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formations of a small number, K, of predictor variables—has become popular recently. Surprisingly, this
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this apparent virtue of complexity is an illusion. When P far exceeds T , the return forecasts from the high-
complexity predictive regression based on RFF effectively reduce to forecasts from a low-complexity kernel
ridge regression. This regression constructs forecasts by positively weighting the past T returns—essentially
a momentum strategy. The original K predictor variables serve only to define a distance metric: when a
lagged predictor vector closely resembles the current one, the predicted return assigns greater weight to the
corresponding past return. Moreover, because the distance to lagged predictors increases during periods of
high predictor volatility, the weights on past returns decrease in such times—making the high-complexity
RFF approach essentially a simple volatility-timed momentum strategy. Consistent with this interpretation,
I find that both a kernel-based strategy and a basic volatility-timed momentum strategy explain the excess
returns earned by the high-complexity RFF approach.
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I. Introduction

Research in machine learning has found that heavily overparametrizing models such that they fit

the training data perfectly can result in good out-of-sample predictions. In a linear regression

setting, this means that the number of covariates may far exceed the number of observations in

the training data [Belkin, Hsu, Ma, and Mandal (2019), Bartlett, Long, Lugosi, and Tsigler (2020),

Hastie, Montanari, Rosset, and Tibshirani (2022)]. These findings in machine learning have inspired

a fast-growing literature in empirical asset pricing that uses Random Fourier Features (RFF)—a

very large number, P , of randomized nonlinear transformations of a small number, K, of predictor

variables—for return prediction and for modeling of the stochastic discount factor (SDF).1

Kelly, Malamud, and Zhou (2024) (KMZ), the pioneering paper using this approach, presents a

stunning result. In a time-series setting for predicting excess returns on the CRSP value-weighed

index, regressions with P = 12, 000 RFF formed fromK = 15 variables—predictors fromWelch and

Goyal (2008) augmented with lagged index returns—produce a market timing strategy with strong

out-of-sample performance even with rolling training data windows as short as T = 12 months and

in ridgeless regression, i.e., without explicit shrinkage. This is a stunning result because most of the

Goyal-Welch predictor variables are highly persistent and the forecasting target is extremely noisy.

Conventional wisdom is that it takes sample sizes that span decades, not just 12 months, to extract

useful predictive information for future returns from these variables. The results are also puzzling

from a theoretical perspective, as overfitting without explicit regularization is benign only in high

signal-to-noise ratio settings (Mei and Montanari 2022), but not when signals are weak (Shen and

Xiu 2025), which is arguably the case in a return prediction application.

Consistent with the conventional wisdom, I find that the high-complexity ridgeless regression

with training window of T = 12 months and P = 12, 000 RFF in fact does not learn to extract

useful predictive information from the K predictors. Instead, the market-timing strategy based

on the high-complexity ridgeless regression forecasts from short training windows reduces to a

certain volatility-timed momentum strategy that forms the predicted market return as a weighted-

average of the past monthly returns during the training window, with the weights decreasing in the

level of the average volatility of the predictor variables in the training window. Importantly, the

1. See Kelly, Malamud, and Zhou (2024), Jensen, Kelly, Malamud, and Pedersen (2024), Didisheim, Ke, Kelly,
and Malamud (2023), Didisheim, Ke, Kelly, and Malamud (2024), Kelly, Malamud, and Zhou (2022),
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ridgeless regression does not learn from the data that a volatility-timed momentum strategy works.

The reason why the market timing positions resemble a volatility-timed momentum is a rather

mechanical one, and that this strategy happens to perform well in empirical data is a coincidence.

The reason why the strategy based on thousands of RFF predictors collapses to a simple

volatility-timed momentum strategy follows from the properties of RFF. When P is much larger

than K, then, as shown in Rahimi and Recht (2007) and Sutherland and Schneider (2015), inner

products of vectors of large numbers of RFF converge to a Gaussian kernel of these K variables.

Forecasts from ridgeless regression with RFF then reduce to forecasts from a kernel ridgeless re-

gression where inner products of RFF are replaced by Gaussian kernels. The effective complexity

of this kernel ridgeless regression is low because it is capped by the number of observations in the

training window. In the case T = 12, the effective number of parameters is 12, orders of magnitude

lower than the number of RFF when P is in the thousands. Predictive success in the large-P ,

small-T case therefore cannot be a consequence of virtue of complexity.

Examination of the kernel ridgeless regression estimator sheds light on the source of return pre-

dictability that the KMZ’s approach effectively exploits. The kernel ridgeless regression constructs

return forecasts by weighting the T = 12 lagged returns in the training data according to the dis-

tance of the current K-dimensional predictor variable vector to the predictor variable vector at the

corresponding lag. For example, if the one-month lagged predictor vector is more similar to the cur-

rent one than the two-month lagged predictor vector is, then the one-month lagged return receives

a higher weight in the construction of the return forecast than the two-month lagged return. More

generally, because predictor variables have persistence, more recent returns receive higher weights,

and the weights are all positive. In other words, the return forecast resembles a momentum strat-

egy. Furthermore, because distance between predictor vectors is smaller in times when predictors

are not volatile, the magnitude of the weights is inversely related to predictor variable volatility

in the training window. The two effects combined therefore generate a volatility-timed momentum

strategy, where volatility refers to the volatility of the predictors in the training window.

This makes clear that the seemingly high-complexity ridgeless regression with RFF does not

extract information about nonlinear relationships between the K predictor variables and future

returns from the short training data. The only information used is the very limited information

embodied in the distance of the lagged predictor vectors from the current predictor vector. This
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limited information involves only two aspects. First, closer lags of predictor vectors have smaller

distance to the current predictor vector. This is a property of any vector-autoregressive process

with persistence and does not reflect predictive content that the predictor variables may have for

future returns. Second, there are times when the distances between predictors are smaller than in

other times. This reflects time-varying volatility of shocks to the predictors. This volatility does

not embody predictive content of the predictors for future returns.

