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Abstract

We provide an expository overview of infinite loop space theory, discussing
both the operadic and Γ-space perspective. In particular, we cover A∞- and
E∞-operads and the Recognition Theorem for infinite loop spaces, and we
also show how the machinery of Γ-spaces can be used to associate an infinite
loop space to a symmetric monoidal category. We conclude with a discussion of
infinite loop space machines and the uniqueness theorem of May and Thomason.
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1 Introduction

Loop spaces are important objects in algebraic topology for a variety of reasons,
including their connections to higher homotopy groups, spectra, and generalized
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cohomology theories. Even more fundamentally, loop spaces provide an example of
topological spaces which admit a binary operation, thus allowing us to do algebra in
the context of topology. Given a space with an operation, we can ask basic questions
like is this operation associative? commutative? does it have a unit? Certainly the
nicest sort of operation we could have is a unital, associative, and commutative
one. The spaces with this sort of extremely well-behaved operation are the Abelian
topological monoids. As every Abelian topological monoid has the homotopy type
of a product of Eilenberg MacLane spaces (cf. [Hat02, Corollary 4K.7]), their theory
is already quite well understood, so in order to generate more interesting examples
we need to ask for an operation which is a bit more flexible. From a homotopy
theory point of view, this can be achieved by asking for unity, associativity, or
commutativity but only up to homotopy. A space with such a multiplication is called
an H-space, and loop concatenation makes loop spaces a prototypical example.

In fact, not only is concatenation of loops associative up to homotopy, but it is
associative up to coherent higher homotopy, meaning there are homotopies between
the homotopies, and homotopies between those, and so on. A space with such a
multiplication is called an A∞-space, and the recognition principal of J. Stasheff
[Sta63] tells us that this A∞ property characterizes loop spaces in a certain sense.
The theory of A∞-spaces can be captured and generalized by operads, as developed
and popularized by Peter May [May72]. In particular, there are certain operads
which encode how well associativity and commutativity of an operation behave “up
to coherent higher homotopy.” These operads, known as En operads (1 ≤ n ≤ ∞),
provide a way to characterize iterated and infinite loop spaces (Theorem 3.18).

Due to the interesting and fruitful nature of loop spaces, algebraic topologists in
the 1960’s and 70’s were very interested in being able recognize iterated and infinite
loop spaces when they appeared and “deloop” them. The machinery of operads
provides one solution to this problem, and the second main approach is that of
Segal’s Γ-spaces, as developed in [Seg74]. Roughly, a Γ-space is a functor which
takes values in spaces, and if it has some special extra structure, we can associate to
it an Ω-spectrum (and hence an infinite loop space). This process can be generalized,
essentially giving us a way to turn a given symmetric monoidal category into an Ω-
spectrum (Theorem 4.10). Segal’s machinery, like May’s, comes with an explicit
delooping of the associated infinite loop space, and we can ask to what extent the
two theories will agree. It turns out that the two machines are equivalent, in the
sense that they yield equivalent spectra when given the same data. This is known as
the uniqueness theorem for infinite loop space machines (Theorem 5.8), as proven
by May and Thomason in [MT78].

Outline and Assumptions

Section 2 begins with the basic definitions and properties of loop spaces, iterated
loop spaces, and infinite loop spaces. Section 3 builds up to the recognition theorem
for loop spaces using operads. After illustrating the general idea for loop spaces
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in Subsection 3.1, we give the formal definition of an operad before stating the
full recognition theorem for iterated loop spaces in Subsection 3.3. Section 4 gives a
brief overview of Segal’s Γ-spaces and their function as a “delooping” machine, along
with some interesting examples in Subsection 4.2. The final section, Section 5, covers
infinite loop spaces machines more generally in the context of May and Thomason’s
uniqueness theorem.

We work in the convenient category of compactly generated weak Hausdorff
spaces, which we denote Top, and we assume our spaces are connected unless explic-
itly stated otherwise. This assumption allows us to write things like ΩX and π1(X)
for a based space (X,x0), instead of the more accurate Ω(X,x0) and π1(X,x0).

Although we hope to give a relatively self-contained account of these concepts,
we assume the reader is familiar with the basics of algebraic topology and homotopy
theory. Knowledge of simplicial sets, spectra, and generalized cohomology theories
will be helpful but hopefully not necessary to understand the main ideas; compre-
hensive explanations of these topics can be read in [May99], [Hat02, §4], or [BM21].
Wonderful overviews of the content we cover can also be found in other write-ups
such as [May77, Chapter I] and [Oso11] (although it should be noted the latter one
is in Spanish), as well as the classic book [Ada78]. This write-up is meant to be
a survey of the concepts and ideas surrounding loop spaces, and is by no means a
complete account of the mechanisms involved. To borrow an expression from J.F.
Adams [Ada78, p.37], this note will be written as an essay in machine appreciation
and is not intended to qualify the reader for a mechanic’s certificate.
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2 Loop Spaces

The study of loop spaces is motivated in part by a desire to study spaces with a
binary operation which is not necessarily strictly “nice” (unital, associative, com-
mutative) but is still well-behaved from the point of view of homotopy theory. The
particular operation on loop spaces we utilize — familiar to the student of algebraic
topology — is concatenation of loops. Given a topological space X, a path in X is
just a continuous map from the interval I = [0, 1] into X, and a loop is just a path
whose start and end points are the same. In other words, a loop is a based map
S1 → X, and we can assemble all of the loops on X into its loop space.

Definition 2.1. The (based) loop space functor Ω: Top∗ → Top∗ sends a based

3



space (X,x0) to its loop space

ΩX = Map∗(S
1, X)

which is topologized under the compact-open topology. We can also write ΩX as
the pullback1

ΩX ∗

Map∗(I,X) X

p cx0

ε1

where we assume I is based at 0 and ε1 means evaluation at 1. The basepoint of
ΩX is cx0 , the constant loop at x0. A based map f : (X,x0) → (Y, y0) is sent to
f∗ : p 7→ f ◦ p.

There are a couple of eminent connections between the loop space ΩX and the
fundamental group π1(X) to remark upon. The first crucial observation to make is
that ΩX admits the same operation of loop concatenation as π1(X) (except, strictly
speaking, the operation in π1 is on homotopy classes of maps). Given two loops p1

and p2 based at x0 ∈ X, recall that their concatenation is the loop

(p2 ◦ p1)(t) =

{
p1(2t) t ∈ [0, 1/2];

p2(2t− 1) t ∈ [1/2, 1].

This defines a binary operation ΩX × ΩX → ΩX which makes ΩX into something
like a topological monoid, except concatenation is not strictly unital and associative,
because of a difference in parametrization. The differently parametrized paths cx0 ◦p
and p and p ◦ cx0 become the same path after identifying things up to homotopy.
Similarly, up to homotopy, the paths p3 ◦(p2 ◦p1) and (p3 ◦p2)◦p1 are also the same.
In many algebraic topology textbooks, this idea is usually illustrated by something
like Fig. 1.
This notion of a space being “like a monoid (up to homotopy)” is captured by the
definition of H-spaces (Definition 3.1). Loop spaces are an important class of H-
spaces, being particularly well-behaved from a homotopy-theory point of view, as
we shall see in Subsection 3.1 as well.

Another link between ΩX and π1(X) is given by the similarity of their elements:
loops and homotopy classes of loops, respectively. Specifically, since a path in ΩX
is precisely a homotopy of loops in X, two loops in X will belong to the same
equivalence class in π1(X) if and only if they are in the same connected component
of ΩX. That is, there is a bijective correspondence between π0(ΩX) and π1(X), as
illustrated in Fig. 2. In fact this is an isomorphism of groups, since π0(ΩX) inherits a
group structure from ΩX (using the same operation modulo the equivalence relation
of being path connected).

1For the reader familiar with homotopy limits, we note that we could also realize ΩX as the
homotopy pullback of ∗ → X ← ∗.
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Figure 1: Concatenation of loops is unital and associative up to homo-
topy. A linear homotopy smoothly transitions between differences in parametriza-
tion by changing how fast the paths are traversed.

Figure 2: The correspondence between π0(ΩX) and π1(X). Since p1 is
nullhomotopic in X, it is in the same connected component as the basepoint cx0 in
ΩX. The fact that the two loops p2 and p3 are homotopic in X is reflected by the
existence of a path in ΩX between those elements.

Remark 2.2. More generally, there is a group isomorphism πn(ΩX) ∼= πn+1(X).
One way to see this is to use the adjunction with the suspension functor Σ a Ω. In
particular, we have a group isomorphism

Top∗(ΣS
n, X) ∼= Top∗(S

n,ΩX).

Since ΣSn is homeomorphic to Sn+1, this implies the desired result upon taking
homotopy classes. Another method of proof is via the path-loop fibration, as in
[BM21, §3.8]. The key is to use the pullback definition of ΩX to see that ΩX sits
inside a fiber sequence

ΩX →Map∗(I,X)→ X.

and then use the long exact sequence for homotopy groups and the fact thatMap∗(I,X)
is contractible.
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2.1 Iterated and Infinite Loop Spaces

To form the k-fold loop space of a based space X = (X,x0), we can just continue
to apply the loop space functor Ω to X, arriving at the kth loop space ΩkX. The
elements of ΩkX (which are loops of loops of . . . of loops inX) can also be understood
as based maps Sk → X, as illustrated for k = 2 in Fig. 3.

Figure 3: Loops of loops. The left part of the figure illustrates how a loop in
ΩX (that is, loop of loops in X) can be seen as a based map S2 → X. The right
part of the figure illustrates how a path in ΩX which is not a loop will not result in
a continuous based map from S2 → X. In particular, the given path in ΩX is not
a loop (although it begins and ends at the same point) since it is not based at the
constant path cx0 .

Definition 2.3. The kth loop space of X = (X,x0) is Ωk(X) = Ω(Ωk−1(X)) =
Map∗(S

k, X).

By Remark 2.2, we know π0(ΩkX) ∼= πk(X), which demonstrates how the iter-
ated loop spaces encode a lot of information about the homotopy of X. Moreover,
this means that π0(ΩkX) has the structure of an Abelian group for k ≥ 2. Thus ΩkX
should be something like an Abelian topological monoid for k ≥ 2, where commu-
tativity, associativity, and unity are only required to hold up to homotopy. Iterated
loop spaces will therefore have even more structure than regular loop spaces, an idea
which will be made more precise in our discussion of operads in Section 3.

