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Introduction

The theory of repeated games provides a central underpinning for our
understanding of social, political, and economic institutions, both formal
and informal.
A key ingredient in understanding institutions and other long run
relationships is the role of

shared expectations about behavioral norms (cultural beliefs), and
sanctions in ensuring that people follow the “rules.”

Repeated games allow for a clean description of both the myopic
incentives that agents have to not follow the rules and, via appropriate
specifications of future behavior (and so rewards and punishments), the
incentives that deter such opportunistic behavior.



Examples of Long-Run Relationships
and Opportunistic Behavior

Buyer-seller.
The seller selling an inferior good.

Employer and employees.
Employees shirking on the job, employer reneging on implicit terms of
employment.

A government and its citizens.
Government expropriates (taxes) all profits from investments.

World Trade Organization
Imposing tariffs to protect a domestic industry.

Cartels
A firm exceeding its share of the monopolistic output.



Two particularly interesting examples

1 Dispute Resolution.
Ellickson (1991) presents evidence that neighbors in Shasta County, CA, resolve
disputes arising from the damage created by escaped cattle in ways that both
ignore legal liability and are supported by intertemporal incentives.

2 Traders selling goods on consignment.
Grief (1994) documents how the Maghribi and Genoese merchants deterred
their agents from misreporting that goods were damaged in transport, and so
were worth less. These two communities of merchants did this differently, and in
ways consistent with the different cultural characteristics of the communities and
repeated game analysis.



The Leading Example
The prisoners’ dilemma as a partnership

E S

E 2, 2 −1, 3

S 3,−1 0, 0

u2

u1

F∗

Each player can guarantee herself a payoff of 0.
A payoff profile is individually rational if each player receives at least their
minmax payoff:

vp
i := minaj maxai ui(ai , aj).

F∗ is the set of feasible and individually rational payoffs.



The Leading Example
The prisoners’ dilemma as a partnership

E S

E 2, 2 −1, 3

S 3,−1 0, 0

u2

u1

F∗

Each player can guarantee herself a payoff of 0.
A payoff profile is individually rational if each player receives at least their
minmax payoff.
F∗ is the set of feasible and individually rational payoffs.
In the static (one shot ) play, each player will play S, resulting in SS.



Intertemporal Incentives

Suppose the game is repeated (once), and payoffs are added.

We “know” SS will be played in last period, so
no intertemporal incentives.

Infinite horizon—relationship never ends.
The infinite stream of payoffs (u0

i , u1
i , u2

i , . . .) is evaluated as the (average)
discounted sum ∑

t≥0
(1 − δ)δtut

i .

Individual i is indifferent between 0, 1, 0, . . . and δ, 0, 0 . . ..

The normalization (1 − δ) implies that repeated game payoffs are
comparable to stage game payoffs.
The infinite constant stream of 1 utils has a value of 1.



A strategy σi for individual i describes how that individual behaves (at
each point of time and after any possible history).

A strategy profile σ = (σ1, . . . , σn) describes how everyone behaves (at
each point of...).

Definition
The profile σ∗ is a Nash equilibrium if for all i , when everyone else is behaving
according to σ∗

−i , then i is also willing to behave as described by σ∗
i .

The profile σ∗ is a subgame perfect equilibrium if for all histories of play, the
behavior described (induced) by the profile is a Nash equilibrium.

Useful to think of social norms as equilibria: shared expectations over
behavior that provide appropriate sanctions to deter deviations.



Characterizing Equilibria

Difficult problem: many possible deviations after many different histories.

But repeated games are recursive, and the one shot deviation principle
(from dynamic programming) holds.

Simple penal codes (Abreu, 1988): use i ’s worst eq to punish any (and
all) deviation by i .



Prisoners’ Dilemma
Grim Trigger

wEEw0 wSS
¬EE

EE

This is an equilibrium if

(1 − δ) × 2 + δ × 2 = 2 ≥(1 − δ) × 3 + δ × 0

⇒ δ ≥ 1
3 .