At a conceptual level, the method does is what it is supposed to do. When P is much larger than

K, ridgeless regression with RFF converges to a low-complexity kernel ridge regression, which in

turn is basically a nonparametric approach that predicts future returns by smoothing past returns

in time periods when the predictor variable vector was similar to the current one at the time of

prediction. With a very long training data set, the approach would then look for historical periods

that could be decades ago, in which the vector of predictor variables looked similar to the current

predictor vector, and then use the returns experienced around that time as a forecast for future

returns. However, when the training data sets are very short, as in KMZ, such as in the rolling

windows approach with T = 12 months, then all the method does is to average a few returns in

recent months, as those are the ones with highest predictor-vector similarity.

Empirically, a market-timing strategy that directly uses the low-complexity kernel ridgeless

regression approach based on the K = 15 input variables achieves abnormal out-of-sample per-

formance that is slightly stronger than KMZ’s high-complexity market timing strategy based on

the ridgeless regression with thousands of RFF. Moreover, KMZ’s high-complexity strategy earns

zero alpha when evaluated with a respect to a two-factor model that includes the market factor

and the return of the kernel ridgeless regression strategy. This is natural, as the market timing

positions taken by the kernel ridgeless regression strategy are almost identical to those taken by

KMZ’s high-complexity RFF-based strategy. This confirms empirically that the ridgeless regression

with RFF in short training windows does not learn about predictive relationships between the K

variables and future returns in the training data. Evidently, the same market timing positions are

reached with a low-complexity strategy that uses no information other than the distance of the

low-dimensional predictor vectors from each other within the training data. In fact, even a simple

volatility-timed momentum strategy that puts linearly declining weights on the past 12 months

returns interacted with the reciprocal of predictor volatility in the past 12-month window achieves
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similar performance as the high-complexity RRF-based strategy and, when used as an explana-

tory factor, it absorbs most of the abnormal performance of the high high-complexity RRF-based

strategy.

I also show empirically that the high-complexity ridgeless regression with RFF does not extract

information about predictive relationships from the training data. I generate artificial return data

by adding a observations from a simulated MA(2) process with strong negative autocorrelation

to the actual market index return data. When I feed this artificial return series into the high-

complexity ridgeless regression with RFF, it still produces weights on recent past returns that

are positive, and hence effectively still a volatility-timed momentum strategy, even though the

returns data now features reversals, not momentum. As a consequence, the strategy earns negative

abnormal returns out-of-sample. This shows that the high-complexity ridgeless regression with

RFF does not learn from the training data about the presence of momentum or reversal effects.

While most of my analysis focuses on the time-series predictive regression setting of KMZ, I

also show that similar complexity-reducing effects also appear in a cross-sectional asset pricing

setting when P RFF of K firm characteristics are used as weights to construct RFF factors from a

panel of stock returns. When P is much larger than T , a high-complexity SDF with thousands of

RFF factors as in Didisheim, Ke, Kelly, and Malamud (2024) collapses to a low-complexity SDF.

The mean-variance efficient portfolio weights implied by this SDF for the original stock returns are

kernel-weighted averages of past returns, where past returns of stocks with similar characteristics

receive higher weight.

II. Properties of Predictive Regressions with Random

Fourier Features in the High-Complexity Case

I focus on the case of ridgeless regression. The results with ridgeless regression are the most

remarkable finding in KMZ, as the predictive regression seem to achieve high predictive power

without explicit ridge shrinkage in a setting where the number of predictor variables, P , vastly

outnumbers the number of observations used to estimate the regression, T . Throughout the analysis

below I focus on this case of P = 12, 000 and T = 12, which produces the most surprising findings

in KMZ.
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II.A. Preliminaries: Predictability Induced by Standardization of the Dependent Variable

KMZ standardize the dependent variable in the predictive regressions, and the return to be fore-

casted, with the standard deviation of returns over the previous 12 months. This can generate

predictability that does not exist in the returns before standardization. Appendix A discusses the

issue in more detail. The bias in predictability is small, but to completely avoid it, I deviate from

KMZ and work with returns that are not standardized.

II.B. Properties of Ridgeless Regression when P > T

Let T denote the number of observations used in rolling predictive regressions where the dependent

variable, the return to be predicted, is measured in period t − T to t, collected in the vector yt

and the realizations of the P predictor variables from t− T to t− 1 in the P columns of the T ×P

matrix Zt−1 = (zt−1 zt−2 ... zt−T )
′. I focus on the case P > T .

The ridgeless OLS estimator in this case is

b̂t = (Z ′
t−1Zt−1)

+Z ′
t−1yt (1)

where + denotes the Moore-Penrose pseudoinverse. As the number of predictors is higher than the

number of return observations in yt, the regression perfectly fits the training data in the window

of length T .

With the predictor variable observations in period t collected in the vector zt, the predicted

value for yt+1 is

ŷcomplex
t+1|t = w′

tyt, with w′
t = z′

t(Z
′
t−1Zt−1)

+Z ′
t−1 (2)

The predicted return, and hence the market timing position taken by this strategy, is therefore

a weighted average of the T returns in yt. Considering that P > T and using the rules for the
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Moore-Penrose pseudoinverse, we can rewrite the weights as

w′
t = z′

t(Z
′
t−1Zt−1)

+Z ′
t−1

= z′
tZ

+
t−1(Z

′
t−1)

+Z ′
t−1

= z′
tZ

′
t−1(Zt−1Z

′
t−1)

−1(Zt−1Z
′
t−1)

−1Zt−1Z
′
t−1

= z′
tZ

′
t−1(Zt−1Z

′
t−1)

−1. (3)

This provides an interpretation of the T weights: They represent the coefficients in a regression of P

predictor variable observations in the vector zt on lagged observations of the predictors in periods

t− 1 to t− T . Roughly speaking, this regression evaluates which of the past vectors of predictors

zt−1, zt−2, ...,zt−T is most similar to zt. The regression coefficients, and hence the weights wt

then reflect this similarity. For example, if the predictors follow an autoregressive process with

persistence, a zt−k that is closer in time to zt will tend to be more similar to zt than predictor

vectors that are more distant in time. As a consequence, the weights wt−k for small k will tend to

be higher than those for larger k. When these weights are then applied to lagged returns in the

construction of ŷt = w′
tyt, this results in a a version of a momentum strategy, with higher weights

on the most recent returns.

