
2018 Delhi Winter School

Repeated Games:
Private Monitoring

George J. Mailath

University of Pennsylvania
and

Australian National University

December 2018



Games with Private Monitoring

Intertemporal incentives arise when public histories coordinate
continuation play.

Can intertemporal incentives be provided when the monitoring is private?

Stigler (1964) suggested that that answer is often NO, and so collusion is
not likely to be a problem when monitoring problems are severe.



The Problem

Fix a strategy profile σ. Player i ’s strategy is sequentially rational if, after
all private histories, the continuation strategy is a best reply to the other
players’ continuation strategies (which depend on their private histories).

That is, player i is best responding to the other players’ behavior, given
his beliefs over the private histories of the other players.

While player i knows his/her beliefs, the modeler typically does not.

Most researchers thought this problem was intractable,



The Problem

Fix a strategy profile σ. Player i ’s strategy is sequentially rational if, after
all private histories, the continuation strategy is a best reply to the other
players’ continuation strategies (which depend on their private histories).

That is, player i is best responding to the other players’ behavior, given
his beliefs over the private histories of the other players.

While player i knows his/her beliefs, the modeler typically does not.

Most researchers thought this problem was intractable, until Sekiguchi, in
1997, showed:

There exists an almost efficient eq for the PD with conditionally-independent
almost-perfect private monitoring.



Prisoners’ Dilemma
Conditionally Independent Private Monitoring
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Rather than observing the other player’s action for sure, player i observes
a noisy signal: πi(yi = aj) = 1 − ε.
Grim trigger is not an equilibrium: at the end of the first period, it is not
optimal for player i to play S after observing yi = sj (since in eq, player j
played E and so with high prob, observed yj = ei).
Sekiguchi (1997) avoided this by having players randomize (we will see
how later).



Almost Public Monitoring

How robust are PPE in the game with public monitoring to the
introduction of a little private monitoring?

Perturb the public signal, so that player i observes the conditionally (on
y ) independent signal yi ∈ {y , y}, with probabilities given by

π(y1, y2 | y) = π1(y1 | y)π2(y2 | y),

and

πi(yi | y) =

{
1 − ε, if yi = y ,

ε, if yi 6= y .

Ex post payoffs are now u∗
i (ai , yi).



Prisoners’ Dilemma with Noisy Monitoring
Bounded Recall-public monitoring
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Suppose (3p − 2q − r)−1 < δ < (p + 2q − 3r)−1, so profile is strict PPE in
game with public monitoring.

Vi(w) is i ’s value from being in public state w .



Prisoners’ Dilemma with Noisy Monitoring
Bounded Recall-private (almost-public) monitoring
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In period t , player i ’s continuation strategy after private history
ht

i = (a0
i , a1

i , . . . , at−1
i ) is completely determined by i ’s private state

wt
i ∈ W .

In period t , j sees private history ht
j , and forms belief βj(ht

j ) ∈ W over the
period t state of player i .



Prisoners’ Dilemma with Noisy Monitoring
Bounded Recall-Best Replies
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For all y , Pr(yi 6= yj | y) = 2ε(1 − ε), and so

Pr(wt
j 6= wt

i (h
t
i ) | ht ′

i ) = 2ε(1 − ε) ∀t ′ ≤ t .

For ε sufficiently small, incentives from public monitoring carry over to
game with almost public monitoring, and profile is an equilibrium.



Prisoners’ Dilemma with Noisy Monitoring
Grim Trigger

Suppose 1
2p−q < δ < 1, so grim trigger is a strict PPE.

Strategy in game with private monitoring is

wEw0 wS
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If 1 > p > q > r > 0, profile is not a Nash eq (for any ε > 0).

If 1 > p > r > q > 0, profile is a Nash eq (but not sequentially rational).



Prisoners’ Dilemma with Noisy Monitoring
Grim Trigger, 1 > p > q > r > 0

Consider private history ht
1 = (Ey
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2 = wS | ht−1

1 ), and so
Pr(wt

2 = wS | ht
1) →≈ 0, as t → ∞. Not Nash.