Grim trigger is subgame perfect: always S is a Nash eq (because SS is
an eq of the stage game and in wSS behavior is history independent).



The need for credibility of punishments
The Purchase Game

A buyer and seller:

Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

u2

u1

F∗

The seller can guarantee payoff 0, while the buyer can guarantee 2.
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The need for credibility of punishments
The Purchase Game

A buyer and seller:

Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

u2

u1

F∗

The seller can guarantee payoff 0, while the buyer can guarantee 2.
Seller always chooses low effort and buyer always buys is an eq.
Is there a social norm in which the buyer threatens not to buy unless the
seller chooses high effort? Need to provide incentives for buyer.



Why the buyer is willing to punish
Suppose, after the seller “cheats” the buyer by choosing low effort, the buyer
expects the seller to continue to choose low effort until the buyer punishes
him by not buying.

B D

H 2, 3 0, 0

L 3, 2 0, 0
wHBw0 wLD

L

D

H B

The seller chooses high effort as long as δ ≥ 1
2 .

The buyer is willing to punish as long as δ ≥ 2
3 .



Why the buyer is willing to punish
Suppose, after the seller “cheats” the buyer by choosing low effort, the buyer
expects the seller to continue to choose low effort until the buyer punishes
him by not buying.

B D

H 2, 3 0, 0

L 3, 2 0, 0
wHBw0 wLD

L

D

H B

The seller chooses high effort as long as δ ≥ 1
2 .

The buyer is willing to punish as long as δ ≥ 2
3 .

This is a carrot and stick punishment (Abreu, 1986).



The Game with Perfect Monitoring

Action space for i is Ai , with typical action ai ∈ Ai .

An action profile is a = (a1, . . . , an), with associated flow payoffs ui(a).

Infinite stream of payoffs (u0
i , u1

i , u2
i , . . .) is evaluated as the (average)

discounted sum ∑

t≥0
(1 − δ)δtut

i ,

where δ ∈ [0, 1) is the discount factor.

Perfect monitoring: At the end of each period, all players observe the
action profile a chosen.

History to date t : ht ≡ (a0, . . . , at−1) ∈ At ≡ Ht ; H0 ≡ {∅}.

Set of all possible histories: H ≡ ∪∞
t=0Ht .

Strategy for player i is denoted si : H → Ai .



Automaton Representation of Behavior

An automaton is the tuple (W , w0, f , τ ), where
W is set of states,

w0 is initial state,

f : W → A is output function (decision rule), and

τ : W × A → W is transition function.

Any automaton (W , w0, f , τ ) induces a strategy profile. Define

τ(w , h t) := τ(τ(w , h t−1), a t−1).

The induced strategy s is given by s(∅) = f (w0) and

s(ht) = f (τ(w0, ht)), ∀ht ∈ H\{∅}.

Every profile can be represented by an automaton (set W = H).



Nash Equilibrium

Definition
An automaton is a Nash equilibrium if the strategy profile s represented by
the automaton is a Nash equilibrium.



Subgames and Continuation Play
Each history ht reaches (“indexes”) a distinct subgame.
Suppose s is represented by (W , w0, f , τ ). Recall that

τ(w0, ht) := τ(τ(w0, ht−1), at−1).

The continuation strategy profile after a history ht , s|ht is represented by
the automaton (W , wt , f , τ ), where

wt := τ(w0, ht).

Grim Trigger after any ht = (EE)t :

wEEw0 wSS
¬EE

EE



Subgames and Continuation Play
Each history ht reaches (“indexes”) a distinct subgame.
Suppose s is represented by (W , w0, f , τ ). Recall that

τ(w0, ht) := τ(τ(w0, ht−1), at−1).

The continuation strategy profile after a history ht , s|ht is represented by
the automaton (W , wt , f , τ ), where

wt := τ(w0, ht).

Grim Trigger after ht with an S (equivalent to always SS):

wEE wSS w0
¬EE

EE



Subgame Perfection

Definition
The state w ∈ W of an automaton (W , w0, f , τ ) is reachable from w0 if
w = τ(w0, ht) for some history ht ∈ H. Denote the set of states reachable
from w0 by W(w0).

