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1 Introduction

There are two roughly two sides to homotopy theory:

building machines, and using them to do computations.

—John Baez

The running theme of our workshop (and algebraic topology in general) has been
the ways in which we can provide algebraic solutions into topological problems.
The longstanding “heavy hitters” in this regard are homology, cohomology, and
homotopy groups. By associating groups to a topological space, we can use the
tools of algebra to gain insights that might otherwise be difficult to access. Moreover,
there are a variety of options to choose from (such as Morse homology and de Rham
cohomology we saw earlier in the summer). However, as we know, computing these
algebraic invariants can be quite difficult. There is a trade-off, in many cases,
between the complexity of the machine and the ease with which we can use it to do
computations.

We can see how this trade-off plays out for spheres. Since spheres are some of the
simplest spaces, we would hope that their (co)homology and homotopy groups would
also be relatively simple. In the case of (co)homology groups, our wish is granted.
Once we put in the work of understanding the construction of the (co)homology
groups (which may require understanding singular chains or differential forms or
gradient flow or. . . ), we are rewarded with the knowledge that Hi(S

n) and H i(Sn)
are non-trivial just when i = 0, n.

In contrast, the homotopy groups of spheres are much harder to compute, al-
though the construction of homotopy groups is much simpler than their (co)homolo-
gical counterparts. In particular, while πi(S

n) is known to be trivial for i < n and Z
for i = n, the higher homotopy groups for i > n are not known in general (although
a lot of progress has been made, e.g. the fact that almost all these groups are finite,
as mentioned on [Hat02, p.339, p.364, p.384]). The difficulty of computation is due,
in part, to the lack of something like excision for homology (which we will discuss
in Section 3) or the fundamental group’s van Kampen theorem.

1



The Freudenthal Suspension Theorem gives us one way to better understand
these elusive groups. This result, which finds its home as a cornerstone of stable
homotopy theory, relates the homotopy groups of a sphere to that of its suspension,
utilizing the construction of Sn as the suspension of the sphere one dimension lower.
The remarkable implication of the theorem is that

πi(S
n) ∼= πi+1(S

n+1)

for i < 2n− 1. The modern theorem statement deals with general spaces, although
Freudenthal’s original theorem only considered spheres. The goal of this write-up
is to provide a relatively self-contained proof of the general Freudenthal Suspension
Theorem.

In Section 2, we briefly review the basics of higher homotopy groups and relative
homotopy groups. In addition to the long exact sequence for relative pairs, the
most important ingredient for proving the suspension theorem is the homotopy
excision (or Blakers-Massey) theorem, which we discuss in Section 3. The final
section, Section 4, covers the main theorem, although we spend some time discussing
suspensions (Section 4.1) before delving into the proof (Section 4.2). We briefly
discuss some applications of the suspension theorem in Section 4.3, in particular to
define stable homotopy groups.

2 Higher Homotopy Groups

There is much pleasure to be gained from useless knowledge.

—Bertrand Russell

Homotopy groups are one way that topologists can describe and classify topo-
logical spaces. Like homology groups, the homotopy groups provide a way to detect
interesting higher dimensional characteristics of a space. The nth homotopy group
of a space records information about homotopically distinct maps from the n-sphere
to the space.

Definition 2.1. Let X be a topological space with basepoint x0 ∈ X. For a given
basepoint s ∈ Sn, the nth homotopy group of X is the set of homotopy classes of
maps f : Sn → X that map s to x0. In mathematical symbols,

πn(X,x0) = {[f ] | f : Sn → X, f(s) = x0}.

Equivalently, we could ask about homotopy classes of maps f : In → X that take
the boundary of the n-cube In = [0, 1]n to x0. If X is path-connected, then the
choice of basepoint does not matter, and we may simply write πn(X).

A space is called n-connected if πi(X) = 0 for all i ≤ n. Thus 0-connected means
path-connected, and 1-connected means simply connected. Since n-connectedness
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Figure 1: A representative of an element in πn(X).

implies 0-connectedness, the choice of basepoint x0 is unimportant in any n-connected
space.

The group operation is a generalization of the familiar “gluing” method in the
fundamental group π1. Given f, g ∈ πn(X) for n ≥ 2, we have

(f + g)(t1, . . . , tn) =

{
f(2t1, . . . , tn) t1 ∈ [0, 12 ];

g(2t1 − 1, . . . , tn) t1 ∈ [12 , 1].

