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Games of Complete Information

All the previous examples are games of complete information:

All players know the nature of other players’ information and
beliefs are known (being determined by the probability distribution of
nature’s moves).



An Example without Complete Information

L R

T 1, 1 0, 0

B 0, 1 1, 0

L R

T 1, 0 0, 1

B 0, 0 1, 1

Suppose I does not which of the payoff matrices is true; II knows matrix,
so both players know their own payoff.

II plays L in left matrix, and R in right matrix.

How will I choose in the presence of uncertainty?



Decision Making with Randomness

How does a decision maker choose when faced with randomness?

Risk: choices have random consequences, but probability distribution of
these consequences is known (lottery tickets, roulette wheel).

Uncertainty: choices have random consequences, and the probability
distribution of these consequences is unknown (horse race). (Is probability
even defined in these circumstances?)



Decision Making Under Risk
Von Neumann and Morgenstern (1944): Primitive is a preference order �
over lotteries (i.e., a specified objective probability distribution) over
outcomes X .
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Von Neumann and Morgenstern (1944): Primitive is a preference order �
over lotteries (i.e., a specified objective probability distribution) over
outcomes X .
If the preference order � satisfies some “reasonable rationality” axioms,
then there is a utility function u : X → R such that

p � q ⇐⇒
∑

x
p(x)u(x) ≥

∑

x
q(x)u(x).



Decision Making Under Risk
Von Neumann and Morgenstern (1944): Primitive is a preference order �
over lotteries (i.e., a specified objective probability distribution) over
outcomes X .
If the preference order � satisfies some “reasonable rationality” axioms,
then there is a utility function u : X → R such that

p � q ⇐⇒
∑

x
p(x)u(x) ≥

∑

x
q(x)u(x).

Moreover, the utility function is unique up to positive affine
transformations: If v is another utility function also representing the
preference order, then there exists two constants, a > 0 and b such that
for all x ∈ X ,

v(x) = au(x) + b.



Decision Making Under Uncertainty

Savage (1972): Primitives are
a state space Ω, where a state resolves all uncertainty,
acts (bets), f : Ω → X , where X is (as in vNM) the space of outcomes, and
a preference order � over the space of acts.



Decision Making Under Uncertainty

Savage (1972): Primitives are
a state space Ω, where a state resolves all uncertainty,
acts (bets), f : Ω → X , where X is (as in vNM) the space of outcomes, and
a preference order � over the space of acts.

If the preference order � satisfies some “reasonable rationality” axioms,
then there is a utility function u : X → R and a subjective finitely-additive
probability measure μ such that

f � g ⇐⇒
∫

u(f (ω))dμ(ω) ≥
∫

u(g(ω))dμ(ω).



Decision Making Under Uncertainty

Savage (1972): Primitives are
a state space Ω, where a state resolves all uncertainty,
acts (bets), f : Ω → X , where X is (as in vNM) the space of outcomes, and
a preference order � over the space of acts.

If the preference order � satisfies some “reasonable rationality” axioms,
then there is a utility function u : X → R and a subjective finitely-additive
probability measure μ such that

f � g ⇐⇒
∫

u(f (ω))dμ(ω) ≥
∫

u(g(ω))dμ(ω).

Moreover, the utility function is unique up to positive affine
transformations and μ is unique.



Decision Making Under Uncertainty

Savage (with the extensions to accommodate countably additive beliefs
and objective probabilities as well) is the standard (classical) approach to
dealing with uncertainty.

Objective beliefs are determined by nature.
Subjective beliefs are not and reflect the agent’s speculations or theories.



An Example without Complete Information

L R

T 1, 1 0, 0

B 0, 1 1, 0

L R

T 1, 0 0, 1

B 0, 0 1, 1

Suppose I does not which of the payoff matrices is true; II knows matrix,
so both players know their own payoff.

II plays L in left matrix, and R in right matrix.

I assigns probability α to left matrix. Then, I plays T if α > 1
2 , and plays B

if α < 1
2 (and is indifferent if α = 1

2).



An Example without Complete Information

L R

T 1, 1 0, 0

B 0, 1 1, 0

L R

T 1, 2 0, 1

B 0, 0 1, 1

Should II still feel comfortable playing R if the payoffs are the right matrix?