Given a k-fold loop space ΩkX, we know how to “deloop” it in the sense that
we know ΩkX is just loops on Ωk−1X, which in turn is just loops on Ωk−2X, and
so on. That is, ΩkX comes with a sequence of spaces ΩkX,Ωk−1X, . . . ,X such
that ΩkX = Ωj(Ωk−jX). It may not seem like there is much to this observation,
but it helps to contextualize the definition of infinite loop spaces as the natural
generalization of iterated loop spaces.

Definition 2.4. A space X is an infinite loop space if it admits an infinite chain of
deloopings. That is, if there is a sequence of spaces X = X0, X1, X2, . . . with weak
equivalences

Xn
'−→ ΩXn+1
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for all n ≥ 0. In particular, X0 is weakly equivalent to ΩkXk for all k ≥ 0.

Given an infinite loop space, we can apply the adjunction Σ a Ω mentioned in
Remark 2.2 to get a map

ΣXn → Xn+1

for each n. In other words, an infinite loop space gives us a spectrum, in fact, an Ω-
spectrum.2 Thus another way to define an infinite loop space is as the 0th term of an
Ω-spectrum. Moreover, given a non-Ω-spectrum E, we can turn it into an equivalent
Ω-spectrum by replacing En with colimk ΩkEn+k. In this sense, the study of infinite
loop spaces is the same as the study of spectra, which is the same as the study
of generalized cohomology theories by Brown Representability (see [Hat02, §4E] or
[P1́3]).

In any case, given a spectrum E, we write Ω∞E for its infinite loop space (the
0th term of the equivalent Ω-spectrum). Thus Ω∞ gives us a way to turn spectra
into spaces. By construction, the homotopy groups of Ω∞E (as a space) are equal
to the homotopy groups of E (as a spectrum). In symbols:

πn(E) = colimk πn+k(En) ∼= colimk πk(Ω
nEn) ∼= colimk πn(E0) = πn(Ω∞E),

since E0 is weakly equivalent to ΩnEn for all n.

Remark 2.5. Recall that the suspension spectrum Σ∞X of a based space X is the
spectrum with (Σ∞X)n = ΣnX; although this is not an Ω-spectrum in general,
we can replace it with an equivalent Ω-spectrum to get the free infinite loop space
on X, Ω∞Σ∞X. In fact, Ω∞Σ∞ (sometimes denoted Q) is an endofunctor on
Top∗ landing in infinite loop spaces. The display above implies that the (unstable)
homotopy groups of this space Ω∞Σ∞X are precisely the homotopy groups of the
suspension spectrum Σ∞X, which are in turn the stable homotopy groups of X.
This consequence, although straightforward, is a bit mind-boggling. For instance, it
means there is a single space Ω∞Σ∞S0 = Ω∞S which contains all the information
about the stable homotopy groups of spheres. This space is undoubtedly incredibly
complex and difficult to understand, so in all likelihood studying this space is not
really a tractable approach to stable homotopy theory.

Example 2.6. One of the most fundamental examples of these ideas is the Eilenberg-
Mac Lane spectrum. Recall that an ordinary cohomology theory (i.e. a coho-
mology theory isomorphic to singular cohomology) with coefficients in an Abelian
group G is represented by the spectrum formed by the Eilenberg-Mac Lane spaces
{K(G,n)}n≥0, where K(G,n) is uniquely specified (up to weak equivalence) by

πk(K(G,n)) =

{
G k = n,
0 k 6= n,

2Recall that a spectrum is called an Ω-spectrum if the adjoints of the structure maps are all
weak equivalences.
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We can explicitly construct K(G,n) as the n-fold bar construction on G (see [BM21,
§8]). By Remark 2.2, we have an isomorphism πk+1(ΩK(G,n)) ∼= πk(K(G,n)) for
all k ≥ 0, which implies that ΩK(G,n) is weakly equivalent to K(G,n − 1). Thus
for any n ≥ 0, we have weak equivalences

K(G,n)
'−→ ΩK(G,n+ 1),

so {K(G,n)} forms an Ω-spectrum. Therefore any Eilenberg-Mac Lane spaceK(G,n)
is an infinite loop space, with explicit deloopings given by K(G,n) ' ΩkK(G,n+k).

There are many other examples of infinite loop spaces arising from Ω-spectra
which are important in algebraic topology, in particular related to K-theory and
cobordism. For a survey of these examples, we point the reader to [Ada78, §1.8].

3 Recognition Theorem via Operads

Given the nice properties of these loop spaces, we would love to have some sort of
recognition theorem so we can know one when we see it. Arguably one the most pop-
ular approaches to the recognition theorem is May’s operads (which are descended
from Boardman and Vogt’s PROPs). Before diving into operads in Subsection 3.2,
we will discuss the recognition theorem for k = 1 and Stasheff’s approach [Sta63]
to A∞-spaces. The more general En-spaces and the full recognition theorem for
ΩkX are covered in Subsection 3.3, although we do not provide the full and detailed
proof, pointing the reader to [May72] instead. Parts of our exposition are inspired
by [Bae02, Bel17] and [Oso11] as well.

3.1 H-Spaces, A∞-Spaces, and the Recognition Principle

We saw in Section 2 that ΩX is some sort of generalization of a topological monoid,
thanks to our ability to continuously “multiply” loops together via concatenation.
The exact nature of this generalization is captured by the concept of an H-space.3

Definition 3.1. A topological space X is an H-space if there are continuous maps
µ : X ×X → X and e : ∗ → X along with homotopies

µ(e(∗),−) ' idX ' µ(−, e(∗)).

That is, e(∗) acts as a two-sided unit for the multiplication µ, up to homotopy. An
H-space is homotopy associative if there are homotopies

µ(µ(−,−),−) ' µ(−, µ(−,−))

3The name “H-space” is due to Serre, who chose the letter H in homage to Hopf’s work on the
topology of Lie groups, cf. [Ada78, p.13].
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and homotopy commutative if there are homotopies

µ(−,−) ' µ ◦ σ(−,−),

where σ is the “swap” map which sends (x, y) 7→ (y, x).

Remark 3.2. If a homotopy associative H-space also admits a continuous map
i : X → X which acts like a two-sided inverse up to homotopy, then X is called an
H-group. These objects can be characterized their represented functor [−, X]∗. In
general, [−, X]∗ defines a functor Top∗ → Set∗, but when X is an H-group, [−, X]∗
actually lands in the category Grp of groups. In fact, [−, X]∗ : Top∗ → Grp if and
only if X is an H-group. There is a similar characterizing result for H-spaces, but
it is a bit more nuanced, see [Sta70, Chapter 3].

In general, the H-space structure of a space X will only give π0(X) a monoid
structure; those special H-spaces whose π0 is a group are called grouplike. Note that
π0 of an H-group will be a group, so every H-group will be grouplike. In particular,
loop spaces are grouplike. An important fact (which will become especially relevant
in Section 4) is that any non-grouplike homotopy commutative H-space X can be
group completed to a grouplike one. As a brief aside, we will recall the basics of
group completion.

Definition 3.3. The group completion of a commutative monoid M is an Abelian
group A along with a morphism of commutative monoids i : M → A which satisfies
the following universal property: If A′ is an Abelian group and f : M → A′ is a
morphism of commutative monoids, then there is a unique group homomorphism
f̂ : A→ A′ such that the following diagram commutes:

M A

A′

i

f
f̂

An explicit construction of the group completion is given by the Grothendieck group
of M , defined as

G(M) := free Abelian group{[m] : m ∈M}/ ∼

where [m+ n] ∼ [m] + [n] for all m,n ∈M .

Given any space X with a homotopy commutative operation, its group comple-
tion is a homotopy commutative H-space Y such that π0(Y ) is the group completion
of π0(X) in the sense above, and H∗(Y ) is the localization of H∗(X) at π0(X). If X
is a topological monoid, then an explicit model is given by Y = ΩBX, where BX
is the classifying space of X. See the paper of Segal and McDuff [MS76] for more
details.
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A loop space is a homotopy associative (but not homotopy commutative) H-
space, with e(∗) = cx0 and µ = concatenation of loops.4 Any candidate space which
hopes to be a loop space must therefore at least be a homotopy associative H-space.
Another necessary condition for our candidate space is that its π0 must be a group,
as we know every loop space is grouplike. A natural question to ask is whether these
conditions are sufficient. That is, is every grouplike homotopy associative H-space
equivalent to a loop space? The answer is no, and there are many examples of such
H-spaces which are not loop spaces.

Example 3.4. Whether or not Sn admits an H-space is a classically important
question, due in part to its connection to Adam’s solution to the Hopf invariant one
problem [Ada60]. It turns out there is an H-space structure on the sphere Sn only
when n = 0, 1, 3, 7. By identifying Sn as the unit sphere in one of the four normed
division algebras (R,C, quaternions, and octonians), the product is the one induced
by the algebra product. The sphere S7 is an example of a grouplike H-space which
is not a loop space (cf. [Sta63, §I.5]).

In order to be a loop space, a grouplike homotopy associative H-space needs
more “higher homotopy coherent” structure. The explication and exploration of
this coherence structure is largely due to J. Stasheff [Sta63], who cites the work of
M. Sugawara as inspiration. The idea is that the homotopies yielding homotopy
associativity must satisfy some homotopical relations themselves, and these homo-
topies must satisfy other homotopical relations, and so on. Spaces with this kind of
higher coherence structure are called A∞-spaces. To make all of this more precise,
we will see how it manifests in loop spaces.

Our discussion in Section 2 demonstrates that the two ways of associating a
product of three elements in a loop space are homotopic. For the sake of notation,
we will abbreviate the product µ(x, y) by just xy. Hence homotopy associativity
implies that there is a path from (xy)z to x(yz) for every triple x, y, z ∈ X. The
next natural step is to look at the ways to associate products of four elements. There
are five different ways to do this, and homotopy associativity gives paths between
some of them:

(xy)(zw)

((xy)z)w x(y(zw))

(x(yz))w x((yz)w)

4Furthermore, reversing the parametrization of a path defines an inverse map ΩX → ΩX, so in
fact loop spaces are H-groups. Using Remark 3.2, this gives us another way to see that π0(ΩX) is
a group.
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We see that there are two different paths between ((xy)z)w and x(y(zw)), one
around the top of the pentagon and one around the bottom. In a loop space,
these two paths are homotopic, which is to say there is a homotopy of the two
homotopies between the 4-ary operations ((−,−)−)− and −(−(−,−)) which fills in
the pentagon. Formally, this homotopy of homotopies is a map

(ΩX)4 × I2 → ΩX.

