Foundations for Types Spaces

George J. Mailath

University of Pennsylvania and Australian National University

February 2019

Introduction

- Fundamental space of uncertainty is Θ , a set of parameters.
- Assume ⊖ is finite, though can extend to metric spaces that are complete (Cauchy sequences converge), separable (countably dense subset).
- Will be concerned with beliefs over Θ , beliefs over beliefs over Θ , ...

Example

- Suppose $\Theta = \{\theta_0, \theta_1\}$, and $\mu \in \Delta(\Theta) \subset \mathbb{R}^2$, set of probability distributions.
- If $(\mu_n) \subset \Delta(\Theta)$, then $\mu_n \to \mu$ is convergence in the usual Euclidean sense: $\mu_n(\theta) \to \mu(\theta)$ for each θ .
- This is equivalent to for all $f: \Theta \rightarrow \mathbb{R}$,

$$\sum f(\theta)\mu_n(\theta) \to \sum f(\theta)\mu(\theta).$$

When are distributions close?

- Fix a metric space Z.
 - If Z = {θ₀, θ₁}, then give Z discrete topology: d(θ, θ') = 0 if θ = θ', and 1 otherwise. Singletons are open.
 - If Z = [0, 1], then d(x, y) = |x y|. Singletons are not open.

When are distributions close?

- Fix a metric space Z.
 - If Z = {θ₀, θ₁}, then give Z discrete topology: d(θ, θ') = 0 if θ = θ', and 1 otherwise. Singletons are open.
 - If Z = [0, 1], then d(x, y) = |x y|. Singletons are not open.
- The Borel *σ*-algebra is the *σ*-algebra generated by the open sets (trivial if Z is finite). A Borel measure is a measure defined over the Borel sets. The restriction to Borel sets (as events) and Borel measures is a mild one, and yields a nice mathematical structure.

When are distributions close?

- Fix a metric space Z.
 - If Z = {θ₀, θ₁}, then give Z discrete topology: d(θ, θ') = 0 if θ = θ', and 1 otherwise. Singletons are open.
 - If Z = [0, 1], then d(x, y) = |x y|. Singletons are not open.
- The Borel *σ*-algebra is the *σ*-algebra generated by the open sets (trivial if Z is finite). A Borel measure is a measure defined over the Borel sets. The restriction to Borel sets (as events) and Borel measures is a mild one, and yields a nice mathematical structure.
- The set of Borel probability measures over the space Z is denoted $\Delta(Z)$.
 - If $Z = \{\theta_0, \theta_1\}$, then $\Delta(Z)$ is [0, 1].
 - If Z = [0, 1], then Δ(Z) can be described by the set of probability distribution functions on [0, 1].

Topology of Weak Convergence

- Endow Δ(Z) with the topology of weak convergence: μ_k → μ iff for all bounded continuous functions f : Z → ℝ, ∫ fdμ_k → ∫ fdμ.
 - If Z is finite, then all functions are contiuous, and this is equivalent to the usual convergence of probabilities.

Topology of Weak Convergence

- Endow Δ(Z) with the topology of weak convergence: μ_k → μ iff for all bounded continuous functions f : Z → ℝ, ∫ fdμ_k → ∫ fdμ.
 - If Z is finite, then all functions are contiuous, and this is equivalent to the usual convergence of probabilities.
- Suppose Z is a subset of the real line, and denote the distribution function of μ (respectively, μ_k) by F (resp., F_k). Then, μ_k converges weakly to μ if and only if for all continuity points z of F, F_k(z) → F(z).

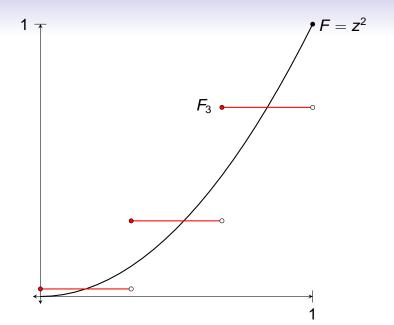
Example 1

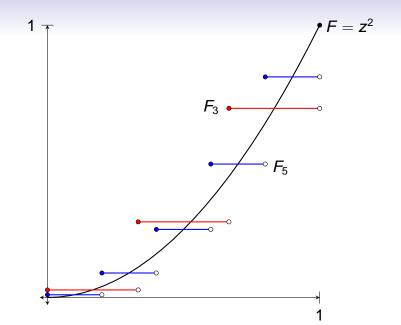
- Suppose Z = [0, 1], and $\mu \in \Delta(Z)$.
- Suppose μ_n is the simple probability measure (i.e., has finite support) given by