Optimality of II’s action choice of R depends on believing that I will play
B, which only occurs if α ≤ 1

2 .

But suppose II does not know I’s beliefs α. Then, II has beliefs over I’s
beliefs and so II finds R optimal if he assigns probability at least 1

2 to I
assigning probability at least 1

2 to the right matrix.

But, how confident is I that II will play R in the right matrix?....



Games of Incomplete Information

Definition (Harsanyi (1967, 1968a,b))
A game of incomplete information or Bayesian game is the collection
{(Ai , Ti , pi , ui)

n
i=1}, where

Ai is i ’s action space,

Ti is i ’s type space,

pi : Ti → Δ
(∏

j 6=i Tj

)
is i ’s subjective beliefs about the other players’

types, given i ’s type and

ui :
∏

j Aj ×
∏

j Tj → R is i ’s payoff function.

A player’s type ti describes everything that i knows that is not common
knowledge (including player i ’s beliefs).



Bayes-Nash Equilibrium I

A strategy for i is
si : Ti → Ai .

Let s(t) := (s1(t1), . . . , sn(tn)), etc.

Definition
The profile (ŝ1, . . . , ŝn) is a Bayes-Nash (or Bayesian-Nash) equilibrium if, for
all i and all ti ∈ Ti ,

Et−i [ui(ŝ(t), t)] ≥ Et−i [ui(ai , ŝ−i(t−i), t)], ∀ai ∈ Ai ,

where the expectation over t−i is taken with respect to pi(ti).



Bayes-Nash Equilibrium II

If the type spaces are finite, then the probability i assigns to the vector
t−i ∈

∏
j 6=i Tj =: T−i when his type is ti can be denoted pi(t−i ; ti), and the profile

(ŝ1, . . . , ŝn) is a Bayes-Nash (or Bayesian-Nash) equilibrium if, for all i and all
ti ∈ Ti ,

∑

t−i

ui(ŝ(t), t)pi(t−i ; ti) ≥
∑

t−i

ui(ai , ŝ−i(t−i))pi(t−i ; ti), ∀ai ∈ Ai .



Return to Cournot duopoly example
Firm 1’s costs are private information, while firm 2’s are public.
Nature determines the costs of firm 1 at the beginning of the game, with
Pr(c1 = cL) = θ ∈ (0, 1).
Ai = R+, firm 1’s type space is T1 = {tL

1 , tH
1 }, firm 2’s is T2 = {t2}.

Belief mapping p1 for firm 1 is trivial: both types assign prob. 1 to t2.
The belief mapping for firm 2 is

p2(t2) = θ ◦ tL
1 + (1 − θ) ◦ tH

1 ∈ Δ(T1).

Finally, payoffs are

u1(q1, q2, t1, t2) =

{
[(a − q1 − q2) − cL]q1, if t1 = tL

1 ,

[(a − q1 − q2) − cH ]q1, if t1 = tH
1 ,

u2(q1, q2, t1, t2) = [(a − q1 − q2) − c2]q2.



Return to Cournot Duopoly Example with a twist
Firm 2 may know that firm 1 has low costs, cL

T1 = {tL
1 , tH

1 } = {cL, cH}, T2 = {t I
2, tU

2 } = {tI , tU}. The prior distribution is

Pr(t1, t2) =






1 − p′ − p′′, if (t1, t2) = (tL
1 , t I

2),

p′, if (t1, t2) = (tL
1 , tU

2 ),

p′′, if (t1, t2) = (tH
1 , tU

2 ).

The belief mappings are

p1(t1) =

{
(1 − α) ◦ t I

2 + α ◦ tU
2 , t1 = tL

1 ,

1 ◦ tU
2 , t1 = tH

1 ,

p2(t2) =

{
1 ◦ tL

1 , t2 = t I
2,

θ ◦ tL
1 + (1 − θ) ◦ tH

1 , t2 = tU
2 .



Interim perspective and the role of priors

The perspective of a game of incomplete information is interim: the
beliefs of player i are specified type by type.