Fig. 4 illustrates how we get a map I2 → ΩX for a fixed tuple (x, y, z, w) ∈ (ΩX)4.
After thinking about products of four elements, we can ask about products of five
elements. Now, our coherence structure demands the existence of a homotopy
(ΩX)5 × I3 → ΩX between homotopies. Similarly for products of six elements,
or seven, or any arbitrary n.

Figure 4: Homotopy coherence for a product of four elements xyzw.
We know that the outside of the pentagonal box can be filled in according to the
homotopy associativity diagram in Fig. 1. Homotopy coherence means we can “fill
in” the rest of the box in a continuous way. Every point in the pentagon (which
we can think of as I2) gives us an explicit parametrization of the concatenation of
x, y, z and w, and this parametrization varies smoothly as we move around in the
pentagon.

An H-space where these homotopies between homotopies exist up to level n
is called an An-space, and an H-space which is An for every n is called an A∞-
space. The definition of an An-structure on a space X given by Stasheff (see [Sta63,
Definition I.1]) is a bit different than the “homotopy of homotopies” explanation we
have given here, but the two ideas turn out to be essentially equivalent.

The main idea is to use the associahedra Ki (where Ki
∼= Ii) and define a

sequence of maps Mi : Ki−2×Xi → X for i ≤ n which are defined appropriately on
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∂Ki−2×Xi in terms of Mj for j < i and satisfy various coherence conditions.5 These
maps assemble into something Stasheff calls an An-form, which encapsulates our
“homotopy of homotopies” idea. For instance, having an A0-structure is equivalent
to being an H-space, and having an A1-structure is equivalent to being a homotopy
associative H-space. A space has an A∞-structure if it has an An-form for every n,
and these spaces are called A∞-spaces. The following theorem is implicit in [Sta63]:

Theorem 3.5 (Stasheff). A group-like H-space is equivalent to a loop space if and
only if it is A∞.

The “only if” direction involves constructing a sort of classifying space for the
A∞-space X, defined as a quotient

BX =
∐
i≥0

Ki+2 ×Xi/ ∼

where ∼ involves the Mi maps. The result follows from showing X is equivalent to
ΩBX. The idea of An- and A∞-spaces can also be formally encoded and generalized
by operads, which we will discuss presently. The recognition principle above is a
special case of the recognition theorem (Theorem 3.18).

3.2 Operads

Operads provide a machinery for recording n-ary operations on a space X and the
relationships between them. An operad consists of a collection of spaces {O(n)}n≥0

with maps between different levels, and if we can interpret O(n) as a space of n-ary
functions on X, then we might learn something about the structure of X. The
particular operads we will study here can detect the extent to which associativity
and commutativity fail.

Definition 3.6. An operad O (over spaces) consists of the following data:

• For each n ≥ 0, a space O(n) ∈ Top such that O(0) is a single point ∗.

• Structure maps γ : O(n)×O(k1)× · · · × O(kn)→ O(k1 + · · ·+ kn) such that
the following associativity formula holds for all f ∈ O(n) and gi ∈ O(ki):

– For any h1, . . . , hk1+···+kn ,

γ(γ(f ; g1, . . . , gn);h1, . . . , hk1+···+kn) = γ(f ;F1, . . . , Fn)

where Fi = γ(gi;hk1+···+ki−1+1, hk1+···+ki−1+2, . . . , hk1+···+ki−1+ki) for ki >
0 and Fi = ∗ if ki = 0.

5It should be noted that in Stasheff’s original work, he used a different indexing, taking Ki to
be the (i−2)-associahedron so that the index i recorded the number of factors in the product. The
indexing we use here is better adapted to the context of operads, however this means the reader
comparing our notes to Stasheff’s papers [Sta63] will have to adjust the indexing in some places by
±2.
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• An identity element 1 ∈ O(1) such that

– for all k ≥ 0, γ(1;−) : O(k)→ O(k) is the identity map;

– for any f ∈ O(n),
γ(f ; 1, 1, . . . , 1︸ ︷︷ ︸

n-times

) = f.

• A right action of the symmetric group Σn on O(n) for each n ≥ 0 such that
the following equivariance formulas are satisfied:

– for all f ∈ O(n), gi ∈ O(ki) for i = 1, . . . , n, and σ ∈ Σn,

γ(fσ; g1, . . . , gn) = γ(f ; gσ−1(1), . . . , gσ−1(n)) · σ(k1, . . . , kn)

where σ(k1, . . . , kn) ∈ Σk1+...kn permutes the n blocks given by the parti-
tion k1 + · · ·+ kn as σ would permute n letters (i.e. σ(k1, . . . , kn) treats
the ith block ki, ki + 1, . . . , ki + ki+1 − 1 as σ treats the ith letter);

– for τi ∈ Σki , i = 1, . . . , n,

γ(fσ; g1τ1, . . . , gnτn) = γ(f ; gσ−1(1), . . . , gσ−1(n))(τ1 ⊕ · · · ⊕ τn)

where τ1 ⊕ · · · ⊕ τn denotes the image of (τ1, . . . , τn) under the inclusion
Σk1 × · · · × Σkn ↪→ Σk1+···+kn .

The operad is called Σ-free if each Σn-action on O(n) is free. There is also a
notion of a non-Σ operad, where the Σn-action is trivial for all n ≥ 0.

Remark 3.7. Strictly speaking, what we have defined above should be called a topo-
logical, unital, symmetric operad : topological because O takes values in spaces,
unital because O(0) is required to be the unit in Top, and symmetric because there
is a Σ-action. What we have called “non-Σ” operads are sometimes referred to as
non-symmetric (or planar) operads. There is a forgetful-free adjunction between
the categories of symmetric and non-symmetric operads.

Other generalizations of operads include colored operads (or symmetric multi-
categories) —an operad as we have defined it is a colored operad with one color
(or multicategory with one object)— and ∞-operads, both of which are covered in
Lurie’s Higher Algebra [Lur17, §2.1].

This definition is more easily understood through pictures. Following [Bae02],
we can visualize an element of O(n) as an abstract n-ary operation, a little box
with n “input wires” and one “output wire.” The structure maps then tell us how
to compose these abstract operations. To form the operation γ(f ; g1, . . . , gk), we
can imagine attaching the output wire of gi to the ith input wire of f for each
i = 1, . . . , k.
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The associativity formula means that it should not matter whether we first
attach the hj to the gi then attach those to f , or whether we first attach the gi
to f , and then attach the hj . For example, we could get to f(g1(h1, h2), g2(h3)) in
two different ways: we could first compose the gi’s in the f , f(g1(−,−), g2(−)) and
then plug in the h’s; or, we could first plug in the h’s, obtaining F1 = g1(h1, h2) and
F2 = g2(h3), and then plug those into f to get f(F1, F2).

The Σn-action can be interpreted as permuting the input wires of f , crossing
them over each other. The equivariance formulas ensure that operations we want to
think of as the same are actually identified under this action. The first equivariance
formula says instead of permuting the inputs of f and then attaching the gi, we
could instead permute the gi, attach them to f , and then permute the inputs of that
operation.

14



The second equivariance formula says that if we permute the inputs of f and
permute the inputs of the gi before attaching them, we could instead just permute
the gi, attach them, and then permute the inputs of that operation.

These pictures should serve to convince the reader that the coherence conditions
in the definition of operads “do what they should.” Having defined these objects,
we are contractually obligated to tell you about the morphisms between them.

Definition 3.8. A morphism of operads φ : O → O′ is a collection of continuous
Σn-equivariant maps φn : O(n) → O′(n) such that φ1(1) = 1 and the following
diagram commutes:

O(n)×O(k1)× · · · × O(kn) O(k1 + · · ·+ kn)

O′(n)×O′(k1)× · · · × O′(kn) O′(k1 + · · ·+ kn).

φn×φk1×···×φkn

γ

φk1+···+kn

γ′

Remark 3.9. Operads and their morphisms can be defined more generally, replacing
Top with any symmetric monoidal category (and making the appropriate symbol
replacements, such as replacing × with ⊗, etc.). This ability to transplant the ma-
chinery of operads to other categories is quite useful, particularly for mathematical
physics (see [MSS00, Chapter 5] for an extensive discussion of some examples).

One of the most powerful and important uses of operads (at least for our pur-
poses) is their ability to act upon a space. An action of an operad on a space X
is a collection of maps O(n)×Xn → X for each n which play nice with the struc-
ture maps and the Σ-action. This allows us to interpret elements of O(n) as n-ary
operations on X, since for each f ∈ O(n) we get a map f : Xn → X. Formally, an
action of O on X is expressed as a morphism of O to a certain operad defined in
terms of X.

Definition 3.10. For any based space X, the endomorphism operad of X is an
operad EndX given by the following data:
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• For n ≥ 0, EndX(n) = Map∗(X
n, X) is the space of based maps Xn → X. We

take X0 to be a point ∗ and EndX(0) to be the basepoint inclusion ∗ → X.

• The structure maps γ are given by γ(f ; g1, · · · , gn) = f(g1 × · · · × gn) for
f ∈ EndX(n) and gi ∈ EndX(ki).

• The identity element 1 ∈ EndX(1) is just the identity map id: X → X.

• The Σ-action is given by fσ : x 7→ f(σ ·x) for f ∈ EndX(n), where Σn acts on
Xn by permuting the factors, σ · (x1, . . . , xn) = (xσ1(1), . . . , xσ−1(n)).

We say that an operad O acts (or operates) on a space X if there is a morphism of
operads O → EndX . In this case, we say X is an O-algebra or an algebra over O.

Example 3.11. The simplest example of a non-Σ operad is the associative operad
A, defined by setting A(n) = ∗ for all n. An action of A on X is a map ∗ →
EndX(n) for each n, i.e. it picks out a single n-ary operation Xn → X for each
n. The fact that the morphism A → EndX has to preserve the operadic structure
implies that each of these chosen n-ary operations can actually be defined in terms
of the single binary operation picked out by A(2) = ∗ → EndX(2). For instance,
if we call this operation µ, we see that γ(µ; 1, µ) = µ(−, µ(−,−)) and γ(µ;µ, 1) =
µ(µ(−,−),−) are both in the image of A(3) = ∗ → EndX(3), which is a point,
implying µ(−, µ(−,−)) = µ(µ(−,−),−). Strict associativity of an n-fold product is
similarly achieved. Additionally, note that the structure maps force the basepoint
to act as the unit for µ. This means X is an A-algebra if and only if it has a unital,
associative multiplication. Thus in Top, the A-algebras are precisely the topological
monoids.