Definition
The automaton (W , w0, f , τ ) is a subgame perfect equilibrium if for all states
w ∈ W(w0), the automaton (W , w , f , τ ) is a Nash equilibrium.



The automaton (W , w , f , τ ) induces the sequences

ŵ0 := w , a0 := f (ŵ0)

ŵ1 := τ(ŵ0, a0), a1 := f (ŵ1),

ŵ2 := τ(ŵ1, a1), a2 := f (ŵ2),

...
...

Given an automaton (W , w0, f , τ ), let Vi(w) be i ’s value from being in the state
w ∈ W , i.e.,

Vi(w) = (1 − δ)ui(f (ŵ0)) + δVi(τ(ŵ0, f (ŵ0)))

= (1 − δ)ui(a0) + δ{(1 − δ)ui(a1) + δVi(ŵ2)}
...

= (1 − δ)
∑∞

t=0
δtui(at).



Principle of No Profitable One-Shot Deviations

Definition
Player i has a profitable one-shot deviation from (W , w0, f , τ ), if there is a
state w ∈ W(w0) and some action ai ∈ Ai such that

Vi(w) < (1 − δ)ui(ai , f−i(w)) + δVi(τ(w , (ai , f−i(w))).



Principle of No Profitable One-Shot Deviations

Definition
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Theorem
The automaton (W , w0, f , τ ) is subgame perfect if, and only if, there are no
profitable one-shot deviations.



Principle of No Profitable One-Shot Deviations

Definition
Player i has a profitable one-shot deviation from (W , w0, f , τ ), if there is a
state w ∈ W(w0) and some action ai ∈ Ai such that

Vi(w) < (1 − δ)ui(ai , f−i(w)) + δVi(τ(w , (ai , f−i(w))).

Theorem
The automaton (W , w0, f , τ ) is subgame perfect if, and only if, there are no
profitable one-shot deviations, that is, iff for all w ∈ W(w0), f (w) is a Nash eq
of the normal form game with payoff function gw : A → Rn, where

gw
i (a) = (1 − δ)ui(a) + δVi(τ(w , a)).



Return to the purchase game I

B D

H 2, 3 0, 0

L 3, 2 0, 0
wHBw0 wLD

L

D

H B

The value to each player of being in states wBH and wLD are

V1(wHB) = 2, V2(wHB) = 3,

and

V1(wLD) = 2δ, V2(wLD) = 3δ.



Return to the purchase game II

B D

H 2, 3 0, 0

L 3, 2 0, 0
wHBw0 wLD

L

D

H B

The auxiliary game for wHB:
B D

H 2, 3 2δ, 3δ

L 3(1 − δ) + 2δ2, 2(1 − δ) + 3δ2 2δ2, 3δ2

H is a BR to B if 2 ≥ 3(1 − δ) + 2δ2

⇐⇒ 2(1 − δ2) ≥ 3(1 − δ) ⇐⇒ 2(1 + δ) ≥ 1 ⇐⇒ δ ≥ 1
2 .



Return to the purchase game III

B D

H 2, 3 0, 0

L 3, 2 0, 0
wHBw0 wLD

L

D

H B

The auxiliary game for wLD:
B D

H 2(1 − δ) + 2δ2, 3(1 − δ) + 3δ2 2δ, 3δ

L 3(1 − δ) + 2δ2, 2(1 − δ) + 3δ2 2δ, 3δ

D is a BR to L if 3δ ≥ 2(1 − δ) + 3δ2

⇐⇒ 3δ(1 − δ) ≥ 2(1 − δ) ⇐⇒ 3δ ≥ 2 ⇐⇒ δ ≥ 2
3 .



SPE if No Profitable One-Shot Deviations
Proof I

Let Ṽi(w) be player i ’s payoff from the best response to (W , w , f−i , τ ) (i.e.,
the strategy profile for the other players specified by the automaton with
initial state w). Then

Ṽi(w) = max
ai∈Ai

{
(1 − δ)ui(ai , f−i(w)) + δṼi(τ(w , (ai , f−i(w))))

}
.