Prisoners’ Dilemma with Noisy Monitoring
Grim Trigger, 1 > p > r > q > 0

Consider private history ht
1 = (Ey

1
, Sy1, Sy1, ∙ ∙ ∙ , Sy1).

Associated beliefs of 1 about wt
2:

Pr(w0
2 = wE) = 1,

Pr(w1
2 = wS | Ey

1
) = Pr(y1

2 = y
2
| Ey

1
, w0

2 = wE) ≈ 1 − ε < 1,

but Pr(wt
2 = wS | ht

1)

= Pr(wt
2 = wS | wt−1

2 = wS)
︸ ︷︷ ︸

=1

Pr(wt−1
2 = wS | ht

1)

+ Pr(yt
2 = y | wt−1

2 = wE , ht
1)︸ ︷︷ ︸

≈0

Pr(wt−1
2 = wE | ht

1),

and Pr(wt−1
2 = wS | ht

1) > Pr(wt−1
2 = wS | ht−1

1 ), and so
Pr(wt

2 = wS | ht
1) ≈ 1 for all t . Nash.



Prisoners’ Dilemma with Noisy Monitoring
Grim Trigger, 1 > p > r > q > 0

Consider private history ht
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1 ), and so
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2 = wS | ht
1) →≈ 0, as t → ∞. Failure seq rationality.



Automaton Representation of Strategies

An automaton is the tuple (Wi , w0
i , fi , τi), where

Wi is set of states,

w0
i is initial state,

fi : W → Ai is output function (decision rule), and

τi : Wi × Ai × Yi → Wi is transition function.

Any automaton (Wi , w0
i , fi , τi) induces a strategy for i . Define

τi(wi , ht
i ) := τi(τi(wi , ht−1

i ), at−1
i , yt−1

i ).

The induced strategy si is given by si(∅) = fi(w0
i ) and

si(ht
i ) = fi(τi(w0

i , ht
i )), ∀ht

i .

Every strategy can be represented by an automaton.



Almost Public Monitoring Games
Fix a game with imperfect full support public monitoring, so that for all
y ∈ Y and a ∈ A, ρ(y | a) > 0.

Rather than observing the public signal directly, each player i observes a
private signal yi ∈ Y .

The game with private monitoring is ε-close to the game with public
monitoring if the joint distribution π on the private signal profile
(y1, . . . , yn) satisfies

|π((y , y , . . . , y) | a) − ρ(y | a)| < ε.

Such a game has almost public monitoring.

Any automaton in the game with public monitoring describes a strategy
profile in all ε-close almost public monitoring games.



Almost Pubic Monitoring
Rich Private Monitoring

Fix a game with imperfect full support public monitoring, so that for all
y ∈ Y and a ∈ A, ρ(y | a) > 0.
Each player i observes a private signal zi ∈ Zi , with (z1, . . . , zn)
distributed according to the joint dsn π.
The game with rich private monitoring is ε-close to the game with public
monitoring if there are mappings ξi : Zi → Y such that

∣
∣
∣
∣
∣
∣

∑

ξ1(z1)=y ,...,ξn(zn)=y

π((z1, . . . , zn) | a) − ρ(y | a)

∣
∣
∣
∣
∣
∣
< ε.

Such a game has almost public monitoring.
Any automaton in the game with public monitoring describes a strategy
profile in all ε-close almost public monitoring games with rich private
monitoring.



Behavioral Robustness I
Definition
An eq of a game with public monitoring is behaviorally robust if the same
automaton is an eq in all ε-close games to the game with public monitoring for
ε sufficiently small.



Behavioral Robustness I
Definition
An eq of a game with public monitoring is behaviorally robust if the same
automaton is an eq in all ε-close games to the game with public monitoring for
ε sufficiently small.

Theorem
Suppose the public profile (W , w0, f , τ ) is a strict equilibrium of the game with
public monitoring for some δ and |W| < ∞. For all κ > 0, there exists η and ε
such that if the posterior beliefs induced by the private profile satisfy
βi(τ(ht

i )1|h
t
i ) > 1 − η for all ht

i , and if π is ε-close to ρ, then the private profile
is a sequential equilibrium of the game with private monitoring for the same δ,
and the expected payoff in that equilibrium is within κ of the public equilibrium
payoff.