As this example demonstrates, being an algebra over a particular operad can
characterize an entire class of spaces. The next question to ask is whether there
is an operad which exactly picks out loop spaces. In light of our discussion in
Subsection 3.1, it is perhaps not surprising that the answer is yes. In fact, the maps
Mi : Ki ×Xi → X assemble into an action of the non-Σ associahedra operad K on
X, with K(i) = Ki, illustrated for i = 0, 1, 2, 3 in Fig. 5.

A crucial feature of this operad is that each of its spaces is contractible, K(i) ' ∗.
As we saw in Example 3.11, the fact that the nth level of the operad A(n) is just
a point means that there is “only one” n-ary operation on an algebra X (i.e. the
multiplication on X is strictly associative). If the nth level of our operad is not
equal to ∗, so we are dealing with “more than one” n-ary operation on X, then
contractibility is the next best thing we could ask for, from a homotopy theoretic
point of view. Put a different way, the best kind of associativity short of strict
associativity is that of an A∞-space.

Definition 3.12. An A∞-operad is a non-Σ operad O such that O(n) is contractible
for all n. An A∞-algebra (an algebra over an A∞-operad) is called an A∞-space.
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Figure 5: Some spaces of K. The vertices of the n-associahedron correspond
to parenthesizations of n letters. There is an edge between two vertices that are
related by changing only one pair of parentheses, and a face among vertices that are
related by changing two pairs of parentheses, and so on.

It turns out a space is A∞ if and only if it has an action of K, so this “new”
definition of A∞-spaces coincides with the one we saw previously. Theorem 3.5 can
thus be restated in terms of A∞-algebras:

Theorem 3.13. A grouplike space is equivalent to a loop space if and only if it is
an A∞-algebra (equivalently, a K-algebra).

Any A-algebra is naturally an A∞-algebra, just by precomposing with the trivial
map K(n) → A(n) = ∗. But we know A∞-spaces are not the whole story. What
about An-spaces for finite n, how do these fit into the picture? The maps of Stasheff
still assemble into an “action” of K(i), but only for i ≤ n. For example, homotopy
associativity is equivalent to just the condition of K(1). By properly truncating the
operad K at level n, we get another operad Kn whose algebras are precisely the
An-spaces. Thus we can write down a hierarchy of homotopy associativity, as done
in [Bel17]:

Topological
monoids ⇒ A∞-spaces ⇒ · · · ⇒ An-spaces ⇒ · · · ⇒ A1-spaces ⇒ H-spaces.

3.3 E∞-Operads and E∞-Spaces

En-operads play an analogous role for commutativity that the An-operads play for
associativity. In fact, En-operads are just the Σ-free counterparts of An-operads,
i.e. the spaces of an En-operad are contractible up to level n with a free Σ-action.
If we think of each point in this space as determining a n-ary operation on X,
the free Σ-action can be thought of as permuting the variables. Just as we have
a non-Σ operad A for strict associativity, so do we have a Σ-free operad for strict
commutativity.
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Example 3.14. The simplest example of a Σ-free operad is the commutative operad
C, where C(n) = ∗ for all n. As for the associative operad (Example 3.11), an action
C picks out an n-ary operation on X for each n. Just as before, each of these n-ary
operations is determined by the choice of binary operation µ. (In other words, an
C-algebra is also an A-algebra.) The free Σ-action and the structure maps imply
that, for example, (a, b) 7→ µ(a, b) and (a, b) 7→ µ(b, a) must be the same map. In
other words, products of two elements must commute. Commutativity of products
of any n elements is similarly implied. This means X is a C-algebra if and only if it
is has a unital, associative, and commutative multiplication. In Top, the C-algebras
are precisely the Abelian topological monoids.

Strict commutativity is forced by the fact that the space of n-ary operations
is just a point for each n. If the space of n-ary operations is not a point (so our
multiplication is not strictly commutative), the next best thing we could ask for is
that it have the homotopy type of a point. This is the idea of E∞-operads.

Definition 3.15. An E∞-operad is a Σ-free operad whose spaces are contractible,
and algebras over such an operad are called E∞-spaces.

Just like with A∞, we can “truncate” E∞-operads to form En-operads, whose
spaces are contractible up to level n. We then get a hierarchy of commutativity:

Abelian
topological

monoids ⇒ E∞-spaces ⇒ · · · ⇒ En-spaces ⇒ · · · ⇒ E1-spaces.

We can ask whether there is an analogy of K for commutativity, that is, one
operad O such that a space is an E∞-space if and only if it is an algebra over O, or
an En-space if and only if it is an algebra over the truncation {O(i)}i≤n. It turns
out there is such an operad C∞, whose nth truncation Cn is called the n-cubitos
operad in Spanish. (In English, this is the little n-cubes operad, but the author likes
the Spanish translation used in [Oso11]).

Definition 3.16. Let Jn denote the interior of the n-cube In. An n-cubito is a
linear embedding c : Jn → Jn, such that c = c1 × . . . cn where each ci : J → J is a
linear function. The n-cubitos operad is given by the following data:

• Form ≥ 0, Cn(m) consists ofm-tuples 〈c1, . . . , cm〉 of n-cubitos ci whose images
are pairwise disjoint. We can regard 〈c1, . . . , cm〉 as a map Jn t · · · t Jn︸ ︷︷ ︸

m-times

→ Jn,

and we topologize Cn(m) as a subspace of Map(tmJn, Jn).6 We think of
Cn(0) = 〈 〉 as the unique “embedding” of the empty set into Jn.

6Equivalently, we can topologize Cn(m) as a subspace of J2nm, where an n-cubito 〈c1, . . . , cm〉
is identified with the point (c1(α), c1(β), . . . , cm(α), cm(β)) ∈ J2nm for α = (1/4, . . . , 1/4), β =
(3/4, . . . , 3/4) ∈ Jnm. See [May72, Lemma 4.2] for a full proof of this fact.
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• The structure maps are defined as γ(c; d1, . . . , dk) = c(d1 t · · · t dk) for c ∈
Cn(m) and di ∈ Cn(ki). This resulting map embeds k1 + · · · + km pairwise
disjoint n-cubitos into Jn.

• The identity element 1 ∈ Cn(1) is the identity map id: Jn → Jn.

• The Σ-action permutes the n-cubitos, with 〈c1, . . . , cm〉σ = 〈cσ(1), . . . , cσ(m)〉
for σ ∈ Σm. Since the images of the ci are required to be disjoint, this action
is free.

The idea here is that specifying a linear map cn : Jn → Jn is equivalent to
specifying the “little cube” which is the range of cn inside of Jn. An element
〈c1, . . . , cm〉 will look like m little n-cubes nicely embedded inside a bigger, ambient
n-cube. The structure maps “glue in” each of the di to one of the n-cubitos in c;
this is illustrated for n = 2 in Fig. 6.

Figure 6: Example of structure maps for 2-cubitos. Given c ∈ C2(3) and
three 2-cubitos d1 ∈ C2(1), d2 ∈ C2(2), and d3 ∈ C2(3), form the “composition”
γ(c; d1, d2, d3) by gluing each of the di to one of the little cubes in c. By forgetting
about the ambient di cube, and only remembering the 2-cubitos within each di, we
get an element of C2(6).

Observe that we can turn an n-cubito c into an (n + 1)-cubito c × 1 by taking
the product with 1: J → J . In fact, we get an inclusion Cn(m) → Cn+1(m) given
by 〈c1, . . . , cm〉 7→ 〈c1× 1, . . . , cm× 1〉, and these maps assemble into an inclusion of
operads Cn → Cn+1. Hence we can take the colimit colimn Cn(m) =: C∞(m) for each
m, and these spaces assemble into the ∞-cubitos operad C∞. Note that this operad
is Σ-free, as each Cn is. It turns out that a space is E∞ if and only if it admits an
action of∞-cubitos, so C∞ is precisely the operad we will use to characterize infinite
loop spaces. The following theorem is [May72, Theorem 4.8]:

Theorem 3.17. For 1 ≤ n ≤ ∞, Cn is an En-operad.

Idea of proof. We need to show that Cn(m) is contractible for m ≤ n. The crux
of the argument is showing that Cn(m) is Σm-equivariantly homotopy equivalent
to the (labeled) mth configuration space of Jn (m-tuples of points in Jn whose
coordinates are pairwise distinct). This is done by constructing an explicit deforma-
tion retraction from Cn(m) to this configuration space, given by gn : 〈c1, . . . , cm〉 7→
(c1(1/2), . . . , cm(1/2)). Known results about the labeled configuration spaces of
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Rn (equivalently, Jn) imply that πi(Cn(m)) = 0 for i ≤ n. For C∞, taking
g∞ = colimn gn gives a Σm-invariant homotopy equivalence from C∞(m) to the
mth configuration space of J∞ ∼= R∞. Since R∞ is contractible, it follows that C∞
is an E∞-operad.

Our primary motivation for this definition is to reinterpret iterated loop spaces
as Cn-algebras. Thus we should understand how Cn acts on an n-fold loop space
ΩnX. To define an action of Cn on ΩnX, we need to give a collection of Σn-
equivariant maps φk : Cn(k) → Map∗((Ω

nX)k,ΩnX) which preserve identity and
play nice with the structure maps. For this purpose, it will be easiest to think of
elements of ΩnX = Map∗(S

n, X) as maps In → X which take the boundary ∂In to
the basepoint x0 ∈ X.

Figure 7: An example of the action of Cn(2) on ΩnX. An element
〈c1, c2〉 ∈ Cn(2) determines a map φ2〈c1, c2〉 : (ΩnX)2 → ΩnX which sends two
elements f1, f2 ∈ ΩnX to their “concatenation” f ∈ ΩnX.

Given an element 〈c1, . . . , ck〉 ∈ Cn(k) and k maps of fi : (In, ∂In) → (X,x0) ∈
ΩnX, we need to construct an element of ΩnX which is somehow the “multiplica-
tion” of the fi. The idea is that this output element f : (In, ∂In) → (X,x0) will
agree with fi on the n-cubito ci, viewed as living in the domain In of f , and will
be the constant map at x0 on the complement of all the ci. This explanation is
hopefully clarified by the picture in Fig. 7. The symbolic definition of f is

f(t) =

{
fi(c

−1
i (t)) t ∈ im ci;
x0 otherwise.

The reader can verify (or take it on faith) that this construction preserves identity
and behaves appropriately with respect to the structure maps and Σn-action. Hence
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we get a morphism of operads Cn → EndΩnX , implying every n-fold loop space is
an En-space.

