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Introduction

A natural first question to ask when broaching the subject of symplectic geometry

is what is a symplectic manifold? Opening up our favorite textbook (such as [dS06,

MS95, McD98]) to the first page or so, we will quickly learn that a symplectic structure

on a smooth manifold is a closed, non-degenerate 2-form. But what does this mean,

geometrically, and why is this a natural structure to study?

Classically, symplectic geometry arises as the natural setting for Hamiltonian me-

chanics, and investigating this connection can help us understand why symplectic

structures are the “correct” abstraction to study. Suppose we have a manifold M

and a single particle moving around in M . We can think of M as the configuration

space Conf1(M) of different possible states that our small 1-particle system could be

in. We could further complicate the system by adding in more particles, which would

also complicate our space of possible states, that is, the underlying manifold we want

to study.

However, the configuration space does not keep track of all the information we

want it to. It sees things “discretely” in the sense that it cannot keep track of how



5

the system evolves over time. That is, picking out a point in our space (i.e. a possible

state of our system) does not tell us anything about how the system might look 10

seconds later. In order to record such information, we need to somehow introduce

dynamics on our configuration space, which we do mathematically via vector fields.

In classical mechanics, the dynamics typically come from an energy function

H : M → R. We can use H to generate a vector field XH , which describes how

the energy is changing locally. To reflect this idea, we want XH to depend only on

H and to depend linearly on H (meaning XaH1+H2 = aXH1 + XH2). Furthermore,

following the “conservation of energy” rule from physics, we want H to be constant

along the flow lines of XH . Abstracting these principles to a mathematical setting,

we land in the world of symplectic geometry. The following explanation should not

be taken as rigorous proof, but is meant to give the reader an indication of why we

might believe that this is the case.

First, we need a way to coherently associate each H : M → R to a vector field

XH . We can reinterpret this as a linear association of XH (a section of TM → M)

to the differential dH (a section of T ∗M → M). This means our association should

be a bundle morphism TM → T ∗M , or equivalently a section of T ∗M ⊗ T ∗M →M .

This is how we arrive at a tensor field ω such that ω(XH ,−) = dH. Moreover, we

want ω to be non-degenerate so that we can always solve for XH . Conservation of

energy implies that 0 = (dH)(XH) = ω(XH , XH) and so (modulo many details) ω is

alternating, hence ω ∈ Λ2(M). Finally, the fact that ω should be closed comes from
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the idea that “the laws of physics should not depend on time.”

Symplectic geometry has a reputation for living somewhere between topology and

geometry. This reputation is built upon the observation that a symplectic structure

will impose more restrictions on a manifold than predicted by the topology alone, but

will not be restrictive enough to distinguish between individual points. This latter

statement is the content of Darboux’s Theorem, which is a fundamental result for

symplectic manifolds. In particular, Darboux’s Theorem implies that a symplectic

structure will not yield any local invariants, such as the curvature invariants of Rie-

mannian geometry, and so we will need to develop non-local techniques and tools for

studying symplectic manifolds and their symplectomorphisms.

One phenomena which naturally arises in the symplectic setting is that of La-

grangian submanifolds, which are submanifolds upon which ω vanishes and have the

maximal dimension where this could possibly happen. Going back to the discussion

of configuration spaces and dynamics, we can think of a Lagrangian submanifold as

encoding the set of possible initial momenta of a given point in configuration space.

To make this a bit more precise, any manifold (symplectic or not) lives inside its

cotangent bundle (which admits a canonical symplectic structure) as a Lagrangian

submanifold via the zero section. Moreover, given any Lagrangian submanifold N of

a symplectic manifold M , we can find a neighborhood of N in M which looks like a

neighborhood of N inside of T ∗N ; this is the Weinstein neighborhood theorem. In

addition to being interesting objects in their own right, Lagrangian submanifolds are
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extremely useful tools for approaching problems in symplectic geometry, and perhaps

one of the most famous applications of this sort is A. Floer’s solution to the Arnold

Conjecture for a certain collection of symplectic manifolds.

On the face of it, the Arnold conjecture is a statement about fixed points of

Hamiltonian diffeomorphisms, that is, symplectomorphisms which arise as smooth

deformations of M under a Hamiltonian flow. However it exists as a sub-problem of

bounding intersection points of Lagrangian submanifolds. Floer homology was devel-

oped as a tool to address the problem of Lagrangian intersections, and unites ideas

from Morse theory, symplectic geometry, and analysis. The idea of Floer homology

is to emulate Morse theory as much as possible for a specific function on a specific

manifold, although there analytic difficulties that arise which do not appear in the

Morse setting. In fact, it is well understood that Floer homology cannot be defined

in general, although it has been thoroughly developed in specific cases.

The special properties of Floer homology that make it particularly useful rely

on the interesting way that symplectic structures interact with other geometries,

particularly Riemannian and almost complex structures. Remarkably, the choice of

any two of these structures determines a unique compatible third one. This is another

instance of symplectic geometry being both flexible and rigid: it is flexible enough to

coexist with other geometries, but rigid enough that the cohabitation imposes certain

restrictions.

The name “symplectic” is said to have been coined by H. Weyl in the 1930’s. It



8

comes from the Latin word complectere, which roughly translates to to weave or braid

together. While we feel this name is quite poetically appropriate, we leave it up to

our readers to decide for themselves.

Outline

Our goal is to explore symplectic geometry with an eye towards understanding the

geometry behind Floer homology for Lagrangian intersections. Rather than centering

our attention on the details of Floer’s proof of the Arnold Conjecture (which requires

a surprising amount of analysis), we will primarily focus on the geometric background

necessary to understand Lagrangian Floer homology, including symplectic manifolds

and Lagrangian submanifolds, compatible Riemannian and almost complex struc-

tures, and Hamiltonian vector fields. We will not be able to give a complete account

of any of these rich areas, but rather aim to give enough of an overview so that a

reader who is unfamiliar with the symplectic background (say, a homotopy theorist

who is interested in learning about Floer homotopy theory) feels more prepared to

approach the field.

The first chapter covers the basics of symplectic geometry, including symplec-

tic linear algebra (Section 1.1), symplectic manifolds and symplectomorphisms (Sec-

tion 1.2), and a bit of the theory of Lagrangian submanifolds (Section 1.3). We

conclude with a brief overview of some of the important theorems, including the

Moser theorems and the Weinstein neighborhood theorems (Subsection 1.4.2). In the
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second chapter, we investigate how symplectic structures interact with other geomet-

ric structures our manifold might posses. In particular, Riemannian (Section 2.1)

and almost complex (Section 2.2) structures fit particularly nicely into the symplec-

tic picture. A choice of any two of these structures determines the third, and the

three structures together form a compatible triple (Section 2.3). Chapter 3 discusses

Hamiltonian vector fields and their flows, with the goal of stating and understand-

ing the Arnold Conjecture (Subsection 3.2.1), which bounds the fixed points of a

Hamiltonian diffeomorphism from below. This prepares us for Chapter 4, where we

recast the Arnold Conjecture as a Lagrangian intersection problem. We discuss the

ideas of Floer homology for Lagrangian intersections (Section 4.2) and Hamiltonian

diffeomorphisms (Section 4.3), and we conclude with a very brief discussion of Floer

homotopy theory (Section 4.4).
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Chapter 1

Some Symplectic Geometry

We begin with a bit of symplectic linear algebra (Section 1.1) to prepare for the

symplectic manifold theory. In Subsection 1.2.1, we focus on the cotangent bundle

as an important example of a symplectic manifold. Then in Section 1.3, we explore

the theory of Lagrangian submanifolds, and in particular how they can help us gen-

erate and identify symplectomorphisms. Finally, we conclude with a survey of some

foundational theorems of symplectic geometry, including the Moser theorems (Subsec-

tion 1.4.1) and the Weinstein Lagrangian neighborhood theorem (Subsection 1.4.2).

This material may be found in any standard reference for symplectic geometry, and

our references include [dS06, McD98, MS95].
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1.1 Symplectic vector spaces

Let V be a finite-dimensional vector space over R and let Ω: V ×V → R be a bilinear

form on V . By the tensor-hom adjunction, Ω also gives us a map ιΩ: V → V ∗. More

concretely, for each v ∈ V we have a map

Ωv : V → R

v′ 7→ Ω(v, v′)

and ιΩ just sends v ∈ V to Ωv ∈ V ∗.

Definition 1.1. A symplectic form on V is a 2-form Ω ∈ Λ2(V ∗). That is, Ω: V×V →

R is a bilinear form which is

(i) skew-symmetric: Ω(v, v′) = −Ω(v′, v) for all v, v′ ∈ V ;

(ii) non-degenerate: for v ∈ V , Ω(v, v′) = 0 for all v′ ∈ V if and only if v = 0.

An equivalent condition to (ii) is that ker ιΩ = 0, which (since V is finite-dimensional)

means ιΩ is bijective. The map Ω is said to be a linear symplectic structure on V

and (V,Ω) is called a symplectic vector space.

The symplectic linear structure Ω restricts some of the properties of the vector

space V . For instance, if (V,Ω) is a symplectic vector space, then dimV must be

even. This is because the matrix representation of Ω with respect to a chosen basis

is skew-symmetric and invertible: if we let A denote the matrix representation of Ω,
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then detA = det(−At) = (−1)dimV detA. In fact, there is a (not necessarily unique)

choice of basis for V called a symplectic basis which gives the matrix representation

of Ω a particularly nice form.

Definition 1.2. A symplectic basis for a symplectic vector space (V,Ω) is a basis

e1, . . . , en, f1, . . . , fn for V such that Ω(ei, ej) = 0 = Ω(fi, fj) and Ω(ei, fj) = δij for

all 1 ≤ i, j ≤ n. With respect to this basis, Ω has matrix representation

 0 idn

− idn 0

 .

where idn is the n× n identity matrix.

By a skew-symmetric version of the Gram-Schmidt algorithm, we can always find

such a symplectic basis. Take any non-zero e1 ∈ V . By non-degeneracy, there is

some f1 ∈ V such that Ω(e1, f1) ̸= 0 and by scaling f1 we can moreover assume that

Ω(e1, f1) = 1. Write V1 = span{e1, f1}, and decompose V = V1 ⊕ V Ω
1 , where

V Ω
1 := {v ∈ V | Ω(v, v′) = 0 for all v′ ∈ V1}.

This subspace is called the symplectic complement of V1 in V . Continue inductively,

taking non-zero e2 ∈ V Ω
1 and f2 ∈ V Ω

1 with the right properties, and decomposing

V Ω
1 = V2 ⊕ V Ω

2 for V2 = span{e2, f2}. Since dimV is finite, this process terminates

eventually and the resulting e1, . . . , en, f1, . . . , fn are our symplectic basis.
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By bilinearity, the values of Ω are determined by its values on a symplectic basis.

Thus, given a basis of V , we can give V a symplectic structure by defining a form

whose symplectic basis is the given one. So every even-dimensional vector space has

a symplectic structure, and the next example introduces the canonical one.

Example 1.3. Let e1, . . . , en, f1, . . . , fn be the canonical basis for R2n (so ei has a

1 in the ith spot and zeros elsewhere and fj has a 1 in the (n + j)th spot and ze-

ros elsewhere). This basis determines a symplectic vector space structure (R2n,Ω0).

Specifically, if v =
∑n

i=1 aiei +
∑n

j=1 bjfj and w =
∑n

i=1 ciei +
∑n

j=1 djfj, then we

have Ω0(v, w) =
∑n

i=1 aidi −
∑n

i=1 bici.

We would like to be able to compare symplectic structures on R2n, which motivates

us to define maps between symplectic vector spaces more generally.

Definition 1.4. A symplectomorphism between symplectic vector spaces (V,Ω) and

(V ′,Ω′) is a linear isomorphism ϕ : V → V ′ which preserves the symplectic form

under pullback, Ω = ϕ∗Ω′. That is, Ω(v, v′) = Ω′(ϕ(v), ϕ(v′)) for all v, v′ ∈ V . The

symplectic vector spaces (V,Ω) and (V ′,Ω′) are said to be symplectomorphic.

In the case that (V,Ω) = (V ′,Ω′), a symplectomorphism will actually preserve the

symplectic form, and is called a linear symplectic transformation of V . The symplectic

transformations of V form a Lie group called the symplectic group and is denoted by

Sp(V,Ω) (or sometimes just Sp(V ) if the form Ω is clear from context). That is,

Sp(V ) = {A ∈ GL2n(R) | Ω(u, v) = Ω(Au,Av)} ≤ GL2n(R).
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Being symplectomorphic defines an equivalence relation between even dimensional

real vector spaces. Moreover every 2n-dimensional symplectic vector space is sym-

plectomorphic to (R2n,Ω0) by a change of basis from the given symplectic basis to

the standard one.

1.1.1 Subspaces of a symplectic vector space

A linear symplectic structure Ω on V picks out special subspaces of V , based on

the behavior of Ω on the subspace. Given a linear subspace W ⊆ V , its symplectic

orthogonal is

WΩ := {v ∈ V | Ω(v, w) = 0 for all w ∈ W} ⊆ V.

That is,WΩ is the kernel of the map V → W ∗ which sends v 7→ Ωv |W . The symplectic

orthogonal enjoys a lot of the same properties as the usual orthogonal complement

W⊥. For example, we have (WΩ)Ω = W . This is because dimW + dimWΩ = dimV

and the inclusion W ⊆ (WΩ)Ω is thus an injective map of vector spaces of the same

dimension.

Subspaces of V are given special names depending on how they intersect with

their symplectic orthogonal.

Definition 1.5. Let W be a subspace of (V,Ω). Then

(i) W is symplectic if Ω|W is non-degenerate, so (W,Ω|W ) is a symplectic vector

space. This is equivalent to saying that W ∩WΩ = 0.
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(ii) W is isotropic if W ⊆ WΩ, so Ω|W ≡ 0.

(iii) W is coisotropic if WΩ ⊆ W .

(iv) W is Lagrangian if it is isotropic and coisotropic, that is, W = WΩ.

By the equality dimV = dimW + dimWΩ, every isotropic subspace must have

dimension ≤ 1
2
dimV . Moreover, there is equality if and only if W is Lagrangian.

Lagrangian subspaces have some particularly nice properties and are important

objects of study in symplectic geometry and topology. For example, any basis of a

Lagrangian subspaceW can be extended to a symplectic basis of V . Let e1, . . . , en be

a basis of W and choose an appropriate f1 ∈ span{e2, . . . , en}Ω. We can find this f1

by non-degeneracy of Ω, and we know Ω(e1, ei) = 0 for all i becauseW is Lagrangian.

Similarly, we can choose f2 ∈ span{e1, e3, . . . , en, f1}Ω, and continue until we have a

symplectic basis for V .

Example 1.6. We will find examples of subspaces of type (i)–(iv) in (R2n,Ω0). An

example of a symplectic subspace is span{e1, f1} and an example of an isotropic

subspace is span{e1, e2} — even though these two subspaces are isomorphic as R-

vector spaces, they are not symplectomorphic. The isotropic subspace span{e1, e2}

cannot be Lagrangian, as the dimension is too small. We need to expand up to

span{e1, . . . , en} to get a Lagrangian subspace. Also, span{e1, . . . , en, f1} is an ex-

ample of a subspace which is coisotropic but not Langrangian.

Example 1.7. Any codimension 1 subspace is coisotropic. Suppose codimW = 1 and
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choose v ∈ V \W , so V = W ⊕ span{v}. By non-degeneracy, there must be some

other w ∈ V so that Ω(v, w) ̸= 0 and hence in particular w ̸∈ span{v}. So w ∈ W

and hence v ̸∈ WΩ, implying WΩ ⊆ W .

Example 1.8. If W is a Lagrangian subspace of (V,Ω), then there is a symplectomor-

phism between (V,Ω) and (W ⊕W ∗,Ω′) for

Ω′(w ⊕ f, w′ ⊕ f ′) = f ′(w)− f(w′).

Let e1, . . . , en be a basis of W and let e1, . . . , en be the dual basis for W ∗. Extend

e1, . . . , en to a symplectic basis e1, . . . , en, f1, . . . , fn for (V,Ω) and define ϕ : V →

W ⊕W ∗ by ϕ(ei) = ei⊕ 0 and ϕ(fj) = 0⊕ ej. The fact that e1, . . . , en is a symplectic

basis for (V,Ω) implies that e1 ⊕ 0, . . . , en ⊕ 0, 0⊕ e1, . . . , 0⊕ en is a symplectic basis

for (W ⊕W ∗,Ω′).

More generally, if W is any vector space, then W ⊕W ∗ has a canonical symplectic

structure given by the formula in the example above. In this sense, every symplectic

vector space is the direct sum of a vector space and its dual.

1.2 Symplectic manifolds

A symplectic form on a manifold M is a differential 2-form which satisfies two condi-

tions: closedness and non-dedgeneracy. The former is an analytic condition and the

latter is an algebraic one. Recall that a 2-form ω ∈ Λ2(M) assigns each p ∈ M a
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skew-symmetric bilinear form ωp : TpM × TpM → R and the assignment p 7→ ωp is

smoothly varying. The form ω is closed if its exterior derivative is 0 (dω = 0) and

exact if it is the image of some 1-form under d (ω = dα for some α ∈ Λ(M)).

