML used by investors inside the market: Rethinking market efficiency in the age of Big Data
 ▶ Based on work-in-progress with Ian Martin
4. Conclusion: Agenda for further research
ML and financial market equilibrium

- **Now**: ML and the prediction problem of investors inside a financial market
- Real-world investors have to make predictions based on a huge set of potential predictor variables.
- Useful to think of investors as machine-learners?
- Implications for financial market equilibrium?
 - asset price dynamics
 - econometric testing of asset pricing models
 - search for anomalies, factors

Investor beliefs and econometric analysis

- Empirical asset pricing hypotheses typically involve orthogonality conditions

\[\mathbb{E}[(r_{t+1} - r_{b,t+1})x_t] = 0 \]

with some risk-appropriate benchmark return \(r_{b,t+1} \) and time-\(t \) observable conditioning variables \(x_t \).

- e.g., market efficiency tests
- Let’s abstract from risk pricing here: Assume \(r_{t+1} \) already adjusted for an appropriate benchmark return so that

\[\mathbb{E}[r_{t+1}x_t] = 0 \]

- AP theory implies that the orthogonality conditions hold under investor expectations \(\hat{\mathbb{E}}[.] \)
Investor beliefs: Learning

- How do investor expectations relate to estimates of expected values, $E[.]$, by the econometrician studying data ex post?
- Much of literature: Rational expectations (RE) (here: investors know model & param. of DGP) so that $\tilde{E}[.] = E[.]$
 - LLN $\frac{1}{T} \sum_{t=1}^{T}[.] \rightarrow E[.]$ allows econometrician to recover $\tilde{E}[.] = E[.]$ in empirical applications and test AP model
- But if investors learn about parameters/model from data: $\tilde{E}[.]$ of investors $\neq E[.]$ of econometrician
- Even in low-dimensional case, this changes how we should interpret asset price data
 - e.g., there will be in-sample return predictability, $E[r_{t+1|x_t}] \neq 0$, even if $\tilde{E}[r_{t+1|x_t}] = 0$ (e.g., Lewellen and Shanken 2002)
- Does high-dimensionality make this problem “worse”?

Investor learning in the age of Big Data

- What do investors learn about? Realistically, enormous (and expanding!) set of potentially relevant variables for pricing of stocks. High-dimensional!
 - Existing learning models look at very low-dimensional learning problem
- Key lesson from lecture 1: In high-dimensional setting shrinkage/variable selection crucial to obtain good forecasts
 ⇒ Investors must use prior knowledge about models/parameters to shrink/select variables
- What are the consequences of learning from high-dimensional data with shrinkage/selection for observed asset prices?
Example: Learning about stock fundamentals

- Simple example before laying out more general framework
- Cross-section of N assets with payoffs (dividends)

$$y_t = b_1 x_1 + b_2 x_2 + e_t, \quad e_t \sim IID$$

with two firm characteristics x_1, x_2, where $x_1' x_2 = 0$.

- Risk-neutral investors learn from $\{y_1, y_2, \ldots, y_t\}$ about $b = (b_1, b_2)'$ and use to forecast y_{t+1}

- Prices of claims at t to single next period dividends in $t + 1$ ("dividend strips")

$$p_t = \hat{b}_1 x_1 + \hat{b}_2 x_2$$

Example: Learning about stock fundamentals

- For now just suppose that investors use variable selection method that yields $\hat{b}_2 = 0, \hat{b}_1 \neq 0$.
 - Unlikely optimal with just two explanatory variables, but in more realistic high-dimensional case e.g. half of all coefficients may be set to zero

- Price

$$p_t = \hat{b}_1 x_1$$

- Subsequent realized return

$$r_{t+1} = y_{t+1} - p_t$$

$$= (b_1 - \hat{b}_1) x_1 + b_2 x_2 + e_{t+1}$$
Example: Learning about stock fundamentals

- Consider an econometrician observing r_{t+1} ex-post and looking for in-sample predictability using x_1, x_2 as predictors.
- Two sources of in-sample return predictability in

$$r_{t+1} = (b_1 - \hat{b}_1)x_1 + b_2x_2 + e_{t+1}$$

1. Variable selection induces presence of b_2x_2
2. but $|b_1 - \hat{b}_1|$ should be smaller than it would be without variable selection
- How does this work out when investors use optimal shrinkage/variable selection?