That the predicted return is a weighted average of past returns is always true for any predicted

regression estimated on past returns in the high-complexity case where the number of predictor

variables exceeds the number of observations in the training window. The question is whether the

weights placed on these past returns reflect any predictive information that predictor variables have

about future returns. As I will show next, when the predictors are constructed as RFF of a small

number of variables, more can be said about what kind of information from predictors is used in

construction of the weights.

II.C. Forecasts from Ridgeless Regression with Random Fourier Features Collapse to Fore-

casts from a Low-Complexity Gaussian Kernel Ridgeless Regression

KMZ construct z as a very large number of nonlinear transformations of a small number of predictor

variables from the Goyal-Welch data set as predictors. Specifically, the nonlinear transformations

take the form of Random Fourier Features (RFF). Results on the convergence of inner products
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of RFF help shed light on what happens to KMZ’s ridgeless regression estimator when P is much

larger than T .

The K = 15 predictor variables used by KMZ include 14 predictor variables from the Goyal-

Welch data set as well as the one-month lagged market index return. KMZ then form RFF where

consecutive elements i and i+ 1 of zt are constructed as

 zi,t

zi+1,t

 =

√
2

P

 cos(γω′
ixt)

sin(γω′
i+1xt)

 ωi ∼ IID N (0, I), i = 1, ..., P/2 (4)

with γ = 2. KMZ form up to 6,000 of such pairs.2 Focusing on the highest number they consider, we

then have P = 2×6, 000 = 12, 000. KMZ then standardize the RFF, dividing by the within-training-

window standard deviation of each RFF. I first ignore this standardization and will incorporate it

in the next step.

Rahimi and Recht (2007) show that RFF can approximate kernels. Sutherland and Schneider

(2015) show similar results for the RFF specification used by KMZ. The analysis in these papers

focuses on the case where a kernel k(u,v) = k(u−v) is defined on RK and P < K RFF are used to

approximate the kernel. This is the typical use-case for RFF. The idea is to reduce computational

complexity relative to direct computation of kernels. In contrast, in KMZ’s setting, the number of

RFF is much larger than the dimension of xt. As a consequence, inner products of RFF virtually

perfectly approximate a kernel

z′
tzt−k ≈ k(xt,xt−k), (5)

which, given the standard normal distribution of the weights in KMZ’s construction of the RFF,

is a Gaussian kernel

k(xt,xt−k) = exp

(
−γ2

2
∥xt − xt−k∥22

)
, (6)

as shown in Sutherland and Schneider (2015).

With the notation

k(xt,Xt−1) =

(
k(xt,xt−1), ..., k(xt,xt−T )

)
(7)

2.KMZ do not pre-multiply by
√

2/P , but this is inconsequential for the resulting portfolio weights of the market
timing strategy as this scalar factor cancels out in the weights (3).
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and

K(Xt−1,Xt−1) =


k(xt−1,Xt−1)

...,

k(xT ,Xt−1)

 (8)

we then get

z′
tZ

′
t−1 ≈ k(xt,Xt−1), Zt−1Z

′
t−1 ≈ K(Xt−1,Xt−1) (9)

which leads to the key result that the ridgeless regression with a very large number P > T of RFF

becomes a ridgeless limit case of a kernel ridge regression where the predicted value is

ŷt+1|t ≈ k(xt,Xt−1)K(Xt−1,Xt−1)
−1yt. (10)

The kernels involved only take a small number of K = 15 inputs.3 Moreover, the effective number

of parameters in the construction of the predicted return is only T = 12.4 Applied to training

data sets of such short length, this is effectively a low-complexity regression, despite the seemingly

high complexity suggested by the large number of RFF employed by KMZ. The complexity of the

regression is capped by the number of observations in the training window.

The kernel form of the estimator in (10) is also revealing about why a market-timing strategy

based on this estimator earns high returns out-of-sample. The estimator constructs a prediction of

future returns by smoothing past returns. The predicted value in (2) is a weighted average of the

T lagged returns in yt, where the weights depend simply on the similarity between xt and the T

columns of X. If among these columns there are xt−k for some lags k that are close in distance to

xt, then prediction ŷt+1|t is close to an average of the yt−k+1 at those lags k.

There are now two effects that largely account for how the weights on past returns look like.

First, the less distant xt−k from xt, the higher the weight that yt−k gets in the construction of

ŷt+1|t. If x follows an autoregressive process, one would expect higher weights for xt−k that are

3. I refer to this regression as a kernel ridgeless regression, which is distinct from a kernel regression, say based
on the Nadarya-Watson estimator, that simply weights observations of the dependent variable without involving the
K(., .)−1 matrix.

4. See Hastie, Tibshirani, and Friedman (2009), chapter 7.6 for a definition of the effective number of parameters,
or degrees of freedom, as the trace of the “hat-matrix” and Rasmussen and Williams (2006), chapter 2.6., for an
application to Gaussian process regression, which is mathematically similar to kernel ridge regression. In this case
here, the “hat-matrix” is the trace of K(Xt−1,Xt−1)K(Xt−1,Xt−1)

−1 = I, which is equal to T . See also Bach
(2024) for related asymptotic results in the case where P, T → ∞ with P/T fixed, and the degrees of freedom in the
ridgeless case are equal to T .
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closer in time to xt. This makes the weights look like those of a momentum strategy. The predicted

value will tend to be an average of lagged returns in nearby months. Second, in times when the

xt and xt−k are subject to bigger noise shocks—which will tend to happen during periods of high

volatility—they will differ more, and hence k(xt,xt−k) will be smaller, resulting in a smaller weight

on yt−k. The combination of the two effects is basically a momentum strategy interacted with

a volatility-timing strategy that makes the momentum strategy less aggressive when volatility is

high.

To illustrate how the weights on past returns look like, I use the replication data provided

by KMZ to construct their estimator and the return predictions that follow. Figure I shows the

weights averaged over 1,000 draws of random weights for 12,000 RFF and focusing on the ridgeless

regression case with T = 12. The percentiles are based on the distribution over time of the averaged

weights across these 1,000 draws of RFF.5

Panel A shows the time-series mean of the weights for the different return lags as well as the 10th

and 90th percentiles. The results show that the ridgeless regression basically forms a momentum

strategy with the highest weight on the most recent lagged return yt and smaller weights on earlier

return observations. This can be anticipated from the kernel ridge regression representation of

the return prediction in (10). The weights depend on how similar the low-dimensional predictor

vector xt is to the predictor vectors xt−k realized earlier in the time window of length T = 12.