Definition 1.9. A symplectic structure on a manifold M is a closed 2-form ω on

M such that (TpM,ωp) is a symplectic vector space for all p ∈ M . A manifold M

with a symplectic structure ω is called a symplectic manifold. A symplectomorphism

ϕ : (M,ω) → (M ′, ω′) is a diffeomorphism such that ω = ϕ∗ω′. This pullback condi-

tion means that ωp(v, u) = ω′
ϕ(p)(dϕp(u), dϕp(v)) for all p ∈M and u, v ∈ TpM .

Example 1.10. Let M = R2n with linear coordinates x1, . . . , xn, y1, . . . , yn. Then

ω0 :=
n∑
i=1

dxi ∧ dyi

gives R2n the structure of a symplectic manifold. A symplectic basis of TpM is given

by
(

∂
∂xi

)
p
,
(

∂
∂yi

)
p
for 0 ≤ i ≤ n.

Just as any n-manifold is locally “the same” as Rn, any 2n-symplectic manifold

is locally “the same” as (R2n, ω0).

Theorem 1.11. [Darboux’s Theorem] Let (M,ω) be a 2n-dimensional symplectic

manifold and let p ∈ M . There is a coordinate chart (U ;x1, . . . , xn, y1, . . . , yn) cen-

tered at p such that

ω =
n∑
i=1

dxi ∧ dyi

on U .
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Such a chart is called a Darboux chart. Darboux’s Theorem tells us there are no

local invariants on symplectic manifolds (up to symplectomorphism). This marks a

stark difference between symplectic geometry and some other types of geometry; for

instance, Riemannian geometry has local curvature invariants which let us distinguish

between points on a manifold.

Although there are no local invariants, the symplectic form ω does impose some

global restrictions on the manifold M . For instance, the nth exterior power ωn =

ω∧· · ·∧ω is a volume form (a non-vanishing form of top degree) on the 2n-manifoldM ,

and thus gives M a canonical orientation. This means that non-orientable manifolds

(e.g. the Möbius band) cannot be given a symplectic structure.

To prove that ωn ̸= 0, it suffices to work locally. For p ∈ M , we can take a

Darboux chart upon which ω has the form
∑

i dxi ∧ dyi. By induction, we can show

ωk = k!
∑

1≤i1≤···≤ik≤n

dxi1 ∧ dyi1 ∧ · · · ∧ dxik ∧ dyik ,

so in particular ωn = n!dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn is non-zero. The form ωn

n!
is called

the symplectic volume of (M,ω).

Moreover, if M is a closed manifold, then the discussion above implies that the

de Rham cohomology class [ωn] ∈ H2n(M,R) is non-zero. Otherwise, if ωn = dω′ for

some (2n− 1)-form ω′, then by Stokes’ theorem

vol(M) =

∫
M

ωn =

∫
∂M

ω′ = 0
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since ∂M = ∅, which is absurd. Since [ωn] = [ω]n is non-zero in H2n(M,R), it follows

that [ω] ∈ H2(M,R) is also non-zero, which is to say ω is not exact. Thus any

compact manifold with trivial H2 cannot have a symplectic structure, e.g. S2n for

n ≥ 2. A similar argument works to show that a closed 2n-manifold with trivial H2k

for some 1 ≤ k ≤ n cannot be a symplectic manifold.

Example 1.12. Every orientable surface is symplectic. This is because orientability

implies the existence of a volume form, which (because surfaces are 2-dimensional) is

also a symplectic form.

1.2.1 The cotangent bundle

Many important examples of symplectic structures come from the cotangent bundle

of a manifold. Recall that the cotangent bundle

T ∗M = {(p, ξ) | p ∈M, ξ ∈ T ∗
pM}

inherits the structure of a 2n-manifold from the n-manifold M . Let (U ;x1, . . . , xn)

be a chart for M . Then for any p ∈ U , the differentials (dx1)p, . . . , (dxn)p form a

basis for T ∗
pU , meaning any ξ ∈ T ∗

pM can be written as ξ =
∑n

i=1 ξi(dxi)p, and so

(T ∗U ;x1, . . . , xn, ξ1, . . . , ξn) is a chart for T ∗M .

Two important forms on T ∗M are the tautological 1-form (or Louiville 1-form) α

and the canonical symplectic form ω = −dα. Ironically, the tautological nature of α

makes it a bit difficult to explain, but we will do our best to define these forms both
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with and without coordinates.

Definition 1.13. (Tautological and canonical form) The tautological 1-form α is a

section of the bundle T ∗(T ∗M) → T ∗M , so assigns each (p, ξ) ∈ T ∗M to a linear

functional α(p,ξ) : T(p,ξ)(T
∗M) → R. Recall that the cotangent bundle T ∗M comes

with a projection π : T ∗M → M which induces a map dπ : T (T ∗M) → TM . This in

turn induces pullback map (dπ)∗ : T ∗M → T ∗(T ∗M) and we will use this to define

α. At a point (p, ξ) ∈ T ∗M , the pullback (dπ)∗(p,ξ) sends a covector ζ ∈ T ∗
pM to the

covector (dπ)∗(p,ξ)ζ = ζ ◦ (dπ)p ∈ T ∗
(p,ξ)(T

∗M). Define

α(p,ξ) := (dπ)∗(p,ξ)(ξ) = ξ ◦ (dπ)p.

Note that this makes sense because ξ ∈ T ∗
pM is in the domain of (dπ)∗(p,ξ). Given

a tangent vector ν ∈ T(p,ξ)(T
∗M), the value of α(p,ξ)(ν) = ξ((dπ)p(ν)) is computed

by projecting ν onto the tangent space TpM using dπp, and then applying ξ to this

projection.

The canonical symplectic 2-form ω is defined as −dα. To see that ω is in fact

symplectic, we just need to know it is non-degenerate. It will be easiest to do this

in local coordinates. Let (T ∗U ;x1, . . . , xn, ξ1, . . . , ξn) be a coordinate chart around

(p, ξ) ∈ T ∗M . Then dx1, . . . , dxn, dξ1, . . . , dξn forms a basis for T ∗
(p,ξ)(T

∗M) so we can

write α =
∑n

i=1 αidxi +
∑n

j=1 α̃jdξj for some smooth αi, α̃j. By the coordinate-free
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description of α, we see that αi = ξi and α̃j = 0, so

α =
n∑
i=1

ξidxi.

Thus the local description of ω = −dα is

ω =
n∑
i=1

dxi ∧ dξi,

which coincides with the standard symplectic form on R2n.

Proposition 1.14. The tautological 1-form α is uniquely characterized by the prop-

erty that µ∗α = µ for every µ : M → T ∗M .

Proof. We first prove uniqueness. Suppose β ∈ Λ(TM) such that µ∗β = µ for all

µ ∈ Λ(M). Let (U ;x1, . . . , xn) be a chart of p ∈ M , so we can write µ =
∑

i µidxi

in coordinates. Then in the chart (T ∗U ;x1, . . . , xn, ξ1, . . . , ξn) of T ∗M , we can also

write β =
∑

i βidxi+
∑

j β̃jdξj. In these coordinates, we have µ∗β =
∑

i(βi ◦ µ)dxi+∑
j(β̃j ◦ µ)dµj. If this is equal to µ, then we must have βi ◦ µ = µi and β̃j ◦ µ = 0,

meaning that βi = ξi and β̃j ≡ 0. But this is precisely the local definition of α, and

this computation also shows that α satisfies the pullback condition.

It follows immediately from this proposition that the canonical 2-form ω has the

feature that µ∗ω = −dµ for any µ ∈ Λ(M), since µ∗(−dα) = −d(µ∗α). Another

property of these two forms is that they are natural in the following sense:
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Proposition 1.15. Let ϕ : M → M ′ be a diffeomorphism. Then the lift ϕ̃ : T ∗M →

T ∗M ′ is a diffeomorphism which pulls α′ back to α,

(ϕ̃)∗α′ = α.

Proof. Recall that the lift ϕ̃ is defined pointwise by ϕ̃(p, ξ) = (ϕ(p), ξ̃) where ξ̃ is such

that (dϕ)∗pξ̃ = ξ. Focusing on the second component, we note that ϕ̃|T ∗
pM : T ∗

pM →

T ∗
ϕ(p)M is just defined to be the inverse of (dϕ)∗p : T

∗
ϕ(p)M

′ ∼=−→ T ∗
pM , which (modulo

some details) implies that ϕ̃ is also a diffeomorphism. We will now show the pullback

condition holds at every point (p, ξ) ∈ T ∗M . Compute

((ϕ̃)∗α′)(p, ξ) = (dϕ̃)∗(p,ξ)α
′
(ϕ(p),ξ̃)

= (dϕ̃)∗(p,ξ)(dπ
′)∗
(ϕ(p),ξ̃)

ξ̃ by definition of α′,

= d(π′ ◦ ϕ̃)∗(p,ξ)ξ̃

= d(ϕ ◦ π)∗(p,ξ)ξ̃ since ϕ̃ is a lift,

= (dπ)∗(p,ξ)(dϕ)
∗
pξ̃

= (dπ)∗(p,ξ)ξ by definition of ξ̃,

= α(p,ξ) by definition.

An immediate corollary of this proposition is that the lift ϕ̃ also pulls ω′ back to
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ω, and hence is a symplectomorphism T ∗M → T ∗M ′.

In the special case that M ′ = M , we get an injective group homomorphism

Diff(M) → Sym(T ∗M,ω). This homomorphism is not surjective, which is to say

that not every symplectomorphism of (T ∗M,ω) will arise this way. For example,

symplectomorphisms given by translation along cotangent fibers is not induced by

any diffeomorphism M → M . However, any symplectomorphism ψ of T ∗M which

preserves α is of the form ψ = ϕ∗ for some diffeomorphism ϕ : M → M . This is

because if ψ preserves α, then it must also preserve the cotangent fibration, meaning

that we can find a diffeomorphism ϕ : M → M so that π ◦ g = ϕ ◦ π. Moreover, we

can show that ψ = ϕ̃ via the same computation as in the proof above, using the fact

that g∗α = α and π ◦ g = ϕ ◦ π.

We can also use smooth functions on M to generate symplectomorphisms of

(T ∗M,ω) which may not preserve α. If f : M → R is any smooth function, de-

fine τf : T
∗M → T ∗M by (x, ξ) 7→ (x, ξ + dfx). That is, τf shifts along the cotangent

fibers by df . It follows that

τ ∗fα = α + π∗df,
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because

(τ ∗fα)(p, ξ) = (dτf )
∗
(p,ξ)α(p,ξ+dfp)

= (dτf )
∗
(p,ξ)(dπ)

∗
(p,ξ+dfp)(ξ + dfp)

= d(π ◦ τf )∗(p,ξ)(ξ + dfp)

= dπ∗
(p,ξ)ξ + dπ∗

(p,ξ)dfp)

= α(p,ξ) + (π∗df)(p,ξ).

This implies τ ∗fω = ω, and therefore τf is a symplectomorphism as claimed.

In the next subsection, we will see how to generate symplectomorphisms between

T ∗M → T ∗M ′ outside of the specific case M ′ =M , using Lagrangian submanifolds.

1.3 Lagrangian submanifolds

Lagrangian submanifolds are one of the phenomena which arise naturally in the sym-

plectic setting. In addition to being interesting objects of study in their own right,

Lagrangian submanifolds are incredibly useful for generating and identifying symplec-

tomorphisms. We will also see in Chapter 4 that we can recast the Arnold Conjecture

in terms of intersection points of Lagrangian submanifolds.

We saw in Section 1.1 that Lagrangian subspaces are the biggest subspaces upon

which the symplectic form vanishes. This definition carries over to manifolds.

Definition 1.16. A submanifold N ⊆ M is Lagrangian if for each p ∈ N , TpN is a
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Lagrangian subspace of TpM . Equivalently, if i : N → M is the inclusion, then N is

Lagrangian if i∗ω = 0 and dimN = 1
2
dimM .

If N is a Lagrangian submanifold, we can canonically identify its normal bundle

with its cotangent bundle. This is because νpN := TpM/TpN is isomorphic to T ∗
pN ,

via the canonical non-degenerate bilinear pairing Ω′ : TpM/TpN ×TpN → R given by

ω′
p([v], w) = ωp(v, w) for [v] ∈ νpN . Non-degeneracy of this bilinear pairing implies

ω̃′
p : νpN → T ∗

pN is an isomorphism.1 This observation, together with the following

example, will be important for our statement of the Weinstein tubular neighborhood

theorem (Subsection 1.4.2). In fact, we shall see that the Weinstein neighborhood

theorem says that, in a certain sense, the following example is the most important

(or even only) example of a Lagrangian submanifold.

Example 1.17. Every manifoldM is a Lagrangian submanifold of its cotangent bundle

T ∗M , via the zero section. Recall that the zero section of M is

z(M) = {(x, ξ) | x ∈M, ξ ≡ 0 ∈ T ∗
xM} ⊆ T ∗M,

which is isomorphic to M by projection onto the first coordinate. Since dimT ∗M =

2dimM , M has the correct dimension to be a candidate Lagrangian subspace, so

it suffices to show that z∗ω = 0 (where ω is the canonical 2-form on T ∗M , see

1This works more generally for any symplectic vector space (V,Ω) and Lagrangian subspace
W . The bilinear form Ω′ : V/W × W → R which sends ([v], w) to Ω(v, w) induces a canonical

isomorphism Ω̃′ : V/W
∼=−→ W ∗. Note that Ω′ is well-defined because if [v] = [v′], then v − v′ ∈ W

and so Ω′([v], w)− Ω′([v′], w) = Ω′([v − v′], w) = 0; it is non-degenerate because WΩ = W .
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Definition 1.13). In a chart (T ∗U, x1, . . . , xn, ξ1, . . . , ξn), any points of z(M) in this

chart will have ξ1 = · · · = ξn = 0. So α =
∑n

i=1 ξidxi is 0 on z(M), and hence so is

ω = −dα. Therefore M is a Lagrangian submanifold of T ∗M .

Generalizing this example, given any section µ : M → T ∗M , we can ask whether

the graph

Mµ = {(x, µ(x)) | x ∈M} ⊆ T ∗M

is Lagrangian. Remarkably, the answer depends only on whether µ is closed (as a

1-form) or not.

Proposition 1.18. The submanifold Mµ ⊆ T ∗M is Lagrangian if and only if µ is a

closed 1-form.

Proof. Note thatMµ is diffeomorphic toM under µ, and hence satisfies the dimension

requirement for Lagrangian submanifold-ness. Our goal is to show that the inclusion

i : Mµ → T ∗M pulls ω back to 0 if and only if dµ = 0. To this end, we note that we

can decompose µ = i ◦ µ̃, where µ̃ : M → Mµ is the diffeomorphism of M onto its

image in T ∗M .

Recall from Proposition 1.14 that µ∗α = µ. In particular, this means dµ = 0 if

and only if µ∗dα = 0. But

µ∗dα = (i ◦ µ̃)∗dα = µ̃∗i∗dα = i∗dα = −i∗ω,

and hence dµ = 0 if and only if i∗ω = 0, which is to say that Mµ is Lagrangian.
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There is one conspicuous class of closed 1-forms which we can draw from: the

exact ones, i.e. those µ such that µ = df for some f ∈ C∞(M). Such an f is

called a generating function for Mµ, and two functions generate the same Mµ if and

only if they differ by a locally constant function. Note that if H1
dR(M) = 0, e.g.

when M is simply connected, then every closed 1-form is exact and hence every

Lagrangian submanifold of the form Mµ will be generated by some f . However, not

every Lagrangian submanifold of T ∗M will arise as a graphMµ, as we shall see in the

next example.

Example 1.19. Let N be any k-dimensional submanifold ofM . Recall that the conor-

mal bundle of N in M is

ν∗N = {(p, ξ) ∈ T ∗M | p ∈ N, ξ ∈ ν∗pN}

where ν∗pN := {ξ ∈ TpM | ξ(v) = 0 for all v ∈ TpN} is the conormal space at p ∈ N .

The inclusion i : ν∗N → T ∗M exhibits ν∗N as a n-submanifold of T ∗M , which can be

seen most easily using charts adapted to N . Let (U ;x1, . . . , xn) be a chart centered at

p ∈ N such that xk+1 = · · · = xn = 0 on U ∩N . If (T ∗U ;x1, . . . , xn, ξ1, . . . , ξn) is the

corresponding chart on T ∗M , then ν∗N ∩ T ∗U is described by xk+1 = · · · = xn = 0

and ξ1 = · · · = ξk = 0. Thus ν∗N is an n-submanifold of the 2n-manifold T ∗M , with

k degrees of freedom coming from x1, . . . , xk and n − k degrees of freedom coming

from ξk+1, . . . , ξn.

In fact, ν∗N is a Lagrangian submanifold, which we can show locally. Recall that
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α is described locally on T ∗U as
∑

i ξidxi, so in particular for p ∈ ν∗N ,

(i∗α)p = αp|Tp(ν∗N) =
∑
i>k

ξidxi|span{ ∂
∂xi

}i≤k
= 0.

Hence i∗α = 0 so ν∗N is a Lagrangian submanifold of T ∗M .

Note that ν∗N will not be a graph of a section M → T ∗M in general. However, if

we take the extreme example of N =M , then we see that the conormal bundle ν∗M

is just the zero section z(M) which we saw was Lagrangian in Example 1.17. At the

other extreme is N = {p}, in which case the conormal bundle ν∗{p} is the cotangent

fiber T ∗
pM .

Lagrangian submanifolds can also help identify when a diffeomorphism ϕ : M1 →

M2 is a symplectomorphism. The idea is check whether the graph of the candidate

symplectomorphism is a Lagrangian submanifold of M1 ×M2, much like we did with

Mµ inside of T ∗M .

