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Glossary

Action type A type of player who is committed to playing
a particular action, also called a commitment type or
behavioral type.

Complete information Characteristics of all players are
common knowledge.

Flow payoff Stage game payoff.

Imperfect monitoring Past actions of all players are not
public information.

Incomplete izformation Characteristics of some player
are not common knowledge.

Long-lived player Player subject to intertemporal incen-
tives, typically has the same horizon as length of the
game.

Myopic optimum An action maximizing stage game pay-
offs.

Nash equilibrium A strategy profile from which no
player has a profitable unilateral deviation (i.e., it is
self-enforcing).

Nash reversion In a repeated game, permanent play of
a stage game Nash equilibrium.

Normalized discounted value The discounted sum of
an infinite sequence {a;};>0. calculated as (1 — &)
3 >0 8 a:, where § € (0, 1) is the discount value.

Perfect monitoring Past actions of all players are public
information.

Repeated game The finite or infinite repetition of a stage
game.

Repatation bound The lower bound on equilibrium pay-
offs of a player that the other player(s) believe may be
a simple action type (typically the Stackelberg type).

Short-lived player Player not subject to intertemporal in-
centives, having a one-period horizon and so is myopi-
cally optimizing.

Simple action type An action who plays the same (pure
or mixed) stage-game action in every period, regard-
less of history.

Stage game A game played in one period.

Stackelberg action In a stage game, the action a player
would commit to, if that player had the chance to do
$0, i. €., the optimal commitment action.

Stackelberg type A simple action type that plays the
Stackelberg action.

Subgame Inarepeated game with perfect monitoring, the
game following any history.

Subgame perfect equilibrium A strategy profile that in-
duces a Nash equilibrium on every subgame of the
original game.

Type The characteristic of a player that is not common
knowledge.

Definition of the Subject

Repeated games have many equilibria, including the rep-
etition of stage game Nash equilibria. At the same time,
particularly when monitoring is imperfect, certain plausi-
ble outcomes are not consistent with equilibrium. Repu-
tation effects is the term used for the impact upon the set
of equilibria (typically of a repeated game) of perturbing
the game by introducing incomplete information of a par-
ticular kind. Specifically, the characteristics of a player are
not public information, and the other players believe it is
possible that the distinguished player is a type that nec-
essarily plays some action (typically the Stackelberg ac-
tion). Reputation effects fall into two classes: “Plausible”
phenomena that are not equilibria of the original repeated
game are equilibrium phenomena in the presence of in-
complete information, and “implausible” equilibria of the
original game are not equilibria of the incomplete infor-
mation game. As such, reputation effects provide an im-
portant qualification to the general indeterminacy of equi-
libria.

Introduction

Repeating play of a stage game often allows for equilib-
rium behavior inconsistent with equilibrium of that stage
game. If the stage game has multiple Nash equilibrium
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Reputation Effects, Figure 1
The prisoners’ dilemma. The cooperative action is labeled C,
while defect is labeled D

payoffs, a large finite number of repetitions provide suf-
ficient intertemporal incentives for behavior inconsistent
with stage-game Nash equilibria to arise in some subgame
perfect equilibria. However, many classic games do not
have multiple Nash equilibria. For example, mutual defec-
tion DD is the unique Nash equilibrium of the prisoners’
dilemma, illustrated in Fig. 1.

A standard argument shows that the finitely repeated
prisoner’s dilemma has a unique subgame perfect equilib-
rium, and in this equilibrium, DD is played in every pe-
riod: In any subgame petfect equilibrium, in the last pe-
riod, DD must be played independently of history, since
the stage game has a unique Nash equilibrium. Then, since
play in the last period is independent of history, there are
no intertemporal incentives in the penultimate period, and
so DD must again be played independently of history. Pro-
ceeding recursively, DD must be played in every period in-
dependently of history. {In fact, the finitely repeated pris-
oners’ dilemma has a unique Nash equilibrium outcome,
given by DD in every period.)

This contrasts with intuition, which suggests that if
the prisoners’ dilemma were repeated a sufficiently large
(though finite) number of times, the two players would
find a way to play cooperatively (C) at least in the ini-
tial stages. In response, Kreps, Milgrom, Roberts and Wil-
son [15] argued that intuition can be rescued in the finitely
repeated prisoners’ dilemma by introducing incomplete
information. In particular, suppose each player assigns
some probability to their opponent being a behavioral type
who mechanistically plays tit-for-tat (i. e., plays C in the
first period or if the opponent had played C in the previ-
ous period, and plays D if the opponent had played D in
the previous period) rather than being a rational player.
No matter how small the probability, if the number of rep-
etitions is large enough, the rational players will play C in
early periods, and the fraction of periods in which CC is
played is close to one.

This is the first example of a reputation effect: a small
degree of incomplete information (of the right kind) both
rescues the intuitive CC for many periods as an equilib-
rium outcome, and eliminates the unintuitive always DD
as one. In the same issue of the Journal of Economic The-
ory containing Kreps, Milgrom, Roberts and Wilson [15],

Kreps and Wilson[14] and Milgrom and Roberts [18] ex-
plored reputation effects in the finite chain store of Sel-
ten [22], showing that intuition is again rescued, this
time by introducing the possibility that the chain store is
a “tough” type who always fights entry.

Reputation effects describe the impact upon the set of
equilibria of the introduction of small amounts of incom-
plete information of a particular form into repeated games
(and other dynamic games). Reputation effects fall into
two classes: “Plausible” phenomena that are not equilibria
of the complete information game are equilibrium phe-
nomena in the presence of incomplete information, and
“implausible” equilibria of the complete information game
are not equilibria of the incomplete information game.