(Of course, we really mean to write [f ], [g] and [f + g], but we typically omit the
brackets for the sake of simplicity, with the understanding that we are talking about
homotopy classes of maps.) The additive notation above is justified by the fact that
πn(X) is Abelian for n ≥ 2. There is an illustrative proof of this fact in [Hat02,
p.340], where the essential idea is that we have enough room within In (even just
within a square I2) to shrink, swap, and then expand the domains of f and g.

We have seen that the fundamental group π1 is a functor Top → Gp. It is
perhaps unsurprising then that, for n ≥ 2, the higher homotopy group πn also
defines a functor Top → Gp (or, more specifically, into Ab). Given a basepoint-
preserving map of topological spaces φ : (X,x0) → (Y, y0), we get an induced map
on their higher homotopy groups

φ∗ := πn(φ) : πn(X,x0)→ πn(Y, y0)

which sends a homotopy class f 7→ φ ◦ f . After a quick check, we can see that
this functor sends homotopy equivalences to isomorphisms. In this spirit, a map
φ : X → Y is a weak homotopy equivalence if the induced map φ∗ is an isomorphism
(in Set for n = 0 and in Gp for n ≥ 1). Weak homotopy equivalences play a key
role in other interesting parts of algebraic topology (the most well-known of which
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is probably Whitehead’s theorem [Hat02, p.346]). There are many more interesting
facts and features related to higher homotopy groups that we will not go into here,
but luckily the interested reader has many classic references to turn to, such as
[Hat02, May99].

2.1 Relative Homotopy Groups

An important generalization of higher homotopy groups is the idea of the relative
homotopy groups. These groups will give us a way to relate the homotopy groups
of two spaces when one is a subspace of the other. The idea is that, for a given
subspace A ⊆ X with basepoint x0 ∈ A, the relative homotopy group πn(X,A, x0)
will record information about homotopically distinct maps from the n-sphere to X
without caring about the boundary of the sphere, which is mapped into A.

Definition 2.2. Let A ⊆ X and x0 ∈ A. The nth relative homotopy group
πn(X,A, x0) is the collection of homotopy classes of based maps Dn → X which
take the boundary ∂Dn = Sn−1 to A. That is, for a given basepoint s ∈ Sn−1,

πn(X,A, x0) = {[f ] | f : Dn → X, f(Sn−1) ⊆ A, f(s) = x0}.

As before, we could instead define the relative homotopy groups in terms of maps
f : In → X which take ∂In to A. There is one additional requirement: we also
ask that f maps Jn−1 ⊆ ∂In to x0, where Jn−1 is defined to be the closure of
∂In \ (In−1 × {1}). In other words, f must map the top face Ii−1 × {1} into A and
the rest of the boundary to x0. If A is path connected, we may safely write πn(X,A)
without specifying a basepoint. For the sake of notational simplicity, we will write
merely πn(X,A) unless there is a risk of ambiguity.

Figure 2: A representative of an element in πn(X,A).
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Note that if A = x0, then πn(X,A, x0) = π(X,x0), so indeed homotopy groups
are a special case of relative homotopy groups. We say that the pair (X,A) is
n-connected if πi(X,A) = 0 for all i ≤ n.

The sum operation for relative homotopy groups is defined by the same formula
given for πn(X). Essentially the same proofs show that πn(X,A) is a group for n ≥ 2
and an Abelian group for n ≥ 3. For n = 1, π1(X,A) is is the set of homotopy classes
of paths in X starting at the fixed basepoint x0 ∈ A and ending at some other point
in A. In general, π1(X,A) is not a group in the usual way.

Two maps are called homotopic relative to A if they are homotopic via a base-
preserving homotopy H : Dn×I → X such that for any x ∈ Sn−1 and t ∈ I, we have
H(x, t) ∈ A. A map f : (Dn, Sn−1) → (X,A) is considered trivial (i.e. represents
zero) in πn(X,A) if and only if it is homotopic relative to A to a map whose image
is contained in A. This is known as the compression criterion (cf. [Hat02, p.343]).
We can think of continuously “compressing” the image of f into A via the given
homotopy.