Let (M1, ω1) and (M2, ω2) be symplectic manifolds. Then the product M1 ×M2

admits a symplectic structure via the “twisted” form

ω̃ = (pr1)
∗ω1 − (pr2)

∗ω2

where pri is the projection onto the ith coordinate. Note that ω̃ is closed because

the exterior derivative commutes with pullbacks. It is non-degenerate because its
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top-power is non-zero,

ω̃2n =

(
2n

n

)
((pr1)

∗ω1)
n ∧ ((pr2)

∗ω2)
n ̸= 0.

If ϕ : M1 →M2 is a diffeomorphism, then we can consider the graph

Γϕ = {(p, ϕ(p)) | p ∈M1}

as a 2n-submanifold of the 4n-manifold M1 ×M2.

Proposition 1.20. A diffeomorphism ϕ : M1 → M2 is a symplectomorphism if and

only if its graph Γϕ is a Lagrangian submanifold of (M1 ×M2, ω̃).

Proof. Let i : M1 → M1 ×M2 denote the embedding of Γϕ, i.e. i(p) = (p, ϕ(p)). It

suffices to show that i∗ω̃ = 0. But

i∗ω̃ = i∗pr∗1ω1 − i∗pr∗2ω2 = (pr1 ◦ i)∗ω1 − (pr2 ◦ i)∗ω2 = id∗
M ω1 − ϕ∗ω2,

and so i∗ω̃1 = 0 if and only if ϕ∗ω2 = ω1.

1.3.1 Generating symplectomorphisms of cotangent bundles

Proposition 1.20 combined with Proposition 1.18 gives us a way to construct sym-

plectomorphisms of contangent bundles. If f : M1 ×M2 → R is a smooth function,

then df : M1 ×M2 → T ∗(M1 ×M2) ∼= T ∗M1 × T ∗M2 is a closed 1-form and so its
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graph Γdf is a Lagrangian submanifold of T ∗M1×T ∗M2. If we can somehow construct

a diffeomorphism T ∗M1 → T ∗M2 with the right graph then Proposition 1.20 tells us

that we actually have a symplectomorphism.

There is one important issue here which we have to contend with: Proposition 1.18

exhibits Γdf as a Lagrangian submanifold of T ∗(M1×M2) where the symplectic struc-

ture is given by ω := pr∗1ω1 +pr∗2ω2. But Proposition 1.20 requires a Lagrangian sub-

manifold of T ∗(M1 ×M2) with the twisted symplectic structure ω̃ = pr∗1ω1 − pr∗2ω2.

This prompts us to introduce the twist map

σ : T ∗M1 × T ∗M2 → T ∗M1 × T ∗M2

(x, ξ; y, ζ) 7→ (x, ξ; y,−ζ).

Note that this map is a smooth involution, and hence a diffeomorphism. Moreover,

it is a symplectomorphism because σ∗ω̃ = ω, which can be shown by computing

σ∗α = α̃ (where α is the tautological 1-form and α̃ is the twisted version) in local
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coordinates:

σ∗α = σ∗

(∑
i

ξidxi +
∑
j

ζjdyj

)

=
∑
i

ξidxi +
∑
j

(ζj ◦ σ2)d(yj ◦ σ2)

=
∑
i

ξidxi +−
∑
j

ζjdyj

= α̃.

Since d commutes with pullback, σ∗ω = σ∗(−dα) = −dσ∗α = −dα̃ = ω̃.

Since σ is a symplectomorphism, it will preserve Lagrangian submanifolds. This

implies that the twisted graph

Γσdf := σ(Γdf ) = {(x, y, dxf,−dyf) | (x, y) ∈M1 ×M2}

will be a Lagrangian submanifold of (T ∗(M1×M2), ω̃). (Here dxf is (df)(x,y) projected

to T ∗
xM1×{0}, and similarly for dyf .) Our goal now is to construct a diffeomorphism

ϕ : T ∗M1 → T ∗M2 whose graph is Γσdf . If we can do so, then Proposition 1.20 lets us

conclude that ϕ is a symplectomorphism; in this case we call ϕ the symplectomorphism

generated by f and f the generating function of ϕ.

Working locally, finding such a ϕ amounts to solving particular “Hamilton equa-

tions” (which we will discuss in more detail in Chapter 3). Asking that Γϕ = Γσdf is
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the same as asking for

ϕ(x, ξ) = (y, ζ) if and only if ξ = dxf and ζ = −dyf.

Given a point (x, ξ) ∈ T ∗M1, we want to find (y, ζ) so that y = ϕ1(x, ξ) and ζ =

ϕ2(x, ξ). This means we need to solve

ξi =
∂f

∂xi
(x, y) and ζj = − ∂f

∂yj
(x, y).

Note that if we can solve the first equation, i.e. write y = ϕ1(x, ξ), then we can also

solve the second equation by plugging in this first solution to obtain ζ = ϕ2(x, ξ). All

this to say, it suffices to understand when we can solve ξi =
∂f
∂xi

(x, y).

By the implicit function theorem, we can solve ξi =
∂f
∂xi

(x, y) locally for y in terms

of x and ξ, provided that

det

[
∂

∂yj

(
∂f

∂xi

)]n
i,j=1

̸= 0

holds. This local condition is necessary for f to generate ϕ, and it is also locally

sufficient; globally, there still may be a bijectivity issue.
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1.4 Some Theorems

Many fundamental results of symplectic geometry have the following flavor: we start

with a submanifold N in (M,ω) and find a neighborhood of it in M which is sym-

plectomorphic to a “normal neighborhood” in some other symplectic manifold. We

have already seen an example of this when N = {p} is a point — Darboux’s Theorem

tells us we can find a neighborhood symplectomorphic to (R2n, ω0). More generally,

if we have two neighborhoods of N which have different symplectic structures, we

can look for a symplectomorphism between them which fixes N . Both the Moser and

Weinstein theorems provide results in this vein. Since our focus is developing the

necessary background for Lagrangian Floer homology, we will not provide detailed

proofs of these important theorems and instead point the reader to their favorite

symplectic geometry resource (the ones we use include [dS06], [McD98], and [MS95]).

1.4.1 Moser theorems

The Moser theorem helps us compare two different symplectic structures ω0 and ω1 on

the same 2n-manifoldM . Given these two symplectic structures, the natural question

to ask is whether they are symplectomorphic, i.e. if there is a diffeomorphism ϕ : M →

M with ϕ∗ω1 = ω0. If there is such a ϕ, we can then ask about its homotopical

properties — in particular, can we find a ϕ which is homotopic to the identity idM?

Or, even stronger, can we find a homotopy through diffeomorphisms? We call such

a homotopy ρ : M × I → M an isotopy ; that is, ρ is an isotopy if each ρt is a
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diffeomorphism and ρ0 = idM .

An first observation is that a symplectomorphism ϕ cannot be isotopic to the

identity if [ω0] ̸= [ω1] in H2(M,R). This is because ϕ ∼ idM implies there is a

homotopy operator H on the de Rham complex2 so that id∗
M ω1 − ϕ∗ω1 = dHω1 +

Hdω1. Since ω1 is closed, we have

ω1 = ϕ∗ω1 + dHω1 = ω0 + dHω1

and so [ω1] = [ω0] in cohomology. Is this necessary condition sufficient? The Moser

theorem tells us yes, under certain conditions; in general, the answer is no (cf. [MS95,

Example 7.23]).

Definition 1.21. We say that (M,ω0) and (M,ω1) are

1. strongly isotopic if there is an isotopy ρt : M →M such that ρ∗1ω1 = ω0;

2. deformation-equivalent if ω0 and ω1 can be joined by a smooth family ωt of

symplectic forms;

3. isotopic if they are deformation-equivalent and the cohomology class [ωt] is

independent of t.

Note that strongly isotopic implies symplectomorphic (ϕ := ρ1), strongly isotopic

implies isotopic (ωt := ρ∗tω1 joins ω1 to ω0 and [ωt] = [ω1] by homotopy invariance

2Recall that a de Rham homotopy operator between ρ0 and ρ1 is a linear map H : Λk(M) →
Λk−1(M) satisfying the homotopy formula ρ∗1 − ρ∗0 = dH +Hd.
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of de Rham cohomology), and isotopic implies deformation equivalent. The Moser

theorem will show that isotopic implies strongly isotopic on compact manifolds, so

we have a chain of implications

strongly isotopic symplectomorphic

isotopic deformation equivalent

whenever M is compact.

Theorem 1.22. Let M be a compact manifold with two symplectic forms ω0 and ω1.

Suppose that ωt is a smooth family of closed, non-degenerate 2-forms, 0 ≤ t ≤ 1,

joining ω0 and ω1, so that [ωt] is independent of t, i.e.
d
dt
[ωt] = [ d

dt
ωt] = 0. Then there

is an isotopy ρ : M × R →M so that ρ∗tωt = ω0 for 0 ≤ t ≤ 1.

Note that we may take ωt = (1− t)ω0 + tω1 whenever this form is symplectic for

all t. This theorem says that if (M,ω0) and (M,ω1) are isotopic via ωt, then they

are strongly isotopic via ρt. Said another way, when we look at the map which sends

a symplectic form on M to its class in H2(M,R), all symplectic forms living in the

same path-connected component of a fiber are symplectomorphic.

The proof of the Moser Theorem involves something called theMoser trick [Mos65],

which is a method that turns out to be extremely useful in many situations. The idea

is to construct the isotopy as the flow of a time-dependent vector field Xt, which can

be found by solving a particular equation involving the (non-degenerate!) ωt. We

can apply the same ideas to neighborhoods of submanifolds of M to get a relative
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version of the Moser theorem. We will return to the Moser trick later in Section 3.1,

in particular in Remark 3.4, after we have discussed flows of time-dependent vector

fields in more detail.

Theorem 1.23. Let M be a manifold, and i : N → M the inclusion of a compact

submanifold. Suppose ω0 and ω1 are symplectic forms in M so that ω0|p = ω1|p for all

p ∈ N . Then there exist neighborhoods U0 and U1 of N in M and a diffeomorphism

ϕ : U0 → U1 so that

X

U0 U1ϕ

commutes and ϕ∗ω1 = ω0.

If we take N = {p} to be a point, then we can use the relative Moser theorem to

prove Darboux’s Theorem (Theorem 1.11). That is, take p ∈M and let ϕ : U → R2n

be a local chart centered at p. We want to show that ϕ∗ω is equal to the standard

form ω0 on a neighborhood of p. We saw in Section 1.1 that we can choose ϕ so that

ϕ∗ω = ω0 at p, and hence the result follows by the theorem above.

Both Darboux’s Theorem and Moser’s Theorem can be viewed as special cases of

a more general problem. Suppose we have a 2n-manifold M and k-submanifold N ,

along with two neighborhoods U0, U1 of N in M . Given two symplectic forms ω0,

ω1 on these neighborhoods, can we find a symplectomorphism of M preserving N?

That is, is there a diffeomorphism U0 → U1 with ϕ∗ω1 = ω0 ϕ(N) = N? Darboux’s

Theorem answers this when N is just a point, and Moser’s Theorem lies at the other
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extreme when N is all of M .

1.4.2 Weinstein Lagrangian Neighborhood Theorem

The Weinstein neighborhood theorems are like symplectic versions of the tubular

neighborhood theorem. The first version of the theorem says that if N is Lagrangian

in M in two different ways, then there is a symplectomorphism connecting the two.

Theorem 1.24. Let i : N → M be the inclusion of a compact n-submanifold, and

suppose we have two symplectic forms ω0 and ω1 on M so that N is a Lagrangian

submanifold of both (M,ω0) and (M,ω1) (i.e i∗ω0 = i∗ω1 = 0). Then there exist

neighborhoods U0 and U1 of N in M and a diffeomorphism ϕ : U0 → U1 so that

U0 U1

N

ϕ

ii

and ϕ∗ω1 = ω0.

There is a generalization of this theorem which is called the Coisotropic Em-

bedding Theorem, which says that we may conclude the same result if N is instead

assumed to be coisotropic with i∗ω0 = i∗ω1. The Weinstein Lagrangian Neighborhood

Theorem helps us to classify Lagrangian embeddings via the following theorem.

Theorem 1.25. Let i : N →M be the inclusion of a compact Lagrangian submanifold

of (M,ω). Let z : N → T ∗N denote the zero section and ω0 denote the canonical

symplectic form on T ∗N . Then there are neighborhoods U0 of N in T ∗N and U of N
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in M along with a diffeomorphism ϕ : U0 → U so that

U0 U

X

ϕ

iz

and ϕ∗ω = ω0.

This theorem says that the collection of Lagrangian embeddings is the same (up to

symplectomorphism) as the collection of embeddings of manifolds into their cotangent

bundles as zero sections. In this sense, all Lagrangian submanifolds look like the zero

section from Example 1.17. There are also classifications of isotropic and coisotropic

emeddings, due to Weinstein [Wei77, Wei81] and Gotay [Got82], respectively. The

isotropic case is related to symplectic vector bundles and the coisotropic case is related

to zero sections of a certain bundle which is dependent on the data of the embedding.
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Chapter 2

Compatible Structures

As we have mentioned before, symplectic geometry occupies a liminal space between

the rigidity of geometry and the flexibility of topology. Despite (or maybe because

of) this, imposing additional structure on a symplectic manifold can result in some

interesting geometry. Specifically, if we investigate the interaction of a Riemannian

structure with our symplectic structure, then we will find an almost complex structure

lurking in the shadows.

This interaction is basically happening at the level of linear algebra, because

each of these three structures (symplectic, Riemannian, almost complex) involves a

smoothly-varying requirement on the tangent spaces. That is, a symplectic structure

ω on a manifold amounts to asking for a smoothly-varying symplectic structure on the

tangent spaces (along with the global condition that dω = 0),3 a Riemannian structure

3If we do not require that ω is closed, we get an almost symplectic structure.
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g is a smooth assignment of an inner product to each of the tangent spaces, and an

almost-complex structure J is a smoothly varying complex vector space structure

on the tangent spaces. The data of any two of (ω, g, J) determine the third in a

compatible way, and form what is called a compatible triple. The relations can be

summarized in the following table:

Given... use... to get... and ask...

ω, J ω(Ju,Jv)=ω(u,v)
ω(u,Ju)>0 for u̸=0

g(u,v):=ω(u,Jv)
positive inner product is g flat?

g, J J is orthogonal,
g(Ju,Jv)=g(u,v)

ω(u,v):=g(Ju,v)
non-degenerate 2-form is ω closed?

ω, g polar decomposition J almost complex is J integrable?

We will primarily deal with the third row, where we are given a symplectic man-

ifold, choose a Riemannian structure (which is guaranteed to exist), and therefore

determine an almost complex structure. After recalling the definition of Riemannian

(Section 2.1) and almost complex structures (Section 2.2), we will describe compat-

ibility at the level of vector spaces (Subsection 2.2.1) and at the level of manifolds

(Section 2.3). Our primary reference for this section is [dS06], although this material

may be found in any standard textbook.

2.1 Riemannian structures

Riemannian geometry is the geometry of a positive-definite symmetric bilinear form,

which (in contrast to symplectic geometry) allows us to study more local notions like

distance, angle, and curvature.

Definition 2.1. A Riemannian metric g on M is a smooth assignment of a positive
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inner product gp on TpM for each p ∈M . Here, smoothness means p 7→ g(Xp, Xp) is

a smooth function on M for each vector field X.

We say (M, g) is a Riemannian manifold. The prototypical example is Euclidean

space under the usual Euclidean inner product, but it turns out that every smooth

manifold admits at least one Riemannian metric. One of the benefits of having such

a metric is that we can talk about things like distance.

Definition 2.2. Let γ : [a, b] → M be a smooth curve on (M, g). Define the length

of γ to be

L(γ) =

∫ b

a

gγ(t)

(
dγ

dt
,
dγ

dt

)1/2

dt.

The (Riemannian) distance d(p, q) between two points p, q ∈ M is the infimum of

L(γ) over γ connecting p and q.

The length of a curve is independent of its parametrization. The curve γ is a

geodesic if it locally minimizes distance and has constant velocity (i.e. no acceleration)

— these curves are the analogy of “straight lines” in our (usually not-flat) manifold.

A smooth curve joining p and q is a minimizing geodesic if it realizes the distance

d(p, q). A Riemannian manifold is geodesically convex if every two points are joined by

a unique minimizing geodesic. Note that there are geodesics which are not minimizing

geodesics: for instance, given any two points on S2, there are two geodesics which

connect them (the two arcs of the great circle they reside on), but in general one of

these great arcs will be shorter than the other. However, S2 is not geodesically convex,
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since there are two minimizing geodesics connecting every point with its antipode.

Geodesics are important for many reasons, one of which is that they minimize

energy in addition to minimizing length. The energy (or action) of a curve γ is

E(γ) =
1

2

∫ b

a

gγ(t)

(
dγ

dt
,
dγ

dt

)
dt.

The comparison between l(γ) and E(γ) is akin to that of x2 and |x| (forgetting the

integral for a moment): both x2 and |x| have the same minimum at 0, but x2 is nicer

to work with (i.e. its smooth) as opposed to |x|. Similarly, curve joining p to q will

minimize the energy if and only if it is a minimizing geodesic. Hence if we want to

minimize L we may as well minimize E (which is easier to work with analytically,

due to the presence of the square).