Generalizing the framework

- Homogeneous risk-neutral Bayesian investors
- High-dimensional setting with 1000s of variables
- We explore different priors that induce shrinkage and variable selection
- Study properties of typical asset pricing tests (return predictability): in-sample (IS) and out-of-sample (OOS)
Generalizing the framework

- \(N \) risky assets. Risk-free rate normalized to zero.
- \(N \times J \) matrix of firm characteristics \(\mathbf{X}_t, J \leq N \)
- Each period, assets pay dividends, \(y_t \), where
 \[
 \Delta y_t = y_t - y_{t-1} = \mathbf{X}_{t-1} g + e_t, \quad e_t \sim N(0, \Sigma_e), \quad \Sigma_e = I
 \]
- We focus on pricing of one-period dividend strips: time-\(t \) claims to single-period dividends \(y_{t+1} \)
- Think of one period here as roughly the typical duration of a stock’s cash flow (e.g., perhaps a decade).

RE benchmark case

- Rational expectations (RE) equilibrium in which investors know \(g \):
 \[
 p_t = y_t + \mathbf{X}_t g, \quad r_{t+1} = y_{t+1} - p_t = e_{t+1}
 \]
- RE implies orthogonality conditions
 \[
 \mathbb{E}[r_{t+1} \otimes \mathbf{X}_t] = 0
 \]
- We focus on realistic case where investors don’t know \(g \): they learn about it from joint history \(\{y_1, y_2, \ldots, y_t\} \) and \(\{\mathbf{X}_0, \mathbf{X}_1, \ldots, \mathbf{X}_{t-1}\} \).
Investors’ prior beliefs

- We assume investors know $\Sigma_e = I$
- Before seeing data, investors hold prior beliefs
 \[g \sim N(0, \sigma^2_g I) \]
- Number of variables J potentially very large \Rightarrow OLS (i.e., diffuse prior) would not yield useful forecasts
 - More serious problem in more recent years: Technological change has increased number of potential predictors enormously
- Diffuse prior would not be an economically plausible assumption anyway: Predictable variation in dividends should be limited, i.e., extreme values of g unlikely

Investors’ posterior beliefs

- Given observations Δy_1 realized in $t = 1$, the posterior of g is
 \[g | \Delta y_1 \sim N(D_1 d_1, D_1) \]
 where
 \[D_1 = (\sigma_g^{-2} I + X'_0 X_0)^{-1} \]
 \[d_1 = X'_0 \Delta y_1 \]
- Posterior mean is ridge regression estimator
 \[\hat{g}_1 = D_1 d_1 = (\sigma_g^{-2} I + X'_0 X_0)^{-1} X'_0 \Delta y_1 \]
 where $\sigma_g^{-2} I$ dominates for small prior variances and disappears with diffuse prior.
Specializing the setup

- We assume predictors are already orthogonalized
 \[X_t = US_t, \quad \text{where } U'U = I \text{ and } S_t \text{ diagonal} \]

- Then,
 \[X_t'X_t = S_t^2 \]
 is diagonal with \(s_j^2 \), the eigenvalues of \(X_t'X_t \), on the diagonal.

- For orthogonalized predictors, the distribution of these eigenvalues captures the predictors’ empirical properties
 - affects fragility of estimation and prediction
 - determines effects of ridge regression shrinkage

- Example: two variables almost collinear before orthogonalizing
 \(\Rightarrow \) one very low eigenvalue component after orthogonalizing

Diagonal elements of \(S_t^2 \)

- We pick \(s_j^2 \) from a geometrically declining sequence,
 \[\lambda_j = \sqrt{\delta j \frac{1 - \delta}{\delta} N} \]
 partly in order \(s_j^2 = \lambda_j^2 \), partly randomly permuted each period

\(\Rightarrow \) As in typical empirical stock characteristics data, when picking \(J \) variables
 - More likely to capture high-eigenvalue predictors when \(J \) small
 - But always some low-eigenvalue predictors sprinkled in (i.e., pre-orthogonalization, some predictors close to collinearity)
 - Some chance that predictor associated with low eigenvalue this period will have higher eigenvalue next period (makes OOS prediction fragile)
Example: Diagonal elements of S_t^2

Example for $J = N = 5000$:

![Eigenvalue vs Diagonal element plot]

Shrinkage

- After observing data for t periods, stacked into

$$\Delta y_{1:t} = (\Delta y'_1, \Delta y'_2, \ldots, \Delta y'_t)'$$

$$X_{0:t-1} = (X'_0, X'_1, \ldots, X'_{t-1})'$$

- We can rewrite the posterior mean

$$\hat{g}_t = \left(\frac{1}{\sigma^2_g} I + X'_{0:t-1}X_{0:t-1} \right)^{-1} X'_{0:t-1}\Delta y_{1:t}$$

as

$$\hat{g}_t = \Gamma_t g + \Gamma_t (X'_{0:t-1}X_{0:t-1})^{-1} X'_{0:t-1}e_{1:t}$$

- The shrinkage matrix Γ_t is diagonal with elements $0 < \gamma_j < 1$
 - introduces estimation error related to g
 - in order to reduce the estimation error resulting from $e_{1:t}$.
Diagonal elements of shrinkage matrix Γ_t

Example for $J = N = 5000$:

\[
\begin{align*}
\text{Diagonal element } j &
\begin{array}{cccccc}
0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 \\
1000 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 \\
2000 & 1.1 & 1.2 & 1.3 & 1.4 & 1.5 \\
3000 & 1.6 & 1.7 & 1.8 & 1.9 & 2.0 \\
4000 & 2.1 & 2.2 & 2.3 & 2.4 & 2.5 \\
5000 & 2.6 & 2.7 & 2.8 & 2.9 & 3.0 \\
\end{array}
\end{align*}
\]

\Rightarrow shrinkage strong (γ_j low) for low-eigenvalue components of X (s_j^2 low)

Shrinkage important for forecast performance

MSE in forecasting Δy_{t+1} with $X_t \hat{g}_t$ as function of prior variance (data generated with fixed $\sigma^2_g = 1$):

\Rightarrow Diffuse prior (OLS) yields worse MSE than forecast $\Delta y_{t+1} = 0$.

Prices and returns

- Investors price the assets based on their posterior mean
 \[p_t = y_t + X_t \hat{g}_t \]
- Realized returns of single-period dividend strips then follow as
 \[r_{t+1} = y_{t+1} - p_t \]
- Evaluating, we obtain
 \[
 r_{t+1} = X_t (I - \Gamma_t) g \quad \text{Shrinkage effect} \\
 - X_t \Gamma_t (X'_{0:t-1} X_{0:t-1})^{-1} X'_{0:t-1} e_{t:t} \quad \text{Learning effect} \\
 + e_{t+1} \quad \text{Unforecastable error}
 \]
- Under Bayesian investors’ posterior beliefs, all three terms have expected value zero.

In-sample return predictability tests

- Econometrician analyzes sample of returns to test RE null hypothesis of no return predictability
 \[H_0 : p_t = y_t + X_t g \quad \Rightarrow \quad r_{t+1} = e_{t+1} \]
- Cross-sectional regression of \(r_{t+1} \) on \(X_{K,t} \), the first \(K \leq J \) columns of \(X_t \), yields coefficients
 \[h_{t+1} = (X'_{K,t} X_{K,t})^{-1} X'_{K,t} r_{t+1} \]
- Under \(H_0 \),
 \[
 \sqrt{N} h_{t+1} \sim N(0, N\Omega) \quad \text{where} \quad \Omega = (X'_{K,t} X_{K,t})^{-1}
 \]
 and
 \[h'_{t+1} \Omega^{-1} h_{t+1} \sim \chi^2_K \]
- Is econometrician going to find predictive regression coefficients in \(h_{t+1} \) jointly/individually “significant”?
In-sample return predictability tests

- Evaluating h_{t+1}, we obtain
 \[h_{t+1} = (I - \Gamma_{K,t})g_K \quad \text{Shrinkage effect} \]
 \[- H_{K,t} \Gamma_{K,t} (X'_{K,0:t-1} X_{K,0:t-1})^{-1} X'_{K,0:t-1} e_{t+1} \quad \text{Learning effect} \]
 \[+ (X'_{K,t} X_{K,t})^{-1} X'_{K,t} e_{t+1} \quad \text{Estimation error} \]

where $H_{K,t} = I + S_{K,t-1} S_{K,t}^{-1} + \ldots + S_{K,0} S_{K,t}^{-1}$.