An important advantage of the relative homotopy groups is that they fit into a
long exact sequence:

· · · → πn(A)
i∗−→ πn(X)

j∗−→ πn(X,A)
∂−→ πn−1(A)→ · · · → π0(X)

where i∗ and j∗ are the maps induced by the inclusions A ↪→ X and (X,x0) ↪→
(X,A), respectively. The map ∂, called the boundary map, comes from restric-
tion maps (Dn, Sn−1) → (X,A) to Sn−1 (or, equivalently, restricting maps from
(In, ∂In, Jn−1) to In−1×{1}). The boundary map is a homomorphism when n ≥ 2.
For further details and proof of exactness, we point the reader to [Hat02, p. 344] or
[Zha09, Theorem 1.3].

An immediate corollary of the long exact sequence is that j∗ : πn(X)→ πn(X,A)
is an isomorphism whenever A is contractible. Finally, if (X,A) is connected, then
we can relate the homotopy groups of A and X.

Definition 2.3. Suppose (X,A) is n-connected, so πi(X,A) = 0 for i ≤ n. By the
long exact sequence, this implies that the induced map i∗ : πi(A) → πi(X) is an
isomorphism for i < n and a surjection for i = n. The inclusion i : A ↪→ X is called
an n-equivalence.

More generally, a map f : X → Y is called an n-equivalence if the induced map
f∗ : πi(X) → πi(Y ) is an isomorphism for i < n and a surjection for i = n. This
definition comes from thinking of X as a subspace of Y using f , and applying
the definition above to the pair (Y, f(X)). In this vocabulary, a weak homotopy
equivalence is an ∞-equivalence.

Example 2.4. Consider the inclusion Sn ↪→ Dn+1. The ball Dn+1 is contractible,
and so πi(D

n+1) = 0 for all i. By the cellular approximation theorem, we also
have πi(S

n) = 0 for i < n ([Hat02, Corollary 4.9]). However, as we shall soon see,
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πn(Sn) ∼= Z. This means that the inclusion of the n-sphere into the solid (n+1)-ball
is an n-equivalence.

3 Homotopy Excision

Keep computations to the lowest level of the multiplication table.

—David Hilbert

Homotopy groups are notoriously hard to compute. This difficulty is due, in
part, to the fact that homotopy groups fail to satisfy the excision axiom.

Definition 3.1. An excisive triad (X;A,B) consists of a topological space X along
with two subspaces A,B ⊆ X such that the interiors of A and B cover X, i.e.
X = A◦ ∪B◦.

The excision axiom in homology states that the inclusion (A,A ∩ B) ↪→ (X,B)
induces an isomorphism on the homology groups. Excision is one of the main reasons
that homology can often be effectively calculated, as it produces, among other things,
the long exact Mayer-Vietoris sequence of an excisive triad, and is key to identifying
the cellular and singular homologies of a CW-complex.

Unfortunately, the same does not hold of homotopy groups: the inclusion (A,A∩
B) ↪→ (X,B) does not induce an isomorphism on homotopy groups, in general. We
can see this unfortunate fact in a relatively simple example, using wedges of spheres.

Example 3.2. Take X = S2∨S2. Decompose X into two halves, with A = C+ being
the northern hemispheres of the two spheres (including the equator) and B = C−
the southern hemispheres, as shown in Fig. 3. Note that (X;A,B) is indeed an
excisive triad. Then A ∩B ∼= S1 ∨ S1, so we have the inclusion

(C+, S
1 ∨ S1) ↪→ (S2 ∨ S2, C−).

We claim that we do not, in general, have πi(C+, S
1 ∨ S1) ∼= πi(S

2 ∨ S2, C−), in
particular for i = 2.

Note that both C+ and C− are contractible, since both look like D2 ∨D2. From
our earlier observations about the long exact sequence for pairs, this implies that
πi(S

2 ∨ S2, C−) ∼= πi(S
2 ∨ S2). On the other hand, the long exact sequence for

(C+, S
1 ∨ S1) implies that πi(C+, S

1 ∨ S1) ∼= πi−1(S
1 ∨ S1). Taking i = 2, we

know that π1(S
1 ∨S1) is the free group on two generators (by the usual application

of van Kampen’s theorem). This means that π2(C+, S
1 ∨ S1) ∼= π1(S

1 ∨ S1) is
not Abelian. Therefore it is impossible for π2(C+, S

1 ∨ S1) to be isomorphic to
π2(S

2 ∨ S2, C−) ∼= π2(S
2 ∨ S2), since the higher homotopy group π2(S

2 ∨ S2) must
be Abelian.
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Figure 3: The decomposition of X = S2 ∨S2 into the upper/lower hemispheres C±,
which intersect along the equator S1 ∨ S1.