2.1.1 Geodesic flow

One way that Riemannian structure interacts with symplectic structure is through

geodesic flow. Note that any curve γ in M determines a curve in TM via t 7→

(γ(t), γ′(t)). The vector field on TM whose integral curves are of this form is called

the geodesic field on TM and its flow is called the geodesic flow. The metric g provides

an identification of TpM with T ∗
pM by sending v to gp(v,−), and the corresponding

flow on T ∗M is sometimes called the cogeodesic flow. Remarkably, this flow comes

from a certain symplectomorphism of T ∗M , which is in turn generated by a certain

smooth function on M ×M .
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Let f : M ×M → R be given by f(x, y) = −1
2
d(x, y)2, and let dxf and dyf denote

the components of df(x,y) with respect to T ∗
(x,y)(M×M) ∼= T ∗

xM×T ∗
yM . The discussion

from Subsection 1.3.1 tells us that Γdf is a Lagrangian submanifold of T ∗(M ×M)

and that if

Γσdf = {(x, y, dfx,−dfy) | x, y ∈M}

is also the graph of diffeomorphism ϕ : T ∗M → T ∗M , then ϕ is actually a symplecto-

morphism. In this case, ϕ(x, ξ) = (y, ζ) if and only if ξ = dxf and ζ = −dyf , meaning

that we need to solve

ξ = dxf and ζ = −dyf

for (y, ζ) in terms of (x, ξ). Under the identification of tangent and cotangent spaces,

we know ξ = gx(v,−) and ζ = gy(w,−) for some v ∈ TxM , w ∈ TyM , so equivalently

we want to solve

gx(v,−) = dxf and gy(w,−) = dyf

for (y, w) in terms of (x, v). If γ is the (unique) geodesic with γ(0) = x and γ′(0) = v

(this is often called exp(x, v)), then (y, w) = (γ(1), γ′(1)) gives us our solution. That

is, ϕ(x, gx(v,−)) = (γ(1), gγ(1)(γ
′(1),−)) is our symplectomorphism of T ∗M .

2.2 Almost-complex structures

An almost-complex structure on a manifold basically means that its tangent spaces

have the structure of complex vector spaces. The word “almost” is present to indicate
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that this structure on tangent spaces is not enough to guarantee that the manifold

itself has a complex structure. If the almost complex structure comes from a bonafide

complex structure, it is said to be integrable, but this is difficult to check in general.

2.2.1 Linear complex structures and compatible triples

We will briefly review linear complex structures and explore their interactions with

linear symplectic and inner product structures. A complex structure essentially means

that the vector space has an endomorphism which looks like “multiplication by
√
−1.”

Definition 2.3. A complex structure on a (real) vector space V if a linear map

J : V → V with J2 = − id. The pair (V, J) is called a complex vector space.

Example 2.4. Consider the standard symplectic vector space (R2n,Ω0) with standard

symplectic basis e1, . . . , en, f1, . . . , fn, and define J0 by ei 7→ fi, fj 7→ −ei. As matri-

ces,

Ω0 =

 0 id

− id 0

 and J0 =

 0 − id

id 0

 .

Note that J2
0 = − id and G0(−,−) := Ω0(−, J0−) is a positive inner product on R2n.

This example gives us a natural isomorphism with Cn. In general, a complex

structure J is equivalent to a C-vector space structure if we identify J with multi-

plication by
√
−1. If V also happens to have a symplectic structure Ω, then we can

look at how J and Ω interact.

Definition 2.5. Let (V,Ω) be a symplectic vector space. A complex structure J on
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V is compatible with Ω (or Ω-compatible) if

GJ(−,−) := Ω(−, J−)

is a positive inner product on V . That is, J is Ω-compatible if and only if

• (symplectomorphism condition) Ω(Ju, Jv) = Ω(u, v),

• (taming condition) Ω(v, Jv) > 0 for all v ̸= 0.

Proposition 2.6. A complex structure J is Ω-compatible if and only if there is a

symplectic basis e1, . . . , en, f1, . . . , fn for V with fj = Jej.

Proof. First suppose we have a symplectic basis of this form. Recall that this means

Ω(ei, ej) = Ω(fi, fj) = 0 and Ω(ei, fj) = δij. The fact that J is Ω-compatible fol-

lows from a straightforward check of the two conditions above. For instance, the

taming condition (on basis vectors) follows because Ω(ei, Jei) = Ω(ei, fi) = 1 and

Ω(fj, Jfj) = Ω(fj,−ej) = Ω(ej, fj) = 1. Checking the symplectomorphism condition

is similar.

An immediate corollary is that every symplectic linear structure (V,Ω) admits

a compatible complex structure J : take a symplectic basis e1, . . . , en, f1, . . . , fn for

(V,Ω) and define J : V → V by Jei = fi and Jfj = −ej, just as in Example 2.4.

Conversely, given a complex structure (V, J), there is always a symplectic structure

Ω so that J is Ω-compatible— Ω is defined by Ω(u, v) = G(Ju, v) for a positive inner

product G such that J∗ = −J .
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Remark 2.7. There is a way to build a Ω-compatible almost-complex structure that

does not depend on a choice of basis (which is important if we want to extend these

definitions to manifolds). Choose a positive inner productG on V . By non-degeneracy

of Ω and G, we have two isomorphisms

Ω̃ : v 7→ Ω(v,−) and G̃ : v 7→ G(v,−)

between V and V ∗. Hence there is an invertible linear map A : V → V so that

G(Au, v) = Ω(u, v). Moreover, A is skew-symmetric becauseG(A∗v, u) = −G(u,Av) =

G(Av, u) = Ω(v, u) = −Ω(u, v) = −G(Au, v). Thus AA∗ = −A2 is symmetric and

and positive-definite (G(AA∗, u, v) = G(A∗u,A∗u) > 0 for u ̸= 0), and hence its

diagonalization has positive eigenvalues λi. Rescaling the eigenvalues to
√
λi, we get

a new matrix
√
AA∗ which is also symmetric and positive-definite. Define

J := (
√
AA∗)−1A.

The factorization A =
√
AA∗J is called the polar decomposition of A. By the prop-

erties of A and
√
AA∗, along with the fact that A commutes with

√
AA∗ (and hence

so does J), it follows that J is skew-symmetric, orthogonal, and compatible with Ω.

Note that in general, the inner product defined by Ω(u, Jv) = G(
√
AA∗u, v) will

be different than G, unless AA∗ = id. The important observation is that this con-

struction is canonical after the initial choice of G, which will let us extend these ideas
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to manifolds.

Our recurring theme throughout this section is that once we choose any two of

the three structures (Ω, G, or J), we determine the third. In the linear setting, this

is because of the following picture of subgroups of GL2n(R):

U(n)

Sp(2n)

GLn(C)O(2n)

Recall that Sp(2n) is the symplectic linear group of all linear transformations of

R2n which preserve the standard symplectic structure. We identify an n × n matrix

A + iB with the real 2n × 2n matrix

 A −B

B A

 in order to think of GLn(C) as

a subgroup of GL2n(R). The picture above says that the intersection of any two of

Sp(2n), O(2n),GLn(C) is U(n). To see this for a 2n × 2n matrix M =

 A C

B D

,

the first step is to unpack the subgroup requirements:

1. M ∈ Sp(2n) if and only if it commutes with

 0 − idn

idn 0

;

2. M ∈ O(2n) if and only if MTM = idn;

3. M ∈ GLn(C) if and only if C = −B and D = A;
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4. M ∈ U(n) if and only if M ∈ GLn(C) and (A+ iB)−1 = (A+ iB)∗,

and then show that any two of 1–3 imply 4. For instance, if we assume 3 holds,

then we can write MT =

 A B

−B A

 which is precisely the conjugate transpose of

A+ iB. Hence 2 holds if and only if 4 does, i.e. GLn(C) ∩ Sp(2n) = U(n).

The upshot of this observation is that a choosing a (compatible) complex structure

for a symplectic vector space is equivalent to choosing an inner product structure.

We will soon see that a similar situation arises on manifolds.

2.2.2 Almost-complex structures and integrability

Like Riemannian and symplectic structures, an almost complex structure happens on

the level of tangent spaces.

Definition 2.8. An almost-complex structure on a manifold M is a smooth assign-

ment J : x 7→ Jx of complex structures on tangent spaces,

Jx : TxM → TxM and J2
x = − id .

The pair (M,J) is called an almost-complex manifold.

The name “almost-complex” invites us to ask what’s the relationship with complex

manifolds? Every complex manifold (meaning a manifold which is locally homeomor-

phic to Cn) admits a canonical almost-complex structure.
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We will briefly mention how to construct the almost-complex structure locally. Let

(U, ϕ : U → Cn) be a complex chart for M . Write the components of ϕ = (z1, . . . , zn)

as zj = xj + iyj. Then at p ∈ U , the tangent space TpM can be expressed as the

R-linear span of ∂
∂xj

∣∣∣
p
, ∂
∂yj

∣∣∣
p
. As we might guess, the correct definition of a complex

structure Jp on TpM is given by

Jp

(
∂

∂xj

∣∣∣∣
p

)
=

∂

∂yj

∣∣∣∣
p

and Jp

(
∂

∂yj

∣∣∣∣
p

)
= − ∂

∂xj

∣∣∣∣
p

.

To check that this is globally well-defined, we would need to show that the local

constructions agree on the overlap of two charts. We point the interested reader to

[dS06, Proposition 15.2] for the complete details.

Although every complex structure induces an almost-complex structure, not every

almost-complex structure can be upgraded to a complex one. In the special case that

a given almost-complex structure does come from a complex structure, we give it a

special name.

Definition 2.9. An almost complex structure is called integrable if it is induced by

a complex manifold structure.

To detect whether an almost-complex structure (M,J) is integrable, we can use

its Nijenhuis tensor N which is defined as

N (V,W ) := [JV, JW ]− J [V, JW ]− J [JV,W ]− [V,W ]
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for two vector fields V,W on M . Since N is a tensor (basically because the bracket

[−,−] is), the value of N (V,W ) at p ∈M depends only on the vectors Vp,Wp ∈ TpM .

In the 1950’s, Newlander and Nirenberg [NN57] showed that J is integrable if and

only if N vanishes everywhere.

Example 2.10. We can use these ideas to show that orientable surface is a complex

manifold. Recall from Example 1.12 that every orientable surface Σ is symplectic, and

hence has a compatible almost-complex structure J . Since Σ has complex-dimension

1, for any p ∈ Σ we can pick a nowhere-vanishing local vector field V so that {Vp, JVp}

is a basis for TpΣ. (Note that if JVp ∈ span{Vp} then Jv = av for some a ∈ R but

then −Vp = J2Vp = a2V which is impossible.) Then

N (V, JV ) = [JV, J2V ]− J [V, J2V ]− J [JV, JV ]− [V, JV ]

= −[JV, V ]− J [V,−V ]− J [JV, JV ]− [V, JV ]

= [V, JV ] + J [V, V ]− J [JV, JV ]− [V, JV ]

= 0.

Thus N vanishes at every p ∈ Σ, which implies J is integrable.

2.3 Compatible triples

Just like with linear structures, Riemannian, symplectic, and almost complex struc-

tures on manifolds interact in a nice way. As before, a choice of any two of them will
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determine a third compatible one.

Definition 2.11. An almost complex structure J on M is compatible with ω (or

ω-compatible) if the assignment of x ∈M to gx : TxM × TxM → R given by

gx(u, v) := ωx(u, Jxv)

is a Riemannian metric on M . A triple (ω, g, J) is called a compatible triple if

g(−,−) = ω(−, J−).

Note that if (ω, g, J) is a compatible triple, then any one of the structures may be

expressed in terms of the others. Specifically, we have

g(u, v) = ω(u, Jv)

ω(u, v) = g(Ju,w)

J(u) = g̃−1(ω̃(u)).

Recall that g̃, ω̃ : TM → T ∗M are the linear isomorphisms induced by the bilinear

forms g, ω. In particular, since Riemannian metrics always exist on manifolds, a

symplectic manifold always admits a compatible almost-complex structure.

Remark 2.12. For the bundle-minded reader, we note that the existence of these

structures can be phrased in terms of reduction of the structure group of the tangent

bundle TM →M . Specifically, a 2n-manifold M is
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• Riemannian if and only if TM is a O(2n)-bundle,

• symplectic if and only if TM is a Sp(2n)-bundle,

• almost-complex if and only if TM is a GLn(C)-bundle.

As discussed at the end of Subsection 2.2.1, any two of these conditions is equivalent

to reducing the structure group to U(n) (hence giving us the third condition as well).

Remark 2.13. If a ω-compatible almost-complex structure is integrable, then M is

called a Kähler manifold and the symplectic form ω is called a Kähler form. Main

examples of Kähler manifolds include compact Riemann surfaces, complex torii, and

complex projective space. We have the following chain of implications:

Kähler symplectic

complex almost complex smooth even-dimensional orientable

However in general we cannot trace backwards along these arrows. For instance, a

manifold can be symplectic and complex without being Kähler (cf. [Thu76]), and

there are almost-complex manifolds which are neither complex nor symplectic (cf.

[Tau94]).

Given a symplectic manifold (M,ω), we can investigate the set of compatible

almost-complex structures; this set is path-connected in the following way.

Proposition 2.14. Let (M,ω) be a symplectic manifold and J0, J1 two ω-compatible

almost-complex structures. Then there is a smooth family Jt, 0 ≤ t ≤ 1, of compatible
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almost-complex structures joining J0 to J1.

Proof. By compatibility, we get two Riemannian metrics g0(−,−) := ω(−, J0−) and

g1(−,−) := ω(−, J1−). The linear homotopy gt = (1 − t)g0 + tg1 gives us a smooth

family of Riemannian metrics, from which we can obtain a smooth family of Jt’s using

polar decomposition.

Similarly, if we have two symplectic structures ω0 and ω1 and an almost-complex

structure J which is compatible with both, then we get a smooth family of symplectic4

forms ωt = (1− t)ω0 + tω1; i.e. ω0 and ω1 are deformation equivalent. The converse

is not true in general, as two deformation equivalent symplectic structures may not

share a compatible almost-complex structure (cf. [dS06, §13.3]).

Remark 2.15. Note that we have not relied on ω being closed, and so everything we

have discussed may be extended to almost-symplectic manifolds (manifolds with a

non-degenerate 2-form which is not necessarily closed).

4The form ωt is closed since both ω0, ω1 are, and is non-degenerate since gt(−,−) = ωt(−, J) is
positive (hence non-degenerate).
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Chapter 3

Hamiltonians

In the introduction, we discussed how symplectic geometry is the natural abstract

setting for Hamiltonian mechanics. This chapter will explore this connection in more

detail (see, in particular, Example 3.7) with the goal of stating the Arnold Conjecture

and understanding it as a statement about periodic solutions of a time-dependent

Hamiltonian flow. We begin with a discussion of Hamiltonian functions and their

corresponding vector fields and isotopies (Section 3.1) and state the Liouville-Arnold

Theorem (Theorem 3.14). Then we define time-dependent Hamiltonians and formu-

late the Arnold Conjecture in Subsection 3.2.1.

3.1 Isotopies, vector fields, and Hamiltonian systems

Recall that an isotopy is a map ρ : M × R → M where each ρt : M → M is a

diffeomorphism and ρ0 = idM . We can visualize an isotopy as an infinite cylinder
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on M , with M itself sitting in the middle (corresponding to ρ0 = idM). Taking a

horizontal time slice (i.e. picking a ρt) gives us a diffeomorphism of M , whereas

taking a vertical time slice (fixing a point p ∈M and varying t) gives us a path in the

cylinder. If we imagine ρ as defining a flow onM , then these paths are like the integral

curves of this flow. This also defines a time-dependent vector field v : M ×R → TM .

Each vt is defined by the equation dρt
dt

= vt ◦ ρt, i.e.

vt(p) =
d

ds
(ρs ◦ ρ−1

t )(p)

∣∣∣∣
s=t

.

That is, vt(p) is the tangent vector of the integral curves defined by ρ(p) : R →M at

time t. Visually, vt(p) points towards where in M the point p should flow under ρ.

Conversely, given a time-dependent vector field v, if the vector fields vt are all

compactly supported (for instance, when M is compact), then there exists an isotopy

ρ which generates v, i.e. ρ satisfies the equation above. In fact, when M is compact,

there is a one-to-one correspondence between time-dependent vector fields on M and

isotopies of M .

Even if we cannot solve the differential equation globally for ρ, we can still solve

it locally. That is, for any p ∈ M and sufficiently small t, there is a one-parameter

family of local diffeomorphisms ρt satisfying
dρt
dt

= vt ◦ ρt and ρ0 = idM .

Example 3.1. The nicest sort of time-dependent vector fields are the time-independent

ones. If vt = v is independent of t, then the associated isotopy is called the exponen-

tial map and denoted exp tv. This is the unique smooth family of diffeomorphisms
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satisfying

d

dt
exp tv(p) = v(exp tv(p)) and exp tv|t=0 = idM .

When working on a symplectic manifold (M,ω), we want to understand how a

time-dependent vector field will interact with our symplectic form. This motivates

the Lie derivative, which can be defined more generally, but in our specific context

will measure how differential forms change along the flow of vt.

Definition 3.2. The Lie derivative by vt is the operator Lvt : Λk(M) → Λk(M)

defined by

Lvt(ω) =
d

dt
(ρt)

∗ω|t=0.

Note that when vt is independent of t, then Lvω = d
dt
(exp tv)∗ω|t=0.

The Lie derivative is closely related to the exterior derivative, and both capture

the idea of taking a derivative, albeit in different ways. This difference is bridged by

the interior product with respect to a vector field; in our case that vector field will

be the time-dependent vector field v.