Reputation effects are distinct from the equilibrium
phenomenon in complete information repeated games
that are sometimes described as capturing reputations. In
this latter use, an equilibrium of the complete information
repeated game is selected, involving actions along the equi-
librium path that are not Nash equilibria of the stage game.
As usual, incentives to choose these actions are created by
attaching less favorable continuation paths to deviations.
Players who choose the equilibrium actions are then in-
terpreted as maintaining a reputation for doing so, with
a punishment-triggering deviation interpreted as causing
the loss of one’s reputation. For example, players who co-
operate in the infinitely repeated prisoners’ dilemma are
interpreted as having (or maintaining) a cooperative rep-
utation, with any defection destroying that reputation. In
this usage, the link between past behavior and expectations
of future behavior is an equilibrium phenomenon, holding
in some equilibria, but not in others. The notion of repu-
tation is used to interpret an equilibrium strategy profile,
but otherwise adds nothing to the formal analysis.

In contrast, the approach underlying reputation effects
begins with the assumption that a player is uncertain about
key aspects of her opponent. For example, player 2 may
not know player 1’s payoffs, or may be uncertain about
what constraints player 1 faces on his ability to choose var-
ious actions. This incomplete information is a device that
introduces an intrinsic connection between past behavior
and expectations of future behavior. Since incomplete in-
formation about players’ characteristics can have dramatic
effects on the set of equilibrium payoffs. reputations in
this approach do not describe certain equilibria, but rather
place constraints on the set of possible equilibria.

An Example

While reputation effects were first studied in a symmet-
ric example with two long-lived players, they arise in their
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Reputation Effects, Figure 2
The product-choice game

purest form in infinitely repeated games with one long-
lived player playing against a sequence of short-lived play-
ers. The chain store game of Selten [22] is a finitely re-
peated game in which a chain store (the long-lived player)
faces a finite sequence of potential entrants in its different
markets. Since each entrant only cares about its own deci-
sion, it is short-lived.

Consider the “product-choice” game of Fig. 2. The
row player (player 1), who is long-lived, is a firm choos-
ing between high (H) and low (L) effort, while the col-
umn player (player 2), who is short-lived, is a customer
choosing between a high (h) or low (£) priced product.
(Mailath and Samuelson [17] illustrate various aspects of
repeated games and reputation effects using this example.)
Player 2 prefers the high-priced product if the firm has ex-
erted high effort, but prefers the low-priced product if the
firm has not. The firm prefers that customers purchase the
high-priced product and is willing to commit to high effort
to induce that choice by the customer. In a simultaneous
move game, however, the firm cannot observably choose
effort before the customer chooses the product. Since high
effort is costly, the firm prefers low effort, no matter the
choice of the customer.

The stage game has a unique Nash equilibrium, in
which the firm exerts low effort and the customer pur-
chases the low-priced product. Suppose the game is played
infinitely often, with perfect monitoring (i. e., the history of
play is public information). The firm is long-lived and dis-
counts flow profits by the discount factor § € (0, 1), and is
patient if § is close to 1. The role of the customer is taken by
a succession of short-lived players, each of whom plays the
game only once (and so myopically optimizes). It is stan-
dard to abuse language by treating the collection of short-
lived players as a single myopically optimizing player.

When the firm is sufficiently patient, there is an equi-
librium outcome in the repeated game in which the firm
always exerts high effort and customers always purchase
the high-priced product. The firm is deterred from tak-
ing the immediate myopically optimal action of low ef-
fort by the prospect of future customers then purchasing
the low-priced product. Purchasing the high-priced prod-
uct is a best response for the customer to high effort, so
that no incentive issues arise concerning the customer’s

behavior. In this equilibrium, the long-lived player’s pay-
off is 2 (the firm’s payoffs are calculated as the normalized
discounted sum, i. e., as the discounted sum of flow pay-
offs normalized by (1 — &), so that payoffs in the infinite
horizon game are comparable to flow payoffs). However,
there are many other equilibria, including one in which
low effort is exerted and low price purchased in every pe-
riod, leading to a payoff of 1 for the long-lived player. In-
deed, for § > 1/2, the set of pure-strategy subgame-per-
fect-equilibrium player 1 payoffs is given by the entire in-
terval [1, 2].

Reputation effects effectively rule out any payoff less
than 2 as an equilibrium payoff for player 1. Suppose cus-
tomers are not entirely certain of the characteristics of the
firm. More specifically, suppose they attach high probabil-
ity to the firm’s being “normal,” that is, having the payoffs
given above, but they also entertain some (possibly very
small) probability that they face a firm who fortuitously
has a technology or some other characteristic that ensures
high effort. Refer to the latter as the “H-action” type of
firm. Since such a type necessarily plays H in every period,
it is a type described by behavior (not payoffs), and such
a type is often called a behavioral or commitment type.

This is now a game of incomplete information, with
the customers uncertain of the firm’s type. Since the cus-
tomers assign high probability to the firm being “normal,”
the game is in some sense close to the game of complete
information. None the less, reputation effects are present:
For a sufficiently patient firm, in any Nash equilibrium of
the repeated game, the firm’s payoff cannot be significantly
less than 2. This result holds no matter how unlikely cus-
tomers think the H-action type to be, though increasing
patience is required from the normal firm as the action
type becomes less likely.

The intuition behind this result is most easily seen by
considering pure strategy Nash equilibria of the incom-
plete information game where the customers believe the
firm is either the normal or the H-action type. In that case,
there is no pure strategy Nash equilibrium with a payoff
less than 2§ (which is clearly close to 2 for § close to 1).
In the pure strategy Nash equilibrium, either the firm al-
ways plays H, (in which case, the customers always play h
and the firm’s payoff is 2), or there is a first period (say £)
in which the firm plays L, revealing to future customers
that he is the normal type (since the action type plays H
in every period). In such an equilibrium, customers play k
before ¢ (since both types of firm are choosing H). After
observing H in period ¢, customers conclude the firm is
the H-action type. Consequently, as long as H is always
chosen thereafter, customers subsequently play & (since
they continue to believe the firm is the H-action type, and
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so necessarily plays H). An easy lower bound on the nor-
mal firm’s equilibrium payoff is then obtained by observ-
ing that the normal firm’s payoff must be at least the payoff
from mimicking the action type in every period. The pay-
off from such behavior is at least as large as

t—1
(1 —5)25f2 +

=0

(1-8)8" %0

m— e’

payoff in ¢ from playing H when
L may be myopically optimal

payoff in T < ¢ from pooling
with H-action type

+ (1=18) Z 872

T=t+1

payoff in T > ¢ from playing like
and being treated as the H-action type
=(1-82+8§%"2
=2-28(1-9)
>2-2(1-68)=125.