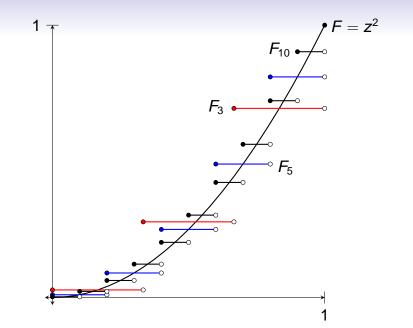
$$\mu_n(\{z\}) = \begin{cases} y_n^k, & z = k/n \text{ for some } k \in \{0, 1, \dots, n-1\}, \\ 1 - \sum_k y_n^k, & z = 1, \\ 0, & \text{otherwise.} \end{cases}$$

• Then, μ_n converges weakly to μ if

$$y_n^k = \mu((2k-1)/2n, (2k+1)/2n].$$







Example 1

If

$$y_n^k = \mu[(3k-1)/3n, (3k+1)/3n].$$

then distributions do not converge.

While both definitions of y^k_n assign probabilities to k/n using an interval containing k/n, the difficulty with the second one is that the intervals exclude too much of the state: for n large, almost one third of the interval [0, 1] is excluded. So, if μ is uniform for example, the limit of μ_n has an atom of size 1/3 at z = 1.

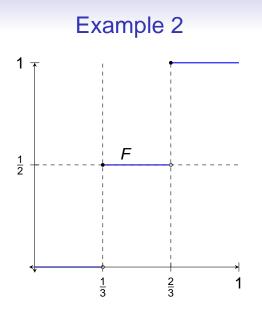
Example 2

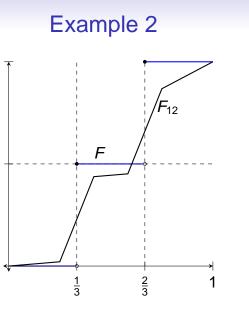
• Suppose Z = [0, 1], and $\mu \in \Delta(Z)$ is the simple probability measure

$$\mu(\{z\}) = \begin{cases} \frac{1}{2}, & z = \frac{1}{3}, \frac{2}{3}, \\ 0, & \text{otherwise}. \end{cases}$$

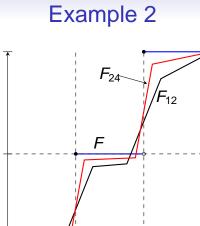
• Let μ_n be the probability measure with density

$$f_n(z) = \begin{cases} \frac{1}{n}, & z \in \left[0, \frac{n-3}{3n}\right], \\ \frac{1}{4}(n-2), & z \in \left[\frac{n-3}{3n}, \frac{n+3}{3n}\right], \\ \frac{1}{n}, & z \in \left[\frac{n+3}{3n}, \frac{2n-3}{3n}\right], \\ \frac{1}{4}(n-2), & z \in \left[\frac{2n-3}{3n}, \frac{2n+3}{3n}\right], \\ a(n), & z \in \left[\frac{2n+3}{3n}, 1\right]. \end{cases}$$





 $\frac{1}{2}$



 $\frac{1}{3}$

<u>2</u> 3

 $\frac{1}{2}$

Prohorov metric

- If Z is complete, separable, metric (with metric d), then so is Δ(Z), that is, Δ(Z) is also complete, separable, metric with the topology of weak convergence.
- The standard metric used to metrize the space of probability measures is the Prohorov metric: For any Borel set B ⊂ Z, define

$$B^{\varepsilon} := \{ x \mid d(x, B) < \varepsilon \} = \{ x \mid \inf_{y \in B} d(x, y) < \varepsilon \}.$$

For any $\mu, \lambda \in \Delta(Z)$, the Prohorov distance between μ and λ is given by

$$d^{\mathcal{P}}(\mu,\lambda) := \inf\{ arepsilon > \mathbf{0} : \mu(\mathcal{B}) \leq \lambda(\mathcal{B}^{arepsilon}) + arepsilon, \lambda(\mathcal{B}) \leq \mu(\mathcal{B}^{arepsilon}) + arepsilon, \ orall \mathcal{B} ext{ Borel} \}.$$

Mertens and Zamir (1985), Brandenburger and Dekel (1993)

• To keep notation manageable, focus on two players, *i* and *k*.

