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ABSTRACT

This paper introduces a new approach to benchmarking the performance of individual

private equity funds. The new metric, α, is substantially less sensitive to noise in individ-

ual fund cash flows compared to the popular public market equivalent (PME) measure

and its generalized version (GPME), while having the same aggregate pricing implica-

tions for private equity as GPME. We illustrate in simulated data that α is an overall

more accurate measure of risk-adjusted fund returns than both PME and GPME. For

a large data set of private equity fund cash flows, the standard deviation of α across

venture capital funds is 20% lower than PME and GPME. For buyout funds, PME and

α are quite close, but the metrics deviate in subsamples where beta is different from one.

Our more accurate performance metric increases the statistical power in regressions of

performance on fund size, and improves performance predictability of managers’ future

funds.
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Allocations to private equity (PE) by U.S. pension funds and endowments have been rising

in recent years.1 For example, the 2020 NACUBO-TIAA Study of Endowments reports that

university endowments invested 23% of total assets in venture capital and buyout funds, and

another 6% in private equity real estate. The top 200 largest U.S. defined benefit public (cor-

porate) pension funds in 2016 allocated an average of 9.0% (5.8%) of their assets to venture

capital and leveraged buyout, and 8.3% (5%) to real estate.2 The increased prominence of

PE brings the problem of performance assessment to the forefront. Despite recent progress

in assessing risk-adjusted returns at the asset class level, little is known about the properties

of performance metrics when applied to individual PE funds. Assessing an individual fund’s

performance is, however, the typical problem in practice, as investors have to decide how to

allocate money to managers. It is also an important issue for academic research on topics

such as the degree of performance persistence and the relation between fund performance

and characteristics of funds or managers.3 This paper shows that the popular public mar-

ket equivalent (PME) metric, and its generalized version, are very noisy measures of the

risk-adjusted return to individual PE funds, and proposes a new measure that yields more

accurate estimates.

Performance evaluation in PE is complicated because regularly observed returns are not

available. A PE fund is organized as a limited partnership that formally lasts ten years. Lim-

1For the purposes of this paper, the term “private equity” encompasses all types of private equity, including
but not limited to investments in leveraged buyout, venture capital, real estate, and natural resources.

2Numbers are from the Pensions and Investments annual survey of pension funds:
http://www.pionline.com/article/20170206/PRINT/302069976/assets-of-top-funds-up-62-to-94-trillion

3Papers that study performance persistence in private equity include Kaplan and Schoar (2005), Phalip-
pou and Gottschalg (2009), Phalippou (2010), Chung (2012), Harris, Jenkinson, Kaplan, and Stucke (2014),
Hochberg, Ljungqvist, and Vissing-Jorgensen (2014), Robinson and Sensoy (2016), and Braun, Jenkinson,
and Stoff (2017), Korteweg and Sorensen (2017), Nanda, Samila, and Sorenson (2020). Examples of studies
that relate PE fund performance to fund or manager characteristics include papers on returns to scale (e.g.,
Kaplan and Schoar, 2005, Metrick and Yasuda, 2010, Harris, Jenkinson, and Kaplan, 2014, Lopez-de-Silanes,
Phalippou, and Gottschalg, 2015, Rossi, 2019), pay for performance (e.g., Chung, Sensoy, Stern, and Weis-
bach, 2012, Hüther, Robinson, Sievers, and Hartmann-Wendels, 2020), the relation between VC networks
and performance (e.g., Hochberg, Ljungqvist, and Lu, 2007, Abell and Nisar, 2007, Liu and Chen, 2014),
the relation between performance and LP identities (e.g., Lerner, Schoar, and Wongsunwai, 2007, Hochberg
and Rauh, 2013, Sensoy, Wang, and Weisbach, 2014, Andonov, Hochberg, and Rauh, 2018, Cavagnaro, Sen-
soy, Wang, and Weisbach, 2019), the potential manipulation of interm performance during fundraising (e.g.,
Jenkinson, Sousa, and Stucke, 2013, Barber and Yasuda, 2017, Chakraborty and Ewens, 2018, Brown, Gredil,
and Kaplan, 2019, Jenkinson, Landsman, Rountree, and Soonawalla, 2020, Hüther, 2022), and the relation
between performance and idiosyncratic volatility (e.g., Ewens, Jones, and Rhodes-Kropf, 2013, Peters, 2018,
Opp, 2019), amongst others.
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ited partners (LPs) commit capital to the fund, which is called by the general partner (GP)

when suitable investment opportunities are identified, and to pay management fees. When

portfolio companies are sold, distributions are paid to the limited partners, after performance

fees. The standard approach in the mutual and hedge fund industries that uses factor models

to benchmark returns and estimate fund-level alphas, cannot be readily applied to a such a

sequence of cash flows occurring at random times.

The generalized public market equivalent (GPME) approach of Korteweg and Nagel

(2016) values the PE cash flow stream from an LP’s perspective using a stochastic dis-

count factor (SDF) that is calibrated to exactly price a set of benchmark assets (for example,

public equities and risk-free bonds). If the PE cash flows can be replicated using a (possibly

levered) investment in the benchmark assets, then the GPME is zero in expectation. This is

a robust approach that accommodates the skewness and irregular horizon of PE cash flows,

and it is well-suited to address the question of aggregate outperformance of the PE industry.

As such, the measure works well in large data sets, taking averages over a large number of

funds of varying vintages. However, for an individual fund, even if its expected GPME is

zero, the realized value of the GPME may be far from zero. Typically, GPME realizations

for individual funds are far too noisy to draw meaningful inferences about individual fund

performance.

The root of the problem can be understood by analogy with factor model regressions

for public market funds that have regularly observed realized fund returns. With observ-

able returns, the typical exercise is to compare the realized fund return, Rt, to a benchmark

portfolio return, Rb
t , which is a combination of factor portfolio returns scaled by their corre-

sponding factor loadings. Subtracting Rb
t from Rt not only generates an excess return that

is zero in expectation under the null of zero outperformance, but it also absorbs much of the

period-by-period random variation in Rt that originates from unexpected shocks to the risk

factors in Rb
t . As a consequence, Rt − Rb

t delivers a relatively precise estimate of abnormal

performance even for an individual fund. In contrast, discounting PE cash flows with the

SDF in the GPME approach does not remove such common factor shocks to the same degree,

which results in a much noisier estimate of abnormal performance.
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In this paper we build on the GPME approach to develop a new benchmarking method

that removes common factor shocks and is suitable for individual fund performance eval-

uation. To achieve this, the method requires two additional assumptions over and above

the assumptions underlying the GPME method. First, we assume that fund cash flows and

benchmark portfolio payoffs are jointly lognormal with constant covariance matrix and con-

stant means. This is restrictive, but so are typical factor model regression approaches for

public market funds which are essentially based on a mean-variance optimization framework.

Second, we assume that betas (i.e., factor loadings) are the same across funds within an

asset class (e.g., VC or buyout) and constant over time. This assumption is necessary to

infer betas from data on aggregate performance. It could be relaxed by conditioning on fund

characteristics and state variables, although this may not be feasible in practice given the

small sizes of available data sets.

We construct a benchmark portfolio that matches the systematic risk of the PE cash flows.

It takes continuously rebalanced levered positions in the SDF risk factors with weights given

by factor betas. We show that if the benchmark portfolio uses the true betas as weights, then

deflating PE cash flows with the return on this benchmark portfolio delivers exactly the same

expected abnormal payoff as the GPME approach. In addition, deflating by the benchmark

portfolio removes the common risk factor shocks from the PE cash flows, just as factor model

regression in public market funds returns data do. As a consequence, we obtain a much less

noisy measure of individual fund abnormal performance than the GPME. We use α as the

label for the abnormal performance relative to the benchmark portfolio.

In practice we don’t know the true betas. To estimate betas, we exploit the fact that

deflating PE cash flows with the return on this benchmark portfolio must deliver the same

expected abnormal payoff as the GPME approach. As a first step, we therefore estimate

the GPME for a large group of funds and vintages within an asset class. We then apply

the benchmark portfolio approach and search for the betas that deliver average abnormal

payoffs that are exactly equal to the GPME and that minimize, at the same time, the cross-

sectional variance of abnormal performance across funds. Finally, we evaluate individual fund

performance with a benchmark portfolio that uses these estimated asset-class specific betas
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as factor weights.

Simulations confirm that α is overall a more accurate measure of fund-level abnormal

PE return than GPME or the more restrictive public market equivalent (PME) of Kaplan

and Schoar (2005) that deflates PE cash flows with the market return. There are only two

cases where α is not strictly preferred. First, when beta is truly equal to one, then α and the

abnormal performance measured by PME coincide, and the PME may perform slightly better

in practice as it avoids the estimation of the parameters needed to compute the benchmark

portfolio. Of course, in practice one would not know if beta is truly equal to one. Second,

when betas are equal to the SDF loading on the corresponding factors (i.e., the factors’ prices

of risk), GPME and α coincide. We also show that these results are robust to reasonable

violations of the main assumptions of constant betas and lognormality.

We use the Burgiss Manager Universe, one of the largest samples of PE fund cash flow

histories available, to take the benchmark portfolio approach to the data. Our sample includes

a total of 1,219 VC funds and 879 leveraged buyout funds. The data are sourced exclusively

from a large number of LPs, avoiding the natural biases introduced by sourcing data from

GPs. The data are of very high quality because they are used for control purposes (audit and

performance measurement) and cross-checked when multiple LPs invest in the same fund.

In our baseline analysis, we use a CAPM SDF and, correspondingly, a benchmark portfolio

with the market portfolio return as the only factor.

For venture capital funds, the differences between α and GPME at the individual fund

level turn out to be modest. The across-fund standard deviation of α is 20% lower compared

with the GPME. The differences are not big because the estimated VC beta of 2.43 is quite

close to the estimate of the price of risk of the market factor in the SDF (3.46). As a

consequence, discounting with the SDF or deflating with the benchmark portfolio produces

relatively similar results. Put differently, with a market price of risk for the market factor in

the vicinity of beta, discounting by the SDF removes common factor shocks almost as well

as the deflating with the benchmark portfolio does.

In contrast, for the sample of leveraged buyout funds, we find much bigger differences

between α and GPME. Here, the across-fund standard deviation of α is 66.7% lower compared
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with the GPME. The reason is that the difference between beta (0.79) and market factor

price of risk in the SDF (3.59) is much larger. This means that discounting by the SDF

yields realized pricing errors that have large common factor components greatly magnify the

noise and cross-sectional dispersion in fund-level GPME realizations compared with α.

We find different estimates of betas across early and late time periods, across fund size

splits of the data, and for subclasses of venture capital. Therefore, the degree to which

PME and GPME deviate from each other, and from α, varies over time and across fund

characteristics. Although this may raise some concern regarding violations of the assumption

of constant betas in the benchmark method, the simulations show that for the range of betas

estimated in the data, the alpha metric is robust and more accurate than both PME and

GPME.

When we repeat the analysis using two-factor models where we augment the market factor

with an additional factor from the portfolios that underlie the Fama-French size and value

factors, we find results that are similar. We again find much bigger differences between α

and GPME at the individual fund level for buyout funds than for VC funds. Interestingly,

VC funds load most strongly on the big-growth portfolio rather than on the small-growth

portfolio that is often thought to be a good approximation of firms in VC’s portfolios. Buyout

seems to be most closely related to big-value.