So when does an excisive triad yield such an isomorphism? The Blakers-Massey
theorem provides an answer to this question, stating that the homotopy groups will
satisfy excision in a range of dimensions, and range which is roughly the sum of the
connectivities of (X,B) and (A,A ∩B).

Theorem 3.3 (Blakers-Massey). Let (X;A,B) be an excisive triad such that C =
A ∩B is non-empty. Suppose (A,C, ∗) is n-connected and (B,C, ∗) is m-connected
for every choice of basepoint ∗ ∈ C. Then, for every basepoint ∗ ∈ C, the map

πi(A,C)→ πi(X,B)

induced by the inclusions is an isomorphism for i < n + m and a surjection for
i = n+m. In other words, the inclusion is an (n+m)-equivalence.

The Blakers-Massey theorem is the closest we can get to something like homo-
topy excision, so is often called the homotopy excision theorem. Since our focus is
on the Freudenthal Suspension Theorem (a direct corollary of the Blakers-Massey
Theorem), we provide only a sketch of the proof. We follow the typical strategy used
to prove this result, which is to reduce from an arbitrary excisive triad (X;A,B)
to a simpler case. Our outline follows [Gro12], which is an expansion of the proof
in [May99, §11.3]; in addition, [Hat02, §4.2], [Pér13, §1.1], and [Zha09, §5] follow
a similar strategy. Different methods of proof are available in [tD08, §6.9] (using
elementary homotopy techniques) and [Sch] (using the Hurewicz theorem and ho-
motopy fibers).

Reduction 1. It suffices to prove the Excision Theorem when A is built from C
by attaching cells of dimension > n and B is built from C by attaching cells of
dimension > m.

Sketch of Proof. We claim that an n-connected pair (A,C) can be replaced by an-
other n-connected pair (A′, C) such that the following diagram commutes
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C A′

A

'

and A′ is built from C by attaching cells of dimension > n only. To show this, we
build up a CW complex from C by adding cells which represent elements of πi(A)
or gets rid of elements which should not be there. Since πi(C) ∼= πi(A) for all i < n,
we only need to add cells of dimension > n to make this work. This procedure can
be carried out for (B,C) as well.

Reduction 2. It suffices to prove the Excision Theorem when each of A and B is
built from C by attaching one cell apiece.

Sketch of Proof. The proof is inductive. First, we claim that it is sufficient to prove
the result when (A,C) has exactly one cell. Write A = A′ ∪ e for C ⊂ A′ ⊂ A,
so that (A,A′) has one cell, and (A′, C) has one less cell than (A,C). Consider
X ′ = A′ ∪C B, so X ′ is just X without the cell e. The heart of the proof is showing
that if homotopy excision holds of both (X ′;A′, B) and (X;A,X ′) by induction,
then it also holds of the triad (X;A,B). This follows from an application of the five
lemma (see [Gro12, Lemma 7]) to the exact sequence of triples ([Pér13, Proposition
1.1.5]) for both of the triples in the inclusion (X ′;A′, B) ↪→ (X;A,X ′). We can then
conclude it is sufficient to consider (A,C) with one cell.

Next, we have to show the same claim holds for (B,C). As before, we write
B = B′ ∪ e′ and X ′′ = A ∪C B′ for C ⊂ B′ ⊂ B. If homotopy excision holds
for (X ′;A,B′) and (X;X ′, B), then it must hold for (X;A,B) as well, since the
inclusion (A,C) ↪→ (X,B) factors as (A,C)→ (X ′′, B′)→ (X,B). This proves the
reduction.

Thus far, we have shown that it suffices to consider (X;A,B) with A = C ∪ e
and B = C ∪ e′ for cells e, e′ of dimension > n,> m, respectively. The technical
heart of the proof is showing that homotopy excision actually holds of such triads.
The proof of this simplified case typically relies on either simplicial approximation
or smooth approximation. We will provide but a brief overview, and the details can
be found in the references provided at the beginning of the subsection.

Lemma 3.4. Suppose that X = A ∪C B, where

A = C ∪ e and B = C ∪ e′

are built from C by attaching cells of dimension > n and > m, respectively. Then
πi(A,C)→ πi(X,B) is an isomorphism for i < n+m and a surjection for i = n+m.