Naturally, predictor vectors that are closer in time are more similar, hence their distance to xt

is smaller, which results in a bigger weight for returns that are closer in time to t in the kernel

ridgeless regression forecast in (10).

Panel B shows the cross-sectional mean of the T = 12 weights every month. There is strong time-

variation in these weights. As I will show, this time-variation is closely related to the reciprocal

of a volatility measure, which makes the return prediction one of a volatility-timed momentum

strategy.

5.The variation of weights for different draws of RFF random weights is miniscule. Hence, just plotting the mean
weights and percentiles for a single draw of RFF random weights would look almost identical.
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(b) Cross-Sectional Means of Weights
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Figure I
Weights on T Past Returns in Ridgeless Regression Return Prediction
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II.D. Within-Window Standardization of Random Fourier Leads to a Scaled Version of the

Forecasts from Kernel Ridgeless Regression

One issue that still remains to be addressed is that KMZ do not use the RFF directly as predictors.

Instead, within each regression time window, they standardize the RFF by dividing with the within-

window standard deviation of each RFF. Let z̃ denote the standardized RFF. Their inner product

is

z̃′
tz̃

′
t−k = z′

tΩ
−1
t−1zt−k, (11)

where Ωt−1 =
1

T−1 diag(Z
′
t−1Zt−1) is a diagonal matrix with P within-window variances the RFF

on its diagonal. The results from Rahimi and Recht (2007) and Sutherland and Schneider (2015)

on approximating kernels do not apply here anymore for this weighted inner product of RFF.

While I do not have a closed-form result that relates the inner products of standardized RFF

to kernels, empirically it turns out that in KMZ’s setting the return prediction based on the

standardized RFF is extremely well approximated by a simple scaling up of the kernel in (10) to

ŷkernelt+1|t ≈ 1.69× k(xt,Xt−1)K(Xt−1,Xt−1)
−1yt (12)

I refer to the market timing strategy based on this scaled version of the kernel ridge regression as

the kernel approach.

For the same RFF as those in Figure I, Figure II shows that the weights on past returns implied

by KMZ’s high-complexity regression with P = 12, 000 RFF are almost exactly the same as those

resulting from the low-dimensional kernel approach in (12). Panel A shows the weights for the

most recent lagged return yt. As this weight is typically the biggest, it plays the biggest role

in the prediction of return in month t + 1. As Panel A shows, the weights on yt in the rolling

windows implied by the high-complexity ridgeless regression (horizontal axis) are almost the same

as those implied by the low-complexity kernel approach (vertical axis). The correlation is 0.99.

Panel B shows similar results for the lag 2 return, i.e., the weight on yt−1. For more distant lags,

the correlations between the different versions of weights are extremely high, too. Therefore, the

extremely high-dimensional regression ridgeless using RFF collapses to a simple low-complexity

kernel regression.

Figure III reinforces this conclusion. It shows the predicted returns, ŷcomplex
t+1|t produced by the

11
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(b) Weight for lag 2 return
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Figure II
Weights on Past Returns implied by Ridgeless Regression and Scaled Kernel Ridgeless Regression
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Figure III
Predicted Returns Implied by KMZ’s Ridgeless Regression and Kernel Approach

high-complexity regression and ŷkernelt+1|t produced by the kernel approach. They are very similar.

The correlation is 0.93.

II.E. Market-Timing Based on Gaussian Kernel Ridgeless Regression: Effectively A Volatility-

Timed Momentum Strategy

That the high-complexity ridgeless regression collapses to a low-complexity kernel approach makes

clear that the KMZ strategy’s success in predicting returns out-of-sample based on estimates from

extremely short rolling time windows does not come from the regression’s ability to extract pre-

dictive information that nonlinear functions of the dividend-price ratio and other predictors have

with regards to future returns. Instead, the high-complexity regression collapses to a kernel expres-

sion where the predicted return is essentially a simple momentum strategy that forms a weighted

average of T = 12 lags of past returns, albeit with time-varying weights.

The weight that the predicted return ykernelt+1|t puts on return yt−k depends, via the Gaussian

kernel

k(xt,xt−k) = exp

(
−γ2

2
∥xt − xt−k∥22

)
. (13)

on the distance between xt and xt−k. Broadly speaking, this distance reflects two effects. First,
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Figure IV
Ridgeless Regression Mean Weight on Past Returns and Reciprocal of Mean Predictor Variance

lags that are more distant in time (larger k) are less similar, which results in greater distance, and

lower k(xt,xt−k). Second, the more volatile the predictors are within the time window of length

T used to estimate the regression, the greater the distance between xt and xt−k. The two effects

combined produce a momentum strategy (higher positive weights for nearby lags of returns) that

is volatility-timed (higher weights when predictor volatility is low and hence neighboring xt and

xt−k are more similar).

Figure IV shows evidence of the negative relation between the magnitude of weights on past

returns and predictor volatility. The figure shows the mean of the weights in (3) every month

that the predicted value of KMZ’s high-complexity regression using RFF places on the past 12

monthly lags of returns. This is the same time series as in Panel B of Figure I. For comparison,

the figure also shows the reciprocal of the mean of the variance of the 15 predictor variables within

each estimation window of T = 12 months. The comparison shows that weights on past returns

produced by the ridgeless RFF strategy are highly correlated over time with the reciprocal mean

predictor variance, consistent with the reasoning I outlined above: In windows in which the 15

predictors are less volatile, the predictor vectors xt and xt−k are at smaller distance, which results

in higher weights assigned by the kernel (which in turn is approximated almost perfectly by the

RFF).
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Figure V
Mean Weight on Past Returns in High-Complexity Ridgeless Regression with RFF and in the

Volatility-Timed Momentum Strategy

These results suggest that it should be possible to approximate KMZ’s market timing strategy

with a very simple one: A momentum strategy that has weights that decay with lag length, similar

to the decay of the time-series mean of weights shown in Panel A of Figure I, combined with

a volatility-timing scaling factor that increases the magnitude of weights on past returns if the

volatility of the 15 predictor variables is low. The following market timing strategy implements

this idea:

ŷvolmom
t+1|t = 0.05× 1

σ̂2
x,t−1

×
11∑
k=0

12− k

78
yt−k+1. (14)

Here σ̂2
x,t−1 is the average variance of the predictors in the training window of length T = 12. The

weights on the past returns in the summation term are linearly declining and the division by 78

scales them to have a sum of unity. The initial multiplication by 0.05 makes the average magnitude

of ŷvolmom
t+1|t similar to the average magnitude of the high-complexity strategy weights ŷcomplex

t+1|t , but

this scaling has no effect on t-statistics and information ratios of the out-of-sample returns of the

strategy.