Finally, we demonstrate the usefulness of the α performance measure in two applications

that study the properties of PE funds’ abnormal performance. First, we examine the rela-

tion between fund performance and fund size. The additional noise in the PME and GPME

performance metrics substantially reduces statistical power to reject the null hypotheses in

regressions of fund performance on fund size. Coefficient standard errors are as much as

one-third to two-thirds lower when using α instead of GPME as the dependent variable,

depending on the regression specification and asset class. Second, we look at performance

persistence. We find that α performs better than (G)PME in predicting future fund perfor-

mance, especially at longer horizons (when predicting performance of future funds that do

not overlap with the present fund). This is consistent with less noise contamination in α

compared with (G)PME, and hence smaller errors-in-variables bias. Compared to PME, pre-
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dicting future performance based on α works best for top quartile VCs. Relative to GPME,

α works well across the board in buyout, and for predicting poorly performing VCs.

Our work relates to several other recent papers that propose advances in PE performance

evaluation methodology. Several papers develop alternative approaches for individual fund

performance evaluation. Gupta and Van Nieuwerburgh (2021) pursue an approach that is

closely related to ours. Based on a multi-factor SDF and VAR dynamics for state variables

that include valuation ratios and dividends of equity factors, they construct model-implied

prices and cash flows of bond and equity strips (i.e., claims to single future cash flows at

various horizons). Linear combinations of these strips then serve as benchmark portfolio

prices and payoffs. A main difference to our approach is complexity. Their approach requires

estimation of hundreds of parameters (the VAR companion matrix alone has more than 300,

given there 18 state variables) which is only feasible with ad-hoc parameter restrictions. In

our case, with the CAPM SDF, we have four parameters: 2 for the SDF and 2 benchmark

portfolio parameters. Brown, Ghysels, and Gredil (2022) develop a state-space model to

filter unobserved fund NAVs and estimate fund-level alphas and betas. Like Gupta and Van

Nieuwerburgh, this approach also involves estimating many parameters and latent states over

time (they filter weekly NAVs for each fund). They estimate an average buyout fund beta of

1.0 to 1.3, depending on the model specification, which is slightly higher than our estimate of

0.8. Similar to us, they estimate a positive risk-adjusted return to the average buyout fund.

Their average VC fund has an estimated market beta of 1.4 to 1.8, somewhat lower than

the 2.4 beta that we estimate. Like us, they estimate a negative risk-adjusted VC return in

three out of their four specifications. Driessen, Lin, and Phalippou (2012) propose a heuristic

approach that uses, like the PME method, a realized benchmark return to discount PE cash

flows, but in their case the benchmark return is a beta-adjusted market return and includes

an abnormal return parameter. Robinson and Sensoy (2013) use this approach, too, but they

exogenously choose a beta instead of estimating it. In contrast, our approach is rigorously

justified based on asset-pricing theory and our statistical assumptions. That said, the beta

of 2.7 for VC funds that Driessen et al. estimate is very close to our estimate of 2.4.

Other recent papers propose other innovations in performance evaluation methodology,
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but without tackling the problem of individual fund performance evaluation. Gredil, Sorensen,

and Waller (2020) use SDFs of habit-formation and long-run risks consumption-based asset

pricing models. Using these SDFs, they find that venture funds have better risk-adjusted

performance than with a CAPM SDF. Like the GPME method, their approach uses realized

cross-products of SDFs and cash flows (albeit with an adjustment aimed at improving finite-

sample performance of the estimator) and is hence not well-suited for evaluating individual

fund performance. Ang, Chen, Goetzmann and Phalippou (2018) use Bayesian methods to

extract from cash flow data and public markets factor returns an implied series of returns

for groups of PE funds. This method is not applicable to individual funds, however. Boyer,

Nadauld, Vorkink, and Weisbach (2021) construct an aggregate PE index from secondary

market transactions of PE fund shares. Stafford (2022) construct a public markets replicat-

ing portfolio for PE buyout funds in aggregate.

The paper is structured as follows. Section I introduces theoretical background and our

proposed method for estimating individual fund alphas. Section II discusses estimation.

Section III shows simulation results and robustness. Section IV reports results from PE fund

data, and Section V concludes.

I. Risk-adjusting Returns of Private Equity Funds

Our model setup is as follows. We take the perspective of the limited partners in a private

equity fund. Let {C} = {C1, C2, .., CK} be the stream of (nonnegative) capital calls by the

fund, and {X} = {X1, X2, .., XJ} the (nonnegative) distributions to the LPs. For example,

C = $1 means the LP sends one dollar to the GP, and X = 2 means the GP distributes $2

back to the LP. See Figure 1 for an example of a fund with K = 3 capital calls and J = 4

distributions. To keep notation simple, we suppress fund-identifier subscripts in this section.

Throughout the paper we use uppercase R for arithmetic returns, and lowercase r for log

returns, that is, r ≡ logR.
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A. Generalized Public Market Equivalent

Korteweg and Nagel (2016) (KN) introduce a stochastic discount factor (SDF) approach

to evaluating private equity fund outperformance. If an SDF M perfectly prices fund payoffs,

then

E

J∑
j=1

Mh(j)Xj = E

K∑
k=1

Mh(k)Ck. (1)

where h(k) is the time since fund inception until the date of capital call k, and h(j) accordingly

for distributions. The SDF Mh is the one that prices payoffs over the relevant time horizon,

h. KN assume an exponentially-affine CAPM SDF,

Mh = exp(δh− γrmh ), (2)

where rmh is the log return on the stock market portfolio from fund inception to h periods

later. In analogy to the CAPM in its linear factor model version, this SDF evaluates payoffs

from the viewpoint of an investor who is invested in the stock market portfolio and the

risk-free asset. If an investment opportunity offers abnormal payoffs based on this SDF, this

means that this investor would benefit at the margin from adding this asset to the portfolio in

addition to the risk-free asset and the stock market portfolio. Unlike the linear factor model

version of the CAPM, the SDF in (2) can be applied to multi-period valuation problems.

The multi-period SDF for a payoff at horizon h is simply the single-period SDF compounded

over that horizon. Additional risk factors, such as those in Fama and French (1993), can be

added easily, but to keep notation simple we focus on the single-factor case in laying out our

approach.

KN estimate the SDF parameters δ and γ by requiring the SDF to perfectly price pseudo-

funds that invest in T-bills and the stock market index. Then, if the private equity cash flow

stream can be replicated by a (possibly levered) portfolio of the market index and the risk-free

asset (or, more generally, the portfolios included in Mh), then (1) must hold with the SDF

(2). Based on this, KN define the generalized public market equivalent (GPME) for a given
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fund as

GPME =
J∑

j=1

Mh(j)Xj −
K∑
k=1

Mh(k)Ck, (3)

where the Xj and Ck are distributions and capital calls scaled by the sum of capital calls

discounted with the risk-free rate. These scaled distribution cash flows, {X}, can then be

interpreted as the dividends from an investment of approximately $1 in the fund, and the

expected GPME can be interpreted as the NPV of that investment. If the capital call cash

flows are deterministic, this interpretation becomes exact. If there are no abnormal returns

to investing in PE, then the expected GPME equals zero.

The GPME generalizes the well-known public market equivalent (PME) metric of Kaplan

and Schoar (2005), which is a special case of equation (2) with δ = 0 and γ = 1 (see Sorensen

and Jagannathan, 2015, and Korteweg and Nagel, 2016). We use a slightly different definition

of PME than the original Kaplan and Schoar paper, which uses the ratio of discounted

distributions and capital calls. Our definition uses the difference, which avoids some Jensen

inequality issues with the ratio, as explained in Korteweg and Nagel (2016). In the Kaplan-

Schoar paper, a fund that can be replicated by the market has a PME of one, while according

to our definition that fund’s PME is zero.

B. Benchmark portfolio for individual fund returns

GPME works well in expectation, that is, when estimated across a large number of funds

that cover different time periods. However, a typical problem both in academia and in

practice is to assess the performance of an individual fund. In simulations below we show

that the GPME, though statistically consistent, can be a very noisy measure of a single fund’s

outperformance. In this section we develop a benchmark portfolio comparison method that

works equally well in expectation, but yields more accurate estimates of fund-level abnormal

returns.

In order to achieve a similar result for PE funds, we need to impose a little more structure

on the problem than the GPME framework does. This gives up some of the generality of the

GPME approach, but it enhances statistical power. Specifically, we add the assumption that
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market factor returns and fund payoffs are IID over time and distributed jointly lognormal.

This means that the joint distribution that the log market return rmh(j) and log payoff xj

realized between time t and t+ h(j) are drawn from the same bivariate normal distribution

for all t. We further assume a constant risk-free rate rf . Finally, we assume that the

market beta of log payoffs, β = cov(xj , r
m
h )/var(rmh ), is horizon-independent and does not

vary across funds within an asset class (henceforth we drop the j index in h(j) to reduce

notational clutter). Defining µ = logE[Rm
1 ]− rf and σ2 = var(rm1 ), these assumptions imply

rmh

xj

 ∼ N

µh+ rfh− h
2σ

2

E[xj ]

 ,

 σ2h βσ2h

βσ2h var(xj)

 . (4)

Since h-period log market returns are the sum of single-period market returns, expected

return and variance scale linearly with h. In contrast, the xj payoff may not necessarily have

a representation as a sum of h(j) single-period IID random variable realizations. Therefore,

E[xj ] and var(xj) do not necessarily scale with h(j) (but the component of xj spanned by

rmh scales with h(j) and the definition of β implies that var(xj) ≥ β2σ2h holds.)

Under these assumptions, the GPME method with SDF (2) corresponds to benchmarking

PE returns with a log-linear version of the CAPM,

logE[Rh]− rfh = β
(
logE [Rm

h ]− rfh

)
. (5)

To see this, note that the SDF parameters are pinned down by the requirement that the SDF

correctly prices the risk-free asset and the market portfolio of public equities. The pricing

equations for these two assets can be solved for

δ = −rf − 1

2
γ2σ2 + γ(rf + µ− 1

2
σ2),

γ =
µ

σ2
. (6)

Evaluating the log of the pricing equation E[MhRh] = 1 with these parameter values then

yields (5).
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Even though PE fund returns are not observable, we can benchmark fund cash flows

under the statistical assumptions we made above. Consider the valuation of a single cash

flow, Xj , in (3). Using the SDF (2) with the parameter values in (6), and taking expectations,

we obtain

E[MhXj ] = E

[
exp

{
−rfh − β(rmh − rfh) +

h

2
β(β − 1)σ2

}
Xj

]
. (7)

(PROOF: See appendix.)

Since β is horizon-independent, equation (7) applies to the valuation of every other cash

flow in the summations in (3), using the same β. Therefore, we get

E[GPME] =

E
J∑

j=1

Xj

Rb
h(j)

−

(
E

K∑
k=1

Ck

Rb
h(k)

)
(8)

with the benchmark portfolio return

Rb
h = exp

{
rfh + β(rmh − rfh)−

h

2
β(β − 1)σ2

}
(9)

Thus, if we deflate each cash flowXj by the realized gross return that the benchmark portfolio

would have earned over the horizon h(j) from initial investment into the fund until realization

of Xj , we get the same abnormal payoff in expectation, E[GPME], as by discounting with

the SDF in (3).