Behavioral Robustness II

Definition
A public automaton (W , w0, f , τ ) has bounded recall if there exists L such that
after any history of length at least L, continuation play only depends on the
last L periods of the public history (i.e., τ(w , hL) = τ(w ′, hL) for all w , w ′ ∈ W
reachable in the same period).

Theorem
Given a finite memory public profile, for all η > 0, there exists ε > 0 such that
if π is ε-close to ρ, the posterior beliefs induced by the private profile satisfy
βi(τ(ht

i )1|h
t
i ) > 1 − η for all ht

i .



Behavioral Robustness III
An eq is behaviorally robust if the same profile is an eq in near-by games.
A public profile has bounded recall if there exists L such that after any history
of length at least L, continuation play only depends on the last L periods of
the public history.

Theorem (Mailath and Morris, 2002)
A strict PPE with bounded recall is behaviorally robust to private monitoring
that is almost public.



Behavioral Robustness III
An eq is behaviorally robust if the same profile is an eq in near-by games.
A public profile has bounded recall if there exists L such that after any history
of length at least L, continuation play only depends on the last L periods of
the public history.

Theorem (Mailath and Morris, 2002)
A strict PPE with bounded recall is behaviorally robust to private monitoring
that is almost public.

“Theorem” (Mailath and Morris, 2006)
If the private monitoring is sufficiently rich, a strict PPE is behaviorally robust
to private monitoring that is almost public if and only if it has bounded recall.



Illustration of Mailath and Morris 2006
Grim trigger in PD

Suppose 1
2p−q < δ < 1, so grim trigger is a strict PPE.

Signal structure: a1a2 y
2

y ′
2 y ′′

2

y
1

(1 − α)(1 − 3ε) ε ε

y1 ε α′(1 − 3ε) (α − α′)(1 − 3ε)

α =






p, a = EE ,

q, a = SE , ES,

r , a = SS,

α′ =






p′, a = EE ,

q′, a = SE , ES,

r ′, a = SS.

If 1 > p > q > r > 0, profile is not a Nash eq of private monitoring game.
Suppose 1 > p > r > q > 0, and α′ = α/2, profile is a Nash eq of private
monitoring game.



Illustration of Mailath and Morris 2006
Grim trigger in PD

Suppose 1
2p−q < δ < 1, so grim trigger is a strict PPE.

Signal structure: a1a2 y
2

y ′
2 y ′′

2

y
1

(1 − α)(1 − 3ε) ε ε

y1 ε α′(1 − 3ε) (α − α′)(1 − 3ε)

α =






p, a = EE ,

q, a = SE , ES,

r , a = SS,

α′ =






p′, a = EE ,

q′, a = SE , ES,

r ′, a = SS.

If 1 > p > q > r > 0, profile is not a Nash eq of private monitoring game.
Suppose 1 > p > r > q > 0, but 1 > p′ > q′ > r ′ > 0, profile is not a
Nash eq.



Bounded Recall
It is tempting to think that bounded recall provides an attractive restriction on
behavior. But:

Folk Theorem II (Hörner and Olszewski, 2009)
The public monitoring folk theorem holds using bounded recall strategies. The
folk theorem also holds using bounded recall strategies for games with
almost-public monitoring.

This private monitoring folk theorem is not behaviorally robust.



Bounded Recall
It is tempting to think that bounded recall provides an attractive restriction on
behavior. But:

Folk Theorem II (Hörner and Olszewski, 2009)
The public monitoring folk theorem holds using bounded recall strategies. The
folk theorem also holds using bounded recall strategies for games with
almost-public monitoring.

This private monitoring folk theorem is not behaviorally robust.

Folk Theorem III (Mailath and Olszewski, 2011)
The perfect monitoring folk theorem holds using bounded recall strategies
with uniformly strict incentives. Moreover, the resulting equilibrium is
behaviorally robust to almost-perfect almost-public monitoring.