Sketch of proof. For any interior points x ∈ e◦ and y ∈ e′◦, there is a diagram
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πi(A,C) πi(X,B)

πi(X \ {y}, X \ {x, y}) πi(X,X \ {x})

∼= ∼=

whose vertical maps are isomorphisms. These isomorphisms follow from observing
that X \ {x} is homotopy equivalent to B by retracting e \ {x} to its boundary, and
similar retractions give X \ {y} ' A and X \ {x, y} ' C.

We first discuss surjectivity. Consider a representative of πi(X,B), that is, a
map f : (Ii, ∂Ii) → (X,B) which takes Jn−1 to the basepoint ∗ ∈ C. In other
words, f maps the top face of Ii into B and the rest of the boundary to ∗. By the
diagram above, it suffices to prove that f is homotopic to a map f ′ via a homotopy
h, such that

(i) the image of f ′ is in X \ {y},

(ii) for every t ∈ I, the restriction of ht to the top face of Ii avoids x,

(iii) for every t ∈ I, ht maps J i−1 to ∗.

If we can find such a map f ′ and homotopy h, then we have shown that every
representative in πi(X,B) ∼= πi(X,X \ {x}) is homotopic to some representative
in πi(X \ {y}, X \ {x, y}), which is to say πi(A,C) → πi(X,B) is surjective for
i ≤ n + m. For the proof that we can actually find such f ′ and h, we point the
reader to [Gro12, Proposition 8].

Showing that πi(A,C) → πi(X,B) is injective for i < n + m follows essentially
the same argument. Suppose that we have two representatives g, g′ of πi(A,C)
such that [g] = [g′] ∈ πi(X,B) via a homotopy H : Ii × I → X. Now replace
f in the argument above with the homotopy H. Now we claim that we can find
a new map H ′, homotopic to H via a homotopy G, such that H ′ avoids y, the
restriction of Gt to the top face of Ii+1 avoids x, and Gt maps J i to ∗. This
means that there is a homotopy from f to g in X \ {y}, relative to X \ {x, y}, i.e.
[g] = [g′] ∈ πi(X \ {y}, X \ {x, y}). This works for i + 1 ≤ n + m (the domain of
H is the (i+ 1)-cube while the domain of f is the i-cube), which is to say we have
injectivity for i < n+m.

4 The Freudenthal Suspension Theorem

There are no solved problems; there are only

problems that are more or less solved.

—Henri Poincaré

Homotopy excision does not help us directly compute homotopy groups, but
does promise us a way to relate the homotopy groups of different spaces within a
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certain stable range. The Freudenthal Suspension Theorem uses this idea to explain
the consequence of simultaneously suspending the space and increasing the index of
its homotopy group, declaring that

πi(X) ∼= πi+1(ΣX)

for certain i, where ΣX is the reduced suspension of the space X. This result is an
important foundational theorem for stable homotopy theory.

We will derive the suspension theorem from the homotopy excision theorem.
Freudenthal’s original proof in his 1938 paper “Über die Klassen der Sphärenabbil-
dungen I. Große Dimensionen” actually pre-dates the Blakers-Massy theorem (which
was published in 1952) and only considers the special case of spheres. There are
other proofs which use different techniques (see, for example, Milnor’s proof in
[Mil63, §2.2] which utilizes Morse theory), but our proof will follow the standard
method, as in [Sch, Hat02, Pér13, Zha09].

4.1 Suspensions

Suspension provides us with a way to construct a new space out of an old one (a
favorite game of topologists). For a given space X, the suspension of X looks like
two cones over X glued together at the base. By also defining a way to suspend
maps between topological spaces, we can extend suspension to a functor.

Definition 4.1. Suspension is a functor S : Top → Top which sends a space X
to its suspension SX, which is the space X × I with X × {0} and X × {1} each
collapsed to a point. A map f : X → Y in Top is sent to Sf : SX → SY which
maps [x, t] 7→ [f(x), t].

Figure 4: Suspension of S1.

Suspending a space can be thought of as “increasing the dimension by 1.” The
well-known, motivating example of suspension is the n-sphere, for which S(Sn) ∼=
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Sn+1 (cf. [Hat02, p.8]) as illustrated for n = 1 in Fig. 4. More generally, we have
Sn+k ∼= Sn(Sk) where the Sn+k on the left is the (n+ k)-sphere and the Sn on the
right is the n-iterated suspension functor.