Fig. 7 also illustrates how Cn encodes homotopy commutativity (for n ≥ 2) since
there is a homotopy between φ2〈c1, c2〉(f1, f2) and φ2〈c1, c2〉(f2, f1) given by expand-
ing, shrinking, and sliding the n-cubitos c1 and c2 around each other. This “proof by
picture” is similar to the one often given to shown that the higher homotopy groups
are Abelian. This proof does not work in the case n = 1, since the action of C1 on
ΩX is just the usual concatenation of loops, which we know is not commutative.
As is implied by this observation, C1 has the structure of an A∞-operad, so every
E1-space is an A∞-space. The converse is true as well, meaning E1 = A∞.

We have hopefully convinced the reader that every n-fold loop space is a Cn-
algebra and hence an En-space. As is perhaps expected at this point, being a grou-
plike Cn-algebra is equivalent to being an iterated loop space. This is the recognition
theorem of May [May72]:

Theorem 3.18 (May). For 1 ≤ n ≤ ∞, a (connected) grouplike space is En (equiv-
alently, a Cn-algebra) if and only if it is weakly equivalent to an n-fold loop space.

We have already discussed the “if” part of the theorem, and the next subsec-
tion addresses the “only if” part. But before concluding this subsection, we want
to remark that much of this discussion could be done over a different symmetric
monoidal category other than Top. That is, we can still define An- and En-operads
over some other category (e.g. spectra), and ask what the An- and En-objects are
in this context. To the author’s knowledge, there is no recognition principle for any
category other than spaces.

3.4 Monads and Deloopings

To prove the full recognition theorem, May connects operads to slightly simpler
gadgets known as monads. The main idea is that every operad O can be associated
to a monad T such that the O-algebras are precisely the algebras over T . Before
unpacking this construction, we recall some necessary definitions from [May72]. A
more general treatment of monads and operads can also be found in [May02].

Definition 3.19. A monad on a category C is a functor T : C → C together with
natural transformations µ : T 2 ⇒ T and η : 1⇒ T such that the following diagrams
commute:

T T 2 T

T

Tη

µ

ηT T 3 T 2

T 2 T

Tµ

µT µ

µ

A morphism of monads ψ : (T ;µ, η) → (T ′;µ′, η′) is a natural transformation of
functors ψ : T → T ′ such that the following diagrams commute for all objects X ∈ C :
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X

TX TX

η′η

ψ

T 2X (T ′)2X

TX T ′X

ψ2

µ µ′

ψ

In slick math terms, a monad is the monoid object in the category of endofunctors
of C . In this spirit, the natural transformation µ is called the multiplication of the
monad and η is called the unit. We can now define the algebras over these monoid
objects.

Definition 3.20. An algebra over a monad T : C → C is an object X ∈ Ob C
together with a structure map TX

a−→ X such that the following diagrams commute:

X TX

X

ηX

a

T 2X TX

TX X

µX

Ta a

a

The structure map a can be thought of as a left action of T on X, which essentially
makes X into left module over the monoid T . The diagrams above are sometimes
called the unit triangle and multiplication square for X.

A morphism of T -algebras f : (X, a)→ (X ′, a′) is a morphism f : X → X ′ such
that the following diagram commutes:

TX TX ′

X X ′

Tf

a a′

f

We denote the category of T -algebras and their morphisms by AlgT (C ).

For any X ∈ Ob C , the object TX is a T -algebra whose structure is given by
setting a = µX . The monad axioms ensure the necessary diagrams commute. Such
an algebra is called a free algebra, and there is a forgetful-free adjunction F : C �
AlgT (C ) : U . This free construction lets us view T as a functor C → AlgT (C ), and
in this way, a monad T is completely determined by its algebras. More generally,
any adjunction L : C � D : R gives rise to the monad (RL;Rε, η), where η : 1⇒ RL
and ε : LR⇒ 1 are the unit and counit of the adjunction, respectively.

Example 3.21. Of particular interest for our purposes is the monad arising from
the suspension-loop adjunction Σ a Ω. Recall that ΣX ∼= S1 ∧X for X ∈ Top∗, so
we can write an element of ΣX as an equivalence class [t, x] for t ∈ S1 and x ∈ X.
The unit η of the adjunction maps X to ΩΣX by sending a point x ∈ X to the loop
t 7→ [x, t]; this is also the unit of the monad ΩΣ. The counit ε maps

ΣΩX
εX−−→ X

[γ, t] 7→ γ(t)
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for γ ∈ ΩX and t ∈ S1. Thus the multiplication µ = Ωε of the monad is given by
components ΩΣΩX

µX−−→ ΩX which send γ : S1 → ΣΩX to the loop t 7→ εX(γ(t)).
In general, the adjunction Σn a Ωn gives rise to a monad ΩnΣn for 1 ≤ n ≤ ∞.

We can connect monads to operads by associating a monad to an arbitrary
operad O. Monads that arise in this way form a particularly convenient collection
to work with.

Example 3.22. Given an operad O, we can construct a monad (TO;µ, η) associated
to O. Let TO : Top∗ → Top∗ be given by

TOX =
⊔
n≥0

O(n)×Xn/ ∼,

where ∼ is generated by:

• (fσ, x) ∼ (f, σx) for f ∈ O(n) and f ∈ Xn, where σ acts on Xn by permuting
the coordinates;

• Define σi : O(n)→ O(n− 1) by

σif = γ(f ; 1, . . . , 1, ∗, 1, . . . , 1),

where ∗ ∈ O(0) appears in the (i+1)th spot. Declare (σif, x) ∼ (f, six) where
six = (x1, . . . , xi, ∗, xi+1, . . . , xn) ∈ Xn+1.

The first relation says permuting the variables in f is the same as permuting the
coordinates in Xn. The second relation says that including the basepoint ∗ is well-

behaved, in the sense that f(−, . . . , ∗, . . . ,−) ∼ fi where fi : X
n−1 xi=∗−−−→ Xn f−→ X.

Given f ∈ O(n) and x ∈ Xn, we let [f, x] denote the image of (f, x) in TOX. If
φ : X → Y in Top∗ then

TOφ : TOX → TOY

[f, x] 7→ [f, φn(x)];

one can verify that this makes TO into an endofunctor on Top∗.
The monad structure maps µ : T 2

OX → TOX and η : X → TOX are given by

• µ[f, [g1, x1], . . . , [gn, xn]] = [γ(f ; g1, . . . , gn), x1, . . . , xn] for f ∈ O(n), gi ∈
O(ki), and xi ∈ Xki ;

• η(x) = [1, x] for x ∈ X.

The structure built into the operad O ensure that µ and η are well-defined and
satisfy the necessary coherence diagrams.
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The assignment of an operad to its associated monad is functorial, meaning that
if ψ : O → O′ is a morphism of operads, then there is a morphism of the associated
monads φ̃ : TO → TO′ given by

ψ̃X : TOX → TO′X

[f, x] 7→ [ψn(f), x]

for X ∈ Top∗, f ∈ O(n), and x ∈ Xn. The topology of TOX and other properties
of the assignment O 7→ TO are discussed in [May72, §2], the most crucial of which
is the following proposition (Proposition 2.8 in [May72]):

Proposition 3.1. There is an isomorphism of categories between the category of
O-algebras and the category of TO-algebras TO[Top∗].

The idea of the proof is that the data of a TO-algebra structure on a space X is
equivalent to the data of a morphism O → EndX . In a bit more detail, a left action
a : TOX → X determines and is determined by a collection of maps θn : O(n)×Xn →
X satisfying certain relations. It turns out that these relations are equivalent to
those required for the θn to assemble into a morphism of operads θ : O → EndX .
Moreover, TOX can be viewed as the free TO-algebra (or O-algebra) generated by
X, in the sense that the monad TO is the one which arises in the forgetful-free
adjunction U : TO[Top∗] � Top∗ : F where U(X, a) = X and F (X) = (TOX,µ).
The upshot is that we can now work entirely in the context of monads and their
algebras.

Of course, we are interested in the n-cubitos operad Cn and its associated monad
Cn := TCn . The Approximation Theorem (covered in [May72, §5–6]) states that the
monad Cn is “the same” as the monad ΩnΣn obtained from the adjunction Σn a Ωn.

Theorem 3.23 (The Approximation Theorem). Let ηn denote the unit of Σn a Ωn

and θn denote the Cn-algebra structure map induced by the action of Cn on Ωn(ΣnX).
Consider the composite

αn : CnX
Cnηn−−−→ CnΩnΣnX

θn−→ ΩnΣnX.

For all n, the map αn is an equivalence.

In other words, an En-space will be a ΩnΣn-algebra, so it now suffices to consider
the latter sort of objects in proving the “only if” direction of the recognition theorem.

The next idea in the proof of the recognition theorem is to use the two-sided bar
construction ([May72, §9]). This construction and its variants have many applica-
tions, both inside and outside of algebraic topology, but we will limit our exposition
to understanding how the two-sided bar construction gives an n-fold delooping of a
ΩnΣn-algebra.
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Definition 3.24. [May72, Construction 9.6] Given a monad (T ;µ, η) over Top, a
(left) T -algebra (X, a) ∈ AlgT (Top), and a “right T -algebra”7 (S, λ), the two-sided
simplicial bar construction B∗(S, T,X) is the simplicial space with

Bk(S, T,X) = ST kX.

The face maps di apply either the multiplication µ : T 2 → T or the action maps
a : TX → X, λST → S, depending on the index i. Specifically,

d0 : ST kX → λ(ST )T k−1X,

di : ST
kX → ST i−1µ(T 2)T k−i−1X 1 ≤ i ≤ k − 1,

dn : ST kX → ST k−1µ(TX).

The degeneracy map sj inserts T at the (j + 1)th spot

sj : ST kX → ST k+1X

for 0 ≤ j ≤ k. So for example s0 inserts a T right after the S so it becomes the
zeroth T in the composition T k+1. The two-sided bar construction B(S, T,X) is the
geometric realization of B∗(S, T,X).

In particular, given an En-space X, the Approximation Theorem tells us that
X is a (left) ΩnΣn-algebra. Since ΩnΣn is also a right ΩnΣn-algebra (cf. [May72,
Example 9.5.1]), we can consider B∗(Ω

nΣn,ΩnΣn, X). It turns out that, upon taking
geometric realization, B(ΩnΣn,ΩnΣn, X) is homotopy equivalent to X. One can
then show that B∗(Ω

nΣn,ΩnΣn, X) is homotopy equivalent to ΩnB∗(Σ
n,ΩnΣn, X)

as simplicial objects. The final step is showing that Ωn commutes with geometric
realization for certain simplicial spaces so that there is a chain of equivalences

X
'−→ B(ΩnΣn,ΩnΣn, X)

'−→ ΩnB(Σn,ΩnΣn, X).