Definition 3.3. The interior product along vt is ιvt : Λ
k+1(M) → Λk(M) defined by

ιvt(ω)(X1, . . . , Xk) = ω(vt, X1, . . . , Xk).

The form ιvtω is sometimes called the contraction of ω with vt.

That is, ιvt turns a (k+1)-form into a k-form by sticking the vector field vt in the
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first slot. The identity that links ιvt , Lvt , and d is known as Cartan’s magic formula:

Lvω = ιvdω + dιvω.

This formula says that the Lie derivative of ω along vt is the same as a contraction

of ω along vt plus a correction term which takes into account the variation of vt.

Remark 3.4. (Moser’s trick.) Suppose we have a smooth family of k-forms αt on M ,

0 ≤ t ≤ 1, and we want to find an isotopy ϕt : M → M so that ϕ∗
tαt = α0. Moser’s

trick is to try to construct ϕt as the time-1 flow of a time-dependent vector vector field

Xt, and then solving ϕ∗
tαt = α0 becomes equivalent to solving another, potentially

easier equation. Given a time dependent vector field Xt, its flow satisfies

d

dt
ρ∗t (αt) =

d

ds
ρ∗sαt|s=t +

d

ds
ρ∗tαs|s=t by the chain rule,

= ρ∗t (LXtαt) + ρ∗
dαt
dt

= ρ∗t (LXtαt +
dαt
dt

)

= ρ∗t (
dαt
dt

+ dιXtαt + ιXtdαt) by Cartan’s magic formula.

Thus to prove that ϕ∗
tαt = α0, it suffices to show that

0 =
d

dt
ϕ∗
t (αt) = ϕ∗

t (
dαt
dt

+ dιXtαt + ιXtdαt).

In many cases, solving dαt

dt
+ dιXtαt + ιXtdαt = 0 may be much easier than solving
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ϕ∗
tαt = α0, and many important theorems in symplectic geometry are proved using

the Moser trick, as discussed in Section 1.4.

Remark 3.5. Given a symplectic manifold (M,ω) we say a vector field X on M is

symplectic if it preserves ω, meaning that LXω = 0. By Cartan’s magic formula, this

is equivalent to saying that ιXω is closed.

3.1.1 Hamiltonian vector fields

The idea of Hamiltonian vector fields is that ιXω is not only closed, but also exact.

That is, our vector field (and corresponding isotopy) are generated by a smooth

function, often called the Hamiltonian or energy functional. Let H : M → R be a

smooth function, so dH is a closed 1-form on M . By non-degeneracy of ω, there is a

unique vector field XH so that

ιXH
ω = ω(XH ,−) = dH.

Note that p ∈M is a critical point of H if and only if XH vanishes at p, and moreover

H is constant along the trajectories of XH since

XH(H) = dH(XH) = ω(XH , XH) = 0.
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In this sense, XH is like the “symplectic gradient” of H. The differential system

associated to this vector field is

dx

dt
= XH(x(t)).

If the flow of XH is complete (for instance if M is compact), then it generates an

isotopy ρ : M × R → M which solves the differential system. Or equivalently, XH

generates a one-parameter family of diffeomophisms ρt : M →M so that


ρ0 = idM ,

dρt
dt

= XH(ρt).

Each diffeomorphism ρt preserves ω, in the sense that ρ∗tω = ω, because

d

dt
ρ∗tω = ρ∗tLXH

ω = ρ∗t (ιXH
dω + dιXH

ω) = ρ∗(ιXH
0 + ddH) = 0

and ρ∗0ω = ω at t = 0. Thus every function on M yields a family of symplectomor-

phisms ρt. Note that we required both the non-degeneracy and closedness of ω to

make this argument work.

Definition 3.6. The function H is called a Hamiltonian function and the vector field

XH its Hamiltonian vector field. The differential system associated to XH is called a

Hamiltonian system.

To say that a vector field X is Hamiltonian is precisely to say that ιXω is exact.
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We also saw in Remark 3.5 that ιXω is closed if and only ifX is symplectic (LXω = 0).

This means that every Hamiltonian vector field is symplectic, but a symplectic vector

field may not be Hamiltonian. The obstruction is measured by H1
dR(M); in particular,

if H1
dR(M) = 0, then every symplectic vector field is Hamiltonian.

Example 3.7. We can recover the classical “Hamilton’s equations” when we consider

R2n with its standard symplectic structure ω0. In terms of coordinates (qi, pi), a curve

ρt = (q(t), p(t)) is an integral curve for a Hamiltonian vector field XH precisely if it

solves

dqi
dt

=
∂H

∂pi
and

dpi
dt

= −∂H
∂qi

.

In Euclidean space, we can give this a simple physical interpretation. In particular,

if we take H(q, p) = 1
2
|p|2 + V (q) for some smooth V : Rn → R (which we think of as

describing the potential energy), then

dH =
∑
i

pidpi +
∂V

∂qi
dqi.

The associated Hamiltonian vector field is XH =
∑

i−pi
∂
∂qi

+ ∂V
∂qi

∂
∂pi

, and the Hamil-

tonian system is

dqi
dt

= pi and
dpi
dt

= −∂V
∂qi

.

This describes p as the speed of the particle (of mass m = 1) whose position is given

by q. We can think of R2n ∼= T ∗Rn as the phase space for a system in Rn: the first

n coordinates given by q describe Rn as a configuration space for the system and the
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last n coordinates given by p record the dynamics of the system, i.e. how the system

evolves over time.

More specifically, for n = 3, the Hamilton equations above are equivalent to

Newton’s second law, which states that a particle of mass m moving in R3 under

the influence of a potential energy function V : R3 → R will move along a curve q(t)

which solves

m
d2q

dt2
= −∇V (q).

Here q = (q1, q2, q3) provides the coordinates of R3. If we set pi = mdqi
dt

to be the

momenta of the particle, then Newton’s second law becomes


dpi
dt

= md2qi
dt2

= −∂V
∂qi

= −∂H
∂qi

dpi
dt

= 1
m
pi =

∂H
∂pi

for energy function H(q, p) = 1
2m

|p|2 + V (q). But these are precisely Hamilton’s

equations for H on the phase space T ∗R3 ∼= R6.

Example 3.8. Given any vector field X onM , there is a unique vector field X̃ on T ∗M

whose flow lifts the flow of X. This lift X̃ is Hamiltonian with Hamilton H = ιX̃α,

which is to say that dιX̃α = ω(X̃,−) = ιX̃ω. To see this, note that Cartan’s magic

formula says

dιX̃α = LX̃ω − ιX̃dα = LX̃ω + ιX̃ω,

so it suffices to show LX̃ω = 0. But this is true because we know (ρ̃t)
∗α = α (and
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hence (ρ̃t)
∗ω = ω) by Proposition 1.15, which implies

LX̃ω =
d

dt
(ρ̃t)

∗ω|t=0 =
d

dt
ω|t=0 = 0.

Remark 3.9. If (g, ω, J) is a compatible triple on M and H : M → R a Hamiltonian

function, we can associate two different vector fields to H, namely, the gradient ∇H

and the Hamiltonian vector field XH . Then

ω(XH , Y ) = dH(Y ) = g(∇H, Y ) = ω(J∇H,Y )

for all vector fields Y , which means that XH = J∇H and ∇H = −JXH .

We can also interpret Hamiltonian vector fields in terms of R-actions on our

manifold. Recall that a (left) action of a Lie group G on a manifold M is a group

homomorphism ψ : G → Diff(M). The action is said to be smooth if the evaluation

map

evψ : G×M →M

(g, p) 7→ ψg(p)

is a smooth map of manifolds. If M has a symplectic structure ω, then the action is

called symplectic (or G acts by symplectomorphisms) if the smooth action ψ actually

lands in Sym(M,ω) ⊆ Diff(M).
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Example 3.10. If G = R, then a smooth action of R on M is equivalent to a complete

vector field on M . If X is a complete vector field with flow Φ: M ×R →M , then the

smooth action of R is given by flowing, i.e. t 7→ Φ(−, t). Conversely, if ψ is a smooth

R-action, then we can define a complete vector field X by Xp =
dψt(p)
dt

∣∣∣
t=0

.

This method also gives us a one-to-one correspondence between symplectic actions

of R and complete symplectic vector fields on M . If a symplectic R-action generates

a Hamiltonian vector field, then we say the action itself is Hamiltonian. That is, we

say ψ is Hamiltonian if its vector field X satisfies ιXω = dH for some H : M → R.

Example 3.11. Consider R2n with its standard symplectic structure. The vector field

X = − ∂
∂x1

is Hamiltonian (with Hamiltonian H = x1), and so the action generated

by X

ψt : (x1, . . . , xn, y1, . . . , yn) 7→ (x1 − t, . . . , xn, y1, . . . , yn)

is Hamiltonian. The orbits of the action ψ look like lines parallel to the x1-axis.

This gives us a way to talk about symplectic and Hamiltonian actions of R, but

we would like to extend this to other Lie groups. This is immediately possible for S1,

which is a quotient of R, as we can just view an action of S1 as a 2π-periodic action

of R.

Example 3.12. Consider S2 with the standard symplectic form for cylindrical coor-

dinates, ω = dθ ∧ dz. The R-action ψt(θ, z) = (θ + t, z), or equivalently the vector

field X = ∂
∂θ
, is 2π-periodic and hence descends to an action of S1. The action is just

rotation by angle t around the z-axis, and so the orbits look like horizontal circles.
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This is a Hamiltonian S1-action with Hamiltonian function H = z.

If G is a product of S1’s and R’s, then we can define a G-action to be Hamiltonian

if its restriction to each factor is Hamiltonian with a Hamiltonian function which is

invariant under the action of the other factors of G. For a more general Lie group, we

need to soup up the definition of a Hamiltonian to something called a moment map.

For more details, see [dS06, §22].

3.1.2 Integrable systems

Integrability of a system roughly means that its dynamics are very well-behaved, in the

sense that there are sufficiently many conserved quantities (functions in the dependent

variables whose value remains constant along trajectories). Although integrability is

a non-generic quality, many (but not all) systems studied in physics are integrable.

Suppose (M,ω,H) is a Hamiltonian system. To detect conserve quantities, we

want to know when a function f : M → R is constant along trajectories of XH . If we

let ρt denote the flow of XH , then

d

dt
(f ◦ ρt) = ρ∗tLXH

f by definition of L,

= ρ∗t ιXH
df by Cartan’s formula,

= ρ∗t ιXH
ιXf

ω by definition of Xf ,

= ρ∗tω(Xf , XH) by definition of the interior product.



65

Thus f is constant along trajectories if and only if ω(Xf , XH) = 0. The function

ω(Xf , XH) is called the Poisson bracket of f and H, and is usually denoted {f,H}.

The Poisson bracket gives C∞(M) the structure of a Lie algebra (cf. [dS06, §18.3]).

A function f : M → R for which {f,H} = 0 is called a conserved quantity (or integral

of motion).

A Hamiltonian system may admit multiple conserved quantities fj, which will

depend on H in general. If fi and fj commute with respect to the Poisson bracket,

then it must be that {fi, fj} = ω(Xfi , Xfj) = 0. This means that at each p ∈ M the

Hamiltonian vector fields generate an isotropic subspace of TpM . If M is symplectic,

this means there can be at most n independent5 conserved quantities.

Definition 3.13. A Hamiltonian system (M,ω,H) is (completely) integrable if it

admits n functionally independent integrals of motion f1 = H, f2, . . . , fn so that

{fi, fj} = 0 for all i, j.

As the reader might guess, there is a connection between integrable systems

and Lagrangian submanifolds. Specifically, the level set of a regular value of f :=

(f1, . . . , fn) will be a Lagangian submanifold. The Liouville-Arnold Theorem de-

scribes this in more detail.

Theorem 3.14 (Liouville-Arnold Theorem). Let (M,ω,H) be an integrable Hamil-

tonian system with integrals of motion f1 = H, . . . , fn. Define f = (f1, . . . , fn) and

let c ∈ Rn be a regular value of f . Then

5Recall that functions on M are said to be independent if their differentials are pointwise linearly
independent on an open dense subset of M .
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(i) f−1(c) is a Lagangian submanifold of (M,ω),

(ii) If the Hamiltonian flows Xf1 , . . . , Xfn are complete on a connected component

L ⊆ f−1(c), then L is diffeomorphic to T k×Rn−k for some k. There are “angle

coordinates” θ1, . . . , θn on L for which the Hamiltonian equations are

d

dt
θi = vi

for some vi ∈ R. The Hamiltonian flow on L is periodic if and only if vi ∈ Q

for all i = 1, . . . , k and vi = 0 for i = k + 1, . . . , n.

(iii) If L is a connected component of f−1(c) then there are “action coordinates”

(φ1, . . . , φn) which are integrals of motion for (M,ω,H) in a neighborhood of

L. Along with the angle coordinates, they form a Darboux chart for L.

Note that a consequence of (ii) is that any compact connected component of

f−1(c) is diffeomorphic to T n, and such a torus is called a Liouville torus. The proof

of (iii) makes use of the Weinstein Lagrangian neighborhood theorem (Theorem 1.25)

and part (ii) to find a neighborhood U of L in M and a neighborhood U0 of L in

T ∗(L) ∼= T ∗(T k × Rn−k) along with a symplectomorphism ϕ : U0 → U . This map ϕ

gives a coordinate chart on U where the coordinates in the base space are the angle

coordinates; the coordinates on the fibers are called the action coordinates. This gives

a Darboux chart on U0 which can be mapped to a Darboux chart on U (since ϕ is

a symplectomorphism). For more details and proofs of the other parts, see [Arn78,
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§50].

3.2 Time-dependent Hamiltonians and periodic solutions

So far we have developed the theory for a fixed Hamiltonian function, but in general

we may want to allow our Hamiltonian to change over time. For example, dynamical

processes in quantum mechanics may be described by a Hamiltonian that depends on

time. Define a time-dependent Hamiltonian to be a smooth function H : M×R → R,

and let Ht denote H(−, t) : M → R. The Hamiltonian vector fields Xt are still defined

by Xt := XHt , but the associated differential system is no longer autonomous:

dx

dt
= Xt(x(t)).

However, just as before, the solutions of this system define a one-parameter family of

diffeomorphisms ρt so that 
ρ0 = idM ,

dρt
dt

= Xt(ρt).

The proof from the time-independent case also carries over to this setting to show

that the ρt preserve the symplectic form ω.

Suppose that a time-dependent Hamiltonian is 1-periodic, meaning that Ht+1 =

Ht for all t ∈ R. This implies that Xt (and hence ρt) is also 1-periodic. Then there

is a one-to-one correspondence between the fixed points of ρ1 and the period-1 orbits

of ρ : M ×R → R. This is because ρ1(p) = p if and only if {x(t) = ρ(t, p) | t ∈ I} is a
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closed orbit.6 A periodic solution x(t) (with x(0) = x(1) = p) is called non-degenerate

if

det(id−dρ1(p)) ̸= 0.

This is to say that the differential dρ1 : TpM → TpM does not have eigenvalue 1.

In local coordinates, the matrix (dρ1)p is the Jacobian matrix exp(J0(d
2ρ1)p(H)).

The non-degeneracy of p as a periodic orbit is equivalent to the invertibility of

exp(J0(d
2ρ1)p(H)) − id, i.e. whether or not the Hessian (d2ρ1)p has eigenvalues in

2πZ.

Remark 3.15. In the special case thatHt = H is time-independent, then it is certainly

1-periodic. In particular, all of the (non-degenerate) critical points of H are periodic

trajectories and hence (non-degenerate) fixed points of ρ1. Moreover, if a critical

point of H is non-degenerate as a periodic solution, then it is non-degenerate as a

critical point of the function H (cf. [AD14, Proposition II.5.4.5]). Therefore ρ1 has at

least as many (non-degenerate) fixed points as H has (non-degenerate) critical points.

The Arnold Conjecture seeks to provide a similar bound to the fixed points of ρ1

for a time-dependent 1-periodic Hamiltonian. The remainder of this thesis will be

dedicated to stating the Arnold conjecture, reinterpreting it as a Lagrangian intersec-

tion problem, and explaining how Floer homology theory can help us approach this

problem.

6Without assuming thatHt is one-periodic, we may conclude the “if” direction but not necessarily
the “only if.”
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3.2.1 The Arnold Conjecture

Let (M,ω) be a compact symplectic manifold and f : M →M a symplectomorphism.

Suppose further that f is the time 1 flow of a 1-periodic Hamiltonian vector field.

That is, there is a time-dependent Hamiltonian H : M×R → R with Ht+1 = Ht which

generates a one-parameter family of diffeomorphisms ρt : M → M so that f = ρ1.

Such a map f is often called a Hamiltonian diffeomorphism.

One formulation of the Arnold conjecture bounds the number of fixed points that

f can have from below:

#{fixed points of f} ≥ minimal number of critical points
of a smooth function on M

and moreover

#{non-degenerate fixed points of f} ≥ minimal number of critical points
of a Morse function on M

.

Using Morse theory (see Section 4.1), we also know that this last term is bounded

below by the sum of the Betti numbers ofM . The Arnold conjecture is a sharper result

than the Lefschetz fixed point theorem, which provides a similar bound in terms of

the alternating sum of the Betti numbers. Note that Remark 3.15 has already shown

the Arnold conjecture holds for time-independent Hamiltonians.

There are several variants of the Arnold Conjecture, some of which are proven
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and some of which remain open. The following version (using rational coefficients),

which is now known to hold in full generality (cf. [Sal97, p.4]).