Prisoners’ Dilemma
Conditionally Independent Private Monitoring
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Player i observes a noisy signal: πi(yi = aj) = 1 − ε.

Theorem (Sekiguchi, 1997)
For all ψ > 0, there exists η′′ > η′ > 0 such that for all δ ∈ (1/3 + η′, 1/3 + η′′),
there is a Nash equilibrium in which each player randomizing over the initial
state, with the probability on wE exceeding 1 − ψ.



Proof and extend to all high δ

Proof of theorem
Optimality of grim trigger after different histories:

Es: updating given original randomization =⇒ S optimal.



Proof and extend to all high δ

Proof of theorem
Optimality of grim trigger after different histories:

Es: updating given original randomization =⇒ S optimal.

Ee, Ee, . . . , Ee: perpetual e reassures i that j is still in wE .



Proof and extend to all high δ

Proof of theorem
Optimality of grim trigger after different histories:

Es: updating given original randomization =⇒ S optimal.
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Ee, Ee, . . . , Ee, Es. Most likely events: either j is still in wE and s is a
mistake, or j received an erroneous signal in the previous period. Odds
slightly favor j receiving the erronous signal, and because δ low, S is
optimal.
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if not there already.



Proof and extend to all high δ
Proof of theorem
Optimality of grim trigger after different histories:

Es: updating given original randomization =⇒ S optimal.

Ee, Ee, . . . , Ee: perpetual e reassures i that j is still in wE .

Ee, Ee, . . . , Ee, Es. Most likely events: either j is still in wE and s is a
mistake, or j received an erroneous signal in the previous period. Odds
slightly favor j receiving the erronous signal, and because δ low, S is
optimal.

Ee, Ee, . . . , Ee, Es, Se, . . . , Se. This period’s S will trigger j ’s switch to wS,
if not there already.

To extend to all high δ, lower effective discount factor by dividing games into N
interleaved games.



Belief-Free Equilibria

Another approach is to specify behavior in such a way that the beliefs are
irrelevant.
Suppose n = 2.

Definition
The profile ((W1, w0

1 , f1, τ1), (W2, w0
2 , f2, τ2)) is a belief-free eq if for all

(w1, w2) ∈ W1 ×W1, (Wi , wi , fi , τi) is a best reply to (Wj , wj , fj , τj), all i 6= j .

This approach is due to Piccione (2002), with a refinement by Ely and
Valimaki (2002). Belief-free eq are characterized by Ely, Hörner, and
Olszewski (2005).



Illustration of Belief Free Eq
The product-choice game

c s

H 2, 3 0, 2

L 3, 0 1, 1

Row player is a firm choosing H igh or Low quality.

Column player is a short-lived customer choosing the customized or
standard product.

In the game with perfect monitoring, grim trigger (play Hc till 1 plays L,
then revert to perpetual Ls) is an eq if δ ≥ 1

2 .



The belief-free eq that achieves a payoff of 2 for the row player:

Row player always plays 1
2 ◦ H + 1

2 ◦ L. (Trivial automaton)

Column player’s strategy has one period memory. Play c for sure after H
in the previous period, and play

αL :=
(
1 − 1

2δ

)
◦ c + 1

2δ
◦ s

after L in the previous period. Player 2’s automaton:

wcw0 wαL

L

H

H

L



Let V1(w ; a1) denote player 1’s payoff when 2 is in state w , and 1 plays
a1. Then (where α = 1 − 1/(2δ)),

V1(wc; H) = (1 − δ)2 + δV1(wc)

= V1(wc; L) = (1 − δ)3 + δV1(wαL),

V1(wαL ; a1 = H) = (1 − δ)2α + δV1(wc)

= V1(wαL ; a1 = L) = (1 − δ)(2α + 1) + δV1(wαL).

Then, V1(wc) − V1(wαL) = (1 − δ)/δ.

Which is true when α = 1 − 1/(2δ).