The Freudenthal Suspension Theorem deals with a variation on the suspension
functor, called reduced suspension. The reduced suspension of a based space (X,x0)
is the quotient space ΣX which is SX with the line segment {x0} × I collapsed
to a single point. If X is a CW complex, then the reduced suspension is (weakly)
homotopy equivalent to SX, so one might wonder why we bother with reduced sus-
pensions at all. One possible response is that Σ allows us to make the suspension of
a based space (X,x0) again a based space; the reduced suspension defines a functor
from Top∗, the category of based spaces and based maps, to itself. Moreover, the
reduced suspension actually results in a simpler space than the unreduced suspen-
sion. As illustrated in Fig. 5, the ordinary suspension of S1 ∨ S1 looks like two
spheres pinched together along the line {x0} × I, whereas the reduced suspension
collapses that line to a point, yielding S2 ∨ S2, a much simpler space.

Figure 5: Comparing the suspension and reduced suspension of S1 ∨ S1.

One can also think of ΣX as the smash product S1 ∧ X. This identification
follows from the observation that both spaces are the quotient of X × I with X ×
{0, 1} ∪ {x0} × I collapsed to a single point. Fig. 6 uses this homeomorphism to
show that ΣSn ∼= Sn+1 for n = 1. Recall that S1 ∧ S1 = S1 × S1/S1 ∨ S1; in
Fig. 6, S1×S1 is illustrated as the torus and S1 ∨S1 is the red equator and orange
meridian which intersect at a point x0. Collapsing S1 ∨ S1 to the point x0, done in
two steps in Fig. 6 by first contracting the equator and then the meridian, we get a
space homeomorphic to S2.

Another interesting feature of the reduced suspension is that Σ is left-adjoint to
the loop space functor Ω. Recall that the loop space of Y is the (based) space ΩY of
continuous pointed maps (S1, s0)→ (Y, y0) under the compact open topology. The
adjunction between the two functors says that

Top∗(ΣX,Y ) ∼= Top∗(X,ΩY ),

which means every map ΣX → Y can be bijectively associated with a map X → ΩY .
Every non-basepoint x ∈ X lives on a “loop” [x, I] in ΣX which is attached to the
basepoint x0, as illustrated in the left of Fig. 7. Given a map f : ΣX → Y , we look

11



Figure 6: Showing that Σ(S1) ∼= S1 ∧ S1 is homeomorphic to S2.

where the circle associated to x is sent under f : this will be the loop in Y given by
t 7→ f [x, t]. Similarly, if we are given g : X → ΩY , we can associate the circle [x, I]
with the loop g(x); the new map ΣX → Y sends [x, t] 7→ g(x)(t). This adjunction
is actually a specific instance of the adjunction for smash products, which says that
Top∗(X ∧ A, Y ) ∼= Top∗(X,Map∗(A, Y )). Here, Map∗(A, Y ) is the collection of
basepoint-preserving maps A→ Y under the compact open topology.

Figure 7: The adjunction between Σ and Ω.

Note that this adjunction implies that πi+1(X) ∼= πi(ΩX), since every map
Si → ΩX is in bijection with a map Si+1 ∼= ΣSi → X.

4.2 The Suspension Theorem

The adjunction in the previous subsection gives us one way to define the suspension
homomorphism. In categorical language, the suspension homomorphism is the map
on the homotopy groups induced by the adjunction unit of Σ a Ω. Before we
unpack what that means, it will do us good to introduce a concrete definition of
this homomorphism.

Definition 4.2. Let (X,x0) be a based space. The suspension homomorphism is
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the map Σ∗ : πi(X)→ πi+1(ΣX) which sends [f ] 7→ [Σf ], where

Σf := f ∧ idS1 : Sk+1 → ΣX

[s, t] 7→ [f(s), t].

The unit of the adjunction Σ a Ω is the natural transformation η : idTop∗ → Ω◦Σ.
This natural transformation sends X to ΩΣX by mapping a point x ∈ X to the loop
t 7→ [x, t]. The induced map on the homotopy groups (ηX)∗ : πi(X) → πi(ΩΣX)
sends f : Si → X to a map

(ηX)∗f : Si → ΩΣX

s 7→ (t 7→ [f(s), t]) .