Mertens and Zamir (1985), Brandenburger and Dekel (1993)

- To keep notation manageable, focus on two players, *i* and *k*.
- Superscripts often indicate whose space of uncertainty the space describes. At the first level, Xⁱ₀ := Θ is the domain of *i*'s beliefs, and similarly for k (i.e., X^k₀ := Θ).

Mertens and Zamir (1985), Brandenburger and Dekel (1993)

- To keep notation manageable, focus on two players, *i* and *k*.
- Superscripts often indicate whose space of uncertainty the space describes. At the first level, Xⁱ₀ := Θ is the domain of *i*'s beliefs, and similarly for k (i.e., X^k₀ := Θ).
- Player *i*'s first order belief δ_i^1 over $\Theta = X_0^i$ are in $\Delta(X_0^i)$:

 $\delta_i^1 \in \Delta(X_0^i).$

Mertens and Zamir (1985), Brandenburger and Dekel (1993)

- To keep notation manageable, focus on two players, *i* and *k*.
- Superscripts often indicate whose space of uncertainty the space describes. At the first level, Xⁱ₀ := Θ is the domain of *i*'s beliefs, and similarly for k (i.e., X^k₀ := Θ).
- Player *i*'s first order belief δ_i^1 over $\Theta = X_0^i$ are in $\Delta(X_0^i)$:

$$\delta_i^1 \in \Delta(X_0^i).$$

• Similarly, *k*'s first order belief is δ_k^1 :

$$\delta_k^1 \in \Delta(X_0^k).$$

But *i* does not know *k*'s beliefs, i.e., *i* does not know X₀ⁱ × Δ(X₀^k) and so has second order beliefs:

$$\delta_i^2 \in \Delta(X_0^i \times \Delta(X_0^k)).$$

But *i* does not know *k*'s beliefs, i.e., *i* does not know X₀ⁱ × Δ(X₀^k) and so has second order beliefs:

$$\delta_i^2 \in \Delta(X_0^i \times \Delta(X_0^k)).$$

 Note that the second order beliefs allow for *i*'s beliefs over ⊖ to be correlated with the beliefs over *k*'s beliefs.

But *i* does not know *k*'s beliefs, i.e., *i* does not know X₀ⁱ × Δ(X₀^k) and so has second order beliefs:

$$\delta_i^2 \in \Delta(X_0^i \times \Delta(X_0^k)).$$

- Note that the second order beliefs allow for *i*'s beliefs over ⊖ to be correlated with the beliefs over *k*'s beliefs.
- Moreover, for sensible beliefs (i.e., coherent, defined soon), the second order beliefs subsume the first order beliefs since the second order marginal on X₀ⁱ should equal the first order belief.

Player i's third order beliefs

Player *i*'s third order beliefs are over

• X_0^i , the parameter space Θ ,

Player *i*'s third order beliefs are over

- X_0^i , the parameter space Θ ,
- $\Delta(X_0^k)$, player *k*'s beliefs over Θ ,

Player i's third order beliefs are over

- X_0^i , the parameter space Θ ,
- $\Delta(X_0^k)$, player k's beliefs over Θ , and
- Δ(X₀^k × Δ(X₀ⁱ)), player k's beliefs over X₁^k, i.e., jointly over Θ and i's beliefs over Θ.

Fourth Order Beliefs

Define

$$X_1^i := X_0^i \times \Delta(X_0^k),$$

and then recursively

$$X_n^i := X_{n-1}^i \times \Delta(X_{n-1}^k) = X_0^i \times \prod_{\ell=0}^{n-1} \Delta(X_\ell^k).$$

Fourth Order Beliefs

Define

$$X_1^i := X_0^i \times \Delta(X_0^k),$$

and then recursively

$$X_n^i := X_{n-1}^i \times \Delta(X_{n-1}^k) = X_0^i \times \prod_{\ell=0}^{n-1} \Delta(X_\ell^k).$$

• So, *i*'s fourth level of uncertainty is over

$$X_3^i = \underbrace{X_0^i}_{=\Theta} \times \underbrace{\Delta(X_0^k)}_{k\text{'s beliefs over }\Theta} \times \underbrace{\Delta(X_1^k)}_{k\text{'s belief over }X_1^k} \times \underbrace{\Delta(X_2^k)}_{k\text{'s belief over }X_2^k}.$$

Define

$$X_1^i := X_0^i \times \Delta(X_0^k),$$

and then recursively

$$X_n^i := X_{n-1}^i \times \Delta(X_{n-1}^k) = X_0^i \times \prod_{\ell=0}^{n-1} \Delta(X_\ell^k).$$

Define

$$X_1^i := X_0^i \times \Delta(X_0^k),$$

and then recursively

$$X_n^i := X_{n-1}^i \times \Delta(X_{n-1}^k) = X_0^i \times \prod_{\ell=0}^{n-1} \Delta(X_\ell^k).$$

• Let $\delta_i^n \in \Delta(X_{n-1}^i)$ denote *i*'s *n*th order beliefs.