Figure V compares the linearly declining weights of the volatility-timed momentum strategy

with the weights implied by the high-complexity strategy based on RFF. They are not identical,
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Figure VI
Mean Weight on Past Returns in High-Complexity Ridgeless Regression with RFF and

Volatility-Timed Momentum Strategy

but the broad pattern of decline with lag length is similar.

Figure VI shows the cross-sectional means of the past-return weights of the two strategies each

month. Much of the time-series variation is shared between the two series.

II.F. Spanning Tests: Any Virtue in Complexity?

Does the high-complexity approach with RFF provide any incremental predictive benefit relative

to the lower-complexity kernel and volatility-timed momentum approaches? Table I presents the

evidence.

Panel A reports the alpha of each strategy relative to a one-factor model with the excess

return of the CRSP value-weighted index as the single factor, as well as the corresponding t-

statistics and information ratios. The first column shows the result from KMZ that the high-

complexity RFF strategy produces positive alpha, with high t-statistic (2.417) and information

ratio (0.255).6 Interestingly, the low-complexity kernel strategy and the volatility-timed momentum

6.The t-statistic and information ratio are slightly lower than those that KMZ report in their Figure 8 for the
ridgeless case (log10 z = −3) and high complexity (c = 1000). The reason for this discrepancy is that I do not
standardize the variable to be predicted to avoid the bias discussed in Appendix A. If I standardize returns in the
same way as KMZ do, I obtain a t-statistic of 2.811 and an information ratio of 0.296, which exactly matches the
results in KMZ’s Figure 8.
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TABLE I
Out-of-Sample Market Timing Performance

The high-dimensional RFF market timing strategy in the first column uses RFF as predictors in (10) and it is the

same as in the ridgeless regression case in KMZ with T = 12 and P = 12, 000 RFF, but without standardizing the

predicted return, for the reasons discussed in Appendix A. The abnormal returns of the market timing strategy based

on high-complexity ridgeless regression are averaged over 1,000 draw of random weights in the construction of RFF.

The second column shows the market timing strategy based on the low-dimensional Gaussian kernel ridgeless in (12).

The third column shows the volatility-timed momentum strategy in (14). Panel A shows alphas and information

ratios relative to a one-factor model with the monthly excess return of the CRSP value-weighted index as the single

factor. Panel B uses a two-factor model with the CRSP value-weighted index and the return on the low-complexity

kernel strategy as the two factors. Panel C uses the volatility-timed momentum strategy as the second factor along

with the CRSP value-weighted index. Alphas are annualized in percent.

High-Complexity RFF Low-Complexity Kernel Vol-Timed Momentum

Panel A: One-Factor α (Market Factor)
Alpha 0.034 0.040 0.034
(t-stat.) (2.417) (2.900) (3.684)
Information Ratio 0.255 0.306 0.388

Panel B: Two-Factor α (Market and Kernel Factors)
Alpha -0.001
(t-stat.) (-0.122)
Information Ratio -0.013

Panel C: Two-Factor α (Market and Vol-Timed Momentum Factors)
Alpha 0.012
(t-stat.) (0.945)
Information Ratio 0.100

strategy produce t-statistics and information ratios that are even slightly larger than those of the

high-complexity RFF strategy. This suggests that the high-complexity approach with RFF may

not provide any incremental predictive benefits.

This is further reinforced by the spanning test in Panel B. Here I add the kernel strategy return

as a second factor to the market factor. The alpha of the high-complexity RFF strategy drops

to almost exactly zero, and the t-statistic and information ratios become very small. This is a

natural outcome, given how similar the market timing positions of the two strategies are. Panel A

in Figure VII shows that every month, the low-complexity kernel strategy takes almost exactly the

same position as the high-complexity RFF strategy.

Panel C uses the volatility-timed momentum strategy as second factor. Here the alpha doesn’t

drop as much, but it still falls by about 2/3 compared with Panel A and the t-statistic falls far

below conventional levels of significance. Relatedly, Panel B of Figure VII shows that the market
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timing positions of the volatility-timed momentum strategy are very close to those of the high-

complexity RFF strategy. This suggests that the volatility-timed momentum strategy, despite its

extreme simplicity, captures much of the predictive power of the high-complexity RFF strategy.

Furthermore, the time-series of the kernel strategy and volatility-timed momentum strategy

market timing positions shown in Figure VII also share the property of the positions of the high-

complexity RFF strategy that they are higher outside of recessions. KMZ interpret this property

of the high-complexity RFF strategy as “the machine learning strategy learns to divest leading up

to recessions.” This is not the correct interpretation. Instead, the business-cycle pattern of the

high-complexity RFF strategy positions simply reflects the fact that its market timing position is

effectively a weighted average of past returns, with positive weights on past returns that are bigger

in times when the predictor variables are less volatile. These periods of low predictor volatility are

outside of recessions.

Figure VIII shows the cumulated abnormal returns of the three strategies with abnormal returns

measured relative to the one-factor model with the market factor. The cumulated abnormal returns

are divided by the full-sample standard deviation, which makes them interpretable as proportional

to a cumulated information ratio.

II.G. Out-of-Sample Market Timing Performance in Artificial Data with Reversals

The collapse of the high-complexity RFF-based ridgeless regression to a kernel regression leads to

weights on recent past returns that are, by construction, always positive (aside from small noise

distortions due to approximation error where the RFF do not perfectly approximate a Gaussian ker-

nel.) Hence, the ridgeless regression does not learn from the data that there is a volatility-dependent

momentum effect; it always constructs a volatility-timed momentum strategy, irrespective of the

properties of the return data. The good out-of-sample performance is therefore due to a coinci-

dence that a volatility-timed momentum effect is actually present in the data and not because the

approach extracts predictive relationships from the data.