Interim perspective and the role of priors

The perspective of a game of incomplete information is interim: the
beliefs of player i are specified type by type.

Suppose the type spaces are finite or countably infinite. Let q̂i be an
arbitrary full support distribution on Ti , i.e., q̂i ∈ Δ(Ti). Then defining

qi(t) := q̂i(ti)pi(t−i ; ti) ∀t

generates a prior qi ∈ Δ(T ) for player i with the property that
pi(∙; ti) ∈ Δ(T−i) is the belief on t−i conditional on ti .

There are many priors consistent with the subjective beliefs (since q̂i is
arbitrary).



Common Prior Assumption

Definition
The subjective beliefs are consistent or satisfy the Common Prior Assumption
(CPA) if there exists a single probability distribution p ∈ Δ (

∏
i Ti) such that, for

each i , pi(ti) is the probability distribution on T−i conditional on ti implied by p.

If the type spaces are finite, this is equivalent to the existence of a distributio p
over type profiles such that

pi(t−i ; ti) = p(t−i |ti) =
p (t)

∑
t ′−i

p
(
t ′−i , ti

) .



If beliefs are consistent, the Bayesian game can be interpreted as having
an initial move by nature, which selects t ∈ T according to p.
Suppose type spaces are finite. Viewed as a game of complete
information, a profile ŝ is a Nash equilibrium if, for all i , for all si : Ti → Ai ,

∑

t

ui(ŝ(t), t)p(t) ≥
∑

t

ui(si(ti), ŝ−i(t−i), t)p(t).



If beliefs are consistent, the Bayesian game can be interpreted as having
an initial move by nature, which selects t ∈ T according to p.
Suppose type spaces are finite. Viewed as a game of complete
information, a profile ŝ is a Nash equilibrium if, for all i , for all si : Ti → Ai ,

∑

t

ui(ŝ(t), t)p(t) ≥
∑

t

ui(si(ti), ŝ−i(t−i), t)p(t).

This inequality can be rewritten as (where p∗
i (ti) :=

∑
t−i

p (t−i , ti))

∑

ti






∑

t−i

ui (ŝ (t) , t) pi (t−i ; ti)





p∗

i (ti) ≥

∑

ti






∑

t−i

ui (si (ti) , ŝ−i (t−i) , t) pi (t−i ; ti)





p∗

i (ti) .



Global Games
Carlsson and van Damme (1993)

A B

A θ, θ θ − 9, 5

B 5, θ − 9 7, 7

The parameter θ is uniformly distributed on the interval [0, 20].
For θ < 5, B is strictly dominant, while for θ > 16, A is strictly dominant.
Each player i receives a signal xi , with x1 and x2 independently and
uniformly drawn from the interval [θ − ε, θ + ε] for ε > 0.
A pure strategy for player i is a function

si : [−ε, 20 + ε] → {A, B}.



For xi ∈ [ε, 20 − ε], player i ’s posterior on θ is uniform on [xi − ε, xi + ε].

For xi ∈ [ε, 20 − ε], player i ’s posterior on xj is symmetric around xi with
support [xi − 2ε, xi + 2ε]. Hence,

Pr{xj > xi | xi} = Pr{xj < xi | xi} =
1
2
.



For xi ∈ [ε, 20 − ε], player i ’s posterior on θ is uniform on [xi − ε, xi + ε].

For xi ∈ [ε, 20 − ε], player i ’s posterior on xj is symmetric around xi with
support [xi − 2ε, xi + 2ε]. Hence,

Pr{xj > xi | xi} = Pr{xj < xi | xi} =
1
2
.

Lemma
For ε < 5

2 , the game has an essentially unique Nash equilibrium (s∗
1, s∗

2), given
by

s∗
i (xi) =

{
A, if xi ≥ 101

2 ,

B, if xi < 101
2 .



Proof
Suppose xi < 5 − ε, so that θ < 5 (so that B is strictly dominant).



Proof
Suppose xi < 5 − ε, so that θ < 5 (so that B is strictly dominant).
Then, player i ’s payoff from A is less than that from B irrespective of
player j ’s action, and so i plays B for xi < 5 − ε (as does j for xj < 5 − ε).