Belief-Free Eq in the Prisoners’ Dilemma
Ely and Valimaki (2002)

Perfect monitoring PD. E S

E 2, 2 −1, 3

S 3,−1 0, 0
Player i ’s automaton, (Wi , wi , fi , τi):

W = {wE
i , wS

i },

fi(wa
i ) =

{
1, a = E ,

α ◦ E + (1 − α) ◦ S, a = S, α := 1 − 1/(3δ),

τi(wi , aiaj) = w
aj

i .

Both (W1, wE
1 , f1, τ1) and (W1, wS

1 , f1, τ1) are best replies to both
(W2, wE

2 , f2, τ2) and (W2, wS
2 , f2, τ2).



Belief-Free in the Prisoners’ Dilemma-Proof
Let V1(aa′) denote player 1’s payoff when 1 is in state wa

1 and 2 is in state
wa′

2 . Then

V1(EE) = (1 − δ)2 + δV1(EE),

V1(ES) = (1 − δ)(3α − 1)

+ δ[αV1(EE) + (1 − α)V1(SE)],

V1(SE ; a1 = E) = (1 − δ)2 + δV1(EE)

= V1(SE ; a1 = S) = (1 − δ)3 + δV1(ES),

V1(SS : a1 = E) = (1 − δ)(−1)

+ δ[αV1(EE) + (1 − α)V1(SE)]

= V1(SS : a1 = S) = δ[αV1(ES) + (1 − α)V1(SS)].

Then, V1(EE) − V1(ES) = V1(SE) − V1(SS) = (1 − δ)/δ.
Which is true when α = 1 − 1/(3δ).



Belief-Free in the Prisoners’ Dilemma
Private Monitoring

Suppose we have conditionally independent private monitoring.

For ε small, there is a value of α satisfying the analogue of the
indifference conditions for perfect monitoring (the system of equations is
well-behaved, and so you can apply the implicit function theorem).

These kinds of strategies can be used to construct equilibria with payoffs
in the square (0, 2) × (0, 2) for sufficiently patient players.



Histories are not being used to coordinate play! There is no common
understanding of continuation play.

This is to be contrasted with strict PPE.

Rather, lump sum taxes are being imposed after “deviant” behavior is
“suggested.”

This is essentially what we do in the repeated prisoners’ dilemma.

Folk theorems for games with private monitoring have been proved using
belief free constructions.

These equilibria seem crazy, yet Kandori and Obayashi (2014) report
suggestive evidence that in some community unions in Japan, the
behavior accords with such an equilibrium.



Imperfect Monitoring

This works for public and private monitoring.

No hope for behavioral robustness.

“Theorem” (Hörner and Olszewski, 2006)
The folk theorem holds for games with private almost-perfect monitoring.

Result uses belief-free ideas in a central way, but the equilibria
constructed are not belief free.



Role of Mixing
H2 T2

H1 1,−1 −1, 1

T1 −1, 1 1,−2

Mixed strategy eq:
(3

5 ◦H1+ 2
5 ◦T1,

1
2 ◦H2+ 1

2 ◦T2)

Standard complaint about mixing:
People don’t randomize
Randomization probabilities for i determined by need to keep j indifferent.



Role of Mixing
H2 T2

H1 1,−1 −1, 1

T1 −1, 1 1,−2

Mixed strategy eq:
(3

5 ◦H1+ 2
5 ◦T1,

1
2 ◦H2+ 1

2 ◦T2)

Standard complaint about mixing:
People don’t randomize
Randomization probabilities for i determined by need to keep j indifferent.

Response:
players have private information–players don’t randomize, but opponents
face nontrivial distribution of behavior.
Suppose player i has payoff irrelevant private information ti ∼ U([0, 1]).

σ1(t1) =

{
H1, t1 ≤ 3

5 ,

T1, t1 > 3
5 ,

σ2(t2) =

{
H2, t2 ≤ 1

2 ,

T2, t2 > 1
2 .



Harsanyi (1973) Purification
Getting the right probabilities

Make the private information payoff information:

H2 T2

H1 1 − εt1,−1 − εt2 −1, 1

T1 −1, 1 1,−2

ti ∼ U([0, 1]).