Note that Ṽi(w) ≥ Vi(w) for all w . Denote by w̄i , the state that maximizes
Ṽi(w) − Vi(w) (if there is more than one, choose one arbitrarily).

If (W , w0, f , τ )) is not SGP, then for some player i ,

Ṽi(w̄i) − Vi(w̄i) > 0.



SPE iff No Profitable One-Shot Deviations
Proof II

Then, for all w ,
Ṽi(w̄i) − Vi(w̄i) > δ[Ṽi(w) − Vi(w)],

and so (where aw̄i
i yields Ṽi(w̄i))

Ṽi(w̄i) − Vi(w̄i) > δ[Ṽi(τ(w̄i , (a
w̄i
i , f−i(w̄i)))) − Vi(τ(w̄i , (a

w̄i
i , f−i(w̄i))))]
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Ṽi(w̄i) − Vi(w̄i) > δ[Ṽi(w) − Vi(w)],

and so (where aw̄i
i yields Ṽi(w̄i))

Ṽi(w̄i) − Vi(w̄i) > δ[Ṽi(τ(w̄i , (a
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i , f−i(w̄i)) − (1 − δ)ui(a
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SPE iff No Profitable One-Shot Deviations
Proof II

Then, for all w ,
Ṽi(w̄i) − Vi(w̄i) > δ[Ṽi(w) − Vi(w)],

and so (where aw̄i
i yields Ṽi(w̄i))

Ṽi(w̄i) − Vi(w̄i) > δ[Ṽi(τ(w̄i , (a
w̄i
i , f−i(w̄i)))) − Vi(τ(w̄i , (a

w̄i
i , f−i(w̄i))))]

+[(1 − δ)ui(a
w̄i
i , f−i(w̄i)) − (1 − δ)ui(a

w̄i
i , f−i(w̄i))]

= Ṽi(w̄i)

−
{

(1 − δ)ui(a
w̄i
i , f−i(w̄i)) + δVi(τ(w̄i , (a

w̄i
i , f−i(w̄i))))

}
.



SPE iff No Profitable One-Shot Deviations
Proof II

Then, for all w ,
Ṽi(w̄i) − Vi(w̄i) > δ[Ṽi(w) − Vi(w)],

and so (where aw̄i
i yields Ṽi(w̄i))

Ṽi(w̄i) − Vi(w̄i) > δ[Ṽi(τ(w̄i , (a
w̄i
i , f−i(w̄i)))) − Vi(τ(w̄i , (a

w̄i
i , f−i(w̄i))))]

+ [(1 − δ)ui(a
w̄i
i , f−i(w̄i)) − (1 − δ)ui(a

w̄i
i , f−i(w̄i))]

= Ṽi(w̄i)

−
{

(1 − δ)ui(a
w̄i
i , f−i(w̄i)) + δVi(τ(w̄i , (a

w̄i
i , f−i(w̄i))))

}
.

Thus,

(1 − δ)ui(a
w̄i
i , f−i(w̄i)) + δVi(τ(w̄i , (a

w̄i
i , f−i(w̄i)))) > Vi(wi),

that is, player i has a profitable one-shot deviation at w̄i .



Enforceability and Decomposability

Definition
An action profile a′ ∈ A is enforced by the continuation promises γ : A → Rn if
a′ is a Nash eq of the normal form game with payoff function gγ : A → Rn,
where

gγ
i (a) = (1 − δ)ui(a) + δγi(a).



Enforceability and Decomposability

Definition
An action profile a′ ∈ A is enforced by the continuation promises γ : A → Rn if
a′ is a Nash eq of the normal form game with payoff function gγ : A → Rn,
where

gγ
i (a) = (1 − δ)ui(a) + δγi(a).

Definition
A payoff v is decomposable on a set of payoffs V if there exists an action
profile a′ enforced by some continuation promises γ : A → V satisfying, for all
i ,

vi = (1 − δ)ui(a′) + δγi(a′).