The return Rb
h can be interpreted as the return on a levered portfolio that matches the

systematic risk of the fund cash flows. More precisely, if time is continuous, Rb
h is the h-

period return on a continuously rebalanced portfolio that, at every instant, invests a share

β in the market portfolio and 1 − β in the risk-free asset (alternatively, one can view Rb
h as

the exponential of a second-order Taylor approximation of the log return of a portfolio that

invests a share β in the market portfolio and 1−β at the beginning of the return measurement

interval; see Campbell and Viceira (2002), Chapter 2).

While deflating cash flows with Rb
h delivers the same expected abnormal payoff as dis-

counting with the SDF does, it is important to note that 1/Rb
h is not an SDF, as it depends

11



on an asset-specific parameter (β).4 Moreover, while expected values are the same, discount-

ing with the SDF and deflating with the benchmark portfolio produces a different realized

abnormal payoffs for an individual fund. Define the fund-level abnormal performance metric

α =
J∑

j=1

Xj

Rb
h(j)

−
K∑
k=1

Ck

Rb
h(k)

. (10)

Compared to (3), α is a more accurate measure of abnormal fund-level performance,

because the benchmark portfolio eliminates variation in payoffs due to the factors in the

benchmark portfolio. To see this, consider again a single cash flow Xj . In logs, the cash flow

deflated by the benchmark portfolio return is xj − rbh while the realized product of the cash

flow with the SDF is xj +mh. Now note that

xj − E[xj ] = β(rmh − E[rmh ]) + ϵj (11)

rbh − E[rbh] = β(rmh − E[rmh ]) (12)

mh − E[mh] = −γ(rmh − E[rmh ]) (13)

where ϵj is an idiosyncratic shock. Therefore, after deflating by Rb
h, the unexpected log payoff

is

xj − E[xj ]− (rbh − E[rbh]) = ϵj . (14)

By virtue of β being a regression coefficient in a regression of xj on rmh , deflation with Rb

completely removes the component of xj related to rmh and only the idiosyncratic part ϵj

remains. In contrast, the unexpected log product with the SDF is

xj − E[xj ] + (mh − E[mh]) = (β − γ)(rmh − E[rmh ]) + ϵj . (15)

Unless it happens to be the case that β = γ, the SDF based measure in (3) is therefore subject

to an additional source of noise coming from the rmh − E[rmh ] component. Especially when

4In contrast, the reciprocal of the SDF is a proper portfolio return: the return on the growth-optimal
portfolio, as shown in Long (1990). This is the return on a continuously rebalanced portfolio that, at every
instant, invests a share γ in the market portfolio and 1−γ in the risk-free asset. In the special case of log-utility
investors, γ = 1, the growth-optimal portfolio is the market portfolio, and we obtain the PME metric.
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|β − γ| is big or when the realized average market portfolio return during a fund’s lifetime

was far from its expected value, the SDF-based GPME can deviate far from E[GPME].

Thus, while the SDF approach provides a valid measure of abnormal performance in the

sense that it is correct on average in a large-T sample, the benchmark portfolio approach,

while also correct on average, should minimize the noise in performance assessment and there-

fore provide a more accurate measure of abnormal performance suitable for benchmarking

individual funds.

The above analysis ignores estimation of β and the SDF parameters, δ and γ. Estimation

is not a trivial task because PE fund returns are unobserved in practice makes, which mate-

rially complicates the estimation of β compared to, say, mutual funds applications. To make

estimation feasible, we impose the assumption that β is identical within a group of PE funds.

As we explain in the next section, this allows us to use information from the cross-section

of fund pricing errors to pin down β. The performance of the GPME and alpha measures,

both in absolute and relative terms, will depend on the degree of estimation error in these

parameters. The performance of alpha will also depend on how reasonable the additional

assumptions of homogeneous betas and lognormality are in the data, and the robustness of

the approach to violations of these assumptions. We analyze these issues in the simulation

section below. The next section describes estimation.

II. Estimation

As a first step, we estimate the parameters δ and γ in the SDF (2) as discussed in KN, by

fitting the SDF to artificial PE funds that invest only in Treasury Bills and the stock market

portfolio. We then apply this SDF to calculate the expected GPME (a single number for

the whole sample of funds), again exactly as in KN. We label this asset-class level abnormal

performance as ᾱ.

The next step is to estimate β. To incorporate a degree of robustness to the lognormality

assumption, we use σ2
h, the empirical variance of factor returns over horizon h, instead of hσ2
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in the Jensen inequality adjustment.

Rb
h = exp

{
rfh + β(rmh − rfh)−

1

2
β(β − 1)σ2

h

}
. (16)

We then estimate β by exploiting the fact that deflating with Rb
h should produce the same

pricing error ᾱ that we get from discounting with the SDF. One might therefore think that

to estimate β, one could remove ᾱ from the right and left-hand side of (10), averaged over

all a funds within an asset class, and then simply solve this equation for β. Intuitively, this

approach looks for the degree of leverage that the benchmark portfolio needs to have to

produce a pricing error equal to E[GPME]. However, this equation has two solutions. Note

that 1/Rb
h and Mh both have the functional form exp(ah− brmh ) with b = β in the case of Rb

h

and b = γ for the SDF. Since both deflating with Rb
h and discounting with Mh produces the

same pricing error ᾱ, both yield an expected value of (10) of zero after ᾱ has been removed

from both sides of this equation. In other words, one of the solutions just reproduces the

SDF that was used to obtain ᾱ.

To find the solution with b = β rather than b = γ, we exploit the fact that the solution

with b = β should produce smaller cross-sectional dispersion in abnormal performance across

funds than the solution with b = γ. The reason is that abnormal performance based on the

SDF method with b = γ includes the additional component (β − γ)(rmh − E[rmh ]) in (15).

Funds that do not have completely identical lifetimes and cash-flow timing will have different

realizations for this component in addition to the differences that arise from the idiosyncratic

component ϵj . In contrast, the benchmark portfolio method abnormal performance measure

in (14) has only the ϵj term, and hence smaller cross-sectional dispersion.

Using a data set of i = 1 . . . N funds, we therefore estimate

β̂ = argmin
β

Q(β) with Q(β) ≡ 1

N

N∑
i=1

(αi − ᾱ)2

subject to
1

N

N∑
i=1

(αi − ᾱ) = 0 (17)

where αi is a function of β and ᾱ is given from the SDF-based E[GPME] estimation. Thus,
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among the two solutions that satisfy the pricing constraint, we look for the one that minimizes

the cross-sectional dispersion in abnormal performance.

III. Simulations

In this section we illustrate the performance of the algorithm using simulations. We

simulate data sets of N funds spanning T years, with an equal number of funds starting

each vintage year. The yearly log market return is drawn from a normal distribution with

µ = 11%, and σ = 15%. The log risk-free rate is 2% per year. Given these parameters, an

SDF with δ = 0.15 and γ = 4 exactly prices the risk-free rate and public stocks. These SDF

parameters are close to the empirical point estimates in the next section. Funds call $1 in

capital in their vintage year, and they distribute J = 25 cash flows at random times, drawn

from a uniform distribution over funds’ ten year lifetimes. Cash flows are generated as

Xj =
1

J
exp

(
rfh(j) + β(rmh(j) − rfh(j))−

h(j)

2
β(β − 1)σ2 + ηh(j)

)
. (18)

This specification implies that the true expected alpha and GPME are zero for all funds. The

idiosyncratic log return, η, is iid normally distributed with standard deviation, ω, of 25% per

year, and mean −h
2ω

2. We allow the fund-level rh to be cross-sectionally correlated with

a correlation coefficient of 0.1. Using these assumptions, the simulated funds have realistic

return properties. For example, for a PE beta of two, the simulated mean internal rate of

return (IRR) is 16.3%, which is close to the average IRR for both venture capital and buyout

funds in the data (shown below). The standard deviation of simulated IRRs is 16.4%, a few

percentage points higher than the observed standard deviation of buyout funds, but lower

than the 41.0% standard deviation for venture capital funds in our data.

Table I reports the simulation results. Panel A uses one very large data set that spans

1,000,000 years and has one fund per vintage year, for a total of one million funds. Although

this is implausibly large, it allows us to approximate the asymptotic properties of the α

and (G)PME performance metrics. Each row shows results for a different value of the true

common fund beta, ranging from 0.5 to 3. For each fund we compute its true realized
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alpha as
∑J

j=1 zj exp
(
αh(j) + ηh(j)

)
. These realized alphas are the benchmark for estimated

performance metrics, since they are the best estimates of fund-level outperformance one can

get if the true beta were known. For all values of beta we use the same draws for the market

and idiosyncratic returns, so realized alphas are by design the same across betas, with a

mean of -0.001 (very close to the true alpha of zero) and a standard deviation across funds

of 0.571. Comparing our estimates of α and GPME, a number of results jump out. First, ᾱ

(i.e., average GPME and, mechanically, average α) is a very good estimate of the true mean

fund alpha, ranging between -0.006 to +0.012 across the different values of beta. Second,

the cross-sectional variation in α is close to the variation in realized alphas for all values of

beta, ranging between 0.567 and 0.581. In contrast, the cross-sectional variation in GPMEs

is much higher for most betas, and never lower than the variation in α. Third, the root

mean squared error (RMSE) of α, measured relative to realized alphas, is small, ranging

from 0.002 to 0.035. In comparison, the RMSE of GPME is very high, with values between

0.374 and 2.409. Fourth, the correlation of α with realized alphas is essentially one. This

is much higher than the correlation between GPME and realized alphas, which is as low as

0.229 and no higher than 0.841. These results reveal that α is a more accurate measure of

fund-level realized alphas than GPME. In fact, the α metric is different from realized alphas

only because the estimated beta and σ2 differ from their true values.

A case of special interest occurs when β = 1, so that Rb
h = Rm

h . Because the underlying

assumption of β = 1 is true, the PME measure exactly equals the realized alpha for all funds.

Fund alphas are very close, but differ slightly because the estimated beta is 1.006, not exactly

one. For β ̸= 1, PME performs poorly both as a measure of aggregate outperformance and

as a measure of individual fund outperformance. For example, if the true β equals two, the

average PME is 0.534, its standard deviation is 1.171, its RMSE is 0.942, and its correlation

with realized alphas is 0.819. Generally, for β > 1, PME overestimates excess returns because

it assumes a discount rate that is too low, and vice versa for β < 1.5

Another case of special interest is β = γ, because in this case GPME and α are the same.

In our simulations we have γ = 4 and β = 4 is not included in the table, but it is clearly

5Another case of interest is β = γ, which equals 4 in this example. In this case, the GPME and alpha
measures coincide, because 1/Rb

h and Mh are identical.
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apparent that the cross-sectional standard deviation of GPME approaches the cross-sectional

standard deviation of α.

Panel B shows results from simulated data sets of 1,200 funds over 30 years, which is

a representative sample size for data sets observed in practice. To assess the small sample

properties of the performance metrics, we repeat the simulation 50,000 times and report av-

erages of the statistics across data sets. The mean realized alpha is -0.0003, with a standard

deviation of 0.551, on average across data sets. Because parameter estimates are noisier in

smaller data sets, α and GPME are less accurate compared to the large data set. Still, for be-

tas of two or lower, ᾱ continues to work quite well as a measure of aggregate outperformance,

ranging between -0.042 and +0.006. For these values of beta, the estimated α’s are close to

the true realized fund alphas, with variances ranging from 0.523 to 0.552, RMSEs between

0.090 and 0.126, and correlations of 0.983 and higher. When beta reaches three, ᾱ clearly

diverges from the mean realized alpha, and estimated fund alphas substantially understate

the cross-sectional variation in realized alphas, though their correlation is still close to one.