Theorem 3.16. Let (M,ω) be a compact symplectic manifold and let f be the time-1

flow of a 1-periodic Hamiltonian function. Suppose that all critical points of f are

non-degenerate. Then

#{fixed points of f} ≥
2n∑
i=0

dimHi(M ;Q).

It was first proven to hold for Riemannian surfaces by Eliashberg [Eli79] and then

for the 2n-torus by Conley and Zehnder [CZ83]. The big breakthrough came in a

series of papers by Floer [Flo88a, Flo89b, Flo89a], where he adopted techniques of

Gromov and used the Morse-Smale-Witten complex to develop “infinite dimensional

Morse theory” which became known as Floer homology. He was able to prove that

the Arnold conjecture holds for a large class symplectic manifolds, and his ideas have

since been extended to the general case by many others (see, for instance, the work of

Hofer-Salamon [HS95], Ono [Ono95] and Fukaya-Ono [FO99], and Liu-Tian [LT98]).

Most recently, Abouzaid-Blumberg [AB21] have shown that the Arnold conjecture

holds for coefficients in a field of characteristic p by constructing a version of Floer

homology with coefficients in Morava K-theory. In the next chapter, we will detail

some of Floer’s ideas for his proof of the Arnold conjecture (using Z/2-coefficients)

for a particular class of closed symplectic manifolds.
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Chapter 4

Lagrangian Floer Homology

Floer homology was built to attack the Arnold conjecture, but its techniques have

proven to be useful outside of this specific application. The purpose of this chapter

is to outline the main ideas of the Floer complex, with an eye towards establishing

the Arnold conjecture for Z/2-coefficients (under certain assumptions). The first

observation is that we can recast the fixed point problem as an intersection problem:

namely, the fixed points of a Hamiltonian diffeomorphism ϕ1 : M → M will be in

bijection with the intersection points of the diagonal ∆(M) and the graph Γϕ1 , which

are both Lagrangian submanifolds of the product M ×M . Thus we can approach

the Arnold Conjecture through the lens of the more general problem of bounding

|L0 ∩ L1|, where L0, L1 are two Lagrangian submanifolds of some ambient symplectic

manifold (M,ω).

The idea of Floer homology for Lagrangian intersections is to construct a complex
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generated by the intersection points L0 ∩ L1. The differential is given by “counting”

J-holomorphic strips which connect intersection points, where J is a suitably chosen

almost complex structure onM . However, the differential is a very delicate thing and

may not always be well-defined (in the sense of giving rise to a homology theory).

Specifically, we need to rule out J-holomorphic “bubbles” which can pop up on these

strips. This is done by imposing some restrictions on M , L0, and L1. Consequently,

Floer homology for Lagrangian intersections may not always be able to be defined.

In the case where L1 is the image of L0 under a Hamiltonian diffeomorphism, then

we can build the Floer complex in a slightly different way, although we will run into

many of the same analytic difficulties. The purpose of our exposition is not to delve

into these difficulties, but rather provide an overview of the main ideas and storyline.

The inspiration for Floer homology comes from Morse theory; Floer homology is

sometimes called “infinite-dimensional Morse homology.” Thus it will do us good to

spend some time discussing and understand the ideas of Morse homology, which we

will then generalize to the Floer setting in Section 4.2, albeit with some important

technical adjustments (see Subsection 4.2.1). After defining the Floer complex in Sub-

section 4.2.2, we will sketch how Floer homology provides a solution to the Arnold con-

jecture (with some assumptions on our underlying symplectic manifold) in Section 4.3.

Finally, we briefly survey the still-developing area of Floer homotopy theory, which

admittedly was one of the author’s motivations for writing this thesis. Our primary

references are Floer’s original research papers [Flo88a, Flo88b, Flo88c, Flo89a, Flo89b]
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and others’ later expositions including [Sal90, Sal97, Aur13, AD14].

4.1 Morse homology

Given a function f : M → R on a manifoldM , we can study the critical points (points

p ∈ M such that (df)p = 0) of this function to reveal structural information about

the underlying space. If we think of f as describing the topography of the manifold,

critical points are the places where manifold is locally “flat.” We denote the collection

of critical points of f by Crit(f). A Morse function is f : M → R for which each

p ∈ Crit(f) is non-degenerate, which means the Hessian d2fp is non-singular. We can

classify different types of critical points based on the nearby behavior of the space,

using the Morse index, which describes the number of linearly independent directions

in which f is decreasing.

Definition 4.1. The Morse index ind(p) of a critical point p is the index of (d2f)p,

that is, the maximum dimension of a subspace upon which the Hessian at p is negative-

definite.

The Morse index can be counted as the number of negative entries in the diag-

onalization of (d2f)p. A local minimum is thus a critical point with Morse index 0,

while a local maximum has index equal to the dimension of the manifold. In addition

to providing information about the manifold around a critical point, the Morse index

also completely determines the behavior of f at this point, as seen through the Morse

Lemma.
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Lemma 4.2 (The Morse Lemma). Given a critical point p ∈ Crit(f), there is a chart

(Ω(p), ϕ) around p where ϕ : (Ω(p), p) → (R, 0) with

(f ◦ ϕ−1)(x1, . . . , xn) = f(p) +

ind(p)∑
i=1

x2i −
n∑

i=ind(p)+1

x2i .

The neighborhood Ω(p) that appears in the lemma statement is called a Morse

chart ; these charts are discussed in far more detail in [AD14, §2.1]. An immediate

corollary of the lemma is that critical points of a Morse function are isolated, and

in particular a Morse function on a compact manifold can only have finitely many

critical points.

In order to obtain information about the geometry of M from f , we can examine

the gradient vector field.

Definition 4.3. On a Riemannian manifold (M, g), recall that the gradient of f : M →

R at p ∈M is the unique vector field ∇f determined by

g(∇pf, v) = (df)p(v)

for every v ∈ TpM . The integral curves of −∇f are called the gradient flow lines,

and they satisfy the differential equation

dφ

dt
+∇φf = 0.
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As we then expect, the flow lines tell us how to “descend” along f . Note that if

the image of φ does contain a critical point p, then in fact it must be the constant

curve φ(t) = p. Thus there are two kinds of flow lines, the constant flow lines at

critical points and the flow lines that stay away from critical points (but may get

arbitrarily close) along which f is strictly decreasing.

For any point x ∈ M , there is a unique gradient flow through x, which we call

the minimal flow for x and denote φx. A crucial aspect of the gradient flow is that

all the flows “start” and “end” at critical points, meaning that for any gradient flow

line φ : R →M , there exist critical points a, b ∈ Crit(f) such that

lim
t→−∞

φ(t) = a and lim
t→∞

φ(t) = b.

We say that a =: s(φ) is the starting point and b =: e(φ) is the ending point of φ.

If we fix a critical point a, we can look at the collection of all points whose minimal

flow ends at a (or alternatively those points whose minimal flow starts at a) to get

the stable (or unstable) manifold of a.

Definition 4.4. Let a ∈ Crit(f) and define its stable manifold to be

W s(a) = {x ∈M | e(φx) = a},
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and its unstable manifold to be

W u(a) = {x ∈M | s(φx) = a}.

The stable and unstable manifolds help us formalize the idea of how the flow is

“attracted to” and “repelled from” critical points. The stable and unstable manifolds

are sometime referred to as the ascending and descending manifolds of a, respectively.

The Stable Manifold Theorem from dynamical systems tells us that the stable and

unstable manifolds of a ∈ Crit(f) are submanifolds of M that are diffeomorphic to

open disks, with

dim(W u(a)) = codim(W s(a)) = ind(a).

Remark 4.5. Since the unstable manifolds of distinct critical points are disjoint and

also
∐

a∈Crit(f)W
u(a) coversM , we can decomposeM in terms of these submanifolds.

This decomposition roughly resembles a CW complex, with one (open) k-cell for each

critical point of index k. This decomposition is guaranteed to be a CW complex only

when f is Morse-Smale (defined below).

Definition 4.6. The pair (f, g) (or just f if the choice of metric is clear) is Morse-

Smale if the stable and unstable manifolds intersect transversely,

W s(a) ⋔ W s(b)
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for all a, b ∈ Crit(f).

The Morse-Smale condition is a stability condition which is necessary for defining

Morse homology (in particular, to ensure the differential is nilpotent) so we will now

assume all of our Morse functions are Morse-Smale. This is not a huge restriction, as

every Morse function can be perturbed in a certain sense to a Morse-Smale one (cf.

[AD14, Theorem I.2.2.5]).

In the Morse-Smale case, the intersectionW u(a)∩W s(b) is actually a submanifold

of M which consists of all points on the trajectories connecting a to b,

W (a, b) := {x ∈M | s(φx) = a and e(φx) = b}.

There is an evident R-action on W (a, b) by translations in time, and this action is

free when a ̸= b. Consequently, we can consider moduli space of flows

M(a, b) := W (a, b)/R.

which is a manifold of dimension ind(a)− ind(b)−1. Note then that the Morse-Smale

condition also prohibits flow lines between points with the same Morse index.

The Morse homology complex is basically formed from the data of the critical

points (graded by Morse index) and the number of flows between them, i.e. the

cardinality of M(a, b).

Definition 4.7 (Morse complex). Let Critk(f) denote the set of critical points of f
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with index k, and define

Ck(f) =

 ∑
a∈Critk(f)

maa | ma ∈ Z/2Z

 .

The boundary operator ∂k : Ck(f) → Ck−1(f) is define on a critical point a by

∂k(a) =
∑

b∈Critk−1(f)

mX(a, b)b,

where m(a, b) ∈ Z/2Z is the number (mod 2) of trajectories going from a to b. In

other words, m(a, b) is the modulo 2 cardinality of M(a, b).

There are two obvious things that stand in our way of getting a well-defined

homology theory: first, that m(a, b) actually makes sense (i.e. that M(a, b) is finite

whenever ind(a) − ind(b) = 1) and second that ∂2 = 0. For the former, the idea

is to show that M(a, b) is compact and hence must be a finite collection of points

whenever ind(a) − ind(b) = 1 (because dimM(a, b) = ind(a) − ind(b) − 1). For the

latter, we can directly calculate

∂k−1(∂k(a)) =
∑

c∈Critk−2(f)

 ∑
b∈Critk−1(f)

m(a, b)m(b, c)

 c.

Therefore it suffices to show that the inner sum is zero. The main idea is to think of
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this number as the cardinality of the disjoint union

∐
b∈Critk−1(f)

W (a, b)×W (b, c),

and show that this set of points is the boundary of a manifold of dimension 1. Since the

boundary of a 1-manifold consists of an even number of points, and we are computing

modulo 2, the desired result follows. We point the reader to [AD14, §3.1–3.2] for more

details.

Remark 4.8. We can also define a Morse complex with Z-coefficients, but keeping

track of orientations makes things slightly more complicated. If we fix an orientation

on the spaces of trajectories (by choosing orientations of the stable manifolds), then

M(a, b) is an oriented compact manifold of dimension 0 whenever ind(a)− ind(b) = 1,

and so is a finite number of points each with some ± orientation. We now define

m(a, b) to be the sum of these signs, noting that this sum modulo 2 is the coefficient

in the Z/2Z definition, and define the chain complex and boundary operator just as

above. Essentially the same proofs work to show that we get a well-defined homology.

The Morse homology groups HM∗(M) are the homology groups of the Morse

complex. It turns out that Morse homology is an ordinary homology theory, meaning

it is isomorphic to the cellular (or simplicial or singular) homology ofM . This result is

rather remarkable, since it implies the Morse homology ofM is independent of choice

of Morse function f (and metric g). The benefit of working with Morse homology
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is that we can pick our favorite Morse function f in such a way as to simplify our

calculations, knowing that our final result does not depend on f . Moreover, standard

results in homology will tell us something interesting about critical points of Morse

functions. For instance, since HMk(M) is a subgroup of Ck(f), we know that the

number of index k critical points of any Morse function is bounded below by the kth

Betti number of M ,

#Critk(f) ≥ dimHMk(M).

Summing over k, we see that #Crit(f) ≥
∑

k dimHMk(M); these are known as

the Morse inequalities. This tells us, for instance, that any Morse function on S2

must have at least two critical points (one minimum and one maximum). The Morse

inequalities also showed up in our statement of the Arnold Conjecture in Subsec-

tion 3.2.1 and we will revisit this connection in Section 4.3.

4.2 Floer homology for Lagrangian intersections

The idea of Floer homology is to do Morse theory for a certain manifold and a certain

Morse function on it. However, several complications will arise which we did not have

to deal with in the Morse context. For the sake of exposition, and to avoid going into

too many technicalities, we will impose some strong conditions on our symplectic

manifold M in order to smooth over these new issues (although we will note along

the way where we do so).

Let (M,ω) be a symplectic manifold and let L0, L1 be two compact Lagrangian
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submanifolds which intersect transversally. Consider the path space

Ω := Ω(L0, L1) = {γ : I →M smooth | γ(0) ∈ L0, γ(1) ∈ L1},

and note that the intersection points L0 ∩ L1 are precisely the constant paths in Ω.

We would like to define an action functional whose critical points are the constant

paths, and to do so we pass to the universal cover

Ω̃ = {[γ, w] | w : I2 →M homotopy x0 ∼ γ}

for a chosen basepoint x0 ∈ L0∩L1 (viewed as a constant path). That is, w is a path

in Ω(L0, L1) from x0 to γ, so in particular w(0,−) = x0 and w(1,−) = γ.

Now consider a candidate action functional A : Ω̃ → R which takes the symplectic

area of the square defined by the homotopy w,

A([γ, w]) =

∫
w(I2)

ω =

∫
I2
w∗ω.
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However, A may not be well-defined on Ω̃. If w′ is another homotopy from x0 to γ,

we need w and w′ to have the same symplectic area in order for A to be well-defined.

By concatenating w′ with w (which is w with reversed direction), we can define a

map w′#w : S1 × I → M , where (w′#w)(−, 0) is a loop in L0 and (w′#w)(−, 1) is

a loop in L1. Showing that w and w′ have the same symplectic area is equivalent to

showing that w′#w has symplectic area 0; visually, this looks like a (hollow) cylinder

in M without a top or bottom which is pinched at one side to the point x0.

However, this part of a cylinder cut out by w′#w may not always have symplectic

area 0 — in order to ensure this is true we either have to make some assumptions on

L0, L1, and M , or pass to a quotient of Ω̃ called the Novikov covering. For the sake

of simplifying our exposition, we will take the former approach.

The first thing we will assume is that we can extend w′#w to a map S2 → M

without changing the symplectic volume. That is, we want to be able to fill in the

loop (w′#w)(−, 0) in L0 with a 2-disk, and similarly for the loop (w′#w)(−, 1) in
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L1, but we do not want these disks to contribute anything to the integral. We can

guarantee this to be possible by assuming that L0, L1 are simply connected or that

[ω] · π2(M,Li) = 0.

We want to ensure the resulting map S2 → M has zero symplectic area, which

basically amounts to assuming that M is symplectically aspherical, i.e. that

∫
S2

f ∗ω = 0

for all smooth representative of [f ] ∈ π2(M). Note that this holds trivially if M is

aspherical, i.e. π2(M) = 0.
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Under these assumptions, we have

0 =

∫
S1×I

(w′#w)∗ω

=

∫
I2
(w′)∗ω +

∫
I2
w∗ω

=

∫
I2
(w′)∗ω −

∫
I2
w∗ω,

so A is well-defined on Ω̃. In local coordinates, the action functional is given by

A([γ, w]) =

∫ 1

0

∫ 1

0

ω

(
∂w

∂s
,
∂w

∂t

)
dsdt.

In fact, this shows that A is well-defined on Ω (more precisely, the component of Ω

containing x0), rather than Ω̃, since we may choose any homotopy w for our path

γ. Thus we may develop our theory on Ω rather than Ω̃ (see also Remark 4.10

for a justification that we may make all our definitions on Ω). Just to recap, our

assumptions are:

Now, to follow Morse theory, we need to identify the critical points of A and equip

Ω with a metric so that we can define gradient flow. The differential of A at γ is a

map TγΩ → R, where TγΩ consists of a path of tangent vectors ξ : I → Tγ(t)M so

that ξ(0) ∈ Tγ(0)L0 and ξ(1) ∈ Tγ(1)L1.



85

Proposition 4.9. The differential of the action functional is

dAγ(ξ) =

∫ 1

0

ω(ξ(t), γ′(t))dt

and γ is a critical point if and only if γ is a constant path.

Proof. We can compute dAγ(ξ) by taking a variation γ̃ε : I →M of paths in Ω (where

ε is defined in a small neighborhood of 0) so that γ̃0 = γ and d
dε
γ̃ε(t)|ε=0 = ξ(t). Then

dAγ(ξ) =
d
dε
A(γ̃ε(t))|ε=0, and so to compute A(γ̃ε(t)) we choose a lift w(s, t) of γ and

an extension w̃ε(s, t) so that w̃0 = w and [γ̃ε, w̃ε] is in Ω̃. Finally, we extend ξ to a

vector field on w by defining ξ(s, t) := d
dε
w̃ε(s, t)|ε=0; note that this extension of ξ

satisfies d
dε
(w̃ε)

∗ω|ε=0 = w∗Lξω. Now we can compute

dAγ(ξ) =
d

dε
A(γ̃ε(t))|ε=0

=

∫
I2

d

dε
(w̃ε)

∗ω|ε=0

=

∫
I2
w∗(Lξω)

=

∫
I2
w∗(dιξω) by Cartan’s magic formula,

=

∫
∂I2

w∗ιξω by Stokes’ Theorem,

=

∫ 1

0

(w(0, t))∗ιξ(t)ωdt since L0, L1 are Lagrangian,

=

∫ 1

0

γ(t)∗ιξ(t)ωdt

=

∫ 1

0

ω(ξ(t), γ′(t))dt.
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Now, γ is a critical point if dAγ(ξ) ≡ 0 for all ξ. Clearly this holds whenever γ

is constant (since γ′(t) ≡ 0), and for the converse direction, if dAγ(ξ) = 0 then

ω(ξ(t), γ′(t)) ≡ 0 and so by non-degeneracy of ω, the path γ is constant.