σi(ti) =

{
Hi , ti ≤ t̄i(ε),

Ti , ti > t̄i(ε),

As ε → 0, t̄1(ε) → 3
5 and t̄2(ε) → 1

2 .



Harsanyi (1973) Purification
Getting the right probabilities

Make the private information payoff information:

H2 T2

H1 1 − εt1,−1 − εt2 −1, 1

T1 −1, 1 1,−2

ti ∼ U([0, 1]).

σi(ti) =

{
Hi , ti ≤ t̄i(ε),

Ti , ti > t̄i(ε),

As ε → 0, t̄1(ε) → 3
5 and t̄2(ε) → 1

2 .

Belief-free equilibria typically have the property that players randomize
the same way after different histories (and so with different beliefs over
the private states of the other player(s)).



Purification of Belief Free Eq

Belief-free equilibria typically have the property that players randomize
the same way after different histories (and so with different beliefs over
the private states of the other player(s)).

Can we purify belief-free equilibria (Bhaskar, Mailath, and Morris, 2008)
by introducing iid payoff shocks over time?

The one period memory belief free equilibria of Ely and Valimaki (2002), as
exemplified above, is not purifiable using one period memory strategies.
They are purifiable using unbounded memory strategies.
Open question: can they be purified using bounded memory strategies? (It
turns out that for sequential games, only Markov equilibria can be purified
using bounded memory strategies, Bhaskar, Mailath, and Morris 2013).



What about noisy monitoring?

Current best result is Sugaya (2013):

“Theorem”
The folk theorem generically holds for the repeated two-player prisoners’
dilemma with private monitoring if the support of each player’s signal
distribution is sufficiently large. Neither cheap talk communication nor public
randomization is necessary, and the monitoring can be very noisy.



Ex Post Equilibria

The belief-free idea is very powerful.

Suppose there is an unknown state determining payoffs and monitoring.

ωE E S

E 1, 1 −1, 2

S 2,−1 0, 0

ωS E S

E 0, 0 2,−1

S −1, 2 1, 1

Let Γ(δ; ω) denote the complete-information repeated game when state ω
is common knowledge. Monitoring may be perfect or imperfect public.



Perfect Public Ex Post Equilibria
Γ(δ; ω) is complete-information repeated game at ω.

Definition
The public strategy profile σ∗ is a perfect public ex post eq if σ∗|ht is a Nash eq
of Γ(δ; ω) for all ht ∈ H, where σ∗|ht is continuation public profile induced by ht .

These equilibria can be strict; histories do coordinate play.
But the eq are belief free.



Perfect Public Ex Post Equilibria
Γ(δ; ω) is complete-information repeated game at ω.

Definition
The public strategy profile σ∗ is a perfect public ex post eq if σ∗|ht is a Nash eq
of Γ(δ; ω) for all ht ∈ H, where σ∗|ht is continuation public profile induced by ht .

These equilibria can be strict; histories do coordinate play.
But the eq are belief free.

“Theorem” (Fudenberg and Yamamoto 2010)
Suppose the signals are statistically informative (about actions and states).
The folk theorem holds state-by-state.

These ideas also can be used in some classes of reputation games (Hörner
and Lovo, 2009) and in games with private monitoring (Yamamoto, 2014).



Conclusion

The current theory of repeated games shows that the long relationships
can discourage opportunistic behavior, it does not show that long run
relationships will discourage opportunistic behavior.

Incentives can be provided when histories coordinate continuation play.

Punishments must be credible, and this can limit their scope.

Some form of monitoring is needed to punish deviators.

This monitoring can occur through communication networks.

Intertemporal incentives can also be provided in situations when there is
no common understanding of histories, and so of continuation play.



What is left to understand

Which behaviors in long-run relationships are plausible?

Why are formal institutions important?

Why do we need formal institutions to protect property rights, for
example?

Communication is not often modelled explicitly, and it should be.
Communication make things significantly easier (see Compte, 1998, and
Kandori and Matsushima, 1998).

Too much focus on patient players (δ close to 1).