While the math is clear on this point, it may nevertheless be useful to illustrate this empirically.

I modify the return data to such that it exhibits short-term reversals instead of momentum by

adding an MA(2) process with negative autocorrelation to the original returns yt. The artificial
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(a) Comparison with Low-Complexity Kernel Strategy

(b) Comparison with Volatility-Timed Momentum Strategy

Figure VII
Market Timing Positions of High-Complexity Ridgeless Regression, Kernel, and Volatility-Timed

Momentum Strategy

Six-month moving averages of market timing positions yComplex
t+1|t , yKernel

t+1|t , and yVolmom
t+1|t with T = 12, P = 12, 000. The

market timing positions yComplex
t+1|t are averaged over 1,000 draws of random weights in the construction of RFF.
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Figure VIII
Cumulative Standardized Out-of-Sample Abnormal Returns

Abnormal returns relative to one-factor model with excess return of CRSP value-weighted index as single factor,
divided by full-sample standard deviation of the abnormal return. The abnormal returns of the market timing
strategy based on high-complexity ridgeless regression with T = 12 and P = 12, 000 RFF are averaged over 1,000
draw of random weights in the construction of RFF.

data of monthly market index returns then is

ỹt = yt + ξt − θ1ξt−1 − θ2ξt−2 (15)

with θ1 = θ2 = 0.2 and where ξt ∼ N (0, 0.01). I chose the parameters of the MA(2) process such

that the negative autocorrelation is big enough to overcome the momentum effect in the actual

market index returns. I then replace the market index returns in KMZ’s data with this artificial

return series and redo the estimation.

Table II reproduces the analysis of Table I, but now with the artificial market index return

data. As expected, the abnormal performance of the high-complexity RFF-based strategy, as well

as the kernel strategy and the volatility-timed momentum strategy are now all negative. This

demonstrates that the high-complexity RFF-based strategy’s weights on recent past returns are

always positive. It does not learn from the data that there is a momentum effect (in the original

data) or reversal effect (now here in the artificial data). All that matters for how the weights look

like is the predictor-vector similarity. Despite the fact that the return data now features reversal
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TABLE II
Out-of-Sample Market Timing Performance in Artificial Data with Reversals

The high-dimensional RFF market timing strategy in the first column uses RFF as predictors in (10) and it is the

same as in the ridgeless regression case in KMZ with T = 12 and P = 12, 000 RFF, but without standardizing the

predicted return, for the reasons discussed in Appendix A. The abnormal returns of the market timing strategy based

on high-complexity ridgeless regression are averaged over 1,000 draw of random weights in the construction of RFF.

The second column shows the market timing strategy based on the low-dimensional Gaussian kernel ridgeless in (12).

The third column shows the volatility-timed momentum strategy in (14). Panel A shows alphas and information

ratios relative to a one-factor model with the monthly excess return of the CRSP value-weighted index as the single

factor. Panel B uses a two-factor model with the CRSP value-weighted index and the return on the low-complexity

kernel strategy as the two factors. Panel C uses the volatility-timed momentum strategy as the second factor along

with the CRSP value-weighted index. Alphas are annualized in percent.

High-Complexity RFF Low-Complexity Kernel Vol-Timed Momentum

Panel A: One-Factor α (Market Factor)
Alpha -0.143 -0.137 -0.124
(t-stat.) (-1.835) (-1.757) (-4.099)
Info Ratio -0.193 -0.185 -0.432

Panel B: Two-Factor α (Market and Kernel Factors)
Alpha -0.013
(t-stat.) (-0.517)
Information Ratio -0.055

Panel C: Two-Factor α (Market and Vol-Timed Momentum Factors)
Alpha -0.045
(t-stat.) (-0.628)
Information Ratio -0.066
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Figure IX
Cumulative Standardized Out-of-Sample Abnormal Returns in Artificial Data with Reversals

Abnormal returns relative to one-factor model with excess return of CRSP value-weighted index as single factor,
divided by full-sample standard deviation of the abnormal return. The abnormal returns of the market timing
strategy based on high-complexity ridgeless regression with T = 12 and P = 12, 000 RFF are averaged over 1,000
draw of random weights in the construction of RFF.

effects, it is still the case that the predictor vectors in the most recent months are most similar to

the current predictor vector, and hence the most recent past returns get a positive weight.

Figure IX illustrates the out-of-sample performance in cumulative terms. In sharp contrast

to Figure IX, the cumulative abnormal performance is negative. This reflects the inability of the

high-complexity RFF-based ridgeless regression, and the kernel approach that it approximates, to

learn about the reversals present in the data in short training windows of only 12 months. These

approaches still mechanically produce a volatility-timed momentum strategy, which performs badly

in this artificial data.

III. Cross-Sectional Asset Pricing

I focused above on understanding the time-series predictability results in KMZ, as these are ex-

tremely puzzling given the conventional wisdom about predictive regressions for stock market index

returns. However, the results above also shed light on what happens when large number of RFF-

based factors are employed in a cross-sectional asset pricing setting.

22



Consider now an unbalanced panel setting as in Didisheim, Ke, Kelly, and Malamud (2024)

(DKKM), with n = 1, ..., Ns stocks at time s, each with a vector of j = 1, ..., J characteristics xn,s,

stacked into a Ns×J matrix Xs = (x1,s, ...,xNs,s)
′. The researcher uses a training sample of length

T , with T < Ns for all s.

Construct RFF based on these characteristics for each stock n as zn,i,s

zn,i+1,s

 =

√
2

P

 cos(γω′
ixn,s)

sin(γω′
i+1xn,s)

 ωi ∼ IID N (0, I), i = 1, ..., P/2 (16)

DKKM randomly generate different values for γ for each i from a grid [0.5, 0.6, 0.7, 0.8, 0.9, 1.0].

Here I assume that γ is non-random. Then, in each cross-section s, place the RFF in a P × N

matrix Zs.