The PME metric does not suffer much performance loss compared to the large data set

(and does better in many cases), as no parameters need to be estimated. However, PME

performed poorly with large amounts of data, and continues to do so in smaller data sets.

As before, only when beta is truly equal to one does PME perform well, as it coincides with

realized alphas in this special case. However, even in this smaller data set the difference

with the α metric remains relatively small. For all other values of beta, the α metric clearly

captures both aggregate outperformance and realized fund betas better than PME.

A. Robustness

The simulations demonstrate that the alpha method works better than (G)PME when the

additional assumptions of common fund betas and lognormality are satisfied. In this section

we show that the α method is robust to modest amounts of cross-sectional variation in fund

betas, and to reasonably large departures from lognormality.
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A.1. Cross-sectional variation in fund betas

We simulate data in which fund betas are drawn randomly from a normal distribution

with various combinations of means and variances. We use the same set of mean betas as

the common fund betas in Table I, and two scenarios for standard deviations. In the first

scenario the standard deviation is 0.25, so that 95% of fund betas are within 0.5 of the mean.

We calculate results for both the large and the realistic size data sets using the same draws

for market and idiosyncratic returns, so that true realized alphas are the same as in Table I.

The results in Table II show that in the first scenario, ᾱ is not affected by the cross-sectional

variation in betas. This is not surprising for the large data set, since SDF pricing does not

impose any assumption on betas, and the expected GPME (and hence expected α) should

remain unchanged. However, the same is not true for the individual fund α and GPME

estimates. These estimates are noisier, which shows up as higher cross-sectional variation,

higher RMSEs, and a lower correlation with true realized alphas compared to the case of

a common fund beta. Still, the differences with Table I are small, and we conclude that a

modest amount of cross-sectional variation in betas is harmless in both large and realistic

size data sets. One important difference to note is that while PME performed extremely

well when the true beta equals one for all funds, when the average beta is one but there is

moderate cross-sectional variation in fund betas, PME performs comparably to α in terms

of RMSE and correlation with true realized alphas. When average beta is not one, PME

performs much worse than α, as before.

The second scenario raises the standard deviation of beta to one, a rather extreme case

in which 95% of betas are within 2 above or below the mean. For the large data set, Table

II reports only small changes when increasing the dispersion in betas. For the realistic size

data set, the standard deviation of α increases by about 20% to 50%, the RMSEs double to

triple, while correlations remain at 0.65 or above. Despite the deteriorated performance, α

still beats both GPME and PME as a performance measure even with the extreme variation

in fund betas. In particular, even when the average beta is one, large heterogeneity in betas

across funds cause PME to be a significantly worse measure of fund performance than α.
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A.2. Deviations from lognormality

The alpha metric derivation assumes joint lognormality of market and PE returns. Al-

though it is plausible that market returns deviate from lognormality, more serious violations

of this assumption are likely to come from the idiosyncratic PE returns. For example, it is

well known that in venture capital, a large fraction of a fund’s investments fail, and most of

the fund’s return is generated by one or a few “home run” winners. As a result, idiosyncratic

fund returns are right-skewed, resembling returns to a portfolio of long call options. The

lognormal distribution, though right-skewed by nature, may not fully capture the thick right

tail of the empirical distribution.

We consider two scenarios that depart from lognormality by simulating the idiosyncratic

log fund return, η, as a mixture of two components. In the first scenario, there is a 10%

chance that the fund’s cash flow in a given year is magnified by exactly 50%. In the second

scenario, the fund’s payout in any year is 100% higher with 1% probability. When there is

no such “home run” payout, η is drawn from a normal distribution with mean and variance

chosen such that the unconditional mean and variance of the idiosyncratic return, exp(η),

are equal to those of the lognormal distribution in the base case scenario of Table I. Relative

to the base case, these two scenarios increase the skewness in fund IRRs by about 20%

and 30%, respectively, and excess kurtosis by 35% and 100%, while preserving the first two

unconditional moments.6

The results in Table III show that deviation of lognormality have little impact on the

properties of α and GPME. In the large data set, the means and variances of α and (G)PME,

as well as their RMSEs and correlations with true realized alphas, are very close to those

reported in Table I for all values of beta and for both scenarios. For the realistic data set, the

properties are also very similar, and if anything, α is closer to true realized alphas compared

to the lognormal simulations. However, the true realized alphas are no longer the same as

in the previous simulations, due to the new sampling procedure for idiosyncratic returns.

Nevertheless, the main takeaway from Table III is clear: departures from lognormality do not

6Note that the simulations with cross-sectional heterogeneity in betas in Table II also induce skewness and
kurtosis in PE returns, but only in the cross-section, not within fund returns.
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appear to have a detrimental effect on the properties of α as a measure of fund performance.

IV. Data

We use private equity fund cash flow data provided by Burgiss, a global provider of in-

vestment decision support tools for investors in private capital markets. The data are sourced

exclusively from hundreds of LPs, including public and private pension funds, endowments

and foundations. We have the complete cash flow (net of management fees and carried inter-

est (profit shares) paid to the GPs) and valuation history of all funds that the participating

LPs invested in. The data are accurate and up-to-date, because they are used for audit,

performance measurement and reporting purposes, and they are cross-checked when different

LPs invest in the same fund. Market return and risk-free rate data are from Ken French’s

data library.7

A. Descriptive statistics

We separate our sample into 1,219 VC funds and 879 buyout funds, representing all U.S.

funds raised before 2013 that have at least $5 million in committed capital in 1990 dollars

(following Kaplan and Schoar, 2005). The cash flow data run through the end of 2017, so we

have at least five years of cash flow data for all funds in our sample.

Table IV Panel A reports that the average (median) VC fund has $249 million ($160

million) in committed capital, and involves 38.5 (35.0) net cash flows spanning 13.4 years

(13.4 years). There are 449 unique VC firms in the sample, with an average (median) of 2.7

(2.0) funds per GP.

The average (median) buyout fund has committed capital of $1,053 million ($450 million),

runs for 12.1 (11.9) years, comprising 57.5 (52.0) cash flows. The sample represents 384 unique

GPs, with 2.3 (2.0) funds per GP.

As of the end of 2017, 45% of VC funds and 34% of buyout funds were fully liquidated.

These are funds that are at least 10 years old and have zero remaining net asset value (NAV).

Some funds run longer than 10 years but have small net asset balances, so we also consider

7We thank Ken French for providing the data on his website.
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a less strict definition that considers funds to be liquidated if they are over 10 years old

and their most recent reported NAV is less than 5% of committed capital. By this “95%

liquidated” measure, 54% of VC funds and 49% of buyout funds are liquidated.

Performance of private equity funds is typically measured by their internal rate of return

(IRR), and their total value to paid-in capital (TVPI) multiple. The TVPI is defined as the

total distributions plus the NAV of unrealized investments, divided by total capital contri-

butions to the fund by LPs. Both measures are net of fees and carried interest paid to the

GP. The IRR of the average (median) VC fund is 14.1% (7.5%) per year, compared to 13.9%

(13.1%) for buyout. Weighted by fund size, the average IRRs are 11.0% and 13.6% for VC

and buyout, respectively. The average (median) TVPI is 2.0 (1.4) for VC funds, and 1.7 (1.6)

for buyout funds. The size-weighted TVPIs are 1.8 and 1.7, respectively.

Panel B of Table IV reports the distribution of the number of funds and their performance

metrics by vintage year (defined as the year of the fund’s first capital call). IRRs and TVPIs

appear cyclical for both venture capital and buyout. Venture capital experienced high returns

in the early to mid-1990s vintages followed by a prolonged period of poor returns until the

end of the first decade of the new millenniums. Buyout returns have been relatively more

stable, but showed some slumps in in the late 1990s and around 2005. Note that funds raised

after 2008 have not yet reached their ten-year lifetimes by the end of 2017, which is the end of

our sample period, and performance statistics depend increasingly on unrealized NAV toward

the end of the sample. IRR and TVPI for fully liquidated funds tend to be higher, because

many cash distributions occur towards the end of a fund’s life, and in many cases GPs are

conservative in updating NAVs (Jenkinson, Sousa, and Stucke (2013) and Brown, Gredil, and

Kaplan (2019)).8

Harris, Jenkinson, and Kaplan (2014) perform a careful comparison of Burgiss with com-

monly used private equity data sets (including Preqin, Venture Economics, and Cambridge

Associates). They find that compared to Preqin, Burgiss contains considerably more funds

with cash flow histories, which are necessary to compute the performance metrics in this

8Since 2008, PE firms (both venture capital and buyout) are required by the Financial Accounting Standards
Board under ASC Topic 820 (formerly known as FAS 157) to value their assets at fair value each quarter.
While valuations have become more accurate since (Jenkinson et al., 2020, Easton et al., 2021), they remain
conservative (Brown et al., 2019).
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study. In their sample, Burgiss’ coverage of VC funds is less extensive than Venture Eco-

nomics and Cambridge Associates in the early years, but increases significantly over the

sample period. For buyout, they find that Burgiss offers excellent coverage since 2000, but

contains relatively few funds before 1993.

In terms of performance, Harris et al. report that Burgiss yields qualitatively and quan-

titatively similar results to the Cambridge Associates and Preqin data, whereas Venture

Economics data are downward biased (see also Stucke, 2011). Crucially, performance does

not appear to be biased by the voluntary approval of LPs to allow their data to be included

by Burgiss.

Compared to Harris et al.’s sample, our Burgiss data includes four more years of data

(their sample ends with the 2008 vintage funds). More importantly, many more LPs have

allowed their data to be included since the conclusion of their study, resulting in additional

fund data going back all the way to the earliest vintages. Consequently, our sample of VC

and buyout funds is about 50% larger than the Burgiss sample in Harris et al. (2014).

B. Fund-level abnormal returns

Table V reports key statistics of the risk-adjusted fund performance metrics (α, GPME,

and PME) as well as the parameter estimates of the SDF and the common fund beta, for

venture capital and buyout separately. The distribution of fund performance differs substan-

tially across the three metrics. For venture capital, the mean GPME (and hence, mean α)

is negative but insignificant at -0.207. While similarly statistically insignificant, this result is

lower than Korteweg and Nagel (2016), who estimate a mean GPME of -0.103 in a shorter

sample of Preqin VC funds that includes vintages up to 2008. In contrast, the mean PME

in Table V is 0.129, which is positive and significant (Korteweg and Nagel (2016) estimate

a lower PME of 0.048). PME overstates the risk-adjusted return because the beta of VC

is estimated at 2.4, far above the PME assumption that beta equals one and resulting in a

PME-implied expected return that is too low, as in the simulations of Table I.9 The litera-

9A different but equivalent perspective of the difference between PME and GPME is that PME assumes
that the SDF is the reciprocal of the return on wealth, such that the SDF parameters δ and γ are zero and
one, respectively. However, as Table V shows, the estimate of γ in the VC sample is also far from one.
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ture reports VC fund beta estimates between 1.0 and 2.8 (see see Korteweg, 2019, 2022, for

reviews of the literature). The wide range of estimated betas is due to differences in data

sources, sample periods, and methodologies, but it’s reassuring that our estimate falls in the

middle of that range.