The outcome in which the stage game Nash equilibrium
L€ is played in every period is thus eliminated.

Since reputation effects are motivated by the hypoth-
esis that the short-lived players are uncertain about some
aspect of the long-lived player’s characteristics, it is impor-
tant that the results are not sensitive to the precise nature
of that uncertainty. In particular, the lower bound on pay-
offs should not require that the short-lived players only as-
sign positive probability to the normal and the H-action
type (as in the game just analyzed). And it does not: The
customers in the example may assign positive probability
to the firm being an action type that plays H on even peri-
ods, and L on odd periods, as well as to an action type that
plays H in every period before some period t' (that can
depend on history), and then always plays L. Yet, as long
as the customers assign positive probability to the H-ac-
tion type, for a sufficiently patient firm, in any Nash equi-
libriun: of the repeated game, the firm’s payoff cannot be
significantly less than 2.

Reputation effects are more powerful in the presence
of imperfect monitoring. Suppose that the firm’s choice
of H or L is not observed by the customers. Instead, the
customers observe a public signal y € {y, 7} at the end of
each period, where the signal 7 is realized with probability
p € (0,1) if the firm chose H, and with the smaller prob-
ability g € (0, p) if the firm chose L. Interpret y as a good
meal: while customers do not observe effort, they do ob-
serve a noisy signal (the quality of the meal) of that effort,
with high effort leading to a good meal with higher proba-

bility. In the game with complete information, the largest
equilibrium payoff to the firm is now given by

g=LZB 1)

)

V1

-]
N

reflecting the imperfect monitoring of the firm’s actions
(the firm is said to be subject to binding moral hazard, see
Sect. 7.6 in [17]). Since deviations from H cannot be de-
tected for sure, there are no equilibria with the determin-
istic outcome path of Hh in every period. In some periods
after some histories, L£ must be played in order to provide
the appropriate intertemporal incentives to the firm.

As under perfect monitoring, as long as customers as-
sign positive probability to the H-action type in the in-
complete information game with imperfect monitoring,
for a sufficiently patient firm, in any Nash equilibrium of
the repeated game, the firm’s payoff cannot be significantly
less than 2 (in particular, this lower bound exceeds #).
Thus, in this <ase, reputation effects provide an intuitive
lower bound on equilibrium payoffs that both rules out
“bad” equilibrium payoffs, as well as rescues outcomes in
which Hh occurs in most periods.

Proving that a reputation bound holds in the imperfect
monitoring case is considerably more involved than in the
perfect monitoring case. In perfect-monitoring games, it is
only necessary to analyze the evolution of the customers’
beliefs when always observing H, the action of the H-ac-
tion type. In contrast, imperfect monitoring requires con-
sideration of belief evolution on all histories that arise with
positive probability.

None the less, the intuition is the same: Consider a pu-
tative equilibrium in which the normal firm receives a pay-
off less than 2 — ¢. Then the normal and action types must
be making different choices over the course of the repeated
game, since an equilibrium in which they behave identi-
cally would induce customers to choose k and would yield
a payoff of 2. As in the perfect monitoring case, the normal
firm has the option of mimicking the behavior of the H-ac-
tion type. Suppose the normal firm does so. Since the cus-
tomers expect the normal type of firm to behave differently
from the H-action type, they will more often see signals in-
dicative of the H-action type (rather than the normal type),
and so must eventually become convinced that the firm
is the H-action type. Hence, in response to this deviation,
the customers will eventually play their best response to H
of h. While “eventually” may take a while, that time is inde-
pendent of the equilibrium (indeed of the discount factor),
depending only on the imperfection in the monitoring and
the prior probability assigned to the H-action type. Then,
if the firm is sufficiently patient, the payoff from mimick-
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ing the H-action type is arbitrarily close to 2, contradicting
the existence of an equilibrium in which the firm’s payoff
fell short of 2 —&.

At the same time, because monitoring is imperfect,
as discussed in Sect. “Temporary Reputation Effects”, the
reputation effects are necessarily transient. Under gen-
eral conditions in imperfect-monitoring games, the in-
complete information that is at the core of reputation ef-
fects is a short-run phenomenon. Player 2 must eventually
come to learn player 1’s type and continuation play must
converge to an equilibrium of the complete information
game.

Reputation effects arise for very general specifications
of the incomplete information as long as the customers as-
sign strictly positive probability to the H-action type. It is
critical, however, that the customers do assign strictly pos-
itive probability to the H-action type. For example, in the
product-choice game, the set of Nash equilibria of the re-
peated game is not significantly impacted by the possibil-
ity that the firm is either normal or the L-action type only.
While reputation effects per se do not arise from the L-ac-
tion type, it is still of interest to investigate the impact
of such uncertainty on behavior using stronger equilib-
rium notions, such as Markov perfection (see Mailath and
Samuelson [16]).

A Canonical Mod=l
The Stage Game

The stage game is a two-player simultaneous-move fi-
nite game of public monitoring. Player i has action set
A;, i =1,2. Pure actions for player i are denoted by
a; € A;, and mixed actions are denoted by «; € A(A;),
where A(A;) is the set of probability distributions over A;.
Player 2’s actions are public, while player 1's are poten-
tially private. The public signal of player 1’s action, de-
noted by y is drawn from a finite set ¥, with the prob-
ability that y is realized under the pure action profile
a € A=A x Ap denoted by p(y | a). Player 1’s ex post
payoff from the action profile ¢ and signal realization y
is r1(y,a), and so the ex ante (or expected) flow pay-
off is uj(a) = Zy r1(y, a)p(y | a). Player 2’s ex post pay-
off from the action profile a and signal realization y is
r2(y, az), and so the ex ante (or expected) flow payoff is
ux(a) = Z}, r2(y, a2)p(y | a). Since player 2’s ex post pay-
off is independent of player 1’s actions, player 1’s actions
only affect player 2’s payoffs through the impact on the dis-
tribution of the signals and so on ex ante payoffs. While the
ex post payoffs r; play no explicit role in the analysis, they
justify the informational assumptions to be made. In par-

ticular, the model requires that histories of signals and past
actions are the only information players receive, and so it
is important that stage game payoffs u; are not informa-
tive about the action choice (and this is the critical feature
delivered by the assumptions that ex ante payoffs are not
observable and that payer 2’s ex post payoffs do not depend
on ay).