Remark 4.10. We can define α(ξ) :=
∫ 1

0
ω(ξ(t), γ′(t))dt for α ∈ TγΩ on all of Ω, not

just the component containing x0. However, α is only locally closed (with α = dA),

not globally.

To define the gradient of A we need to choose a Riemannian structure on Ω.

Recall from Section 2.3 that a choice of almost-complex structure J on M defines a

compatible Riemannian metric g(−,−) := ω(−, J−) on M . If Jt is a smooth family

of almost complex structures, 0 ≤ t ≤ 1, then we get a smooth family of metrics gt

on M . We can use gt to define a metric on Ω given by

⟨ξ1, ξ2⟩ :=
∫ 1

0

gt(ξ1(t), ξ2(t))dt

which we then use to define the “L2-gradient” of A.

Proposition 4.11. The gradient of A with respect to ⟨−,−⟩ is given by

−∇γA = Jt
dγ

dt
.

Proof. Recall that ∇A is the vector field defined by

⟨∇γA, ξ⟩ = (dA)γ(ξ)
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for any ξ ∈ TγΩ. Building on our previous computation,

(dA)γ(ξ) =

∫ 1

0

ω(ξ, γ′)

=

∫ 1

0

ω(ξ, Jt(−Jt(γ′))dt

=

∫ 1

0

gt(ξ,−J(γ′))dt

= ⟨ξ,−Jt(γ′)⟩

= ⟨−Jt(γ′), ξ⟩

so by non-degeneracy of the inner product, ∇γA = −Jt dγdt .

Since each Jt is an automorphism of TM for each t, the gradient vanishes if and

only if dγ
dt

= 0, i.e. γ is constant. We can compute the Hessian at a critical point

γ(t) ≡ x ∈ L0 ∩ L1 to be

(d2A)γ(ξ1, ξ2) =

∫ 1

0

ω(ξ1(t), ξ
′
2(t))dt

for ξ1, ξ2 : I → TpM vector fields along γ. A non-degenerate critical point of A

corresponds precisely to a transverse intersection point of L0 and L1, so if we ask

that L0 ⋔ L1 then A is Morse. However, there are some serious issues that arise when

we try to continue to do Morse theory directly.

• The Hessian (d2A)γ at a critical point has infinite Morse index, that is, it is

a quadratic form with infinite-dimensional negative (and positive) subspaces.
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Hence the critical points of A cannot be expected to tell us anything about the

topology of Ω.

• We want to study the gradient flow of A on Ω, but ∇γA = Jtγ
′ may not be

tangent to Ω. That is, J0γ
′(0) may not be in Tγ(0)L0, and J1γ

′(1) may not be

in Tγ(1)L1. Since ⟨ξ1, ξ2⟩ is an L2 inner product, we only know that ∇γA lies in

the L2-completion of TγΩ.

To deal with the second issue, Floer’s insight is to consider a PDE (rather than an

ODE) to define the gradient flow using “J-holomorphic strips.” This then lets him

define a relative index depending on a path between critical points. We will discuss

Floer’s approach to these technical issues in the next subsection, and then define the

Floer complex in Subsection 4.2.2.

4.2.1 The moduli space of J-holomorphic strips

Suppose we had a reasonable definition of a gradient flow line ϕ : R → Ω so that

dϕ
ds

= ∇ϕA = −Jt dϕsdt . Since ϕ is a path of paths in M , we can instead consider the

map u : R× I →M so that u(s,−) = ϕ(s). The requirement that ϕ land in Ω means

that u(s, 0) ∈ L0 and u(s, 1) ∈ L1 for all s ∈ R. The gradient flow ODE now becomes

a PDE

∂u(s, t)

∂s
+ Jt(u(s, t))

∂u(s, t)

∂t
= 0.

This equation is in fact the Cauchy-Riemannian equation with respect to the ω-

compatible almost-complex structure Jt on M and is often abbreviated as ∂Ju = 0.
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A map u which satisfies ∂Ju = 0 is called a J-holomorphic strip,7 and it is these

maps which we will use as our gradient flows. Additionally, in order to continue our

Morse theory analogy, we will specifically look at J-holomorphic strips which connect

critical points of A, i.e. constant paths.

Definition 4.12. A gradient flow line of A is a Jt-holomorphic strip in M , that is,

a smooth map u : R× I →M such that

∂u

∂s
+ Jt

∂u

∂t
= 0, lim

s→+∞
u(s,−) = y, lim

s→−∞
u(s,−) = x, (∗)

for x, y ∈ L0 ∩ L1.

Remark 4.13. If (M,ω) is exact (ω = dα for some α) but not compact, then we

impose the additional condition of finite energy,

∫
R×I

u∗ω <∞.

On a compact manifold, a holomorphic strip u will have finite energy if and only if it

satisfies the limit conditions in (∗) (cf. [RS01]).

Definition 4.14. For x, y ∈ L0 ∩ L1, the moduli space of J-holomorphic strips from

x to y is the space MJ(x, y) which consists of maps u : R× I →M so that

(i) (J-holomorphic condition) ∂Ju = 0;

7If J is independent of t, then R×i[0, 1] ⊆ C is conformally equivalent to the unit disk in C minus
two points on the boundary. For this reason, a map u as above is sometimes called a J-holomorphic
(Whitney) disk.
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(ii) (boundary condition) u(s, 0) ∈ L0 and u(s, 1) ∈ L1 for all s ∈ R;

(iii) (asymptotic condition) lims→∞ u(s,−) = y and lims→−∞ u(s,−) = x.

Note that the equations (∗) are invariant under time translation in the first co-

ordinate. That is, if u(s, t) satisfies (∗) then so does u(s + s0, t) for any s0 ∈ R. To

account for this overlap, we will consider MJ(x, y) quotiented by this R-action

M̃J(x, y) := M(x, y)/R.

To view M̃J(x, y) as a “space of solutions” rather than just a set, we think of it as

the zero locus of a certain map. Following the summary in [Flo88a, Proposition 2.1],

we will outline the main ideas but leave the explicit details for [Flo88c] (or see [AD14,

Chapter II.8]).

Proposition 4.15. For each x, y ∈ L0 ∩ L1, there is a smooth Banach manifold

P(x, y) of paths u : R → Ω so that u 7→ ∂Ju is a smooth section of a Banach space

bundle over P(x, y).

We see then that ∂
−1

J (0) = M̃(x, y). Properties of the operator ∂J ensure it is a

Fredholm map, which means that its linearization Du∂J at u is a bounded linear op-

erator between Banach spaces with finite-dimensional kernel and finite-codimensional

image. In particular, this means the cokernel is finite-dimensional, and we define the



91

index of ∂J at u to be the Fredholm index of Du∂J ,

indu(∂J) := dim(kerDu∂J)− dim(cokerDu∂J) = dim(kerDu∂J)− codim(imDu∂J).

One of the nice things about Fredholm maps is they have an excellent theory of

differential topology. For example, the pre-image of any regular value (one where the

linearization is surjective) of a Fredholm map will be a smooth manifold of dimension

equal to the Fredholm index. In our setting, we want 0 to be a regular value of ∂J so

that we may conclude that M̃ is a smooth finite-dimensional manifold. In [Flo88c],

Floer proves the following result.

Proposition 4.16. There is a dense set J (L0, L1) of smooth compatible almost-

complex structures on M so that if J ∈ J (L0, L1), then Du∂J is surjective Fredholm

operator for all u ∈ M̃J(x, y).

An almost-complex structure that belongs to this set is called regular. This propo-

sition says that any compatible almost-complex structure may be perturbed (in an

arbitrarily small way) to a regular one, so that the space of “trajectories” connecting

x to y is a finite-dimensional manifold.

There is an evident dependency on choice of u connecting x and y, which turns out

to only depend on the homotopy class of u; this motivates us to define M̃J(x, y; [u]) to

be the collection of all ũ ∈ M̃J(x, y) with [ũ] = [u]. From Fredholm theory, we know

that dimM̃J(x, y; [u]) is the Fredholm index indu(∂J). Remarkably, the dimension of
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M̃J(x, y; [u]) can also be computed in terms of a “relative Morse index,”

dimM̃(x, y; [u]) = indu(∂J) = µ(x, y; [u]).

This index µ is called the Maslov index or the Conley-Zehnder index, depending on

the context (cf. [AD14, Chapter II.7]). Note that, unlike the Morse case, this index

depends on two critical points x, y as well as the homotopy class of a chosen path u

connecting x and y.

Briefly, the idea of the Maslov index is to assign a loop of Lagrangian subspaces

of R2n to an integer. Let Λn denote the Grassmannian of Lagrangian subspaces of

(R2n, ω0), where ω0 is the standard symplectic form (Example 1.10). We can use the

data of a J-holomorphic strip u which connects x to y to define a closed loop in Λn.

Since π1(Λn) ∼= Z, this construction assigns u to an integer and this integer is called

the Maslov index of u. Regard u as a map D2 → M so that u(∂D2) ∈ L0 ∪ L1 as

follows:
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u(1) = y, u(eiπt) ∈ L0 for t ∈ [0, 1],

u(−1) = x, u(eiπt) ∈ L1 for t ∈ [1, 2].

Then the pullback u∗TM is a symplectic bundle over D2, and hence it can be

trivialized u∗TM ∼= R2n ×D2. We also get subbundles u∗TL0 and u∗TL1 over 1 and

−1, respectively. Using a chosen trivialization ϕ (which ultimately does not matter),

we can define a loop L : [0, 4] → Λn so that

L(t) =


ϕ(u∗Tu(eiπt)L0) t ∈ [0, 1],

ϕ(u∗Tu(eiπ(t−1))L1) t ∈ [2, 3].

To complete the rest of the loop, we want to find two paths in u∗TM , once connecting

u∗TxL0 to u∗TxL1 and one connecting u∗TyL0 to u∗TyL1. Here is one approach to

this (see [McD98, §3]): choose any path from L(1) to L(2), find a symplectic matrix

A ∈ Sp(n) so that A(L(1)) = L(0) and A(L(2)) = L(3), and then run the chosen

path through A, i.e. set L(3 + s) = A(L(2− s)) for 0 ≤ s ≤ 1.
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The Maslov index µ(x, y; [u]) is defined to be the element of π1(Λn) ∼= Z repre-

sented by the homotopy class of L. Intuitively, the Maslov index is the (signed) count

of the instances t at which L(t) and L(2 + t) are not transverse to each other, for

0 ≤ t ≤ 1. Conley and Zehnder [CZ84] generalize the Maslov index to paths in the

symplectic group.

4.2.2 Floer complex for Lagrangian intersections

Unlike Morse homology, the definition of Floer homology is highly dependent on

the specific attributes of (M,ω) and the selected Lagrangian submanifolds. Floer

homology has been fully developed when the cohomology classes [ω] and c1 (the first

Chern class) satisfy ∫
S2

v∗c1 = τ

∫
S2

v∗ω

for all v : S2 → M and some τ ∈ R (cf. [Sal97]). The cases τ > 0, τ = 0, and τ < 0

roughly correspond to conditions of positive, zero, and negative curvature. We will

give an overview of the τ > 0 (treated by Floer [Flo88a]) and τ = 0 (treated by Hofer-

Salamon [HS95]) cases. More general cases (including when τ < 0) was have been

more recently resolved by [Ono95], [FO99], [LT98], among others. It is understood

that Floer homology may not always be able to be defined in general.

Positive case. Floer developed his theory for monotone symplectic manifolds (when

τ > 0), which is by far the simplest setting. In this case, Floer shows in [Flo88b] that
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there is an index function µ : L0 ∩ L1 → Z so that

µ(x, y; [u]) = µ(x)− µ(y).

This allows us to emulate Morse homology rather directly, acquiring a Z-graded ho-

mology theory. In particular, following [Flo88a], we can define the Floer complex

CF(L0, L1) to be the free Z/2-module on L0 ∩ L1; since L0 and L1 are compact and

intersect transversely, this generating set is finite. The index function gives us a

grading

CF(L0, L1) =
⊕
k

CFk(L0, L1)

where CFk(L0, L1) is generated by x ∈ L0 ∩ L1 with µ(x) = k. The differential is

defined as in Morse theory,

∂J(x) =
∑

µ(y)=µ(x)−1

m(x, y)y

where m(x, y) is the mod-2 cardinality of M̃J(x, y). The Floer homology is the ZZ-

graded homology of the chain complex (CF(L0, L1), ∂J),

HF∗(L0, L1) = ker ∂/ im ∂.

Remark 4.17. As with Morse theory, we could also develop Floer homology with Z-

coefficients (or Q-coefficients), although we would need to take orientations of the
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moduli spaces MJ(x, y) into account, which introduces new technical difficulties.

Although the monotone case most closely resembles Morse homology, there are

new analytic difficulties which were not present before. The main concerns being

compactness of M̃J(x, y), nilpotency of ∂J , and independence from choice of J . In

[Flo88a], Floer proves the following results.

Theorem 4.18 (Floer homology). Let M be a compact symplectic manifold with

compact Lagrangian submanifolds L0 and L1 that intersect transversely. Suppose

further that π2(M) = 0 and π2(P,Li) = 0. Then Floer homology is well-defined:

• Whenever µ(x) = µ(y) + 1, the moduli space M̃(x, y) is a finite set.

• The differential ∂J is nilpontent, i.e. ∂2 = 0.

• The homology theory HF∗(L0, L1) is independent of choice of regular almost-

complex structure J = {Jt}t ∈ J (L0, L1).

We will only give the ideas behind the first two points, leaving the details to

[Flo88a, §3]. Compactness of the moduli spaces is due to the fact that the as-

sumption [ω] · π2(M,L) = 0 rules out any “bubbling” effects, wherein a sequence

of J-holomorphic strips could converge to a J-holomorphic strip with J-holomorphic

spheres or disks attached.
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The three pictures above correspond to the three possible limiting behaviors of a

converging sequence of J-holomorphic strips from x to z: to a trajectory “broken” at

y ∈ L0 ∩ L1, a trajectory with holomorphic disk bubbles (elements of π2(M,L0) and

π2(M,L1)), or a trajectory with holomorphic sphere bubbles (elements of π2(M)).

Our assumption means we only have to deal with the top picture, which corresponds

to the broken trajectories of Morse homology. Proposition 2.2 of [Flo88a] says that

if un is a sequence in MJ(x, y), then it contains a subsequence uni
so that there is a

sequence ai ∈ R such that the translated strips uni
(s − ai, t) converge to a limiting

“broken” J-holomorphic strip. In other words, after we quotient by time translations,

M̃J(x, y) = MJ(x, y)/R is compact.

Eliminating the bubbling phenomenon is also key to showing that ∂2J = 0. The

proof is conceptually similar to the proof for the Morse differential, the idea being that
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we can show the relevant coefficients count points in the boundary of a 1-manifold.

By definition,

∂2J(x) =
∑

µ(y)=µ(x)+1

 ∑
µ(z)=µ(y)+1

m(x, y)m(y, z)

 z

so it suffices to prove that the inner sum is 0 mod 2. A “gluing theorem” in [Flo88a,

§4] says that for µ(x)−µ(z) = 2, the boundary of the moduli space can be decomposed

into broken strips through some y with relative index 1,

∂M̃(x, z) =
∐

y∈L0∩L1

µ(y)=µ(x)−1=µ(z)+1

M̃J(x, y)× M̃J(y, z).

The cardinality of the right side is m(x, y)m(y, z), whereas the cardinality of the left

side is the cardinality of a smooth 1-manifold with boundary, and hence must be

even. If the boundary of the moduli space contains limits with bubbling behavior,

then the equality displayed above will not hold.

Zero case. When τ = 0, then the Floer complex becomes more complicated. In

general there may not be a Z-graded homology, although we can always guarantee a

Z/2-grading (if L0, L1 are oriented). In particular, we may no longer have an index

µ(x) for each intersection point, but instead have the relative index µ(x, y; [u]) which

also depends on the homotopy class of a trajectory connecting x and y. Thus rather

than having ∂(x) associate a Z/2-coefficient to y (with µ(x, y; [u]) = 1), we need to

associate a coefficient which somehow lets us keep track of the possible homotopy
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classes of chosen u. To make this meaningful, we need to work over the Novikov field

for Z/2,

Λ := {
∑
j≥0

ajT
λj | aj ∈ Z/2, λj ∈ R, lim

j→∞
λj = ∞}.

We then define CF(L0, L1) to be the free Λ-module on intersection points L0 ∩ L1.

The differential is defined to be

∂J(x) =
∑

y∈L0∩L1

µ(x,y;[u])=1

m(x, y; [u])T ω(u)y

where now m(x, y; [u]) is the mod-2 count of M̃J(x, y; [u]) and ω(u) is the symplectic

area
∫
D2 u

∗ω of u. In general, this sum could be infinite, but Gromov compactness

(see [Sal97, §4] or [AD14, Theorem II.6.5.4]) ensures that the sum is well-defined in

this case. As before, we need to know that m(x, y; [u]) is well-defined, ∂2J = 0, and

the resulting homology is independent of choice of J . The proofs for this proceed

very similarly as in the monotone case, but of course with new subtleties introduced

by working in each MJ(x, y; [u]) individually and working over the Novikov field Λ.