Along with proving the “only if” direction of the recognition theorem (Theorem 3.18),
this argument also gives us an explicit delooping of X. In the case n =∞, this pro-
cess is an example of an infinite loop machine which we will return to in Section 5.

4 Segal’s Γ-spaces

The theory developed by Segal [Seg74] provides another way to characterize infinite
loop spaces. Rather than using algebras over an operad, Segal uses a special kind
of functor called a Γ-space to capture the structure of infinite loop spaces. These

7What we mean here is a functor S : Top → Top with a natural transformation λ : ST ⇒ S
which satisfies various commutativity diagrams, basically identical to the ones for T -algebras. We
can think of λ as a right-action of T on the functor S, which justifies the nickname “right T -algebra;”
May calls such objects T -functors in Top.
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Γ-spaces can be thought of as generalizing Abelian topological monoids, and more
generally the idea of a Γ-structure can be transported to other categories so that
resulting Γ-objects generalize the commutative monoidal objects of that category.
This theory was originally intended to apply only to infinite loop spaces, but other
variants have since developed to treat n-fold loop spaces (cf. [Ada78, §2.5]). More
details about Γ-spaces and their counterparts can be found in Segal’s original work
[Seg74] or other sources such as [Fre12, Mat12a, Mat12b]. Segal’s approach is similar
to May’s in spirit in the sense that it produces a particular Ω-spectrum (involving
the classifying space construction) when given certain data, and this spectrum comes
with a specific delooping. It is a theorem of May and Tomason [MT78] that May’s
and Segal’s delooping processes are equivalent, meaning they will produce equiv-
alent spectra when fed the same data. In fact, any appropriately defined method
of turning spaces into Ω-spectra (called an “infinite loop space machine”) will be
equivalent to Segal’s method.

4.1 Γ-spaces

Segal defines Γ-spaces as a contravariant functor on a particular category Γ, although
this category can be a bit difficult to understand. The category Γ can be thought of
as having finite pointed sets as objects with partially defined maps between them.
That is, a morphism S → T in Γ is a subset S′ ⊆ S containing the basepoint of S
and a map S′ → T . The composition of two morphisms is the usual composition
defined wherever it makes sense.

It is much easier to make sense of the opposite category Γop. In fact, Γop is just
Fin∗, the category of finite sets and based maps between them; this observation is
originally due to D. Anderson [And71]. We will continue to use the notation Γ and
Γop to remain true to Segal’s original definitions.

Remark 4.1. Every object of Γop is isomorphic to

n+ = {0, 1, . . . , n}

for some n ∈ Z≥0, where we think of 0 as the basepoint. The object 0+ makes Γop

into a pointed category. We will sometimes make our definitions solely in terms of
these objects n+ or even talk about them as “the” objects of Γop. We will make
extensive use of this skeleton of Γop (equivalently, Fin∗), which we denote F , in
Section 5 when we discuss categories of operators.

Definition 4.2. A Γ-space is a functor A : Γop → Top∗ such that A(0+) is con-
tractible. A Γ-space A is special if for all pointed finite sets S, T , the map

A(S ∨ T )→ A(S)×A(T )

is a weak homotopy equivalence of pointed spaces.
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The map A(S ∨ T ) → A(S) × A(T ) is the one induced by the collapse maps
S ∨ T → S and S ∨ T → T . By Remark 4.1, a special Γ-space is determined by
its value on 1+, in the sense that A(n+) is canonically equivalent to A(1+)n. In
this sense, A(1+) can be thought of as the “underlying space” which determines a
special Γ-space A, and A(n+) can be thought of as n-tuples of elements in A(1+).

Example 4.3. There is an associated special Γ-space for every Abelian toplogical
monoid M . Forgetting the monoid structure, we are left with a pointed topo-
logical space (M, 0), where 0 is the unit. Define AM : Γop → Top∗ on objects
by S 7→ Top∗(S,M). Note that AM is even a bit nicer than an arbitrary spe-
cial Γ-space, in that the map AM (S ∨ T ) → AM (S) × AM (T ) is actually an iso-
morphism. In particular, there is a canonical isomorphism AM (n+) ∼= Mn, and
so we can recover the monoid M as AM (1+). Given a map f : S → T in Γop,
we define f∗ := AM (f) : Top∗(S,M) → Top∗(T,M) by “integrating” a given
φ ∈ Top∗(S,M),

f∗(φ) : t 7→
{

0 t = ∗;∑
s∈φ−1(t) φ(s) t 6= ∗.

Note that AM sends the map α : 2+ → 1+ with α(2) = α(1) = 1 to the addition
operation M2 → M . Functoriality of AM requires that this addition is strictly
commutative and associative, as can be seen by applying AM to the diagrams:

Thus every Abelian topological monoid yields a special Γ-space. For certain
special Γ-spaces, the converse is true as well. In particular, if A(S ∨ T ) → A(S) ×
A(T ) is an isomorphism for every S, T ∈ Γop, then A(1+) is an Abelian topological
monoid whose associated special Γ-space is again A. Such a Γ-space is sometimes
called a strong Γ-space.

The reader who is familiar with simplicial objects has undoubtedly noticed the
similarities between simplicial spaces and Γ-spaces. This resemblance can be codified
by defining a functor between Γop and ∆op. Recall that ∆ is the category of non-
empty finite ordered sets and order-preserving maps. Any object of ∆ is isomorphic
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to
[n] = {0 < 1 < · · · < n}

for some n ≥ 0. We can define a functor κ : ∆op → Γop which allows us to turn
Γ-spaces into simplicial spaces.

Definition 4.4. The functor κ : ∆op → Γop sends a finite ordered set S to the
pointed (unordered) set (S,minS). In particular, κ[n] = n+. Defining κ on mor-
phisms is a bit trickier, and we will only define it on the representative objects [n],
although the general case is basically the same (see [Fre12, 19.23]). Suppose we have
an order-preserving map f : [n]→ [m]. Given k ∈ [m], define k̂ to be the minimum
of {j ∈ f [n] : j ≥ k}, unless k = 0 or {j ∈ f [n] : j ≥ k} = ∅, in which case set
k̂ = 0. Now define κf : m+ → n+ by

κf(k) =

{
0 k̂ = 0;

min f−1(k̂) otherwise.

It is instructive to understand how κ behaves on the face and degeneracy maps
which generate the morphisms of ∆op. Recall that for each n ≥ 0 there are n + 1
injective coface maps di : [n−1]→ [n], where the superscript indicates which object
is not contained in the image, and n+ 1 surjective codegeneracy maps sj : [n+ 1]→
[n], where now the superscript indicates which object in the image is mapped onto
twice. Explicitly, these maps are given by

di(k) =

{
k k < i;

k + 1 k ≥ i, and sj(k) =

{
k k ≤ j;

k − 1 k > j,

for 0 ≤ i, j ≤ n. The opposite category ∆op has corresponding face maps di and
degeneracy maps sj . The reader can verify (or just believe the author) that

κdi(k) =

{
k k ≤ i;

k − 1 k > i,
and κsj(k) =

{
k k ≤ j;

k + 1 k > j,

for 0 ≤ j ≤ n and 0 ≤ i < n. For i = n, the map looks slightly different: κdn(k) = k
for k 6= n and κdn(n) = 0. The similarities in the formulas between the two displays
are striking. We see that κdi (for i 6= n) is the degeneracy map si, although strictly
speaking the former is a map of unordered pointed sets n+ → (n − 1)+ while the
latter is a map of ordered sets [n] → [n − 1]. Similarly, κsj : n+ → (n + 1)+ is the
face map dj+1 : [n+ 1]→ [n].

If we compose κ with the special Γ-space AM associated to an Abelian topological
monoid M , the induced face and degeneracy maps are given by

(κdi)∗ : Mn →Mn−1

(m1, . . . ,mn) 7→ (m1, . . . ,mi +mi+1, . . . ,mn)
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(for i 6= n; the nth map (κdn)∗ just forgets the last entry mn) and

(κsj)∗ : Mn →Mn+1

(m1, . . . ,mn) 7→ (m1, . . . ,mi−1, 0,mi, . . . ,mn),

which are the familiar face and degeneracy maps on the classifying space of M
(viewed as a category with one object whose set of morphisms is M). This obser-
vation begs us to define an analogous classifying space construction for Γ-spaces.

Definition 4.5. The realization of a Γ-space A is the geometric realization of its
associated simplicial space A ◦ κ, denoted simply |A|. The classifying space of A is
another Γ-space BA : Γop → Top∗. Given S ∈ Γop, we may consider the Γ-space
T 7→ A(S×T ). The classifying space of A sends S to the realization of this Γ-space,
BA(S) = |A(S ×−)|.

It can be verified that A(S × −) is actually a Γ-space, which is special if A is
special (see [Fre12, Lemma 19.32]). Note that there is a canonical homeomorphism
BA(1+) ∼= |A| and BA(0+) is the basepoint of |A|.
Remark 4.6. We can define Γ-objects more generally by replacing Top∗ with some
other pointed category with finite products. Just as Γ-spaces can be see as a general-
ization of Abelian topological monoids, so do these Γ-objects generalize the monoid
objects in C . For example, taking C = Set∗ we can talk about (special) Γ-sets, or
taking C = Cat (with distinguished object the one object category with a single
identity morphism) we can talk about (special) Γ-categories. Both of these examples
will be relevant in our upcoming discussion. In particular, both of these categories
admit a classifying space functor, and so we can similarly define realizations and
classifying spaces of their Γ-objects.

We can now iterate the classifying space construction for a Γ-space A, getting a
sequence of Γ-spaces A,BA,B2A, . . . along with a sequence of pointed topological
spaces A(1+), BA(1+), B2A(1+), . . . . This second sequence of topological spaces
assembles into a spectrum, which is in fact an Ω-spectrum if the commutative monoid
π0(A(1+)) is an Abelian group. This motivates the following definition of a very
special Γ-space.

Definition 4.7. A very special Γ-space A is a special Γ-space such that π0(A(1+))
is a group.

Remark 4.8. In general, if A is a special Γ-space, the composition

Γop A−→ Top∗
π0−→ Set∗

is a special Γ-set, and this special Γ-set structure ensures π0(A(1+)) is a commutative
monoid. However, as discussed in [Seg74, §4], we can always replace a special Γ-
space A with a very special Γ-space A′ such that π0(A′(1+)) is the group completion
(Definition 3.3) of the Abelian monoid π0(A(1+)) and there is a weak equivalence
of spectra BA→ BA′.
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The upshot is that if we have a very special Γ-space A, then we get an Ω-
spectrum A(1+), BA(1+), B2A(1+) . . . and we know from Subsection 2.1 that this
is equivalent to an infinite loop space.