Perfect monitoring is the special case where Y = A
and p(y | a) = 1if y = a;, and 0 otherwise.

The results in this section hold under significantly
weaker monitoring assumptions. In particular, it is not
necessary that the actions of player 2 be public. If these
are also imperfectly monitored, then the ex post payoff for
player 1 is independent of player 2 actions. Since player 2
is short-lived, when player 2’s actions are not public, it is
then natural to also assume that the period ¢ player 2 does
not know earlier player 2’s actions.

The Complete Information Repeated Game

The stage game is infinitely repeated. Player 1 is long-lived,
with payoffs given by the normalized discounted value
(1—8) Y2, 8"ut, where § € (0,1) is the discount factor
and u! is player 1’s period ¢ flow payoff. Player 1 is pa-
tient if § is close to 1. As in our example, the role of player
2 is taken by a succession of short-lived players, eact: of
whom plays the game only once (and so myopically opti-
mizes).

Player 1’s set of private histories is H{; = U2 (Y x
A)* and the set of public histories (which coincides with
the set of player 2’s histories) is H = U (Y x Ay).
If the game has perfect monitoring, histories h =
(3, a% yt,ah.. .5y at ™Yy in which y* # af for some
T < t — 1 arise with zero probability, independently of be-
havior, and so can be ignored. A strategy o, for player 1
specifies a probability distribution over 1’s pure action set
for each possible private history, i.e., o1: H; —> A(A)).
A strategy o, for player 2 specifies a probability distribu-
tion over 2’s pure action set for each possible public his-
tory, i.e., 02: H — A(Az).

Definition 1 The strategy profile (a5, 65°) is a Nash equi-
librium if

1. there does not exist a strategy o yielding a strictly
higher payoff for player 1 when player 2 plays a5, and

2. in all periods ¢, after any history h' € H arising with
positive probability under (0", 05'), o5 (k') maximizes
Elux(o;(h}), a1) | k'], where the expectation is taken
over the period t-private histories that player 1 may
have observed.
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The Incomplete Information Repeated Game

In the incomplete information game, the type of player 1 is
unknown to player 2. A possible type of player 1 is denoted
by § € &, where & is a finite or countable set (see Fuden-
berg and Levine [12] for the uncountable case). Player 2’s
prior belief about 1’s type is given by the distribution p,
with support Z. The set of types is partitioned into a set of
payofftypes &1, and a set of action types 5, = 5\ 5. Pay-
off types maximize the average discounted value of payoffs,
which depend on their type and which may be nonstation-

ary,
Ut Al x A x B xNg—->R.

Type & € & is the normal type of player 1, who happens
to have a stationary payoff function, given by the stage
game in the benchmark game of complete information,

ui(a, &, t) =u(a) Vae A VteNy.

It is standard to think of the prior probability p(§y) as be-
ing relatively large, so the games of incomplete informa-
tion are a seemingly small departure from the underlying
game of complete information, though there is no require-
ment that this be the case.

Action types (also called commitment or behavioral
types) do not have payoffs, and simply play a specified
repeated game strategy. For any repeated-game strategy
from the complete information game, 61: H; — A(A;),
denote by £(61) the action type committed to the strategy
&1. In general, a commitment type of player 1 can be com-
mitted to any strategy in the repeated game. If the strat-
egy in question plays the same (pure or mixed) stage-game
action in every period, regardless of history, that type is
called a simple action type. For example, the H-action type
in the product-choice game is a simple action type. The
(simple action) type that plays the pure action 4, in every
period is denoted by £(a,) and similarly the simple action
type committed to @; € A(A;) is denoted by (o). As will
be seen soon, allowing for mixed action types is an impor-
tant generalization from simple pure types.

A strategy for player 1, also denoted by 01: Hix & —
A(Ay), specifies for each type &€ € & arepeated game strat-
egy such that forall §(61) € &5, the strategy 6, is specified.
A strategy o, for player 2 is as in the complete information
game, i.e., 07: H — A(Ay).

Definition 2 The strategy profile (o7, 05") is a Nash equi-
librium of the incomplete information game if

1. for all § € 5, there does not exist a repeated game

strategy o yielding a strictly higher payoff for payoff
type & of player 1 when player 2 plays 05, and

2. in all periods t, after any history h* € H arising with
positive probability under (o}, 05°) and ., 05 (k') max-
imizes E[uy (0] (h},£), a1) | h'], where the expectation
is taken over both the period t-private histories that
player 1 may have observed and player 1’s type.

Example 1 Consider the product-choice game (Fig. 2)
under perfect monitoring. The firm is willing to commit
to H to induce h from customers. This incentive to com-
mit is best illustrated by considering a sequential version
of the product-choice game: The firm first publicly com-
mits to an effort, and then the customer chooses between h
and £, knowing the firm’s choice. In this sequential game,
the firm chooses H in the unique subgame perfect equilib-
rium. Since Stackelberg [23] was the first investigation of
such leader-follower interactions, it is traditional to call H
the Stackelberg action, and the H-action type of player 1
the Stackelberg type, with associated Stackelberg payoff 2.
Suppose & = {&.E(H), £(L)}. For § > 1/2, the grim trig-
ger strategy profile of always playing Hh, with deviations
punished by Nash reversion, is a subgame perfect equi-
librium of the complete information game. Consider the
following adaptation of this profile in the incomplete in-
formation game:

H, if § =§(H),
=& and a* = Hh
oy(h E) = or £E=§; and a
forall T <t,
L, otherwise,
and
oy (h) = h, if a®* = Hh forall t < ¢,
{, otherwise.