Passing through the isomorphism πi(ΩX) ∼= πi+1(X) mentioned at the end of the
previous subsection, we see that (ηX)∗f is in fact Σf . That is, the map induced
by the unit is the suspension homomorphism. The Freudenthal Suspension The-
orem states that this homomorphism is an isomorphism within a certain range of
dimensions.

Theorem 4.3 (Freudenthal). Suppose X is an (n− 1)-connected based space. The
suspension homomorphism Σ∗ : πi−1(X) → πi(ΣX) is an isomorphism for i < 2n
and a surjection for i = 2n.

In other words, the suspension homomorphism is a 2n-equivalence. We will prove
this result by providing a suitably nice excisive cover of ΣX, applying homotopy
excision, and examining some long exact sequences for relative pairs. This strategy
is pretty standard, albeit with small variations between authors. We primarily follow
[Sch].

Proof. The suspension ΣX has an excisive cover given by two reduced cones on X,
one over and one under, identified along their bases. We will denote these cones by
Y+ (over X) and Y− (under X), with Y0 = Y+∩Y− = X×{1/2}. This space is clearly
homotopy equivalent to X (a claim which is verified by the homotopy equivalence
x 7→ [x, 1/2]). For the sake of simplicity, we will denote a chosen basepoint [x0, 1/2] ∈
Y0 by x0.

We should also note that both Y+ and Y− are contractible onto their “poles”
(the classes of the collapsed subsets X × {0} and X × {1}), via the homotopies

Y− × I → Y− Y+ × I → Y+

([x, t], s) 7→ [x, ts] ([x, t], s) 7→ [x, t+ s(1− t)].

Our goal, at this point, is to relate the homotopy groups of X to the homotopy
groups of ΣX. This is when our old friend, the long exact sequence for relative
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homotopy groups, comes in handy. We first look at the long exact sequence for the
pair (ΣX,Y±):

· · · → πi(Y±, x0)→ πi(ΣX,x0)→ πi(ΣX,Y±, x0)→ πi−1(Y±, x0)→ . . .

Plugging in what we know, namely that πi(Y±, x0) = 0, we get a short exact sequence

0→ πi(ΣX,x0)→ πi(ΣX,Y±, x0)→ 0.

In other words, πi(ΣX,x0) ∼= πi(ΣX,Y±, x0). Similarly, if we consider the long exact
sequence for the pair (Y±, Y0):

· · · → πi(Y±, x0)→ πi(Y±, Y0, x0)→ πi−1(Y0, x0)→ πi−1(Y±, x0) . . .

we see that πi(X,x0) ∼= πi+1(Y±, Y0, x0) as well. Moreover, since X is (n − 1)-
connected, meaning πi(X,x0) = 0 for i ≤ n− 1, the pairs (Y±, Y0) are n-connected.
Applying Blakers-Massey, we have that the map

i∗ : πi(Y−, Y0)→ πi(ΣX,Y+)

induced by the inclusion is an isomorphism for i < 2n and a surjection for i = 2n.
Thus we have a commutative diagram

πi(Y−, Y0) πi(ΣX,Y+)

πi−1(X) πi(ΣX)

i∗

∂ ∼= j∗∼=

where the left isomorphism is the boundary map ∂ : πi(Y−, Y0, x0) → πi−1(Y0, x0)
and the right isomorphism is given by the inclusion j∗ : (ΣX,x0, x0)→ (ΣX,Y+, x0).
Our work thus far tells us that the bottom horizontal map is an isomorphism for
i < 2n and a surjection for i = 2n. It remains to show that this map is in fact the
suspension homomorphism Σ∗.

To do so, we need to understand where an element [f ] ∈ πi−1(X) is sent to in
πi(Y−, Y0) under the inverse ∂−1. Given a representative f : Si−1 → X, we wish to
find a map g : (Dk, Si−1)→ (Y−, Y0) so that [g|Si−1 ] = [f ]. A natural choice for this
map is

g : Dk → Y−, t · x 7→ [f(x), t/2]

where t ∈ [0, 1] and x ∈ Si−1. This map is continuous at 0 ∈ Dk and its restriction
to Si−1 (i.e. when t = 1) is the composite

Si−1 f−→ X
[−,1/2]−−−−→ Y0,

so indeed [g] ∈ πi(Y−, Y0). Thus ∂[g] = [f ] and so ∂−1[f ] = [g]. This association
illustrated in Fig. 8.
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Figure 8: A map f : Si−1 → X on the left corresponds (via ∂) to a map
g : (Di, Si−1) → (Y−, Y0). The image of g looks like the bottom half of the sus-
pension of f . A radial line I · x in Di (for fixed x ∈ Si−1) gets sent to the line
segment [{x}× [0, 1/2]] in ΣX. For the sake of illustration, we have drawn Y− as an
unreduced cone, and we leave it to the reader to imagine collapsing the line segment
{x0} × [0, 1/2] to a point.