- Under the RE hypothesis H_0 the first two terms are exactly zero, leading to the standard OLS variance.

- But with learning, the first two components are not zero \Rightarrow with g drawn from the prior distribution,
 \[h'_{t+1} \Omega^{-1} h_{t+1} \sim \text{a (complicated) weighted sum of } \chi^2_1 \text{ r.v} \]
 i.e., not χ^2_K!

Simulations

- We simulate
 \[\Delta y_{t+1} = X_t g + e_{t+1} \]

- Parameters
 - Eigenvalues of $X'_{t} X_{t}$: as in earlier plot, fraction $q = \frac{1}{2}$ of columns randomly permuted
 - Number of stocks: $N = 5000$
 - Number of predictor variables: $J = 1$ to N
 - Number of predictors available to econometrician: $K = J$
 - Prior variance: $\sigma^2_g = 1$

- Prior variance assumption implies ratio of maximum forecastable to residual variance of Δy_{t+1} of
 \[\frac{1}{N} \text{tr}(X'_{0:t-1} X_{0:t-1}) \approx 1 \]

 which is important for mapping length of one time period, learning speed, to empirical data.
Simulations: Interpretation of time period length

- With persistent forecastable component and IID residual, the ratio of maximum forecastable to residual variance falls over time.
- Evidence in Chan, Karceski, and Lakonishok (2003) based on a number of firm revenue and profit growth measures: horizon > 10 years required for this ratio to exceed unity.
 - Predictable growth based on IBES analyst forecasts as predictors as lower bound for maximum forecastable variance.
 ⇒ Think of one period in the model as approximately a decade.

In-sample predictability: Joint test ($p < 0.05$)

⇒ Almost certain to reject H_0 as soon as J moderately high.
In-sample predictability: Number of individually “significant” factors ($p < 0.05$)

⇒ % of characteristics for which H_0 rejected is much higher than nominal test size

In-sample predictability: Joint adj. R^2
Out-of-sample predictability

- How could we test the learning-with-shrinkage hypothesis? Out-of-sample tests?
- Econometrician’s return forecast based on on period t regression coefficient: $X_{K,t}h_t$
- OOS investment strategy with weights based on this return forecast
 $$w_t = \frac{1}{\sqrt{K}}X_{K,t}h_t$$
- Realized return in OOS period
 $$r'_{t+1}w_t = g'(I - \Gamma_t)X'_{t}w_t$$
 $$- e'_{t:t-1}(X'_{0:t-1}X_{0:t-1})^{-1}\Gamma_tX'_{0:t-1}w_t$$
 $$+ e'_{t+1}w_t$$

Out-of-sample predictability

- With g drawn from the prior distribution, one can show
 $$E[r'_{t+1}w_t] = 0$$
 because Bayesian shrinkage exactly balances the effects on OOS predictability of first and second terms in $r'_{t+1}w_t$ expression.
- But still, there is a catch: while the two terms cancel out in expectation, they don’t cancel in a given sample for a given draw of g and $e_{1:t}$ ⇒ effect on sampling variance of OOS return
Out-of-sample predictability

- Recall that one time period here is meant to be long (≈ a decade), so think of the OOS evaluation period \(t + 1 \) as one decade
- Standard way to assess statistical significance would be to use intra-period, e.g., \(m = 120 \) monthly returns.
- For intra-period returns we have

\[
\mathbf{r}_{t+\tau}' \mathbf{w}_t \approx \mathbf{e}_{t+\tau}' \mathbf{w}_t
\]

with \(\{\tau\} = \{1/m, 2/m, ..., 1\} \), because intra-period, \(\hat{\mathbf{g}} - \mathbf{g} \) (reflecting \(\mathbf{g}, \Gamma_t, \) and \(\mathbf{e}_{1:t} \)) is approximately constant.

- Econometrician estimates portfolio return variance

\[
\text{var} \left(\mathbf{w}' \mathbf{r}_{t+1} | \mathbf{w}_t, \right) \approx \text{var} \left(\mathbf{w}' \mathbf{e}_{t+1} | \mathbf{w}_t, \right) = h_t^' S^2_{\mathbf{K}} h_t
\]

- But actual sampling variance is higher because
 - terms involving \(\mathbf{g}, \mathbf{e}_{1:t} \) don’t perfectly balance
 - distribution is non-normal (involves cross-products between normal and squared normal r.v.)