Despite the difference in central location of the GPME and PME distributions, the level of

dispersion around the mean is very similar. Both measures have standard deviations around

1.4. In contrast, the standard deviation of fund-level α’s is moderately lower, at 1.1. This

is in line with the simulation results of Table I, which showed that both GPME and PME

overstate the dispersion in true realized alphas when beta is not equal to the γ parameter

in the SDF. Here beta is neither equal to the value of γ = 1 assumed in the PME nor the

estimate of γ = 3.5 used in the GPME calculation. As a consequence, GPME and PME are

contaminated with additional noise at the individual fund level that is eliminated in the α

calculation. To illustrate the comparison between PME, GPME and α more clearly, Figure 2

plots the histograms of these three performance metrics. Many funds have GPMEs below -2

or above 2, whereas almost all fund α’s are confined with this range. This implies that there

are far fewer funds with extreme outcomes than the (G)PME metrics suggest. The PME

distributions are visually closer to α, but are also more dispersed, as is most clearly seen

from the lower peaks of the distributions at the mode and the higher incidence of outliers.

Below we will analyze the implications of these differences for the evidence on performance

persistence, and the relation between performance and fund characteristics.

Turning to the buyout results, we find that the mean GPME of 0.207 is above the mean

PME of 0.148. The means of the two metrics are considerably closer than in VC, because

the estimated buyout beta is 0.8, not so far from the PME assumption that beta equals one.

This estimate is at the lower end of the 0.7 to 2.7 range of buyout fund betas reported in

the literature, based on a variety of methodologies, data sources, and sample periods (see

Korteweg, 2019, 2022). Since the beta estimate is below one, the mean GPME is above

the mean PME, unlike in venture capital where a beta above one resulted in a lower mean

GPME.

It might appear puzzling that despite being higher, the mean GPME is not statistically
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different from zero whereas the mean PME is highly significant. The reason is that the GPME

requires estimation of the SDF parameters, whereas PME assumes they are fixed and given.

Relaxing the PME restrictions raises the standard error of estimated GPME.

Comparing α and PME, the difference between the two distributions is considerably

smaller in buyout than in VC. Though α has a higher mean and median, the standard

deviation, skewness, and kurtosis of the two distributions are close. The reason is again

that the estimated beta is not far from γ = 1 (or, equivalently, β = 1) assumed in the

PME calculation. In the full sample of buyout funds considered here, PME and α thus look

similar. However, the simulations suggest that α yields more accurate results when beta is

not exactly one, and we show below that the differences between α and PME become more

stark in certain subperiods and subsamples where beta is further away from one.

Comparing α and GPME, we find a huge difference in cross-sectional standard deviation.

For α the cross-sectional standard deviation is only one third of the cross-sectional standard

deviation of GPME. The reason is that the buy out fund beta of 0.8 is very far from the

estimated γ = 3.6. Figure 2 further illustrates that the distribution of GPME looks very

different from the distribution of α for buyout funds, and even more diffuse than in VC. As

illustrated by the simulations, GPME includes a significant amount of noise at the fund level

when β is far from γ, as is the case here. Thus, although mean GPME is a good metric for

industry-level risk-adjusted performance, individual fund GPMEs are very noisy estimates of

fund-level performance.

Overall, the results demonstrate clearly that the benchmark portfolio approach typically

delivers a less noisy measure of individual fund abnormal performance than the (G)PME.

C. Two-factor Models

Table VI applies the benchmark portfolio approach in a two-factor setting. In this analy-

sis, we the return of one of the four corner portfolios (small/big and low/high book-to market,

i.e., SL, SH, BL, BH) of the six size-value portfolios underlying the Fama-French factors as

a second factor in addition to the market factor in the SDF. More precisely, to obtain easily

interpretable betas, we express the second factor as a log excess return relative to the market
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factor.10

Several points in Table VI are noteworthy. First, across all different two-factor speci-

fications, we see the same pattern in terms of cross-sectional standard deviations of α and

GPME as in the one-factor case. Both in Panel A, for VC, and Panel B, for buyout funds, the

dispersion of α is always lower than the dispersion of GPME, consistent with more precisely

estimated abnormal performance. Also, as in the one-factor case, the reduction in dispersion

with α relative to GPME is much stronger for buyout funds than for VC funds.

Second, we see interesting patterns in factor betas and cross-sectional standard deviation

of α across factor models. For VC funds, the factor model that produces the smallest cross-

sectional standard deviation of α and the largest beta on the second factor is the one with

the BL-M factor.11 Somewhat surprisingly perhaps, a benchmark portfolio tilted toward

large growth stocks (rather than small growth stocks) provides the closest approximation of

VC fund payoffs. For buyout funds in Panel B, either a tilt away from small growth stocks

(indicated by the negative factor beta on SL-M) or a tilt toward big value stocks (indicated

by the positive factor beta on BH-M) produce the lowest cross-sectional standard deviation

of α. These results show that the method recovers economically plausible factor exposures.

D. Subsamples

Table VII reports estimates when the performance metrics are estimated on the subsam-

ples of fully liquidated funds, funds raised before and after the year 2000, and funds below and

above median size (computed relative to the median fund size in a fund’s vintage year).12 For

brevity, the table does not show the SDF parameter estimates or the higher order moments

of the performance distributions.

10With a second factor, x, the SDF becomes Mh = exp(δh− γmrmh − γxr
x
h). The benchmark portfolio from

equation (16) becomes

Rb
h = exp

{
rfh + β′rh +

1

2
β′diag(Σh)−

1

2
β′Σhβ

}
where r =

[
rmh − rfh; r

x
h

]
, β = [βm;βx], and Σh is the covariance matrix of rh.

11The standard deviation of α is the square root of the objective function Q in equation (17), so the model
with the lowest standard deviation is the best fitting model.

12A number of funds are exactly at median size (especially in venture capital) so the numbers of funds in
the subsamples of small and large funds are not equal.
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Table VII shows that the estimated VC betas are fairly constant across the subsamples,

ranging from 2.2 to 2.5. The differences between the three performance metrics are therefore

comparable to those of the full sample results. Mean α and GPME are consistently about

0.35 below the mean PME, and the standard deviations of GPME and PME are substantially

higher than the standard deviation of α in most subsamples. The means vary quite substan-

tially across subsamples. Liquidated VC funds have an insignificant mean alpha, which is

higher than the full sample mean at least in part because many of these funds were raised

earlier in the sample, and Panel B shows that VC funds raised before the year 2000 have

positive, but insignificant, mean alpha. Funds raised in 2000 or later, and smaller funds,

have significantly negative mean alpha. The variation in alpha across funds also differs by

subsample. The standard deviation of α for liquidated funds and those raised before 2000 is

about twice as large as that for post-2000 funds. Small funds have somewhat lower variation

in alphas than large funds.

In contrast to VC, buyout betas vary quite dramatically across subsamples. The estimated

beta of 0.7 for funds raised after the year 2000 is near the lowest across all subsamples,

whereas pre-2000 funds have the highest beta at 1.1. This difference may be due to the fact

that leveraged buyout deals were more highly levered in the 1980s and 1990s, differences in the

types of industries that underwent buyouts, and differences in buyout strategies. The Burgiss

coverage is also not very extensive before 1993, so some degree of sample selection is possible.

Another potential explanation is that the pre-2000 period contains more liquidated funds.

Non-liquidated fund performance is calculated using the most recent NAV, which may not

have been updated by GPs (especially prior to the ASC 820/FAS 157 Fair Value accounting

standard of 2007) and therefore understate the extent to which performance fluctuates with

the benchmark factors. However, this is not likely to be dominant reason. Although the beta

for the subsample of liquidated funds is higher than the full-sample beta, at 0.9 versus 0.8,

we do not see much difference in these beta estimates for VC funds, which are likely more

subject to the NAV updating issue than buyout funds. Finally, when we split the sample by

fund size, we find that small funds have a beta of 0.6, compared to 1.0 for large funds.

Since the estimated beta for liquidated and large funds are close to one, α and PME
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are also close. This is not the case for the post-2000 and small funds, where the mean α is

almost double the mean PME, due to their low beta. Conversely, the mean alpha of 0.142 for

pre-2000 funds is slightly below the mean PME of 0.157, as the estimated beta is above one.

For all subsamples, the standard deviation of alpha and PME are close, and fairly constant

across subsamples, being somewhat higher for smaller and liquidated funds, and somewhat

lower for large funds. As in the full sample results, the variance in GPME is substantially

higher, and the difference with the variance of alpha is larger for subsamples with lower betas.

Table VIII considers three subclasses of venture capital, namely, generalist VCs who invest

in companies of all stages, and VCs who invest in early-stage or late-stage startups.13 Unlike

the VC subsamples in Table VII, beta estimates show more variation across the subclasses.

Generalist VCs are similar to post-2000 funds, with a beta of 2.2, a mean α of -0.269, which

is significantly different from zero at the 5% level. Unlike post-2000 funds, the mean PME

is near zero at -0.003, and insignificant. Early-stage VCs have a mean beta of 2.7, while the

late-stage beta is 1.5. This drop in beta from early-stage to late-stage funds is consistent

with surviving startups turning risky growth opportunities into assets in place as they mature

(Berk, Green, and Naik, 1999, and Fisher, Carlson, and Giammarino, 2004, but see Zhang

(2005) for a different perspective). As Berk, Green, and Naik (2004) point out, the systematic

risk of the early-stage company is higher even if the early-stage risk is purely idiosyncratic

(for example, due to technological risk). The mean α of early-stage VCs is -0.216, while

late-stage VCs have a positive mean α of 0.062, though neither are significantly different

from zero. The mean PME of these two subclasses is nearly identical, 0.206 for early-stage

and 0.182 for late-stage VCs. Finally, the dispersion in alphas is higher for early-stage VCs

compared to late-stage and generalist VCs. This could be due to larger heterogeneity in skill

in early-stage investing, but is probably mostly due to a higher degree of idiosyncratic risk

resulting in more extreme realized outcomes.

We recognize that the variation in estimated betas across subsamples and subclasses is a

potential source of concern given the assumption of common fund betas underlying the alpha

method. However, the overall range of betas, from 1.5 to 2.7 in VC, and from 0.6 to 1.1 in

13The data do not contain subclass designations for buyout.
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buyout, is within the range where the simulations suggest the alpha method works well.

E. Performance regressions

We introduce two exercises to illustrate the importance of accurate fund-level performance

estimates. The first exercise is to replicate common regressions in the literature that have

fund performance as the dependent variable. Specifically, we consider regressions that relate

performance to fund size. The second exercise considers the persistence of PE performance.

We focus on comparing the α and GPME metrics, which are less restrictive than PME. All

results in this section are based on the full-sample performance estimates reported in table

V.

E.1. Performance and fund size

Table IX reports regression results of fund performance on size quartiles, with the smallest

quartile being the omitted category. All regressions include vintage year fixed effects. The

regressions in columns 1 and 2 use α as the dependent variable, columns 3 and 4 use GPME,

and the final two columns use PME.

The results for venture capital are in Panel A. Column 1 shows that a fund alphas are

monotonically increasing in size quartiles. The performance of the fourth (largest) quartile is

significantly higher than the first (smallest) quartile, at the 5% level. For GPME in column

3, the relation is not quite monotonic, but the result for the largest quartile remains. The

standard errors in column 1 are about a third lower than those for GPME in column 3, due

to lower degree of noise when using alpha rather than GPME as the dependent variable. All

else equal, this increases t-statistics by about 50%. The PME standard errors in column 5

are roughly the same order of magnitude as their GPME counterparts, and therefore also

considerably larger than in the alpha regressions. The increased power of test statistics is

an important advantage to using alpha in regressions that include a fund-level performance

metric.