Proof
Suppose xi < 5 − ε, so that θ < 5 (so that B is strictly dominant).
Then, player i ’s payoff from A is less than that from B irrespective of
player j ’s action, and so i plays B for xi < 5 − ε (as does j for xj < 5 − ε).
But then at xi = 5 − ε, since ε < 5 − ε, player i assigns at least probability
1
2 to j playing B, and so i strictly prefers B.



Proof
Suppose xi < 5 − ε, so that θ < 5 (so that B is strictly dominant).
Then, player i ’s payoff from A is less than that from B irrespective of
player j ’s action, and so i plays B for xi < 5 − ε (as does j for xj < 5 − ε).
But then at xi = 5 − ε, since ε < 5 − ε, player i assigns at least probability
1
2 to j playing B, and so i strictly prefers B.
Define

x∗
i := sup{x ′

i | B is implied by iterated strict dominance for all xi < x ′
i }.



Proof
Suppose xi < 5 − ε, so that θ < 5 (so that B is strictly dominant).
Then, player i ’s payoff from A is less than that from B irrespective of
player j ’s action, and so i plays B for xi < 5 − ε (as does j for xj < 5 − ε).
But then at xi = 5 − ε, since ε < 5 − ε, player i assigns at least probability
1
2 to j playing B, and so i strictly prefers B.
Define

x∗
i := sup{x ′

i | B is implied by iterated strict dominance for all xi < x ′
i }.

By symmetry, x∗
1 = x∗

2 = x∗. At xi = x∗, player i cannot strictly prefer B to
A (since E [θ | x∗] = x∗ and p ≤ 1

2):

px∗ + (1 − p)(x∗ − 9) = p5 + (1 − p)7

and so x∗ ≥ 101
2.



Proof
conclusion

Define

x∗∗
i := inf{x ′′

i | A is implied by iterated strict dominance for all xi > x ′′
i }.

Then,
x∗∗ ≤ 101

2 ,

and so
101

2 ≤ x∗ ≤ x∗∗ ≤ 101
2 .



Mixed Strategies and Purification

The assumption that players can randomize is sometimes criticized on three
grounds:

1 players don’t randomize;
2 there is no reason for a player randomize with just the right probability,

when the player is indifferent over all possible randomization probabilities
(including 0 and 1); and

3 a randomizing player is subject to ex post regret.



Ex post regret

A player is said to be subject to ex post regret if after all uncertainty is
resolved, a player would like to change his/her decision (i.e., has regret).

In a game with no moves of nature, no player has ex post regret in a pure
(but not mixed) strategy equilibrium.
Any pure strategy equilibrium of a game with moves of nature will
typically also have ex post regret.

Ex post regret should not be viewed as a criticism of mixing, but rather a
caution to modelers. If a player has ex post regret, then that player has an
incentive to change his/her choice. Whether a player is able to do so
depends upon the scenario being modeled. If the player cannot do so, then
there is no issue. If, however, the player can do so, then that option should
be included in the game description.



Purification

Player i ’s mixed strategy σi of a game G is said to be purified if in an
“approximating” version of G with private information (with player i ’s
private information given by Ti), that player’s behavior can be written as a
pure strategy si : Ti → Ai such that

σi(ai) ≈ Pr{si(ti) = ai},

where Pr is given by the prior distribution over Ti (and so describes player
j 6= i beliefs over Ti).



Example of Purification

A B

A 9, 9 0, 5

B 5, 0 7, 7

The game has two strict pure strategy Nash equilibria and one symmetric
mixed strategy Nash equilibrium. Let p = Pr {A}, then in the mixed strategy eq

9p = 5p + 7 (1 − p)

⇐⇒ 9p = 7 − 2p

⇐⇒ 11p = 7 ⇐⇒ p = 7/11.



Example of Purification (cont)

Trivial purification: Give player i payoff-irrelevant information ti , where
ti ∼ U([0, 1]), and t1 and t2 are independent. This is a game with private
information, where player i learns ti before choosing his or her action.

The mixed strategy equilibrium is purified by many pure strategy
equilibria in the game with private information, such as

si(ti) =

{
B, if ti ≤ 4/11,

A, if ti ≥ 4/11.