The payoff v is decomposed by a′ on V .



The Purchase Game 1

Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

Only LB can be enforced by constant continuation promises, and so

only (3, 2) can be decomposed on a singleton set, and that set is {(3, 2)}.



The Purchase Game 2
Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

Suppose V =
{(2δ, 3δ), (2, 3)},
and δ > 2

3 .

(2, 3) is decomposed on V by HB and promises

γ(a) =

{
(2, 3), if a1 = H,

(2δ, 3δ), if a1 = L.

(2δ, 3δ) is decomposed on V by LD and promises

γ(a) =

{
(2, 3), if a2 = D,

(2δ, 3δ), if a2 = B.

No one-shot deviation principle =⇒ every payoff in V is SPE payoff.



The Purchase Game 3

Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

Suppose V =
{(2δ, 3δ), (2, 3)},
and δ > 2

3 .

(3 − 3δ + 2δ2, 2 − 2δ + 3δ2) =: v † is decomposed on V by LB and the
constant promises

γ(a) = (2δ, 3δ).

So, payoffs outside V can also be decomposed on V .

No one-shot deviation principle =⇒
v † is a subgame perfect eq payoff.



The Purchase Game 4

Buy Don’t buy

High effort 2,3 0, 0

Low effort 3,2 0, 0

u2

u1

V v †



Subgame Perfection redux
Let Ep(δ) ⊂ Fp∗ be the set of pure strategy subgame perfect equilibrium
payoffs.

Theorem

A payoff v ∈ Rn is decomposable on Ep(δ) if, and only if, v ∈ Ep(δ).



Subgame Perfection redux
Let Ep(δ) ⊂ Fp∗ be the set of pure strategy subgame perfect equilibrium
payoffs.

Theorem

A payoff v ∈ Rn is decomposable on Ep(δ) if, and only if, v ∈ Ep(δ).

Theorem
Suppose every payoff v in some bounded set V ⊂ Rn is decomposable with
respect to V . Then, V ⊂ Ep(δ).

Any set of payoffs with the property described above is said to be
self-generating.



A Folk Theorem

Intertemporal incentives allow for efficient outcomes, but also for
inefficient outcomes, as well as crazy outcomes.

This is illustrated by the “Folk” Theorem, so called because results of this
type have been part of game theory folklore since at least the late sixties.

The Discounted Folk Theorem (Fudenberg&Maskin 1986)
Suppose v is a feasible and strictly individually rational vector of payoffs. If
the individuals are sufficiently patient (there exists δ ∈ (0, 1) such that for all
δ ∈ (δ, 1)), then there is a subgame perfect equilibrium with payoff v .



Symmetric Folk Theorem for PD I

E S

E 2, 2 −1, 3

S 3,−1 0, 0

u2

u1

Strongly symmetric strategies: ∀w ∈ W , f1(w) = f2(w).
When is {(v , v) : v ∈ [0, 2]} a set of equilibrium payoffs?
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Symmetric Folk Theorem for PD I

E S

E 2, 2 −1, 3

S 3,−1 0, 0

u2

u1

Strongly symmetric strategies: ∀w ∈ W , f1(w) = f2(w).
When is {(v , v) : v ∈ [0, 2]} a set of equilibrium payoffs?
WEE := set of player 1 payoffs decomposed on [0, 2] using EE .
WSS := set of player 1 payoffs decomposed on [0, 2] using SS.
Then WEE ∪WSS ⊂ [0, 2].
When do we have equality? And why is this a folk theorem?



Symmetric Folk Theorem for PD II

WEE is the set of player 1 payoffs that could be enforceably achieved by
EE followed by appropriate symmetric continuations in [0, 2]:

v ∈ WEE ⇐⇒ v =2(1 − δ) + δγ(EE)

≥3(1 − δ) + δγ(SE),

for some γ(EE), γ(SE) ∈ [0, 2].

This implies γ(EE) ∈ [(1 − δ)/δ, 2].

So WEE = [3(1 − δ), 2].