Columns 2, 4, and 6 include the natural logarithm of the fund’s sequence number as an
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additional explanatory variable.14 The coefficient on sequence number is strongly positive

and significant. Including fund sequence changes the sign of the size quartile coefficients,

rendering all of them insignificant. Put differently, the effect of size in the earlier regressions

appears appears to be a survivorship effect. Successful VCs survive and get to raise larger

funds, and this is captured by the fund’s sequence number.

Turning to buyout funds in Panel B, we do not find any significant coefficients on size

quartiles or the fund sequence number for any performance metric or any specification. Still,

the choice of performance metric has a large effects on standard errors. The standard errors for

the alpha regressions are as low as one third the size of those for GPME. Perhaps surprisingly,

the adjusted R-squared is higher for the GPME regressions. This is due to the vintage fixed

effects soaking up more of the variance in buyout GPMEs compared to alphas. In contrast,

the difference between the α and PME regressions is marginal, since the buyout beta is close

to one.

Several papers consider the relation between fund size and PME. Kaplan and Schoar

(2005) and Harris, Jenkinson, and Kaplan (2014) find similar results for the relation between

size and VC performance, though the former paper finds an insignificant coefficient on the

fund sequence number, and the latter does not control for sequence. Like us, the literature

finds no significant relation between buyout fund size and performance (for example, Kaplan

and Schoar, 2005, Harris, Jenkinson, and Kaplan, 2014, and Lopez-de-Silanes, Phalippou,

and Gottschalg, 2015, Rossi, 2019).

E.2. Performance persistence

We assess the degree of performance persistence in VC and buyout by considering how

well a current fund’s performance predicts the risk-adjusted returns of future funds by the

same manager (GP). We adopt the following procedure. First, for each vintage year between

1985 and 2010 we rank funds by their α metric (we start in 1985 to have a reasonable number

of observations for both VC and buyout funds, and we stop in 2010 to allow GPs some time

to raise a next fund). For each fund in the top and bottom quartile of its vintage year, we

14Burgiss did not provide fund sequence numbers. We constructed sequence numbers based on GP identifiers
and vintage years.
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then compute the risk-adjusted performance (measured by α, GPME, and PME) of future

funds of the same type (VC or buyout) that were raised by the same GP. The first three

columns of Table X show the results for VC (in panel A) and buyout (panel B). The first

four rows of each panel show the future performance of GPs with a fund in the top quartile,

and the second four rows show the performance of bottom quartile GPs. Within each block

of four rows, we report the average performance of the next fund raised (both the very next

fund, which may overlap with the present fund, and the next nonoverlapping fund15), as

well as of all future funds (again either considering all future funds regardless of overlap,

or only nonoverlapping future funds). As a comparison, the middle and rightmost sets of

three columns of Table X repeat the same exercise but using GPME and PME as alternative

performance measures to rank funds in the first step of the procedure.

The key takeaway from Table X is that using the α metric to sort GPs into top and

bottom quartiles gives better predictive results in most cases, compared to using (G)PME.

For example, GPs with top quartile VC funds by α, generate an average α of 0.57 for their

next nonoverlapping fund. Using PME to sort GPs instead, yields an average α of 0.41. This

difference is economically meaningful: on a dollar invested, the difference in net present value

is $0.16 over the life of the fund.

Moreover, even if (G)PME is used as the performance evaluation metric of choice, using α

to rank GPs results in better sorting in most cases. To continue the prior example, the PME

of the next nonoverlapping fund of a top quartile VC GP as ranked by α is 1.01, compared

to only 0.81 for a top-quartile GP based on sorting the current funds by PME itself.

The differences between α and PME for top quartile GPs are similar if we consider all

future nonoverlapping funds instead of only the next one. In contrast, for overlapping funds,

α and PME sorts yield results that are roughly comparable to each other.

Results for the bottom quartile of VCs are similar: α does a better job in identifying

poorly performing GPs for nonoverlapping funds, as both the α and PME are lower (more

negative) compared to sorting on PME. For overlapping funds, sorting on PME gives slightly

15Using the next nonoverlapping fund eliminates concerns of mechanical correlation (see, for example, Ko-
rteweg and Sorensen, 2017, for a discussion), although overlap should be less of a concern for risk-adjusted
(as opposed to raw) performance.

30



better results than sorting on α.

Compared to sorting on GPME, classifying VC funds by their α does a better job iden-

tifying GPs with poor future performance, both in terms of α and GPME and irrespective

of whether one considers only the next fund or all future funds, or overlapping or nonover-

lapping funds. For top quartile VCs, α sorts result in slightly better average performance of

overlapping funds, but somewhat worse performance in nonoverlapping funds.

For buyout, sorting on α better predicts future fund performance than sorting on GPME.

both for the top and bottom quartiles, and irrespective of whether funds overlap or whether

one considers the next fund or all future funds. The results for poorly performing managers

are especially strong. Not surprisingly, given their similarity for buyout, α and PME yield

similar predictive results.

V. Conclusion

We introduce a new method to benchmark payoffs of individual private equity funds

when only cash flow data are available, but not returns. The method has a clear theoretical

foundation in asset pricing theory and, with a one-factor benchmark, it requires estimation

of only four parameters. Risk-adjusted payoffs based on this new measure are identical to

the GPME measure of Korteweg and Nagel (2016) at the asset-class level, but they are less

noisy than the GPME at the individual fund level. For this reason, the new measure provides

a more accurate assessment of individual fund performance than the PME or its generalized

version, although the measures are identical in in the special case where beta happens to be

equal to the market price of risk parameter in the SDF. The method assumes log-normality of

payoffs and within-asset-class homogeneity of betas, but simulations show that it is robust to

reasonably large deviations from these assumptions. The method works well even in smaller

data sets.

The empirical results from a large data set of private equity fund cash flows reveal that the

variation in estimated risk-adjusted performance across venture capital funds is considerably

smaller with our new method than with the PME and GPME. For example, for buyout funds,

the cross-sectional standard deviation of abnormal payoffs according to our new measure is
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only one third of the cross-sectional standard deviation of the GPME. This illustrates clearly

the much lower level of noise in the new measure.

We also extend the new measure to a two-factor setting, where the benchmark portfolio

combines the market factor with one of the four corner size/value portfolios underling the

Fama-French factors. We obtain economically plausible factor exposures. For venture capital

funds, we find that a benchmark portfolio tilted toward big growth stocks best explains

individual fund payoffs and hence produces the smallest cross-sectional dispersion abnormal

payoffs. For buyout funds, we find the that a tilt away from small growth or toward big value

works best. The method can be readily extended to include additional benchmark assets. It

also has applications to other asset classes such as real estate funds.

Our new measure enhances the statistical power of tests of the determinants of fund-level

performance. For example, the lower level of noise in our new measure results in substan-

tially lower standard errors in regressions of fund performance on the size of the fund, and

improvements in fund performance predictability. In some cases the results are very different

depending on the performance metric used. For example, we can much better predict the

future performance of buyout managers, especially poorly performing GPs, when ranking

their current fund’s performance on α rather than on GPME.
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Appendix: Proofs

Proof of equation (7). The left-hand side of equation (7), with the solutions for δ and γ

substituted in, equals

E[exp(δh− γrmh )Xj ] = −rfh+ E[xj ] +
1

2
σ2
x −

µ

σ2
cov(xj , r

m
h ), (A.1)

= −rfh+ E[xj ] +
1

2
σ2
x − βµh. (A.2)

The right-hand side is

E

[
exp

{
−rfh+

h

2
β(β − 1)σ2 − β(rmh − rfh)

}
Xj

]
= −rfh− h

2
βσ2 − βE[rmh − rfh] + E[xj ] +

1

2
σ2
x, (A.3)

= −rfh+ E[xj ] +
1

2
σ2
x − βµh, (A.4)

where, for the first equality we used βcov(xj , r
m
h ) = β2hσ2. Hence, the left and right-hand

sides of equation (7) are equal.
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Figure 1. Example of the timing of cash flows to limited partners of a fictitious private equity fund with
three capital calls (C1, . . . , C3) and four distributions (X1, . . . , X4).
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Figure 2. This figure shows histograms of the fund performance metrics estimated on the Burgiss data. The
top, middle, and bottom rows show the distribution of fund alphas, GPMEs, and PMEs, respectively. The
performance metrics are described in Table V, using the market return as the sole risk factor in the SDF. The
figures in the left column show the performance distribution for venture capital, and the right column shows
leveraged buyout fund performance.
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Figure 3. This figure shows time series of the fund performance metrics estimated on the Burgiss data. The
top and bottom rows show the mean and median, respectively. The performance metrics are described in
Table V, using the market return as the sole risk factor in the SDF. The figures in the left column show the
performance for venture capital, and the right column shows leveraged buyout fund performance. Years on
the horizontal axis are fund vintage years.
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Table I

Simulation Results
This table reports summary statistics of the fund-level abnormal return measures α, GPME and PME, based
on simulated data sets of N funds that are active over T years. Panel A uses one large data set of 1,000,000
vintages with one fund per vintage (yielding one million funds in total) to approximate asymptotic results,
and Panel B uses 50,000 data sets of similar size as observed private equity fund data sets (30 years with 40
funds per vintage, for a total of 1,200 funds). Funds call $1 in capital in their vintage year, and distribute 25
cash flows at random times, distributed uniformly over their ten year lifetimes. The underlying fund returns,
on which cash flows are based, are generated using the true market β shown in the first column and with
idiosyncratic volatility of 25% per year. The log risk-free rate is 2% per year, and the annual log market return
is drawn from a normal distribution with µ = 11% and σ = 15%. The benchmark portfolio used to estimate
α is

Rb
h = exp(rfh + β(rmh − rfh)−

h

2
β(β − 1)σ2),

for a period from fund inception to h years later. Panel A reports the estimates for the common fund beta,
β̂, and Panel B reports its mean and standard deviation (in parentheses) across the simulated data sets. The

estimated variance of market returns, σ̂2, is not shown. The GPME performance measure is computed using
an exponential affine stochastic discount factor (SDF)

Mh = exp(δh− γrmh ).

PME is a restricted version of the alpha metric that assumes β = 1 regardless of the true beta, or equivalently,
a restricted version of GPME with δ = 0 and γ = 1. For each fund performance metric, Panel A reports its
mean and standard deviation (in parentheses) across funds, its root mean squared error (RMSE) relative to
true realized fund alphas, and the correlation (Corr.) between the metric and true realized alphas (in square
brackets). Panel B reports the mean of these metrics across the 50,000 simulated data sets.

β β̂ α GPME PME
Mean RMSE Mean RMSE Mean RMSE

(St.Dev) [Corr.] (St.Dev) [Corr.] (St.Dev) [Corr.]