In other words, player 2 and the normal type of player 1
follow the strategies from the Nash-reversion equilibrium
in the complete information game, and the action types
£(H) and (L) play their actions.

This is 2 Nash equilibrium for § > 1/2 and p(§(L)) <
1/2. The restriction on p(§(L)) ensures that player 2
finds k optimal in period 0. Should player 2 ever observe L,
then Bayes’ rule causes her to place probability 1 on type
E(L) (if L is observed in the first period) or the normal
type (if L is first played in a subsequent period), making
her participation in Nash reversion optimal. The restric-
tion on & ensures that Nash reversion provides sufficient
incentive to make H optimal for the normal player 1. Af-
ter observing a9 = H in period 0, player 2 assigns zero
probability to £ = £(L). However, the posterior proba-
bility that 2 assigns to the Stackelberg type does not con-
verge to 1. In period 0, the prior probability is u(§(H)).
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After one observation of H, the posterior increases to
WCE*Y [ (E*) + (o)), after which it is constant. By stipu-
lating that an observation of H in a history in which L has
previously been observed causes player 2 to place proba-
bility one on the normal type of player 1, a specification
of player 2's beliefs that is consistent with sequentiality is
obtained.

As seen in the introduction, for 8§ close to I,
o1(kt, &) = L for all A is not part of any Nash equilib-
rium.

The Reputation Bound

Which type would the normal type most like to be treated
as? Player 1’s pure-action Stackelberg payoff is defined as

vi = sup min u;(a1,a3) . 2)
a, €A, ®2€B(ay)

where B(a)) = arg max,, uz(ay, a2) is the set of player 2
myopic best replies to 4. If the supremum is achieved by
some action af, that action is an associated Stackelberg ac-
tion,

* d
al €arg max min u (a;,02) .
a €A 22€B(a))

This is a pure action to which player 1 would commit, if
player 1 had the chance to do so (and hence the name
“Stackelberg” action, see the discussion in Example 1),
given that such a commitment induces a best response
from player 2. If there is more than one such action for
player 1, the action can be chosen arbitrarily.

However, player 1 would typically prefer to commit to
a mixed action. In the product-choice game, for example,
a commitment by player 1 to mixing between H and L,
with slightly larger probability on H, still induces player 2
to choose h and gives player 1 a larger payoff than a com-
mitment to H. Define the mixed-action Stackelberg payoff
as

vi'= sup min wufe, o), (3)
o EA(A;) X2€Blon)

where B(w;) = arg max,, (o1, a2) is the set of player 2’s
best responses to ;. In the product-choice game, v{ = 2,
while vi* = 5/2. Typically, the supremum is not achieved
by any mixed action, and so there is no mixed-action
Stackelberg type. However, there are mixed action types
that, if player 2 is convinced she is facing such a type, will
yield payofTs arbitrarily close to the mixed-action Stackel-
berg payoff.

As with imperfect monitoring, simple mixed action
types under perfect monitoring raise issues of monitoring,

since a deviation by the normal type from the distribution
a; of a mixed action type £(c;), to some action in the sup-
port cannot be detected. However, when monitoring of the
pure actions is perfect, it is possible to statistically detect
deviations, and this will be enough to imply the appropri-
ate reputation lower bound.

When monitoring is imperfect, the public signals are
statistically informative about the actions of the long-lived
player under the next assumption (Lemma 1).

Assumption 1 Forall a; € Ay, the collection of probabil-
ity distributions {p(y | (@, a2): a1 € A1} is linearly inde-
pendent.

This assumption is trivially satisfied in the perfect moni-
toring case. Reputation effects still exist when this assump-
tion fails, but the bounds are more complicated to calcu-
late (see [12] or Sect. 15.4.1 in [17]).

Fixing an action for player 2, a;, the mixed action o
implies the signal distribution Zal oy | (a1, a2 (ay).

Lemma 1 Suppose p satisfies Assumption 1. Then, if for
some az,

> oy | (ar, aar(a) = Y ply | (a1, a2))eti (@),

Yy, (4)
then oy = of.

Proof Suppose (4) holds for some a;. Let R denote
the |Y| x |A;| matrix whose y-a; element is given by
oy | (a1, a2)) (so that the a)-column is the probability
distribution on Y implied by the action profile ajay).
Then, (4) can be written as Ry = Re{, or more simply
as R(a; — a{) = 0. By Assumption 1, R has full column
rank, and so x = 0 is the only vector x € R14!! solving
Rx =0. m|

Consequently, if player 2 believes that the long-lived
player’s behavior implies a distribution over the signals
close to the distribution implied by some particular action
o, then player 2 must believe that the long-lived player’s
action is also close to «]. Since A; is finite, this then im-
plies that when player 2 is best responding to some belief
about the long-lived player’s behavior implying a distribu-
tion over signals sufficiently close to the distribution im-
plied by ], then player 2 is in fact best responding to o].

We are now in a position to state the main reputation
bound result. Let v, (&, j¢. §) be the infimum over the set
of the normal player 1’s payoffs in any (pure or mixed)
Nash equilibrium in the incomplete information repeated
game, given the distribution p over types and the discount
factor é.
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Proposition 1 (Fudenberg and Levine [11,12]) Sup-
pose p satisfies Assumption 1 and let £ denote the simple
action type that always plays &, € A(A1). Suppose (1(€o),
w(€) > 0. For every 1 > 0, there is a value K such that for
all §,

vi(o, 1, 8) = (1 — MY min u(d, @)
o:€B(@))

+ (1= (1 = 7)) min uy(a). (5)
a€A

This immediately yields the pure action Stackelberg repu-
tation bound. Fix ¢ > 0. Taking &, in the proposition as
the degenerate mixture that plays the Stackelberg action
ay with probability 1, Eq. (5) becomes

w60 1.8 2 (1= 8] + (1= (1 = EF) min uy(a)

>vi—(1-Q0-nsrM,

where M = max, |u;(a)|. This last expression is at least as
large as v} — & when n < &/(2M) and § is sufficiently close
to 1.

