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Burnside ring Burnside Green functor Burnside Tambara functor

*fix a finite group G throughout™



The Burnside ring of G is
A(G) = Gr(FinG)

— Z[{G/ H}HSG]/"’

with + = disjoint union and
X = Cartesian product

A(Cy) = Z|t, | /(&5 — ptp)
fort, = C,/e
and 1 = C,/C,

The prime ideals of the Burnside
ring are

Spec(A(G)) =
{ker ¢ | H < G, q prime or 0}

where ¢/': A(G) - ZH—> Z./q7Z.
X - | X7

ker p; = (tp—p,q)
C
kercpqp = (tp,q)



The Burnside Green functor
of G is given by

Ag = {A(H)}HSG

with restrictions, transfers,
and conjugation maps

A(Cp) = Z|t,|/(tF — pty)

Ale) = 7Z

An ideal is I = {I(H)}y<c with
I(H) € A(H) an ideal so that [

is closed under R, T, and ¢

An ideal P is prime if for any
ideals [ and [, if I - ] € P then
I€CPor]CP

(ntp) (tp - p)

(n) (0)
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For any finite group G,

{P(H,p) | H < G,p prime or 0} C Spec(éa)

built from ker qb{f S



For any finite Abelian group G,

{P(H,p) | H < G,p prime or 0} C Spec(éa)
with certain containment relations.

. P(H,0) € P(H,p)
.+ P(K,0) S P(H,0)if H<K
 P(K,p) €P(H,p)ifH <; K

look at “non-p part”



For G = Cy,

{P(i,p) | i | n,p prime or 0} — SpeC(ég)
with certain containment relations.

* P(i,0) € P(i,p)
. P(j,0) € P(i,0)ifi ]

* P(p) SPUp)ifils ]

look at “non-p part”



For G = Cy,

{P(i,p) | i | n,p prime or 0} — SpeC(ég)
with certain containment relations.

* P(i,0) € P(i,p)
. P(j,0) € P(i,0)ifi ]

* P(p) SPUp)ifils ]

if i = p*j then
P(j,p) = P(i,p) L | J
(for p # 0) pVi | p¥i



O or prime 0 2 3 p .. * P@{0)<cP(@p)

divi divisor divisor divisor o . C . AP
Iol’r\;;z:; lattice™ lattice™® lattice™ P(]’ O) — P(l’ O) if i J
of n/2V2 of n/3v3 of n/p’p . : C : e |
SpeC(ACN) of 7 > / P(]' p) P(l: p) if 1 |p]
- EEnm . . k'
° ° ® ° if .l =p~J ’rhen
* * * P(,p) = P(i,p)
l l l
* * * i
; ; ; the case N = p™ is a
Spec (ACpn) L L L theorem of Nakaoka
= * EEE * EEE .
o o Y o and our proof relies
on his result
/N N
x x " ° . .
Spec(A ) % r X <,/ Conjecture: this result
—Ce Y x holds for all

o o o o (Abelian?) groups G
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