Illustration of WEE

v3 − 3δ 2

γ

1−δ
δ

2

v = 2(1 − δ) + δγEE
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0
1
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Illustration of WEE

v3 − 3δ 2

γ

1−δ
δ

2

v = 2(1 − δ) + δγEE

v0

0
1

2

WEE



Symmetric Folk Theorem for PD III

WSS is the set of player 1 payoffs that could be enforceably achieved by
SS followed by appropriate symmetric continuations in [0, 2]:

v ∈ WSS ⇐⇒ v =0 × (1 − δ) + δγ(SS)

≥(−1)(1 − δ) + δγ(ES),

for some γ(SS), γ(ES) ∈ [0, 2].

Inequality satisfied by γ(SS) = γ(ES).

So WSS = [0, 2δ].



Illustration of WEE ∪WSS

v3 − 3δ 2δ 2

γ

1−δ
δ

2

WSS

v = δγSS

v = 2(1 − δ) + δγEE

v0

0
1

2

3

WEE



Symmetric Folk Theorem for PD IV

WEE = [3(1 − δ), 2]

WSS = [0, 2δ]

So
[0, 2] ⊃ WSS ∪WEE = [0, 2δ] ∪ [3(1 − δ), 2].

Folk theorem holds if

2δ ≥ 3(1 − δ) ⇐⇒ δ ≥
3
5
.

Recall grim trigger is an equilibrium if δ ≥ 1
3 .



Interpretation
While efficient payoffs are consistent with equilibrium, so are many other
payoffs, and associated behaviors. (Consistent with experimental
evidence.)

Moreover, multiple equilibria are consistent with the same payoff.

The theorem does not justify restricting attention to efficient payoffs.



Interpretation
While efficient payoffs are consistent with equilibrium, so are many other
payoffs, and associated behaviors. (Consistent with experimental
evidence.)

Moreover, multiple equilibria are consistent with the same payoff.

The theorem does not justify restricting attention to efficient payoffs.

Nonetheless:

In many situations, understanding the potential scope of equilibrium
incentives helps us to understand possible plausible behaviors.

Understanding what it takes to achieve efficiency gives us important
insights into the nature of equilibrium incentives.

It is sometimes argued that the punishments imposed are too severe. But
this does simplify the analysis.



Renegotiation-Proof Equilibria

Are Pareto inefficient equilibria plausible threats?

Definition (Farrell and Maskin, 1989)
The subgame perfect automaton (W , w0, f , τ ) is weakly renegotiation proof if
for all w , w ′ ∈ W(w0) and i ,

Vi(w) > Vi(w ′) =⇒ Vj(w) ≤ Vj(w ′) for some j .

A notion of internal dominance. Does not preclude there being a Pareto
dominating equilibrium played by an unrelated automaton.

Grim trigger is not weakly renegotiation proof.



Weakly Renegotiation Proof in PD

wEEw0 wESwSE

SE

ES, EE

EE , SS
SS, SE

ES

SE , EE

SS, ES

V1(wSE) = 3(1 − δ) + 2δ = 3 − δ;
V2(wSE) = −(1 − δ) + 2δ = −1 + 3δ; V1(wEE) = V2(wEE) = 2.
V1(wSE) > V1(wEE) > V2(wSE)
state wSE punishes player 2:

3(1 − δ) + δ(−1 + 3δ) ≤ 2 ⇐⇒ δ ≥ 1
3 , and

0 × (1 − δ) + δ(−1 + 3δ) ≤ −1 + 3δ ⇐⇒ δ ≥ 1
3 .



What we learn from perfect monitoring

Multiplicity of equilibria is to be expected.
This is necessary for repeated games to serve as a building block for any
theory of institutions.
Selection of equilibrium can (should) be part of modelling.

In general, efficiency requires being able to reward and punish individuals
independently (this is the role of the full dimensionality assumption).

Histories coordinate behavior to provide intertemporal incentives by
punishing deviations. This requires monitoring (communication networks)
and a future.

Intertemporal incentives require that individuals have something at stake:
“Freedom’s just another word for nothin’ left to lose.”—Kris Kristofferson