Let rs+1 be an Ns-dimensional vector of stock returns. Forming cross-products of returns and

lagged RFF delivers a P -dimensional vector of RFF factors

f s+1 = Zsrs+1. (17)

As in DKKM, I assume that the SDF has a representation as

Ms = 1− λ′f s. (18)

Solving for the minimum-norm solution of the sample moment conditions Ê[f sMs] = 0, and letting

Ê[.] denote a sample average in the training data sample from s = t − T + 1, ..., t, delivers the

ridgeless estimator of the prices of risk

λ̂t =
(
Ê[f sf

′
s]
)+

Ê[f s]

=
(
F ′

tF
)+

F ′
tι, (19)

where ι is a conformable vector of ones and F t = (f t−T+1, ...,f t)
′ has dimension T × P .

Using the same approach as in (3), I can write λ̂t as

λ̂t = F ′
t

(
F tF

′
t

)−1
ι. (20)
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In Section 4.5 in the theory part of their paper, DKKM discuss that the properties of the very

large P × P matrix F ′
tF are difficult to characterize. However, in the ridgeless case, calculation of

this matrix is not necessary—all we need is the much smaller T × T matrix F tF
′
t. Even though

the length of λ̂t is P , the effective number of parameters is only T . As in the time-series setting

earlier, the size of the training data set caps the effective number of parameters.7

The prices of risk vector λ is proportional to the weights of the mean-variance efficient combi-

nation of the RFF factors. The estimated implied mean-variance efficient portfolio weights for the

underlying Nt stocks, which can be applied out-of-sample to rt+1, are therefore proportional to

ωt = Z ′
tλ̂t = Z ′

tF
′
t

(
F tF

′
t

)−1
ι. (21)

Now note that

Z ′
tF

′
t =

[
Z ′

tZt−Trt−T+1, ... ,Z ′
tZt−1rt

]
≈ [K(Xt,Xt−T )rt−T+1, ... ,K(Xt,Xt−1)rt] , (22)

where K(., .) again denotes a Gaussian kernel matrix, as earlier, and the approximation follows for

the same reasons I discussed earlier in Section II.C.

The T × T matrix F tF
′
t has on its diagonal f ′

sf s, for s = t− T +1, ..., t. These inner products

have the following approximation, again for the reasons discussed earlier in Section II.C:

f ′
sf s = r′sZ

′
s−1Zs−1rs

≈ r′sK(Xs−1,Xs−1)rs. (23)

Off-diagonal elements are

f ′
sf s−k = r′sZ

′
s−1Zs−1−krs−k

≈ r′sK(Xs−1,Xs−1−k)rs−k (24)

7. In the case P < T , we would have λ̂t = (F ′
tF )

−1
F ′

tι, i.e., the prices of risk are slopes in a regression of a

vector of ones on the factors, with effective number of parameters tr
[
F (F ′

tF )
−1

F ′
t

]
= P , but in the P > T case, it

is tr
[
FF ′ (F tF

′)
−1

]
= T . These T effective parameters are sufficient to fit the vector ι perfectly each period, which

makes the in-sample SDF equal to exactly zero each period.

24



i.e., a kernel-weighted sum of serial and cross-serial comoments of returns at lag k. As serial

correlation of returns is very small, and squared expected returns are small relative to the second

moments of returns, the matrix F tF
′
t can be approximated by setting the off-diagonal elements to

zero.

With this approximation and (22), the weight vector in (20) becomes

ωt ≈
t∑

s=t−T+1

K(Xt,Xs−1)rs
r′s+1K(Xs,Xs)rs+1

(25)

To understand what is going on, it is useful to focus on the element of the weight vector that

applies to stock n,

ωn,t ≈
t∑

s=t−T+1

K(xn,t,Xs−1)rs
r′sK(Xs−1,Xs−1)rs

. (26)

To determine the weight for stock n at the end of period t, this approach looks back at the whole

panel of stock returns in the training data and constructs a weighted average of past returns of

stocks. Consider one term in the summation. In the weighted average in the numerator, the

kernel assigns higher weights to returns of stock observations with characteristics that are similar

to xn,t. In other words, it’s a standard kernel smoothing approach. The denominator introduces a

(co-)variance timing effect on the weights. If the return of stock n is highly correlated with other

stocks that have similar characteristics, then if rn,s is high, the denominator will also tend to be

high because cross-products of rn,s with other stocks’ returns will tend to be positive and high as

well, and they will receive high weight, via the kernel matrix, in the calculation of the quadratic

form in the denominator. In contrast, if a stock is uncorrelated with others, or has very different

characteristics from others, then rn,s will not be downweighted by the denominator.

What if one used a similarly short training data window, say T = 12 months, as in the time-

series predictability analysis in KMZ? Then estimated mean-variance efficient portfolio weights

would have a lot of similarity with the market timing positions in KMZ. In this case, the weight

of stock n would be a weighted average of the returns in the entire panel of stock returns during

the window with size T = 12, but with higher weight given to stocks that are similar to stock

n in terms of their characteristics, and to time periods in which these stocks (and stock n itself)

are more similar in characteristics to stock n at time t. As characteristics closer in time will be

more similar, the weights will look like a momentum strategy, but with positive weights given not
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only to stock n’s past returns, but also to the returns of characteristics-similar stocks. Finally,

the denominator in (26) introduces a (co)-variance timing element, giving higher weight to returns

from time periods with lower (co)-variances. All in all, this would become a sort of volatility-timed

momentum strategy, but with past returns smoothed across similar stocks rather than just using

own-stock past returns.

When the training window is much larger, such as with T = 360 months in DKKM’s analysis,

then the strategy becomes more sophisticated. In this case, the strategy effectively looks back at

a much longer history and whether there were times and stock observations with characteristics

similar to xn,t and then smoothes the returns associated with these observations to obtain the

numerator of the portfolio weight in in (26). The denominator contributes (co)-variance weights,

again using characteristics-similar observations in the past.

But even with T = 360, the complexity of the RFF-based strategy is much lower than it may

seem. For example, take the case of P = 360, 000, which is the highest value considered in the

empirical analysis of DKKM. As (25) shows, the calculation of mean-variance optimal portfolio

weights really boils down to just averaging returns and cross-products of returns of Ns stocks

over T = 360 periods, with weights controlled by kernels that are a function of K = 130 mostly

slowly-moving underlying characteristics.