Theorem 4.9. If A is a very special Γ-space, then A(1+) is an infinite loop space,

with a delooping A(1+)
'−→ ΩkBkA(1+).

Of course, every infinite loop space Ω∞X can be turned into a special Γ-space
which is determined by 1+ 7→ Ω∞X. Thus being a very special Γ-space is equivalent
to being an infinite loop space. Note that the “very” assumption in the theorem
above is not necessary, since we can replace a special Γ-space with an equivalent
very special one, as described in Remark 4.8.

4.2 Examples

Theorem 4.9 can be applied to give a fascinating slew of examples. For instance,
if we start out with a discrete Abelian group M , the associated Γ-space from Ex-
ample 4.3 turns out to be a very special Γ-space, and the associated Ω-spectrum is
the Eilenberg-Mac Lane spectrum for M which we saw in Example 2.6. Arguably
one of the most powerful applications of the theorem is its ability to associate an
infinite loop space to a symmetric monoidal category. This is more or less because
every symmetric monoidal category gives rise to a special Γ-category.8

Theorem 4.10. [Segal] Let C be a symmetric monoidal category, and let ιC denote
the subcategory of isomorphisms of C . Then there is an Ω-spectrum whose underly-
ing infinite loop space is equivalent to the group completion of the classifying space
B(ιC ).

The idea here is to construct a special Γ-category for C , that is, a functor
Ĉ : Γop → Cat, such that Ĉ (n+) is equivalent to (ιC )n. The objects of the category
Ĉ (n+) are certain functors from the power set of n+ into C , and the morphisms are
natural isomorphisms between these functors. By post-composing with the classify-
ing space functor B : Cat→ Top∗, we get a special Γ-space BĈ such that BĈ (1+)
is equivalent to the classifying space of ιC . We do not lose any homotopical infor-
mation by considering ιC , since the equivalence of categories C ' ιC induces an
equivalence of classifying spaces BC ' B(ιC ).

The special Γ-space BĈ gives us a spectrum BĈ (1+), B2Ĉ (1+), . . . and after
possibly group-completing (see Remark 4.8), we get an Ω-spectrum which we denote
BC . The spaces in this Ω-spectrum give us a delooping of the group completion of
the classifying space B(ιC ).

8If we impose an extra condition on the Γ-objects, we actually get an equivalence of categories
between the Γ-objects of C and the commutative monoidal objects of C . Namely, we need to
ask for strong Γ-objects, i.e. those for which the map A(S t T ) → A(S) × A(T ) is actually an
isomorphism instead of just a weak equivalence. So for example, there is an equivalence between
strong Γ-categories and strict symmetric monoidal categories.

30



Theorem 4.10 can be expanded to take topological categories as input, and in
fact Segal states the theorem this way. Topological category here means a category
internal to Top (i.e. the objects and morphisms are both topological spaces, and the
structure maps such as composition are continuous). Note that any small category
can be viewed as a topological category with the discrete topology on the collections
of objects and morphisms. In the following examples, we assume our categories are
discrete unless we make explicit mention of the topological structure.

Example 4.11 (The Barratt-Priddy-Quillen Theorem). Take C to be Fin∗, with
a symmetric monoidal structure given by disjoint union and ∅. Since we are taking
classifying spaces in any case, we may as well consider F , the skeleton of Fin∗ with
objects n+ for n ≥ 0 and morphisms basepoint-preserving maps. Then

BF̂ (1+) =
∐
n≥0

BΣn,

since the isomorphisms in F are precisely the (basepoint-preserving) permutations
of n+, for each n ≥ 0. We claim that BF (the Ω-spectrum associated to BF̂ ) is
the sphere spectrum S.

By the Yoneda Lemma, it suffices to show

HomSp(BF , E) ' HomSp(S, E)

for any spectrum E. To simplify the problem a bit, first observe that HomSp(S, E)
is just π0(E). The second observation is that B admits a right adjoint A. This
functor A turns spectra into Γ-spaces by mapping a spectrum E to the Γ-space AE
with

AE(n+) = HomSp(Sn, E).

So the “underlying space” of this Γ-space is AE(1+) = π0(E). Segal shows that
B a A is an adjunction between HoSp (the category of spectra and homotopy
classes of maps) and the homotopy category of Γ-spaces with level-wise acyclic
Hurewicz fibrations inverted [Seg74, §3]. Let A denote the latter category. By
adjunction and the construction of A, it thus suffices to show

HomA (BF̂ ,AE) ∼= π0(AE(1+)).

Segal proves this directly by exhibiting a natural isomorphism between the two
spaces. We first define a map HomA (BF̂ ,AE)→ π0(AE(1+)). Given a morphism
BF̂ → AE in A , we map that morphism to the element of π0(AE(1+)) which is
hit by the single point BΣ1 ∈ BF̂ (1+).

Constructing the inverse to this map is a bit more complicated. Let a be a point
of AE(1+), and let Fn denote the homotopy fiber of the map AE(n+)→ AE(1+)n

at (a, . . . , a). Then the Fn are contractible and assemble into a functor F from the
subcategory of F whose morphisms are injections to Top. The idea is to introduce
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an auxiliary category SF whose objects are pairs (n+, x ∈ Fn) and morphisms
(m+, y) → (n+, x) are injections φ : m+ → n+ in F such that Fφ(y) = x. We can
then form the associated Γ-space BŜF , . The forgetful map BŜF → BF̂ induced
by (n+, x ∈ Fn) 7→ n+ is actually an isomorphism in A (by the contractibility of
the Fn).

The important takeaway from all of this is that, when given a ∈ AE(1+), it
suffices to exhibit a map BŜF → AE in A . The specific construction of the Γ-
space BŜF means that this map can be given levelwise: Recall that BŜF (k+) is just
the classifying space of the category ŜF (k+), so it will do us good to understand
the latter. An object of the category ŜF (n+) can be thought of as a pair (φ, x)
where φ : m+ → n+ is a surjective morphism in Γop such that φ−1(0) = {0} and
x ∈ Fm. There is a morphism (φ : m+ → n+, x) → (ψ : k+ → n+, y) only when
m = k and x = y, in which case a morphism is given by a bijection m+ → m+, i.e.
an element of Σm. We can map each object (φ : m+ → n+, x ∈ Fm) into AE(n+)
via the composition

Fm → AE(m+)
φ∗−→ AE(n+).

Moreover, if there is a morphism (φ, x) → (ψ, x), then the two objects have the
same image in AE(n+), so we get a well-defined map BŜF (n+)→ AE(n+). These
levelwise maps assemble into a morphism BŜF → AE in A . After showing this
map is the same for any point in the same connected component of AE(1+) as a,
we are done.

Example 4.12 (Topological K-theory). Now take C to be Vect(C), the category
of finite-dimensional complex vector spaces. The direct sum ⊕ and the trivial vector
space (0) give Vect(C) a symmetric monoidal structure. As before, we can consider
the skeleton V of Vect(C) whose objects are Cn for n ≥ 0. Then

BV̂ (1+) =
∐
n≥0

BGLn(C),

where we must take the topology on GLn(C) into account. Moreover, the Gram-
Schmidt process gives a deformation retraction of GLn(C) onto U(n), the group
of n × n unitary matrices. It turns out that the group completion of BV̂ (1+) is
equivalent to Z×BU , and the delooping machinery of Segal (or May) then shows that
the Ω-spectrum BV is equivalent to the connective topological K-theory spectrum.

Example 4.13 (AlgebraicK-theory). LetR be a ring and take C to be Modproj
f.g. (R),

the category of finitely generated projective modules overR. The symmetric monoidal
structure on Modproj

f.g. (R) is given by direct sum and the trivial R-module. The work
of Quillen [Qui73, Gra76] shows that the algebraic K-theory space of R is the group
completion of B(ιModproj

f.g. (R)), and delooping allows for the construction of the
algebraic K-theory spectrum of R.
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Hopefully these few examples demonstrate the incredible power of May’s and
Segal’s machinery. For more details and other examples, we encourage the interested
reader to look at [Seg74, §2] and [Ada78, §2.6].

5 Infinite Loop Space Machines and the Uniqueness
Theorem

We have seen two different methods for characterizing and delooping infinite loop
spaces, one using operads and one using Γ-spaces. In particular, both approaches
come with a way to produce Ω-spectra when fed certain data (an E∞-space or a
special Γ-space, along with a way to group complete to a grouplike E∞-space or a
very special Γ-space), and we might wonder how these two methods compare. Cer-
tainly, any space which admits a delooping by May’s method will admit a delooping
by Segal’s method, and vice versa, but we can ask whether these two deloopings will
be “the same” in that they will give equivalent Ω-spectra. The uniqueness theorem
of May and Thomason [MT78] tells us this is the case, assuring us that any two
loop space machines will produce equivalent spectra when fed the same data. This
section will be spent unpacking exactly what that means, although we will leave
most of the details to the original paper.

5.1 Categories of Operators

Roughly, an infinite loop space machine is any functor which constructs spectra out
of simpler space-level data. May and Thomason capture this idea of “space-level
data” via the definition of a category of operators, which is a topological category
closely connected to Fin∗ (the category of finite pointed sets and pointed maps
between them).

Definition 5.1. Let F be the category whose objects are the finite based sets n+

for n ≥ 0 and whose morphisms are the basepoint-preserving maps between them.
In other words, F is a skeleton of Fin∗. Let Π be the wide subcategory of F whose
morphisms are those maps φ : m+ → n+ such that φ−1(j) has at most one element
for any non-basepoint j ∈ n+.

The idea is that a category of operators G will sit between Π and F and hold
information about different operations. The objects of G look like the natural num-
bers, and the morphisms G (m+, n+) can be thought of as a space of operations with
m inputs and n outputs. The subcategory Π consists of the “elementary operations”
which are injective away from the basepoint 0; this can be interpreted to mean that
the operations in Π do not combine distinct variables.

Definition 5.2. A category of operators (over Top) is a category G enriched over
Top with object space N (as a discrete space), along with (continuous) functors

Π
ι−→ G

ε−→ F
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such that both ι and ε are the identity on objects and ε ◦ ι is the inclusion Π ⊆ F .
A morphism between categories of operators is a (continuous) functor ν : G → G ′

such that ν(n+) = n+ and the following diagram commutes:

G

Π F

G ′

ε

ν

ι

ι′ ε′

A morphism ν is an equivalence if each map G (m+, n+) → G ′(m+, n+) is a weak
equivalence of topological spaces.