Once we include into πi(ΣX,Y+), we have enough wiggle room in Y+ to homotope
g to the map

ĝ : Di → ΣX, t · x 7→ [f(x), t].

(One can check that the homotopy (t · x, s) 7→ [f(x), t/(2− s)] does the trick.)
Finally, we want to understand [ĝ] as an element of πi(ΣX), rather than as an

element of πi(ΣX,Y+). By our earlier work, we know that j∗ is an isomorphism,
induced by the contraction of Y+ onto the basepoint x0. By the construction of ĝ,
any boundary point s ∈ Si−1 is sent to [f(s), 1] = [x0, 1] = x0. So [ĝ] is already
an element of πi(ΣX), except now we think of ĝ as a map out of ΣSi ∼= Si+1 by
precomposing with the homeomorphism

ΣSi ∼= Di/Si−1, [x, t] 7→ t · x.

The resulting map is precisely the suspension of f , as shown in Fig. 9. All in all,
this implies that the following diagram commutes:
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Figure 9: In πi(ΣX,Y+), we can continuously deform g (from Fig. 8) into ĝ, by
stretching the image of ∂Di ∼= Si−1 up to the top of the reduced cone. A radial line
I · x in Di is now sent to [{x} × I]. The result is (essentially) the suspension of f .
As in Fig. 8, we have illustrated the unreduced cones for the sake of simplicity.

[g : t · x 7→ [f(x), t/2]] [g] = [ĝ : t · x 7→ [f(x), t]]

[f : x 7→ f(x)] [Σf : [x, t] 7→ [f(x), t]],

which means that the bottom horizontal arrow is indeed the suspension homomor-
phism just as we suspected all along.

4.3 Applications

The original Freudenthal Suspension Theorem was stated for X = Sn, with the
intent of calculating the higher homotopy groups of spheres. Specifically, we apply
the theorem to see that Σ: πi(S

n) ∼= πi+1(S
n+1) for i < 2n− 1. In particular, since

we already know that π1(S
1) ∼= π2(S

2) ∼= Z, the suspension theorem tells us that

Z ∼= π1(S
1) ∼= π2(S

2) ∼= π3(S
3) ∼= . . . ∼= πn(Sn) ∼= . . .

This theorem has also motivated the study of stable homotopy groups of spaces.
For an arbitrary CW complex X, the Freudenthal Suspension Theorem and the fact
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Figure 10: Illustrating wrapping (the bottom half of) a 2-sphere twice around S2,
corresponding to an element of π1(S

1) ∼= Z.

that ΣX is connected implies that ΣnX is (n − 1) connected, where ΣnX is the
nth-iterated reduced suspension of X, i.e. ΣnX = Σ(Σn−1(X)). Thus the map

Σ∗ : πi(Σ
nX)→ πi+1(Σ

n+1X)

is an isomorphism for i < 2n − 1. This then implies that for some fixed value of i,
the maps in the sequence

πi(X)→ πi+1(ΣX)→ πi+2(Σ
2X)→ · · · → πi+n(ΣnX)→ πi+n+1(Σ

n+1X)→ . . .

become isomorphisms. The eventual value where this sequence stabilizes is called
the ith stable homotopy group of X.

Definition 4.4. The ith stable homotopy group of X is the colimit

πsi (X) = colimn(πi+n(ΣnX)).

Our earlier observation that πn(Sn) ∼= Z tells us that πs0(S0) ∼= Z; a table for
other known values of πsi := πsi (S0) is given on [Hat02, p.384]. The (Abelian)
stable homotopy groups of a space are often easier to calculate than their unstable
counterparts, although undoubtedly the computations are still quite difficult. Stable
homotopy groups are important objects in algebraic topology, and motivate the
development of stable homotopy theory.
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