Out-of-sample predictability: Joint test \((p < 0.05)\)
Out-of-sample predictability: Number of individually “significant” factors ($p < 0.05$)

⇒ Lower than in-sample, but only by a bit (about 2/3 of number of in-sample significant factors)

Sparsity

- So far we studied learning with shrinkage. What about sparsity, variable selection?
- Similar effects with priors that induce sparsity: $g \sim \text{Laplace}$

⇒ Investors use Lasso to estimate g in $\Delta y_t = X_{t-1}g + e_t$.
Sparsity: Number of coefficients set to zero by Lasso

In-sample predictability: Number of individually “significant” factors ($p < 0.05$) with Lasso

\Rightarrow Very similar to normal prior/ridge regression case
Out-of-sample predictability: Number of individually “significant” factors ($p < 0.05$) with Lasso

$⇒$ Very similar to normal prior/ridge regression case

Market efficiency in the age of Big Data: Summary

- High-dimensionality of fundamentals predictor space magnifies learning effects in the cross-section of stock returns
 - More likely to reject no-predictability null IS and OOS
 - More likely to find factors with “significant” abnormal returns IS and OOS
- Documenting a new “significant” factor, anomaly, becomes “less interesting” in high-dimensional setting—even without data mining, multiple testing problems.
- Analysis of high-dimensional case underscores that market efficiency (ME) is a fuzzy concept:
 - Does ME mean investors have RE with DGP parameters known? (Underlying assumption of most ME tests)
 - Does ME mean investors are Bayesian learners? (We don’t have generic testing approaches for this version)
- Open question: Adjustment to test statistics so that we can test the learning hypothesis in a generic way?
Outline

1. More on ML techniques relevant for asset pricing

2. ML used by econometrician outside the market: SDF extraction in high-dimensional setting

3. ML used by investors inside the market: Rethinking market efficiency in the age of Big Data

4. Conclusion: Agenda for further research

Agenda for further research: ML in AP

- ML methods seem well-suited to address needs of
 - econometrician studying AP data ex post
 - investors learning from high-dimensional data in real time
- **To do:** Further work on priors
 - Given low signal-to-noise ratio in AP, prior knowledge more important than in other ML applications ⇒ important to fuse ML methods with economic restrictions
 - Example from lecture 1: Prior based on absence of near-arbitrage and concentration of factor premia
 - Other potentially useful avenues:
 - priors on heterogeneity of limits to “arbitrage,” short-sale constraints, ...
 - priors tilted towards risk premia implied by structural economic models
Agenda for further research: ML as a tool for the econometrician in AP

- By now clear that using low-dimensional characteristics-sparse factor models (e.g., FF 5-factor) as
 - representation of investment opportunity set
 - benchmark for abnormal return measurement (e.g., for newly proposed anomaly, factor)

 is not appropriate anymore ⇒ ML methods should become standard part of toolkit

- **To do:** Allow for drift in parameters, moments, penalties
 - Asset return moments change over time as investors learn, the economy evolves, arbitrageurs trade
 - Potentially promising: fused lasso, fused ridge regression

- **To do:** Connect SDF extracted with ML methods back to economic models of financial markets
 - correlate ML-based SDF with macro, sentiment variables?

Agenda for further research: ML as approximation of investor learning in AP models

- Thinking of investors as forecasting using ML tools seems appropriate, given the arguably high-dimensional problem faced by real-world investors

- **To do:** The setting we have considered makes learning in many ways still too easy. Would be realistic to add
 - Uncertainty about second moments
 - Time-varying parameters
 - Additional costs of model complexity
 - Model robustness concerns
 - Risk premia
Agenda for further research: ML as model of investor learning

- **To do:** Introducing investor heterogeneity in a high-dimensional setting, e.g.,
 - some investors learn from the fundamentals history and forecast fundamentals
 - some investors learn from the return history and forecast returns
 - (plus perhaps some investors that misinterpret data)
 could lead to additional interesting cross-sectional predictions.

- **To do:** Learning from return history (a high-dimensional object) could also be source of interesting dynamics

- **To do:** Dynamic process of anomaly discovery (and elimination by arbitrageurs) in high-dimensional setting