IV. Conclusion

The empirical success in out-of-sample return prediction with a large number, P , of predictors

constructed as Random Fourier Features (RFF)—randomly weighted and nonlinearly transformed

versions of a small number, K, of original predictor variables—is suggestive of a virtue of complexity

in return prediction. However, the actual complexity is much lower than it may seem. First, the

effective number of parameters is capped by the number of time-series observations, T , in the

training windows. This reflects the singularity that results from having T < P . Second, when

P is much larger than K, inner products of RFF converge to Gaussian kernels that take the K

original predictor variables as inputs. This makes ridgeless regression essentially equivalent to

kernel ridgeless regression. Predicted returns are then fairly simple kernel-smoothed averages of

past returns, where the magnitude of the weights is governed by the distance of past realizations

of the K-dimensional original predictor vector from the current one. Third, the typical predictor
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variables in return prediction applications are persistent. This makes the kernel ridgeless regression

weights on past returns fairly similar for neighboring lags of past returns.

In the time-series setting of KMZ, the discrepancy between the seemingly high degree of com-

plexity and the actual complexity is extreme. In their ridgeless case with T = 12 months, K = 15,

and P = 12, 000, the predicted return can be expressed as as a weighted average of 12 lagged re-

turns with weights that depend on the distance of the 15 lagged predictor variables from the current

predictor variable vector. The good out-of-sample performance of a market-timing strategy based

on RFF-predicted returns therefore does not arise from predictive information extracted from the

predictors—which would be surprising in a training window as short as 12 months—but rather

from the fact that this weighted average of past returns resembles a volatility-timed momentum

strategy that has historically performed well. The market-timing success of this strategy is not

evidence of a virtue of complexity as actual complexity is not high to begin with.

Similar complexity-reducing effects are at work in cross-sectional asset pricing when the SDF is

expressed as a function of P RFF factors constructed by weighting original asset returns with RFF

constructed from K original firm characteristics. In this setting, too, the training window length T

caps the effective number of risk price parameters in the SDF, when P is much larger than K the

predicted mean-variance efficient portfolio weights for the original assets become kernel-smoothed

averages of past returns in the panel of asset returns, and neighboring lags of past returns will tend

to get similar weights due to predictor persistence.

More generally, these results suggest that the sources of empirical success of highly flexible,

nonlinear approaches in asset pricing could potentially have less to do with complexity than it

may seem. Small T , which is typical in asset pricing applications, should also restrict the effective

number of parameters of other nonlinear approaches, not just RFF. The similarities between RFF

and neural networks raise the possibility that similar convergence to low-complexity kernel functions

may also take place for complex neural networks when T is small. This seems like an interesting

area for future research on machine learning in asset pricing.
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Appendix

A. Spurious Predictability Induced by Standardizing Returns

The following analysis shows how standardizing can induce spurious predictability under the null
of no true predictability.

Let excess returns on a stock market index return be rt+1 = µ+ σtet+1, where µ > 0 and et+1

is IID noise with Et et+1 = 0 and Et e
2
t+1 = 1. Assume that σ2

t is time-varying, i.e., var(σ2
t ) > 0.

Assume that σ2
t is observable to a researcher. The researcher examines market excess returns

standardized by conditional volatility:

yt+1 =
rt+1

σt
=

µ

σt
+ et+1. (A.1)

The first term, µ
σt
, now has predictable variation and Et yt+1 =

µ
σt

is time-varying.

While a predictability test applied to r with predictor σ−1
t would yield

cov(rt+1, σ
−1
t ) = 0, (A.2)

applied to y it yields evidence of predictability

cov(yt+1, σ
−1
t ) = µ var(σ−1

t ) (A.3)

and the regression slope coefficient in a regression of yt+1 on σ−1
t is equal to µ and the intercept

is zero. Therefore, the fitted prediction is µσ−1
t , which is also equal to Et yt+1. The predictable

variation is

R2 =
µ2 var(σ−1

t )

var(yt)
≈ 0.43% (A.4)

which is not negligible in monthly data. This calculation uses µ = 0.0068 (mean of the CRSP
index return in the Goyal-Welch data set), var(σ−1

t ) = 108.80 (using 12m lagged volatility of index
returns as σt), and var(yt) = 1.19.

Now construct a timing strategy based on the predicted value

ft+1 = yt+1xt, with xt = µσ−1
t (A.5)

(The return of this timing strategy will be the same as the return of a volatility-timing strategy
with weight µσ−2

t applied to the non-standardized return yt+1, which exploits that µ does not vary
with σt).

To get alpha, let’s first get the covariance with the market excess return:

cov (ft+1, yt+1) = cov

(
rt+1

σt

(
µ

σt

)
, yt+1

)
= E

[
µσ2

t e
2
t+1

σ2
t

]
= µ (A.6)
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so

β =
µ

var(rt+1)

=
µ

E[σ2
t ]
. (A.7)

Therefore,

α = E [ft+1]− βµ

= µ2 E[σ−2
t ]− µ2 E[σ2

t ]
−1

= µ2
(
E[σ−2

t ]− E[σ2
t ]

−1
)

> 0, (A.8)

where the bound in the last line follows from Jensen’s inequality. With the same moments as I
used for the R2 above, and after annualizing,

α ≈ 0.24. (A.9)

Using the standardized market return as benchmark, as in KMZ, the alpha is smaller: Covari-
ance with the standardized market return

cov (ft+1, yt+1) = µE[σ−1
t ] (A.10)

and, since var(yt+1) ≈ 1,

β = µE[σ−1
t ] (A.11)

α = E [ft+1]− βµE[σ−1
t ]

= µ2(E[σ−2
t ]− E[σ−1

t ]2)

= µ2 var(σ−1
t ), (A.12)

which comes out to be annualized about α ≈ 0.06 with empirical moments for µ and var(σ−1
t ).

In simulations, I find the same value of alpha on average, and an information ratio of about 0.25,
which is not a negligible magnitude!

In the simulations with window size T = 12, however, I find that the fitted values from predictive
regressions with RFF don’t get close to capturing all this predictability that the reciprocal volatility
strategy above captures. The information ratio I find in these simulations for the RFF-based
strategy is only around 0.05. So much of the predictability captured by the RFF is due to something
else, not the above mechanical effect related to standardization. That said, as a general matter,
that the above analysis shows that standardizing the dependent variable is a somewhat dangerous
practice in a study that has the objective of documenting predictability. It’s only a small part of
the story in KMZ, but it could play a bigger role in others.
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