Better Purification
Harsanyi (1973)

A B

A 9 + εt1, 9 + εt2 0, 5

B 5, 0 7, 7

Player i ’s type ti ∼ U([0, 1]) and t1 and t2 are independent.

A pure strategy for player i is si : [0, 1] → {A, B}. Suppose 2 is following a
cutoff strategy (with t̄2 ∈ (0, 1)),

s2(t2) =

{
A, t2 ≥ t̄2,

B, t2 < t̄2.



Type t1 expected payoff from A is

U1 (A, t1, s2) = (9 + εt1) Pr {s2(t2) = A}

= (9 + εt1) Pr
{

t2 ≥ t̄2
}

= (9 + εt1)(1 − t̄2),

while from B is

U1 (B, t1, s2) = 5 Pr
{

t2 ≥ t̄2
}

+ 7 Pr
{

t2 < t̄2
}

= 5(1 − t̄2) + 7t̄2
= 5 + 2t̄2.

Thus, A is optimal if and only if

(9 + εt1)(1 − t̄2) ≥ 5 + 2t̄2,

i.e.,

t1 ≥
11t̄2 − 4
ε(1 − t̄2)

.



In the symmetric equilibrium: t̄1 = t̄2 = t̄ , that is,

t̄ =
11t̄ − 4
ε(1 − t̄)

,

or
εt̄2 + (11 − ε)̄t − 4 = 0.

Let t(ε) denote the value of t̄ satisfying this equality.
Note that t(0) = 4/11.
Write the equality as g(̄t , ε) = 0.
Apply the implicit function theorem (since ∂g/∂ t̄ 6= 0 at ε = 0) to conclude
that for ε > 0 but close to 0, the cutoff value of t̄ , t(ε), is close to 4/11 (the
probability of the mixed strategy equilibrium in the unperturbed game).



Auctions
First-Price Sealed Bid Private-Value Auctions

Bidder i ’s value for the object, vi is known only to i .

Nature chooses vi , i = 1, 2, with vi being independently drawn from the
interval [v i , v̄i ], with distribution Fi and density fi .

Bidders know Fi (and so fi).

The set of possible bids is R+.

Bidder i ’s ex post payoff as a function of b1 and b2, and values v1 and v2:

ui(b1, b2, v1, v2) =






0, if bi < bj ,

1
2 (vi − bi) , if bi = bj ,

vi − bi , if bi > bj .



Suppose bidder 2 uses a strategy σ2 : [v2, v̄2] → R+.



Suppose bidder 2 uses a strategy σ2 : [v2, v̄2] → R+.
Then, bidder 1’s expected (or interim) payoff from bidding b1 at v1 is

U1 (b1, v1; σ2) =

∫
u1 (b1, σ2 (v2) , v1, v2) dF2(v2)

=
1
2

(v1 − b1) Pr {σ2(v2) = b1}

+

∫

{v2:σ2(v2)<b1}
(v1 − b1) f2 (v2) dv2.



Suppose bidder 2 uses a strategy σ2 : [v2, v̄2] → R+.
Then, bidder 1’s expected (or interim) payoff from bidding b1 at v1 is

U1 (b1, v1; σ2) =

∫
u1 (b1, σ2 (v2) , v1, v2) dF2(v2)

=
1
2

(v1 − b1) Pr {σ2(v2) = b1}

+

∫

{v2:σ2(v2)<b1}
(v1 − b1) f2 (v2) dv2.

Player 1’s ex ante payoff from the strategy σ1 is given by
∫

U1(σ1(v1), v1; σ2) dF1(v1),

and so for an optimal strategy σ1, the bid b1 = σ1(v1) must maximize
U1(b1, v1; σ2) for almost all v1.



Proceed by “guess and verify”: that is, we impose a sequence of
increasingly demanding conditions on the strategy of player 2, and prove
that there is a best reply for player 1 satisfying these conditions.
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that there is a best reply for player 1 satisfying these conditions.
Begin by supposing σ2 is strictly increasing, so that Pr {σ2 (v2) = b1} = 0.