In [MT78], the authors also impose some minor, technical conditions on G (see, for
example, Addendum 1.7). A crucial motivation for this definition is that we can now
talk about G -spaces, and these objects will generalize both Γ-spaces and algebras
over an operad.

Definition 5.3. A G -space is a functor X : G → Top∗, written n 7→ Xn on objects,
which satisfies the following conditions:

• The functor X is enriched in Top∗, which in particular means that X0 ' ∗
and the adjoint maps G (m+, n+)×Xm → Xn are continuous.

• For n > 1, there is an equivalence Xδ : Xn
'−→ Xn

1 , where δ = (δ1, . . . , δn) for

δi : n
+ → 1+

with δi(j) equal to 1 if j = i and 0 otherwise.

• If φ : m+ → n+ is an injection in Π, then Xφ : Xm → Xn is a Σφ-equivariant
cofibration, where Σφ is the group of permutations σ : n+ → n+ such that
σφ = φ.

A morphism of G -spaces is just a natural transformation. A morphism η : X → X ′

is an equivalence of G -spaces if each ηn : Xn → X ′n is a weak equivalence.

Remark 5.4. Like many things we have discussed in this write-up, these definitions
can be generalized. We can enrich a category of operators over some category other
than Top, such as the category of G-spaces for some finite group G. This approach
gives rise to the study of equivariant infinite loop space theory, as in [MMO17]. For
more general discussion of categories of operators, see [May18].

The “operations” recorded as morphisms in G will dictate the structure on G -
spaces. To illustrate this idea, we consider the following scenario: Given a topolog-
ical space X ∈ Top, we can try to form a G -space whose nth level is Xn (where it

34



is understood that X0 = ∗). If G = Π, then this works for any X ∈ Top, as the
conscientious reader can check. However, if G contains the morphisms illustrated in
the diagrams of Example 4.3, then functoriality implies X actually needs to be an
Abelian monoid. In this sense, G -spaces are just Π-spaces with additional structure,
and the “closer” G is to F , the closer G -spaces are to having a commutative monoid
structure.

It is not too difficult to imagine how both Γ-spaces and operads might fit into
this framework. Indeed, Γ-spaces are just G -spaces if we take G = F . The less
obvious connection is the one between categories of operators and operads. The
following example constructs a category of operators O⊗ associated to an operad
O, such that the O⊗-spaces are precisely the O-algebras.

Example 5.5. Let O be an operad. Its associated category of operators O⊗ has

O⊗(m+, n+) =
∐

φ∈F (m+,n+)

∏
1≤j≤n

O(|φ−1(j)|),

and O⊗(m+, 0+) is a point ∗ indexed by the unique map m+ → 0+ in F . An
element of O⊗(m+, n+) is a morphism φ : m+ → n+ in F and an n-tuple of elements
(c1, . . . , cn) where cj ∈ O(|φ−1(j)|), and we write this element as (φ; c1, . . . , cn).
For (φ; c1, . . . , cn) ∈ O⊗(m+, n+) and (ψ; d1, . . . , dm) ∈ O⊗(k+,m+), define their
composition to be

(φ; c1, . . . , cn) ◦ (ψ; d1, . . . , dm) = (φ ◦ ψ; γ(c1;×φ(i)=1di)σ1, . . . , γ(cn;×φ(i)=ndi)σn),

where the di are ordered according to the natural natural ordering on their indices
(as a subset of m+) and σj is a certain permutation of |φ ◦ ψ−1(j)| letters. In
particular, σj reorders the elements of φ ◦ψ−1(j) (viewed as a subset of k+) so that
the elements of ψ−1(i) ⊆ φ−1(j) precede all the elements of ψ−1(i′) ⊆ φ−1(j) if
i < i′ in k+.

We can clarify the definition of composition through an example, using pictures.
Suppose we have the following two morphisms φ : 3+ → 4+ and ψ : 5+ → 3+ in F :
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In O⊗, these two morphisms give us elements of the form (φ; c1, c2, c3, c4) and
(ψ; d1, d2, d3), where the ci and dj are chosen based on the sizes of φ−1(i) and ψ−1(j),
respectively. For example, since

φ−1(i) =


0 i = 3, 4;
1 i = 1;
2 i = 2,

we want to pick c1 ∈ O(1), c2 ∈ O(2), and c3 = c4 ∈ O(0) = ∗, so then
(φ; c1, c2, c3, c4) will look like this:

Similarly, (ψ; d1, d2, d3) will look something like this:

We know how to compose φ ◦ ψ : 5+ → 4+ in F , as in the first picture. The more
complicated part is how to stitch the ci and dj together. Before going through the
process of this composition, we will show the result:

The most interesting thing is happening in the second slot, so we will focus our
attention there. By definition, the second slot is γ(c2;×φ(i)=2di)σ2. Since φ−1(2) =
{2, 3}, this is γ(c2; d2, d3)σ2, where σ2 is telling us how to permute the three inputs
of γ(c2; d2, d3). Specifically, since ψ−1(2) = {4} and ψ−1(3) = {1, 5}, σ2 ∈ Σ3 is
the permutation (23). This final step gives us the element of O(3) that is pictured
above.

The functors Π
ι−→ O⊗ ε−→ F are defined to be the identity on objects. On

morphisms, ι is given by

ι(φ) = (φ; d1, . . . , dn) for dj =

{
∗ ∈ O(0) |φ−1(j)| = 0,
1 ∈ O(1) |φ−1(j)| = 1;
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for φ ∈ Π(m+, n+). The functor ε is defined on morphisms by the obvious choice

ε(ψ; c1, . . . , cn) = ψ

for (ψ; c1, . . . , cn) ∈ O⊗(m+, n+). Note that ε is an equivalence if each O(j) is
contractible.

The category O⊗ is constructed specifically so that the O⊗-spaces are precisely
the O-algebras ([MT78, Lemma 4.2]). This gives us a way to compare the operadic
approach to infinite loop spaces with Segal’s approach. In order to make this com-
parison precise, we need a way to transport G -spaces across different categories of
operators.

Given a map ν : G → G ′, a G ′-space Y can be pulled back to a G -space ν∗Y .
The converse operation, discussed in [Seg74, Appendix B] and [MT78, §1], turns a
G -space X into a G ′-space ν∗X, with the following important result:

Theorem 5.6. Let ν : G → G ′ be an equivalence of categories of operators. Let X
be a G -space and Y be a G ′-space. Then there are natural equivalences of G -spaces

ν∗ν∗X ← 1∗X → X

where 1∗ is induced by the identity on G . There is also a natural equivalence of
G ′-spaces ν∗ν

∗Y 7→ Y .

This theorem tells us that G -spaces are essentially the same thing as F -spaces
whenever G is equivalent to F . This basically tells us May’s and Segal’s inputs to
infinite loop spaces are equivalent, since an E∞-operad has contractible spaces and
therefore its associated category of operators is equivalent to F . The next (and
final!) subsection covers the equivalence in more detail, as well as that of the output
spectra, using the machinery we have developed thus far.

5.2 The Uniqueness Theorem

In order to state the uniqueness theorem for infinite loop space machines, we need
to know what an infinite loop space machine is. We want both operads and Γ-spaces
to give rise to these machines, and we saw in the previous subsection how categories
of operators provide an umbrella for both types of gadgets. This motivates the
definition of infinite loop space machines in terms of categories of operators and
spaces over them. Moreover, if we want to hope for any sort of uniqueness theorem,
Theorem 5.6 tells us that infinite loop space machines should be related to categories
of operators G which are equivalent to F .

Definition 5.7. Let G be a category of operators equivalent to F . An infinite
loop space machine on G -spaces is defined as a functor E from G -spaces to connec-
tive spectra, written EX = {EnX} for a G -space X, along with a natural group
completion X1 7→ E0X.
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Such an object gives a canonical way to turn G -spaces into infinite loop spaces
(since infinite loop spaces arise as grouplike spaces which are the 0th term of an Ω-
spectrum, as we saw in Subsection 2.1), which justifies the name “infinite loop space
machine.” We can reinterpret Segal’s method as an infinite loop space machine on
F -spaces, denoted by S. Specifically, given a F -space (i.e. a Γ-space) X, SX is
the spectrum introduced prior to Theorem 4.9:

SnX = BnX(1+)

where BnX is the nth-iterated classifying space of the Γ-space X, as defined in
Definition 4.5.

Similarly, we can explicitly see how the operadic machinery yields an infinite
loop space. Let C∞ := GC∞ denote the category of operators associated to the ∞-
cubitos operad (Definition 3.16). Then any C∞-space X is in fact a C∞-algebra,
which we associate to the spectrum MX with

MnX = ΩnB(Ω∞Σ∞,Ω∞Σ∞, X)

where B(Ω∞Σ∞,Ω∞Σ∞, X) is the two-sided bar construction discussed at the end
of Subsection 3.4. See [MT78, §6] for more details.

Since C∞ is equivalent to F , Theorem 5.6 tells us that Γ-spaces are equivalent
to C∞-algebras (i.e. E∞-spaces). We want to know that the spectra resulting from
the infinite loop space machinery are also equivalent. That is, if we feed the functors
S and M the same9 data X, we want to get equivalent spectra. More generally,
the uniqueness theorem proves that an arbitrary infinite loop space machine E will
produce equivalent spectra to S when the two machines are given equivalent data.

The idea is to use Theorem 5.6 to turn an infinite loop space machine E on
G -spaces into an infinite loop space machine on F -spaces. Specifically, the F -space
version of E is just the “pushforward” Eε∗, where Eε∗(X) = E(ε∗X) for any F -
space X. Here ε : G → F is the equivalence built into the data of G . The precise
statement of the uniqueness theorem is as follows:

Theorem 5.8 (May and Thomason). Given any loop space machine E on G -spaces,
there is a natural equivalence of spectra between Eε∗(X) and SX for any F -space
X.

Conversely, we could transport Segal’s machine from F -spaces to G -spaces, and
restate the theorem in the context of G . The G -space version of Segal’s machine is
of course the pullback Sε∗, with Sε∗(Y ) = S(ε∗Y ) for any G -space Y . A corollary
of the uniqueness theorem and Theorem 5.6 is that there is a natural equivalence of
spectra between EY and Sε∗(Y ) for any G -space Y . In other words, the machines
E and S are completely equivalent.

9What we mean by “the same” data X is that X is unchanged when transported across F and
C∞ as in Theorem 5.6.
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