The mixed action Stackelberg reputation bound is also
covered:

Corollary 1 Suppose p satisfies Assumption 1 and p as-
signs positive probability to some sequence of simple types
{a‘j(a{‘)}i‘_’;l with each a{‘ in A(A) satisfying

vi* = lim min u(ef,@).
k=00 g, €B(arf)

Forall &' > 0, there exists § < 1 such that forall § € (8,1),

21(;0’ . 8) =) V;k* o 8, .

The remainder of this subsection outlines a proof of
Proposition 1. Fix a strategy profile (¢, 02) (which may
be Nash, but at this point of the discussion, need not
be). The beliefs ¢ then induce a probability distribu-
tion P on the set of outcomes, which is the set of possi-
ble irfinite histories (denoted by 4#°°) and realized types,
(Y x A)® x £ = §2. The probability measure P describes
how the short-lived players believe the game will evolve,
given their prior beliefs y1 about the types of the long-
lived player. Let P denote the probability distribution on
the set of outcomes induced by (o7, 0;) and the action
type &. The probability measure P describes how the short-
lived players believe the game will evolve if the long-
lived player’s type is £. Finally, let B denote the prob-
ability distribution on the set of outcomes induced by
(01, 02) conditioning on the long-lived player’s type not

being the action type £.Then, P = AP + (1 — /)P, where
b= p(E).

The discussion after Lemma 1 implies that the opti-
mal behavior of the short-lived player in period ¢ is deter-
mined by that player’s beliefs over the signal realizations
in that period. These beliefs can be viewed as a one-step
ahead prediction of the signal y that will be realized condi-
tional on the history K, P(y | h'). Let pf(h') = P | h)
denote the posterior probability after observing k' that the
short-lived player assigns to the long-lived player having
type £. Note also that if the long-lived player is the ac-
tion type £, then the true probability of the signal y is
B(y | k') = p(y | (H,02(h"))). Then,

P(y | k') = p'(h)B(y | ) + (1 — A (R DBy | K).

The key step in the proof of Proposition 1 is a statistical
result on merging. The following lemma essentially says
that the short-lived players cannot be surprised too many
times. Note first that an infinite public history 4% can be
thought of as a sequence of ever longer finite public histo-
ries A'. Consider the collection of infinite public histories
with the property that player 2 often sees histories & that
lead to very different one-step ahead predictions about the
signals under P and under P and have a “low” posterior
that the long-lived player is £. The lemma asserts that if
the long-lived player is in fact the action type £, this collec-
tion of infinite public histories has low probability. Seeing
the signals more likely under £ leads the short-lived play-
ers to increase the posterior probability on £.The posterior
probability fails to converge to 1 under P only if the play
of the types different from £ leads, on average, to a signal
distribution similar to that implied by &. For the purely sta-
tistical staternent and its proof, see Section 15.4.2 in [17].

Lemma 2 For all n,y > 0 and ut €(0,1), there exists
a positive integer K such that for all u(€) € [u¥, 1), for ev-
erystrategyo1: Hy x & — A(Ay) andoy: H — A(Ay),

P(r™: |{t = 1: (1 - pf(h"))

myaxll"’(y | W) —B(y | B =¥} =K) <n. (6)

Note that the bound K holds for all strategy profiles
(01, 02) and all prior probabilities u(£) € [uf,1). This al-
lows us to bound equilibrium payoffs.

Proof of Proposition 1 Fix n > 0. From Lemma 1, by
choosing ¥ sufficiently small in Lemma 2, with P-prob-
ability at least 1 — 7, there are at most K periods in which
the short-lived players are not best responding to &;.
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Since a deviation by the long-lived player to the simple
strategy of always playing @; induces the same distribution
on public histories as P, the long-lived player’s expected
payoff from such a deviation is bounded below by the right
side of (5). O

Temporary Reputation Effects

Under perfect monitoring, there are often pooling equilib-
ria in which the normal and some action type of player 1
behave identically on the equilibrium path (as in Exam-
ple 1). Deviations on the part of the normal player 1 are
deterred by the prospect of the resulting punishment. Un-
der imperfect monitoring, such pooling equilibria do not
exist. The normal and action types may play identically for
a long period of time, but the normal type always eventu-
ally has an incentive to cheat at least a little on the commit-
ment strategy, contradicting player 2’s belief that player
1 will exhibit commitment behavior. Player 2 must then
eventually learn player 1’s type.

In addition to Assumption 1, disappearing reputation
effects require full support monitoring.

Assumption2 Forallac A, ye Y, p(y | a) > 0.

This assumption implies that Bayes’ rule determines the
beliefs of player 2 about the type of player 1 after all histo-
ries.

Suppose there are only two types of player 1, the nor-
mal type £ and a simple action type £, where £ = £(d))
for some @; € A(A;). The analysis is extended to many
commitment types in Section 6.1 in Cripps et al. [8]. It is
convenient to denote a strategy for player 1 as a pair of
functions 61 and 6; (so 6 (k}) = &, for all hf € H)), the
former for the normal type and the latter for the action
type.
Recall that P € A(82) is the unconditional probability
measure induced by the prior y, and the strategy profile
(61,61, 02), while P is the measure induced by condition-
ing on £. Since {&} = &\ { £}, P is the measure induced
by conditioning on &o. That is, P is induced by the strategy
profile 6 = (61,02) and Pby & = (6, 62), describing how
play evolves when player 1 is the commitment and normal
type, respectively.

The action of the commitment type satisfies the follow-
ing assumption.

Assumption 3 Player 2 has a unique stage-game best re-
sponse to &) (denoted by 4;) and & = (&1, 4) isnot astage-
game Nash equilibrium.