Proceed by “guess and verify”: that is, we impose a sequence of
increasingly demanding conditions on the strategy of player 2, and prove
that there is a best reply for player 1 satisfying these conditions.
Begin by supposing σ2 is strictly increasing, so that Pr {σ2 (v2) = b1} = 0.
Without loss of generality, restrict attention to bids b1 in the range of σ2.



Proceed by “guess and verify”: that is, we impose a sequence of
increasingly demanding conditions on the strategy of player 2, and prove
that there is a best reply for player 1 satisfying these conditions.
Begin by supposing σ2 is strictly increasing, so that Pr {σ2 (v2) = b1} = 0.
Without loss of generality, restrict attention to bids b1 in the range of σ2.
Then,

U1 (b1, v1; σ2) =

∫

{v2:σ2(v2)<b1}
(v1 − b1) f2 (v2) dv2

= E [v1 − b1 | winning] Pr{winning}

= (v1 − b1) Pr {σ2 (v2) < b1}

= (v1 − b1) Pr{v2 < σ−1
2 (b1)}

= (v1 − b1)F2(σ
−1
2 (b1)).



Need to choose b1 to max U1 (b1, v1; σ2) = (v1 − b1)F2(σ
−1
2 (b1)).



Need to choose b1 to max U1 (b1, v1; σ2) = (v1 − b1)F2(σ
−1
2 (b1)).

Suppose σ2 is differentiable, and that the bid b1 = σ1(v1) is an interior
maximum.



Need to choose b1 to max U1 (b1, v1; σ2) = (v1 − b1)F2(σ
−1
2 (b1)).

Suppose σ2 is differentiable, and that the bid b1 = σ1(v1) is an interior
maximum.
The first order condition is

0 = −F2
(
σ−1

2 (b1)
)

+ (v1 − b1) f2
(
σ−1

2 (b1)
)

dσ−1
2 (b1) /db1.



Need to choose b1 to max U1 (b1, v1; σ2) = (v1 − b1)F2(σ
−1
2 (b1)).

Suppose σ2 is differentiable, and that the bid b1 = σ1(v1) is an interior
maximum.
The first order condition is

0 = −F2
(
σ−1

2 (b1)
)

+ (v1 − b1) f2
(
σ−1

2 (b1)
)

dσ−1
2 (b1) /db1.

But
dσ−1

2 (b1)

db1
=

1

σ′
2(σ

−1
2 (b1))

,

so
F2
(
σ−1

2 (b1)
)
σ′

2

(
σ−1

2 (b1)
)

= (v1 − b1) f2
(
σ−1

2 (b1)
)
,

i.e.,

σ′
2

(
σ−1

2 (b1)
)

=
(v1 − b1) f2

(
σ−1

2 (b1)
)

F2
(
σ−1

2 (b1)
) .



Assume F1 = F2, and suppose the equilibrium is symmetric, so that
σ1 = σ2 = σ̃, and b1 = σ1 (v) implies v = σ−1

2 (b1).

Then,

σ′
2

(
σ−1

2 (b1)
)

=
(v1 − b1) f2

(
σ−1

2 (b1)
)

F2
(
σ−1

2 (b1)
) .

becomes (dropping subscripts),

σ̃′(v) =
(v − σ̃(v))f (v)

F (v)
,

or
σ̃′(v)F (v) + σ̃(v)f (v) = vf (v).



We have
σ̃′(v)F (v) + σ̃(v)f (v) = vf (v).



We have
σ̃′(v)F (v) + σ̃(v)f (v) = vf (v).

But
d
dv

σ̃(v)F (v) = σ̃′(v)F (v) + σ̃(v)f (v),

so

σ̃(v̂)F (v̂) =

∫ v̂

v
vf (v)dv + k ,

where k is a constant of integration.



We have
σ̃′(v)F (v) + σ̃(v)f (v) = vf (v).

But
d
dv

σ̃(v)F (v) = σ̃′(v)F (v) + σ̃(v)f (v),

so

σ̃(v̂)F (v̂) =

∫ v̂

v
vf (v)dv + k ,

where k is a constant of integration.

Moreover, evaluating both sides at v̂ = v shows that k = 0, and so

σ̃(v̂) =
1

F (v̂)

∫ v̂

v
vf (v)dv = E [v | v ≤ v̂ ].