Panel A: Large Data Set (N = 1,000,000; T = 1,000,000)

0.5 0.511 -0.006 0.008 -0.006 2.409 -0.180 0.265
(0.567) [1.000] (2.475) [0.229] (0.471) [0.948]

1 1.006 -0.003 0.004 -0.003 1.645 -0.001 0.000
(0.569) [1.000] (1.741) [0.327] (0.571) [1.000]

1.5 1.497 0.000 0.002 0.000 1.183 0.231 0.379
(0.571) [1.000] (1.314) [0.436] (0.778) [0.947]

2 1.983 0.004 0.009 0.004 0.854 0.534 0.942
(0.574) [1.000] (1.030) [0.558] (1.171) [0.819]

2.5 2.460 0.008 0.019 0.008 0.595 0.933 1.819
(0.577) [1.000] (0.829) [0.696] (1.884) [0.668]

3 2.917 0.012 0.035 0.012 0.374 1.460 3.251
(0.581) [0.999] (0.690) [0.841] (3.163) [0.526]
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Table I - Continued
Panel B: 50,000 Realistic Data Sets (N = 1,200; T = 30)

0.5 0.499 0.006 0.092 0.006 1.644 -0.179 0.251
(0.191) (0.552) [0.995] (1.717) [0.313] (0.447) [0.966]

1 1.001 0.000 0.090 0.000 1.538 -0.000 0.000
(0.207) (0.548) [0.994] (1.623) [0.344] (0.551) [1.000]

1.5 1.514 -0.017 0.097 -0.018 1.413 0.230 0.343
(0.245) (0.536) [0.990] (1.510) [0.376] (0.732) [0.967]

2 2.033 -0.042 0.126 -0.048 1.281 0.531 0.818
(0.317) (0.523) [0.983] (1.384) [0.407] (1.035) [0.891]

2.5 2.535 -0.068 0.178 -0.087 1.153 0.927 1.486
(0.407) (0.511) [0.974] (1.253) [0.436] (1.518) [0.804]

3 3.011 -0.093 0.248 -0.133 1.042 1.451 2.438
(0.508) (0.502) [0.962] (1.125) [0.462] (2.264) [0.722]
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Table II

Simulations with Heterogeneous Betas
This table reports summary statistics of the fund-level abnormal return measures α, GPME, and PME, based
on simulated data sets of N funds over T years, with heterogeneity in fund factor loadings. Panel A uses
one large data set of 1,000,000 vintages with one fund per vintage (yielding one million funds in total) to
approximate asymptotic results, and Panel B uses 50,000 data sets of similar size as observed private equity
fund data sets (30 years with 40 funds per vintage, for a total of 1,200 funds). Simulations are as described in
Table I, except that fund betas are generated from a normal distribution with mean µβ and standard deviation
σβ . For each fund performance metric, Panel A reports its mean and standard deviation (in parentheses) across
funds, its root mean squared error (RMSE) relative to true realized fund alphas, and the correlation (Corr.)
between the metric and true realized alphas (in square brackets). Panel B reports the mean of these metrics
across the 50,000 simulated data sets.

µβ β̂ α GPME PME
Mean RMSE Mean RMSE Mean RMSE

(St.Dev) [Corr.] (St.Dev) [Corr.] (St.Dev) [Corr.]

Panel A: Large Data Set (N = 1,000,000; T = 1,000,000)

Scenario 1: Low dispersion in β (σβ = 0.25)
0.5 0.528 -0.006 0.008 -0.006 2.374 -0.174 0.257

(0.567) [1.000] (2.441) [0.232] (0.473) [0.951]
1 1.023 -0.003 0.004 -0.003 1.626 0.006 0.011

(0.569) [1.000] (1.723) [0.331] (0.576) [1.000]
1.5 1.514 0.001 0.002 0.001 1.170 0.240 0.394

(0.572) [1.000] (1.302) [0.439] (0.787) [0.944]
2 1.999 0.004 0.009 0.004 0.844 0.546 0.966

(0.574) [1.000] (1.021) [0.563] (1.189) [0.814]
2.5 2.476 0.008 0.019 0.008 0.587 0.949 1.857

(0.577) [1.000] (0.823) [0.701] (1.917) [0.663]
3 2.932 0.012 0.036 0.012 0.367 1.481 3.314

(0.581) [0.998] (0.686) [0.845] (3.222) [0.521]

Scenario 2: High dispersion in β (σβ = 1)
0.5 0.579 -0.005 0.007 -0.005 2.275 -0.158 0.233

(0.567) [1.000] (2.344) [0.242] (0.480) [0.961]
1 1.074 -0.003 0.003 -0.003 1.569 0.028 0.044

(0.569) [1.000] (1.670) [0.342] (0.591) [0.999]
1.5 1.564 0.001 0.003 0.001 1.132 0.268 0.443

(0.572) [1.000] (1.268) [0.451] (0.818) [0.933]
2 2.049 0.005 0.010 0.005 0.816 0.583 1.040

(0.575) [1.000] (0.998) [0.576] (1.246) [0.799]
2.5 2.524 0.009 0.021 0.009 0.563 0.997 1.975

(0.578) [1.000] (0.806) [0.716] (2.018) [0.647]
3 2.977 0.013 0.039 0.013 0.345 1.545 3.512

(0.581) [0.998] (0.675) [0.859] (3.405) [0.508]
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Table II - Continued
Panel B: 50,000 Realistic Data Sets (N = 1,200; T = 30)

Scenario 1: Low dispersion in β (σβ = 0.25)
0.5 0.518 0.005 0.195 0.005 1.642 -0.174 0.266

(0.195) (0.577) [0.952] (1.715) [0.313] (0.463) [0.938]
1 1.017 -0.001 0.179 -0.001 1.538 0.006 0.148

(0.211) (0.567) [0.958] (1.622) [0.343] (0.577) [0.964]
1.5 1.527 -0.019 0.168 -0.020 1.415 0.239 0.412

(0.249) (0.551) [0.962] (1.510) [0.374] (0.772) [0.930]
2 2.042 -0.043 0.176 -0.049 1.285 0.543 0.888

(0.321) (0.535) [0.962] (1.386) [0.405] (1.094) [0.860]
2.5 2.539 -0.068 0.212 -0.088 1.159 0.943 1.574

(0.410) (0.520) [0.957] (1.256) [0.433] (1.603) [0.780]
3 3.011 -0.093 0.271 -0.133 1.050 1.472 2.558

(0.510) (0.511) [0.948] (1.130) [0.458] (2.387) [0.705]

Scenario 2: High dispersion in β (σβ = 1)
0.5 0.909 -0.017 0.654 -0.017 1.624 -0.093 0.597

(0.977) (0.850) [0.655] (1.689) [0.304] (0.775) [0.681]
1 1.320 -0.022 0.573 -0.023 1.533 0.113 0.827

(0.780) (0.785) [0.699] (1.607) [0.328] (1.054) [0.675]
1.5 1.745 -0.036 0.502 -0.039 1.433 0.383 1.289

(0.626) (0.723) [0.740] (1.511) [0.352] (1.486) [0.655]
2 2.179 -0.054 0.455 -0.065 1.328 0.737 2.031

(0.536) (0.674) [0.774] (1.408) [0.374] (2.142) [0.628]
2.5 2.608 -0.074 0.443 -0.099 1.229 1.205 3.137

(0.524) (0.642) [0.798] (1.302) [0.394] (3.125) [0.597]
3 3.024 -0.093 0.468 -0.139 1.143 1.828 4.752

(0.575) (0.627) [0.810] (1.200) [0.411] (4.583) [0.566]
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Table III

Simulations with Non-Lognormal Returns
This table reports summary statistics of the fund-level abnormal return measures α, GPME, and PME, based
on simulated data sets of N funds over T years, with heterogeneity in fund factor loadings. Panel A uses one
large data set of 1,000,000 vintages with one fund per vintage (yielding one million total funds) to approximate
asymptotic results, and Panel B uses 50,000 data sets of similar size as observed private equity fund data sets
(30 years with 40 funds per vintage, for a total of 1,200 funds). Simulations are as described in Table I,
except that there is some probability that idiosyncratic PE returns are substantially higher in any given year.
In Scenario 1, there is a 10% probability that the fund’s cash flow for the year is 50% higher. In Scenario
2, there is a 1% chance of a 100% higher payout. The mean and variance of the idiosyncratic return are
chosen such that the idiosyncratic mixture distribution has the same mean and standard deviation as the
lognormal distribution in Table I. All funds have same the beta, shown in the column labeled β. For each
fund performance metric, Panel A reports its mean and standard deviation (in parentheses) across funds, its
root mean squared error (RMSE) relative to true realized fund alphas, and the correlation (Corr.) between
the metric and true realized alphas (in square brackets). Panel B reports the mean of these metrics across the
50,000 simulated data sets.

β β̂ α GPME PME
Mean RMSE Mean RMSE Mean RMSE

(St.Dev) [Corr.] (St.Dev) [Corr.] (St.Dev) [Corr.]

Panel A: Large Data Set (N = 1,000,000; T = 1,000,000)

Scenario 1: 10% probability of 50% higher cash flow
0.5 0.503 -0.000 0.002 -0.000 2.865 -0.178 0.264

(0.569) [1.000] (2.922) [0.197] (0.471) [0.948]
1 0.998 0.002 0.001 0.002 1.732 0.001 0.000

(0.570) [1.000] (1.826) [0.316] (0.570) [1.000]
1.5 1.488 0.005 0.007 0.005 1.196 0.233 0.376

(0.573) [1.000] (1.328) [0.435] (0.774) [0.948]
2 1.972 0.009 0.014 0.009 0.856 0.535 0.932

(0.575) [1.000] (1.033) [0.560] (1.158) [0.820]
2.5 2.446 0.013 0.025 0.013 0.594 0.933 1.788

(0.579) [0.999] (0.831) [0.699] (1.849) [0.670]
3 2.897 0.017 0.044 0.017 0.372 1.458 3.172

(0.582) [0.998] (0.691) [0.844] (3.076) [0.528]

Scenario 2: 1% probability of 100% higher cash flow
0.5 0.501 0.001 0.001 0.001 3.030 -0.178 0.267

(0.584) [1.000] (3.083) [0.186] (0.480) [0.949]
1 0.998 0.002 0.002 0.002 1.781 0.002 0.000

(0.585) [1.000] (1.872) [0.308] (0.584) [1.000]
1.5 1.489 0.006 0.007 0.006 1.207 0.234 0.382

(0.587) [1.000] (1.340) [0.435] (0.795) [0.948]
2 1.973 0.009 0.014 0.009 0.858 0.537 0.954

(0.590) [1.000] (1.040) [0.565] (1.195) [0.821]
2.5 2.447 0.013 0.025 0.013 0.595 0.936 1.849

(0.593) [0.999] (0.839) [0.705] (1.926) [0.669]
3 2.898 0.018 0.044 0.018 0.373 1.465 3.328

(0.597) [0.998] (0.703) [0.848] (3.254) [0.524]
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Table III - Continued
Panel B: 50,000 Realistic Data Sets (N = 1,200; T = 30)

Scenario 1: 10% probability of 50% higher cash flow
0.5 0.501 0.006 0.058 0.006 1.651 -0.178 0.253

(0.122) (0.563) [0.998] (1.730) [0.319] (0.455) [0.966]
1 1.002 0.000 0.056 0.000 1.544 0.000 0.000

(0.134) (0.559) [0.998] (1.636) [0.349] (0.561) [1.000]
1.5 1.516 -0.018 0.068 -0.018 1.420 0.231 0.346

(0.173) (0.547) [0.995] (1.522) [0.381] (0.746) [0.967]
2 2.036 -0.042 0.109 -0.048 1.287 0.533 0.826

(0.263) (0.534) [0.988] (1.396) [0.412] (1.055) [0.892]
2.5 2.540 -0.068 0.171 -0.087 1.158 0.930 1.503

(0.369) (0.522) [0.978] (1.263) [0.441] (1.548) [0.806]
3 3.014 -0.093 0.246 -0.132 1.047 1.455 2.469

(0.479) (0.513) [0.966] (1.135) [0.466] (2.310) [0.726]

Scenario 2: 1% probability of 100% higher cash flow
0.5 0.503 0.006 0.074 0.006 1.646 -0.178 0.252