Let &, denote the strategy of playing the unique best re-
sponse d; to & in each period independently of history.

Since ¢ is not a stage-game Nash equilibrium, (63, 62) is
not a Nash equilibrium of the complete information infi-
nite horizon game.

Proposition 2 (Cripps, Mailath and Samuelson [3])
Suppose the monitoring distribution p satisfies Assump-
tions 1 and 2, and the commitment action &, satisfies As-
sumption 3. In any Nash equilibrium of the game with in-
complete information, the posterior probability assigned by
player 2 to the commitment type, i, converges to zero un-
derB,ie,

Atk — o, P-as.

The intuition is straightforward: Suppose there is a Nash
equilibrium of the incomplete information game in which
both the normal and the action type receive positive prob-
ability in the limit (on a positive probability set of his-
tories). On this set of histories, player 2 cannot distin-
guish between signals generated by the two types (other-
wise player 2 could ascertain which type she is facing), and
hence must believe that the normal and action types are
playing the same strategies on average. But then player 2
must play a best response to this strategy, and hence to the
action type. Since the action type’s behavior is not a best
response for the normal type (to this player 2 behavior),
player | must eventually find it optimal to not play the ac-
tion-type strategy, contradicting player 2’s beliefs.

Assumption 3 requires a unique best response to &;.
For example, in the product-choice game, every action for
player 2 is a best response to player 1’s mixture ¢ that as-
signs equal probability to H and L. This indifference can be
exploited to construct an equilibrium in which (the nor-
mal) player 1 plays o} after every history (Section 7.6.2
in [17]). This will still be an equilibrium in the game of
incomplete information in which the commitment type
plays &}, with the identical play of the normal and com-
mitment types ensuring that player 2 never learns player
I’s type. In contrast, player 2 has a unique best response
to any other mixture on the part of player 1. Therefore,
if the commitment type is committed to any mixed ac-
tion other than a], player 2 will eventually learn player 1’s
type.

As in Proposition 1, a key step in the proof of Propo-
sition 2 is a purely statistical result on updating. Either
player 2’s expectation (given her history) of the strategy
played by the normal type (E[6] | h'], where E denotes
expectation with respect to P) is in the limit identical
to the strategy played by the action type (&), or player
2’s posterior probability that player 1 is the action type
(' (k")) converges to zero (given that player 1 is indeed
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normal). This is a merging argument and closely related to
Lemma 2. If the distributions generating player 2’s signals
are different for the normal and action type, then these sig-
nals provide information that player 2 will use in updating
her posterior beliefs about the type she faces. This (con-
verging, since beliefs are a martingale) belief can converge
to an interior probability only if the distributions gener-
ating the signals are asymptotically uninformative, which
requires that they be asymptotically identical.

Lemma 3 Suppose the monitoring distribution p satisfies
Assumptions 1 and 2. Then in any Nash equilibrium,

lim A'max|d(a;) — E[6{(a1) | h']| =0,
=00 ay

P-as. (7)

Given Proposition 2, it should be expected that contin-
uation play converges to an equilibrium of the complete
information game, and this is indeed the case. See Theo-
rem 2 [8] for the formal statement.

Proposition 2 leaves open the possibility that for any
period T, there may be equilibria in which uncertainty
about player 1’s type survives beyond T, even though such
uncertainty asymptotically disappears in any equilibrium.
This possibility cannot arise. The existence of a sequence
of Nash equilibria with uncertainty about player 1’s type
persisting beyond period T — 0o would imply the (con-
tradictory) existence of a limiting Nash equilibrium in
which uncertainty about player 1’s type persists.

Proposition 3 (Cripps, Mailath and Samuelson [9])

Suppose the monitoring distribution p satisfies Assump-
tions 1 and 2, and the commitment action &; satisfies As-
sumption 3. For all € > 0, there exists T such that for any
Nash equilibrium of the game with incomplete information,

P(i' <e, VE>T)>1—¢.

Example 2 Recall that in the product-choice game, the
unique player 2 best response to H is to play k, and Hh is
not a stage-game Nash equilibrium. Proposition 1 ensures
that the normal player 1’s expected value in the repeated
game of incomplete information with the H-action type is
arbitrarily close to 2, when player 1 is very patient. In par-
ticular, if the normal player 1 plays H in every period, then
player 2 will at least eventually play her best response of h.
If the normal player 1 persisted in mimicking the action
type by playing H in each period, this behavior would per-
sist indefinitely. It is the feasibility of such a strategy that
lies at the heart of the reputation bounds on exgected pay-

offs. However, this strategy is not optimal. Instead, player
1 does even better by attaching some probability to L, oc-
casionally reaping the rewards of his reputation by earning
a stage-game payoff ever: larger than 2. The result of such
equilibrium behavior, however, is that player 2 must even-
tually learn player 1’s type. The continuation payoff is then
bounded below 2 (recall (1)).

Reputation effects arise when player 2 is uncertain about
player 1’s type, and there may well be a long period of time
during which player 2 is sufficiently uncertain of player 1’s
type (relative to the discount factor), and in which play
does not resemble an equilibrium of the complete infor-
mation game. Eventually, however, such behavior must
give way to a regime in which player 2 is (correctly) con-
vinced of player 1’s type.

For any prior probability /i that the long-lived player is
the commitment type and for any & > 0, there is a discount
factor & sufficiently large that player 1’s expected payoff is
close to the commitment-type payoff. This holds no mat-
ter how small {t. However, for any fixed § and in any equi-
librium, there is a time at which the posterior probability
attached to the commitment type has dropped below the
corresponding critical value of 1, becoming too small (rel-
ative to §) for reputation effects to operate.

A reasonable response to the results on disappearing
reputation effects is that a model of long-run reputations
should incorporate some mechanism by which the uncer-
tainty about types is continually replenished. For example,
Holmstrdm [13], Cole, Dow and English [6], Mailath and
Samuelson [16], and Phelan [19] assume that the type of
the long-lived player is governed by a stochastic process
rather than being determined once and for all at the be-
ginning of the game. In such a situation, reputation effects
can indeed have long-run implications.