For more details, see [Aur13] or [Sal97].

To use Lagrangian intersection Floer homology to solve the Arnold Conjecture, one

also has to show that Floer homology is invariant under Hamiltonian diffeomorphisms.

This is known to be true for both Z/2 coefficients and the Novikov field for Z/2.

Theorem 4.19. Let L0 and L1 be Lagrangian submanifolds of M which intersect

transversely. Suppose ϕ : M → M is a Hamiltonian diffeomorphism so that L0 ⋔
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ϕ(L1). Then

HF(L0, L1) ∼= HF(L0, ϕ1(L1)),

as Λ-modules.

The idea is to show that for any two Hamiltonian diffeomorphisms ϕ1, ψ1, there

are chain maps CF(L0, ϕ1(L1)) ∼= CF(L0, ψ1(L1)) which induce isomorphisms on ho-

mology. See [Sal90, §3.4] for the explanation. The upshot is that Floer homology

is well-defined even if we consider one Lagrangian manifold. That is, we can define

HF(L,L) = HF(L, ϕ(L)) where ϕ : M → M is any Hamiltonian diffeomorphism so

that L ⋔ ϕ(L). Moreover, we can explicitly compute this group in terms of the

ordinary homology groups of L.

Theorem 4.20. There is an isomorphism of Λ-modules

HF(L,L) ∼= H∗(L;Z/2)⊗Z/2 Λ.

Consequently,

|L ∩ ϕ1(L)| ≥
n∑
j=0

Hj(L;Z/2).

Proof sketch. By the invariance of Floer homology under choice of Hamiltonian dif-

feomorphism, we may choose ϕ : M →M small enough so that L ⋔ ϕ(L) and ϕ(L) lies

in a tubular neighborhood of L. By Weinstein’s Lagrangian neighborhood theorem

(Theorem 1.25), this neighborhood is symplectomorphic to a neighborhood of the zero



101

section of T ∗L with its canonical symplectic structure ω. This symplectomorphism

respects all the necessary structure (e.g. takes holomorphic strips to holomorphic

strips), so it suffices to prove the isomorphism holds for L inside of (T ∗L, ω).

Now the idea is to choose a sufficiently nice Hamiltonian H on T ∗L which is

generated by a Morse function f : L→ R so that the Floer homology of H coincides

with the Morse homology of L. Let f be a Morse function on L and defineH := −f◦π,

where π : T ∗L→ L is the projection. The minus sign is present because if XH is the

Hamiltonian vector field so that ω(XH ,−) = dH, then XH has local representation

XH =
∂f

∂x1

∂

∂ξ1
+ · · ·+ ∂f

∂xn

∂

∂ξn
,

where (x1, . . . , xn) are local coordinates for L and (x1, . . . , xn, ξ1, . . . , ξn) are the cor-

responding coordinates for T ∗L. The diffeomorphisms ϕ(t) are locally given by

ϕt(x1, . . . , xn, ξ1, . . . , ξn) = (x1, . . . , xn, ξ1 + t
∂f

∂x1
(x), . . . , ξn + t

∂f

∂xn
(x)),

so in particular the time 1 flow takes the zero section L to the graph Γdf . The intersec-

tion points L ∩ ϕ1(L) = L ∩ Γdf are precisely the points for which (x, 0) = (x, (df)x),

i.e. the critical points of f . This establishes a Λ-linear bijection CF(L, ϕ1(L)) →

Crit(f) ⊗Z/2 Λ, which gives rise to an isomorphism on homology. To establish this

fully, one needs to show that it is a chain map, i.e. there is bijection between M(x, y)

(trajectories of −∇f) and MJ(x, y) (J-holomorphic strips). This is done by choosing
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f and J in an appropriate way, see [Flo88a].

We have the following chain of inequalities:

#(L ∩ ϕ1(L)) ≥ dim(HF(L, ϕ1(L))

= dim(HF(L,L))

= dim(H∗(L;Z/2)⊗Z/2 Λ)

=
n∑
j=0

Hj(L;Z/2).

In particular, in the monotone case when we get a Z-graded homology theory

with Z/2-coefficients, Floer homology is isomorphic to ordinary homology. As a

corollary, we get Arnold conjecture in special cases: if f : M → M is a Hamiltonian

diffeomorphism with non-degenerate fixed points, then we see that

#{fixed points of f} ≥
2n∑
j=0

dimHj(M ;Z/2)

by applying the theorem to ∆(M) and Γf inside of M ×M (recall from Section 1.3

that these are both Lagrangian submanifolds of (M × M, ω̃)). However, we need

to know that we have the right conditions to build Lagrangian intersection Floer

homology, namely that M ×M is symplectically aspherical (which holds if M is) and

π2(M ×M,∆(M)) = π2(M ×M,Γf ) = 0. When this condition is not satisfied, we
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need to use slightly different techniques to build Floer homology. The next section

discusses how to do this using the data of a Hamiltonian diffeomorphism.

4.3 Floer homology for Hamiltonian diffeomorphisms

Recall from Section 3.2 that the fixed points of a Hamiltonian diffeomorphism ϕ1 : M →

M are in bijection with periodic trajectories of a particular vector field. Let Ht denote

the 1-periodic Hamiltonian onM that generates ϕt and let Xt denote the correspond-

ing vector field. A fixed point of ϕ1 will be an intersection point x ∈ L ∩ ϕ1(L),

and ϕt(x) defines a closed orbit in M . This motivates us to study the (free) loop

space of M and construct a function whose critical points are precisely the 1-periodic

closed orbits of Xt. Of course, the loop space of M is not connected in general, so

we will need to restrict to a particular connected component. A natural choice is the

component containing all the contractible loops in M , since this component contains

all the constant loops (which correspond to critical points in the time-independent

case).

We start out with the action functional A from Section 4.2, but now defined on

the space of contractible loops

LM := {γ : S1 →M | [γ] = 0 ∈ π1(M)}
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Then, we perturb it slightly using our given Hamiltonian data,

AH(γ) =

∫
D2

w∗ω −
∫ 1

0

Ht(γ(t))dt

where w : D2 →M is an extension of the loop γ to the disk. (Such a w is guaranteed

to exist since γ is trivial in π1(M).)

Remark 4.21. As before, to ensure AH is well-defined, we need to assume M is

symplectically aspherical. Additionally, we replace the assumption for Lagrangian

intersections that [ω] · π2(M,Li) = 0 with the assumption that for every smooth

f : S2 → M , there is a symplectic trivialization of f ∗TM , i.e. c1(f
∗TM) = 0. As

before, this will eliminate any “bubbling” behavior. Both of these conditions are

manifestly satisfied if π2(M) = 0.

The critical points of AH are precisely the 1-periodic closed orbits of Xt.

Proposition 4.22. The differential of AH is

(dAH)γ(ξ) =

∫ 1

0

ω(ξ(t), γ′(t)−Xt(γ(t)))dt

for ξ ∈ TγLM , and dAH vanishes if and only if γ(t) is a periodic solution of the

Hamiltonian system dγ
dt

= Xt(γ(t)).

Proof. The proof is very similar to that of Proposition 4.9, and in fact by the proof
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of Proposition 4.9 it suffices to differentiate
∫ 1

0
Ht(γ̃ε(t))dt at ε = 0. But this is

∫ 1

0

∂

∂ε
Ht(γ̃ε(t))|ε=0dt =

∫ 1

0

(dHt)γ̃0(t)(ξ(t))dt

=

∫ 1

0

ωγ(t)(Xt(γ(t)), ξ(t))dt

=

∫ 1

0

ω(ξ(t), Xt(γ(t)))dt,

and hence by linearity

(dAH)γ(ξ) =

∫ 1

0

ω(ξ(t), γ′(t)−Xt(γ(t)))dt.

The differential is zero if and only if γ′(t) = Xt(γ(t)), as desired.

Proceeding as before, we choose a family of compatible almost-complex structures

Jt which induce Riemannian metrics gt. We define the inner product ⟨−,−⟩ as before

and compute the L2-gradient of AH to be

(∇γA)(t) = −Jt
dγ

dt
−∇γ(t)Ht,

recalling from Remark 3.9 that −JtXt(γ) = ∇γHt. The “gradient flow lines” are thus

paths u : R → LM which solve

du

ds
= −Jt

dγ

dt
−∇γ(t)Ht,



106

or rather u(s, t) : R× I → LM which solve

∂u(s, t)

∂s
+ Jt(u(s, t))

∂u(s, t)

∂t
+∇Ht(u(s, t)) = 0. (∗H)

The equation (∗H) is often called the Floer equation, and it is just a Hamiltonian

perturbation of the Cauchy-Riemannian equation (∗) from Section 4.2. In particular,

if Ht ≡ 0, then we recover (∗). If Ht = H does not depend on t, then the solutions u

which also do not depend on t are exactly the trajectories of ∇H, since they satisfy

du

ds
+∇H(u(s)) = 0.

Finally, if the solution u does not depend on s (meaning it is stationary), then it

satisfies

du

dt
= Jt(u)∇Ht(u) = Xt(u),

which supports our expectation that stationary trajectories are periodic solutions of

the Hamiltonian system.

With this set up, building the Floer complex proceeds quite similarly as in the

Lagrangian intersection setting. The outline is:

• Show that trajectories u(s, t) with finite energy connect two critical points as

s→ ±∞. Build the moduli space MJ(x, y) of these trajectories and show that

it is (generically) a smooth manifold by describing it as the set of zeros of a
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section (the Floer operator) of a bundle on a Banach manifold P(x, y).

• Adapt the Maslov index to this setting. In this case, we can assign each critical

point (periodic trajectory) a Maslov index and hence get a Z-graded complex.

As before, dimM(x, y) = µ(x)− µ(y).

• Define the differential by “counting” trajectories (modulo 2) connecting x to y

(with µ(x)− µ(y) = 1). In particular, show that M(x, y) is compact and that

the assumptions on M eliminate “bubbling,” so ∂2 = 0.

• Show that the resulting homology (with Z/2-coefficients) is invariant of the

almost-complex structure and the Hamiltonian Ht (equivalently, the vector field

Xt).

We point the reader to [Sal97] or [AD14] for the details. Now, to prove the Arnold

Conjecture, it just remains to relate the Floer homology of M to the ordinary ho-

mology of M . This is done by showing that Floer homology coincides with Morse

homology for a nicely chosen Hamiltonian function, much like ????. Specifically, we

want to choose H so that all of the 1-periodic orbits are actually constant solutions.

It turns out that this is true if H is time-independent and “sufficiently C2-small,”

meaning that the norm of its Hessian is less than 2π.

Proposition 4.23. Let M be a compact symplectic manifold and H : M → R a

Hamiltonian function. If H is sufficiently C2-small, then the only 1-periodic solutions

its Hamiltonian system are the constant solutions.
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Proof. If H is sufficiently C2-small, then there is a finite cover of M by precompact

Darboux charts so that every 1-periodic orbit is contained in a chart and ||dXH || < 2π

on each chart. It thus suffices to show the claim holds on a single chart.

So suppose H is a function on R2n with corresponding vector field XH so that

||dXH ||L2 < 2π. Let x(t) be a solution to the Hamiltonian system. We want to show

x′(t) = 0. Since x′′(t) = (dHX)x · x′, the bound ||dXH ||L2 < 2π gives

||x′′||L2 < 2π ||x′||L2

if x′(t) ̸= 0. We will use derive a contradiction by studying the Fourier expansion of

x, dx
dt
, and d2x

dt2
:

x(t) =
∑
n

cn(x)e
2πint,

x′(t) =
∑
n

2πincn(x)e
2πint,

x′′(t) =
∑
n

−4π2n2cn(x)e
2πint.

An application of Parseval’s identity gives us

||x′′||2L2 =
∑
n

∣∣−4π2n2cn(x
′)2
∣∣ ≥ 4π2

∑
n̸=0

|cn(x′)|2 = 4π2 ||x′||2L2 ,

since c0(x
′) = 0. Thus 2π ||x′||L2 ≤ ||x′′||L2 , a contradiction. Hence x′(t) ≡ 0, so x is

constant.
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Consequently the periodic orbits of such an H are in 1-to-1 correspondence with

its critical points. To connect the Morse homology of H with the Floer homology of

AH (assuming both are well-defined), the idea is to show that the complexes are the

same after a shift,

CF∗(H, J ;Z/2) = CM∗+n(H,−JXH ;Z/2).

It is straightforward to show that Crit(H) = Crit(AH), and with a bit more work

one can show that the (Maslov) index µ(x) is the shifted (Morse) index ind(x) + n.

The most difficult part is defining the differentials of the two complexes and showing

that they coincide. The idea is to pick a compatible almost-complex structure J so

that ∇H = −JXH is Morse-Smale (and the Floer complex can be defined) and find a

relation between the gradient flow lines and the solutions to the Floer equation, that

is, the solutions of

du

ds
+ JXH(u) = 0 and

∂u

∂s
+ J(u)

∂u

∂t
+∇H(u) = 0.

By taking H/k for k sufficiently large, the solutions of the Floer equation which

connect critical points of relative index 2 are independent of t, and are exactly the

trajectories of −JXH . In other words, the data of the Floer complex is the same as

the data of the Morse complex. Thus we can apply the Morse inequalities to finish

the proof of the Arnold Conjecture (for Z/2-coefficients).
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4.4 Epilogue: Floer homotopy theory

Recently, researchers have been interested in studying Floer theory from the perspec-

tive of homotopy theory. The beginning of this movement is widely attributed to

the work of Cohen-Jones-Segal in the 1990s [CJS95]. One of the main goals of Floer

homotopy theory is to associate a (stable) homotopy type to the geometric data of

Floer homology. Their proposal was to use a “framed flow category” (built out of

similar data as the Floer homology complex) and use it to build a spectrum with the

appropriate ordinary homology. There are several variants of the idea of a framed

flow category in the literature, and sometimes the same definition will appear under

a different name, or different definitions will appear under the same name. Rather

than giving a precise definition, we will just highlight some of the common themes,

pointing the reader to the references we have cited for specific details (see, in par-

ticular, the compact smooth categories/Morse-Smale categories in [Coh19, Definition

6] or the equivariant flow categories in [AB21, §2.1] or the flow categories in [LS14,

§3.2]).

“Definition”. A framed flow category is a topologically enriched category C whose

homspaces are compact, smooth, framed manifolds with corners. In most cases, the

objects come with grading gr : ObC → Z, and the homspaces are subject to certain

conditions based on the grading, such as:

• Hom(x, x) = {idx} for all x ∈ ObC .
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• For objects x ̸= y, if gr(x) ≤ gr(y) then Hom(x, y) is empty, and otherwise

Hom(x, y) is (gr(x)− gr(y)− 1)-dimensional.

• Composition ◦ : Hom(x, y) × Hom(y, z) → Hom(x, z) is an embedding into

the boundary of Hom(y, z) in a special way. Furthermore, each point in the

boundary of Hom(x, y) is in the image of the composition map.

These conditions can be made more precise by describing the homspaces as ⟨k⟩-

manifolds (where k is the dimension of the homspace)8. The “framed” part of the

definition comes from so-called neat embeddings of the homspaces into Euclidean

spaces with corners. The homspaces play the role of moduli spaces of trajectories,

and the grading on the objects is something like the Morse, Maslov, or Conley-Zehnder

index. The idea is that this information should be enough to recover the interesting

topological information.

For instance, the prototypical example of a framed flow category comes fromMorse

theory, as was also developed by Cohen, Jones, and Segal in their unpublished preprint

“Morse Theory and Classifying Spaces.” Let f : M → R be a Morse-Smale function

on a smooth, closed, finite-dimensional Riemannian manifold M , the flow category

of f is a prototypical example of a framed flow category. The flow category of f is

a topologically enriched category Cf whose objects are the discrete space of critical

points and whose homspaces are the moduli space of broken gradient flows between

them. The grading is given by the Morse index and composition is concatenation

8Roughly, Hom(x, y) being a ⟨k⟩-manifold means that the boundary can be split up into k pieces
which intersect at the corners of the manifold. For a precise definition, see [LS14, §3.1].
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of the broken flows. The Morse-Smale condition on f ensures that the compactified

moduli spaces have the extra structure necessary to make Cf into a framed flow

category (although this is not easy to prove, and in fact was part of the reason that

the original preprint was never published — see [Coh19, Remark on p.16] for more

details). Using this structure, Cohen-Jones-Segal show in the preprint that for a

Morse-Smale function f : M → R, the classifying space BCf is homeomorphic to the

underlying manifold M .

Some of the ideas of Floer homotopy theory have found applications in symplectic

geometry and low dimensional topology, particularly in the work of Lipschitz-Sarkar

on Khovanov homology [LS14]; more applications are summarized in [Coh19]. Most

recently, Abouzaid-Blumberg [AB21] have proved the Arnold Conjecture for coeffi-

cients in a field of characteristic p (among many other things, including another proof

of the Cohen-Jones-Segal theorem for BCf in Appendix D). Rather than trying to

construct a Floer complex with characteristic p coefficients, they construct a version

of Floer homology with coefficients in Morava K-theory. Lying in the intersection of

many areas of topology and geometry, Floer homotopy theory is in its early stages of

development, but many interesting things are surely still to come.
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