(0.175) (0.553) [0.997] (1.720) [0.313] (0.448) [0.965]
1 1.004 0.000 0.072 0.000 1.539 0.000 0.000

(0.186) (0.549) [0.996] (1.627) [0.343] (0.552) [1.000]
1.5 1.519 -0.018 0.082 -0.018 1.415 0.231 0.344

(0.227) (0.538) [0.992] (1.513) [0.375] (0.735) [0.967]
2 2.039 -0.042 0.117 -0.048 1.283 0.533 0.821

(0.300) (0.525) [0.985] (1.387) [0.407] (1.039) [0.890]
2.5 2.541 -0.068 0.174 -0.087 1.154 0.930 1.492

(0.396) (0.513) [0.975] (1.256) [0.436] (1.524) [0.802]
3 3.017 -0.093 0.247 -0.132 1.044 1.454 2.448

(0.498) (0.504) [0.964] (1.128) [0.461] (2.273) [0.720]
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Table IV

Descriptive Statistics
This table reports descriptive statistics of U.S. venture capital and buyout funds with vintages between 1978
and 2012 that have committed capital of at least $5 million in 1990 dollars. Panel A shows statistics across all
funds of a given asset class. Funds is the number of funds. Percentage of funds liquidated is the percentage of
funds that are over 10 years old with a final NAV of zero (100% liquidated), or the percentage of funds that are
over 10 years old with a most recently reported NAV of less than 5% of committed capital (95% liquidated), or
less than 10% of committed capital (90% liquidated). Firms is the number of GPs in the sample, and Funds
per firm is the number of funds raised by a GP. Fund size is the total commitment to a fund, in millions of
dollars. Fund effective years is the time between the first and last observed cash flows of a fund, and Cash
flows per fund is the number of cash flows observed for a fund (counting multiple cash flows on the same date
as one cash flow). Cash flows data runs until the end of 2017. A fund’s IRR is computed using the final
observed NAV of the fund. TVPI is total value to paid-in capital, computed as the sum of cash distributions
to LPs plus the final NAV divided by the sum of cash takedowns by the fund from LPs. The table also reports
fund size weighted averages of the IRR and TVPI. Panel B reports IRR and TVPI by vintage year. N is the
number of funds, and Wtd is the size weighted average of the performance measures. Source: Burgiss.

Panel A: Descriptive Statistics

Venture capital funds Buyout funds
Mean Median St.Dev. Mean Median St.Dev.

Funds 1,219 879
Percentage of funds liquidated:
100% liquidated 45 34
95% liquidated 54 49
90% liquidated 58 55

Firms 449 384
Funds per firm 2.71 2.00 2.48 2.29 2.00 1.76
Fund size ($m) 248.79 160.00 294.25 1,053.20 450.00 1,928.25
Fund effective years 13.40 13.37 4.22 12.10 11.90 3.90
Cash flows / fund 38.51 35.00 18.69 57.54 52.00 33.88
IRR (%) 14.10 7.47 40.64 13.88 13.11 15.28
Size-weighted 11.01 31.09 13.60 11.55

TVPI 2.03 1.42 2.79 1.74 1.60 0.87
Size-weighted 1.81 2.23 1.67 0.58
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Table V

Performance Estimates
This table reports statistics of the abnormal return measures α, GPME, and the PME across venture capital
funds (in the first three columns) and across buyout funds (in the last three columns). The α estimates use
a benchmark portfolio, whose return for a period from fund inception to h years later is equation (16) in the
main text, reproduced here for reference:

Rb
h = exp

{
rfh + β(rmh − rfh)−

1

2
β(β − 1)σ2

h

}
.

The table reports the estimates of the common fund beta, β.
The GPME performance measure is computed using an exponential affine stochastic discount factor (SDF)

Mh = exp(δh− γrmh ).

The table reports the SDF parameter estimates of δ and γ.
PME is a restricted version of the alpha metric that assumes β = 1 regardless of the true beta, or equivalently,
a restricted version of GPME with δ = 0 and γ = 1. The table shows the p-value for the test that the mean
(G)PME is equal to zero. Standard errors are in parentheses.

Venture capital (N=1,219) Buyout (N=879)
α GPME PME α GPME PME

Mean -0.207 -0.207 0.129 0.207 0.207 0.148
Percentiles:

10th -1.003 -1.223 -0.692 -0.296 -0.816 -0.339
25th -0.686 -0.751 -0.437 -0.056 -0.311 -0.116
Median -0.351 -0.340 -0.158 0.152 -0.080 0.087
75th -0.066 -0.003 0.208 0.400 0.416 0.349
90th 0.508 0.748 0.865 0.786 1.465 0.689

St.Dev. 1.103 1.387 1.387 0.468 1.401 0.457
Skewness 5.473 5.818 5.796 0.981 4.099 1.026
Kurtosis 51.059 65.946 48.880 6.233 41.362 6.300

p-value 0.132 0.000 0.205 0.000

β 2.434 0.790

SDF Parameters
δ 0.162 0 0.185 0

(0.055) (0.062)
γ 3.456 1 3.586 1

(0.641) (0.617)
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Table VII

Performance Estimates for Subsamples
This table reports statistics of the fund-level abnormal return measures α, GPME, and the PME for subsamples
of the Burgiss dataset, using the market return as the sole risk factor. Panel A shows performance estimates
for the subsample of funds that were fully liquidated by the end of the sample period, in 2015. These are
funds that are over 10 years old with a final reported net asset value equal to zero. Panel B uses funds raised
before the year 2000, while Panel C uses the funds raised in 2000 or later. Panels D and E consider funds with
committed capital below or above the median size of funds raised in the same vintage year. The performance
measures and reported results are as defined in Table V.

Venture capital Buyout
α GPME PME α GPME PME

Panel A: Fully Liquidated Funds

Mean 0.041 -0.048 0.312 0.210 0.210 0.194
Percentiles:

10th -0.811 -0.827 -0.694 -0.373 -0.461 -0.377
Median -0.247 -0.296 -0.159 0.144 0.024 0.128
90th 1.095 0.884 1.511 0.928 1.129 0.897

St.Dev. 1.350 1.245 1.831 0.528 0.821 0.525
No. of funds 547 547 547 299 299 299

p-value 0.798 0.000 0.087 0.000

β 2.520 0.894

Panel B: All Funds of Pre-2000 Vintage

Mean 0.135 0.069 0.393 0.142 0.142 0.157
Percentiles:

10th -0.722 -0.733 -0.649 -0.371 -0.417 -0.368
Median -0.206 -0.238 -0.105 0.070 0.014 0.084
90th 1.104 0.966 1.660 0.746 1.013 0.804

St.Dev. 1.391 1.333 1.880 0.462 0.593 0.469
No. of funds 516 516 516 254 254 254

p-value 0.736 0.000 0.160 0.000

β 2.398 1.131
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Table VII - Continued
Venture capital Buyout

α GPME PME α GPME PME

Panel C: All Funds of Post-2000 Vintage

Mean -0.421 -0.421 -0.064 0.260 0.260 0.145
Percentiles:

10th -1.035 -1.848 -0.719 -0.215 -1.087 -0.304
Median -0.422 -0.420 -0.186 0.198 -0.125 0.088
90th 0.018 0.596 0.445 0.796 1.582 0.644

St.Dev. 0.700 1.648 0.812 0.465 2.151 0.452
No. of funds 703 703 703 625 625 625

p-value 0.008 0.000 0.237 0.000

β 2.180 0.662

Panel D: Funds below Median Size

Mean -0.311 -0.311 0.045 0.251 0.251 0.132
Percentiles:

10th -1.171 -1.469 -0.728 -0.379 -0.929 -0.422
Median -0.415 -0.395 -0.236 0.214 -0.098 0.081
90th 0.546 0.760 0.843 0.935 1.761 0.755

St.Dev. 1.023 1.273 1.266 0.539 1.753 0.513
No. of funds 589 589 589 432 432 432

p-value 0.023 0.000 0.211 0.000

β 2.686 0.598

Panel E: Funds above Median Size

Mean -0.118 -0.118 0.208 0.168 0.168 0.164
Percentiles:

10th -0.901 -1.101 -0.634 -0.214 -0.695 -0.215
Median -0.290 -0.299 -0.082 0.096 -0.074 0.091
90th 0.510 0.748 0.931 0.645 1.186 0.642

St.Dev. 1.179 1.461 1.489 0.396 1.025 0.395
No. of funds 630 630 630 447 447 447

p-value 0.407 0.000 0.216 0.000

β 2.268 0.986
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Table IX

Performance and Fund Characteristics
This table reports regression results using the α, GPME, or PME performance metric as the dependent
variable.The market return is the sole risk factor in the SDF. Panel A reports results for venture capital funds,
and Panel B for buyout funds. Size quartiles are defined by fund type (venture capital or buyout) and decade
(pre-1990, 1990s, and 2000 onwards) based on fund sizes measured in 1990 dollars. The lowest size quartile
is the omitted category. Some specifications include the natural logarithm of a fund’s sequence number,
log(Sequence). All regressions include vintage year fixed effects. Heteroscedasticity-consistent standard errors
are in parentheses and p-values are in square brackets.

(1) (2) (3) (4) (5) (6)
Dependent variable α α GPME GPME PME PME

Panel A: Venture Capital Funds

Size quartile 2 0.008 -0.030 -0.037 -0.081 0.108 0.058
(0.073) (0.075) (0.090) (0.092) (0.098) (0.101)
[0.908] [0.690] [0.678] [0.379] [0.272] [0.565]

Size quartile 3 0.031 -0.064 -0.004 -0.113 0.122 -0.002
(0.071) (0.077) (0.087) (0.096) (0.088) (0.093)
[0.665] [0.405] [0.960] [0.243] [0.165] [0.982]

Size quartile 4 0.198 0.048 0.286 0.116 0.229 0.035
(largest) (0.085) (0.085) (0.122) (0.117) (0.093) (0.102)

[0.020] [0.569] [0.019] [0.319] [0.014] [0.734]
log(Sequence) 0.165 0.188 0.215

(0.048) (0.064) (0.059)
[0.001] [0.004] [0.000]

Vintage fixed effects Yes Yes Yes Yes Yes Yes
Adjusted R2 0.161 0.170 0.107 0.113 0.161 0.170
Number of funds 1,219 1,219 1,219 1,219 1,219 1,219

Panel B: Buyout Funds

Size quartile 2 0.070 0.068 0.067 0.056 0.070 0.069
(0.048) (0.049) (0.128) (0.134) (0.047) (0.047)
[0.148] [0.164] [0.599] [0.678] [0.131] [0.140]

Size quartile 3 0.050 0.045 -0.005 -0.031 0.051 0.048
(0.046) (0.047) (0.121) (0.137) (0.044) (0.046)
[0.272] [0.338] [0.969] [0.819] [0.253] [0.297]

Size quartile 4 0.028 0.018 -0.040 -0.089 0.030 0.025
(largest) (0.045) (0.051) (0.139) (0.175) (0.044) (0.050)

[0.538] [0.719] [0.772] [0.610] [0.498] [0.623]
log(Sequence) 0.011 0.058 0.007

(0.026) (0.076) (0.025)
[0.668] [0.443] [0.797]

Vintage fixed effects Yes Yes Yes Yes Yes Yes
Adjusted R2 0.059 0.058 0.342 0.342 0.079 0.078
Number of funds 879 879 879 879 879 879
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