Reputation as a State

The posterior probability that short-lived players assign to
player 1 being £ is sometimes interpreted as player 1’s rep-
utation, particularly if £ is the Stackelberg type. When &
contains only the normal type and £, the posterior belief /1*
is a state variable of the game, and attention is sometimes
restricted to Markov strategies (i. e., strategies that only de-
pend on histories through their impact on the posterior
beliefs of the short-lived players). An informative example
is Benabou and Laroque [2], who study the Markov per-
fect equilibria of a game in which the uninforined players
respond continuously to their beliefs. They show that the
informed player eventually reveals his type in any Markov
perfect equilibrium. On the other hand, Markov equilibria
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need not exist in finitely repeated reputation games (Sec-
tion 17.3 in [17]).

The literature on reputation effects has typically not re-
stricted attention to Markov strategies, since the results do
not require the restriction.

Two Long-Lived Players

The introduction of nontrivial intertemporal incentives
for the uninformed player significantly reduces reputation
effects. For example, when only simple Stackelberg types
are considered, the Stackelberg payoff may not bound
equilibrium payoffs. The situation is further complicated
by the possibility of non-simple commitment types (i. €.,
types that follow nonstationary strategies).

Consider applying the logic from Sect. “The Reputa-
tion Bound” to obtain the Stackelberg reputation bound
when both players are long-lived and player 1’s charac-
teristics are unknown, under perfect monitoring. The first
step is to demonstrate that, if the normal player 1 persis-
tently plays the Stackelberg action and there exists a type
committed to that action, then player 2 must eventually
attach high probability to the event that the Stackelberg
action is played in the future. This argument, a simple
version of Lemma 2, depends only upon the properties
of Bayesian belief revision, independently of whether the
person holding the beliefs is a long-lived or short-lived
player.

When player 2 is short-lived, the next step is to note
that if she expects the Stackelberg action, then she will play
a best response to this action. If player 2 is instead a long-
lived player, she may have an incentive to play something
other than a best response to the Stackelberg type.

The key step when working with two long-lived play-
ers is thus to establish conditions under which, as player
2 becomes increasingly convinced that the Stackelberg ac-
tion will appear, player 2 must eventually play a best re-
sponse to that action. One might begin such an argument
by observing that, as long as player 2 discounts, any losses
from not playing a current best response must be recouped
within a finite length of time. But if player 2 is “very” con-
vinced that the Stackelberg action will be played not only
now but for sufficiently many periods to come, there will
be no opportunity to accumulate subsequent gains, and
hence player 2 might just as well play a stage-game best
response,

Once it is shown that player 2 is best responding to
the Stackelberg action, the remainder of the argument pro-
ceeds as in the case of a short-lived player 2. The nor-
mal player 1 must eventually receive very nearly the Stack-
elberg payoff in each period of the repeated game. By

making player 1 sufficiently patient (relative to player 2,
so that discount factors differ), this consideration dom-
inates player 1’s payoffs, putting a lower bound on the
latter. Hence, the obvious handling of discount factors is
to fix player 2’s discount factor &3, and to consider the
limit as player 1 becomes patient, i.e., §; approaching
one.

This intuition misses the following possibility. Player
2 may be choosing something other than a best response
to the Stackelberg action out of fear that a current best re-
sponse may trigger a disastrous future punishment. This
punishment would not appear if player 2 faced the Stack-
elberg type, but player 2 can be made confident only that
she faces the Stackelberg action, not the Stackelberg type.
The fact that the punishment lies off the equilibrium path
makes it difficult to assuage player 2’s fear of such punish-
ments. Short-lived players in the same situation are sim-
ilarly uncertain about the future ramifications of best re-
sponding, but being short-lived, this uncertainty does not
affect their behavior.

Consequently, reputation effects are typically weak
with two long-lived players under perfect monitoring: Ce-
lentani, Fudenberg, Levine and Pesendorfer {3] and Cripps
and Thomas [7], describe examples with only the normal
and the Stackelberg types of player 1, in which the fu-
ture play of the normal player 1 is used to punish player
2 for choosing a best response to the Stackelberg action
when she is not supposed to, and player 1's payoff is sig-
nificantly below the Stackelberg payoff. Moreover, the ro-
bustness of reputation effects to additional types beyond
the Stackelberg type, a crucial feature of settings with one
long-lived player, does not hold with two long-lived play-
ers. Schmidt [21] showed that the possibility of a “pun-
ishment” type can prevent player 2 best responding to the
Stackelberg action, while Evans and Thomas [10] showed
that the Stackelberg bound is valid if in addition to the
Stackelberg type, there is an action type who punishes
player 2 for not behaving appropriately (see Sections 16.1
and 16.5 in [17]).

Imperfect monitoring (of both players’ actions), on the
other hand, rescues reputation effects. With a sufficiently
rich set of commitment types, player 1 can be assured of
at least his Stackelberg payoff. Indeed, player 1 can often
be assured of an even higher payoff, in the presence of
commitment types who play nonstationary strategies [3].
At the same time, these reputation effects are temporary
(Theorem 2 in [9]).

Finally, there is a literature on reputation effects in bar-
gaining games (see [1,4,5,20]), where the issues described
above are further complicated by the need to deal with the
bargaining model itself.
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Future Directions

The detailed structure of equilibria of the incomplete
information game is not well understood, even for the
canonical game of Sect. “A Canonical Model”. A more
complete description of the structure of equilibria is
needed.

While much of the discussion was phrased in terms
of the Stackelberg type, Proposition 1 provides a reputa-
tion bound for any action type. While in some settings, it
is natural that the uninformed players assign strictly posi-
tive probability to the Stackelberg type, it is not natural in
other settings. A model endogenizing the nature of action
types would be an important addition to the reputation lit-
erature.

Finally, while the results on reputation effects with two
long-lived players are discouraging, there is still the possi-
bility that some modification of the model will rescue rep-
utation effects in this important setting.
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