Summary

Each bidder bids the expectation of the other bidder’s valuation,
conditional on that valuation being less than his (i.e., conditional on his
value being the highest). This is not an accident.

Summarizing the calculations till this point, we have shown that if (σ̃, σ̃) is
a Nash equilibrium in which σ̃ is a strictly increasing and differentiable
function, and σ̃(v) is interior (which here means strictly positive), then it is
given by σ̃(v̂) = E [v | v ≤ v̂ ] .
Note that E [v | v ≤ v̂ ] is increasing in v̂ and lies in the interval [v , Ev ].

It remains to verify the hypotheses. It is immediate that σ̃ is strictly
increasing and differentiable. Moreover, for v > v , σ̃(v) is strictly positive.
It remains to verify the optimality of bids.



Optimality
It is not optimal to bid b1 < v = σ̃(v) or b1 > Ev = σ̃(v̄).

Since σ̃ is strictly increasing and continuous, any bid in [v , Ev ] is the bid
of some valuation v .

Bidding as if valuation v̂ has valuation v ′ is suboptimal:

U(v ′; v̂) = (v̂ − σ̃(v ′)) Pr(v2 ≤ σ̃−1(σ̃(v ′))

= (v̂ − E [v | v ≤ v ′])F (v ′)

=

(

v̂ −
1

F (v ′)

∫ v ′

v
vf (v)dv

)

F (v ′)

=

∫ v ′

v
(v̂ − v)f (v)dv .



Common Value Auctions

Each bidder receives a private signal about the value of the object, ti ,
with ti ∈ Ti = [0, 1], uniformly independently distributed.

The common (to both players) value of the object is v = t1 + t2.

Ex post payoffs are given by

ui(b1, b2, t1, t2) =






t1 + t2 − bi , if bi > bj ,
1
2(t1 + t2 − bi), if bi = bj ,

0, if bi < bj .



Suppose bidder 2 uses strategy σ2 : T2 → R+.

Suppose σ2 is strictly increasing.

Then, t1’s expected payoff from bidding b1 is

U1(b1, t1; σ2) = E [t1 + t2 − b1 | winning] Pr{winning}

= E [t1 + t2 − b1 | t2 < σ−1
2 (b1)] Pr{t2 < σ−1

2 (b1)}

= (t1 − b1)σ
−1
2 (b1) +

∫ σ−1
2 (b1)

0
t2 dt2

= (t1 − b1)σ
−1
2 (b1) + (σ−1

2 (b1))
2/2.



Maximizing U1(b1, t1; σ2) = (t1 − b1)σ
−1
2 (b1) + (σ−1

2 (b1))
2/2.

If σ2 is differentiable, the first order condition is

0 = −σ−1
2 (b1) + (t1 − b1)dσ−1

2 (b1)/db1 + σ−1
2 (b1)dσ−1

2 (b1)/db1,

and so
σ−1

2 (b1)σ
′
2(σ

−1
2 (b1)) = (t1 + σ−1

2 (b1) − b1).

Suppose the equilibrium is symmetric, so that σ1 = σ2 = σ. Then,

tσ′(t) = 2t − σ(t).

Integrating,
tσ(t) = t2 + k ,

where k is a constant of integration. Evaluating at t = 0 shows that
k = 0, and so

σ(t) = t .



Winner’s Curse
Note that this is not the profile that results from the analysis of the private
value auction when v = 1/2 (E [t1 + t2 | t1] = t1 + 1/2).
In particular, letting v ′ = t + 1

2 , we have

σprivate value(t) = σ̃(v ′) =
v ′ + 1/2

2
=

t + 1
2

> t = σcommon value(t).

This illustrates the winner’s curse: E [v | t1] > E [v |t1, winning]. In
particular, in the equilibrium just calculated,

E [v | t1, winning] = E [t1 + t2 | t1, t2 < t1]

= t1 +
1
t1

[
(t2)

2 /2
]t1

0
=

3t1
2

,

while E [v | t1] = t1 + 1
2 > 3t1/2 (recall t1 ∈ [0, 1]).
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