Define

$$X_1^i := X_0^i \times \Delta(X_0^k),$$

and then recursively

$$X_n^i := X_{n-1}^i \times \Delta(X_{n-1}^k) = X_0^i \times \prod_{\ell=0}^{n-1} \Delta(X_\ell^k).$$

• Let $\delta_i^n \in \Delta(X_{n-1}^i)$ denote *i*'s *n*th order beliefs.

• Player *i*'s type, $t_i := (\delta_i^1, \delta_i^2, \ldots) \in \prod_{\ell=0}^{\infty} \Delta(X_{\ell}^i) =: T_i^0$.

Define

$$X_1^i := X_0^i \times \Delta(X_0^k),$$

and then recursively

$$X_n^i := X_{n-1}^i \times \Delta(X_{n-1}^k) = X_0^i \times \prod_{\ell=0}^{n-1} \Delta(X_\ell^k).$$

• Let $\delta_i^n \in \Delta(X_{n-1}^i)$ denote *i*'s *n*th order beliefs.

- Player *i*'s type, $t_i := (\delta_i^1, \delta_i^2, \ldots) \in \prod_{\ell=0}^{\infty} \Delta(X_{\ell}^i) =: T_i^0$.
- Similarly, $t_k \in T_k^0$.

A Detour and Some Examples

 We are thus naturally led to dealing with sequences (infinite hierarchies) of beliefs. Need to think about convergence of sequences of sequences of beliefs.

A Detour and Some Examples

- We are thus naturally led to dealing with sequences (infinite hierarchies) of beliefs. Need to think about convergence of sequences of sequences of beliefs.
- Suppose $Z_n = \{0, 1\}$ for all $n \in \{1, 2, ...\}$, and consider the sequence in $\prod_n Z_n = Z_1 \times Z_2 \times \cdots$ whose *m*th term is given by $z^m := (z_n^m)$, where

$$\mathbf{z}_n^m = \begin{cases} \mathbf{1}, & n=m, \\ \mathbf{0}, & n \neq m. \end{cases}$$

A Detour and Some Examples

• Then,

$$egin{aligned} &z^1 = (1,0,0,0,\dots), \ &z^2 = (0,1,0,0,\dots), \ &z^3 = (0,0,1,0,\dots), \ &z^4 = (0,0,0,1,\dots), \ &. \end{aligned}$$

2

A Detour and Some Examples

• Then,

$$\begin{aligned} z^1 &= (1, 0, 0, 0, \dots), \\ z^2 &= (0, 1, 0, 0, \dots), \\ z^3 &= (0, 0, 1, 0, \dots), \\ z^4 &= (0, 0, 0, 1, \dots), \\ \vdots \end{aligned}$$

• Then z^m converges pointwise to the zero sequence, $z^{\infty} := (0, 0, 0, 0...)$: For all $n, z_n^m = 0$ for m > n.

A Detour and Some Examples

• Then,

$$\begin{split} z^1 &= (1,0,0,0,\dots), \\ z^2 &= (0,1,0,0,\dots), \\ z^3 &= (0,0,1,0,\dots), \\ z^4 &= (0,0,0,1,\dots), \\ \vdots \end{split}$$

- Then z^m converges pointwise to the zero sequence, $z^{\infty} := (0, 0, 0, 0...)$: For all $n, z_n^m = 0$ for m > n.
- The sequence does not converge uniformly: For all *m* (no matter how large), there exists *n* such that $z_n^m \neq 0$ (in particular, n = m).

Another Example

• Suppose $Z_n = \mathbb{R}$ for all $n \in \{1, 2, ...\}$, and consider the sequence in $\prod_n Z_n = Z_1 \times Z_2 \times \cdots$ whose *m*th term is given by $z^m := (z_n^m)$, where

$$z_n^m = n/m.$$

Then,

$$\begin{split} z^1 &= (1,2,3,\dots), \\ z^2 &= (\frac{1}{2},\frac{2}{2},\frac{3}{2},\dots), \\ z^3 &= (\frac{1}{3},\frac{2}{3},\frac{3}{3},\dots), \end{split}$$

and so on.

- Then z^m converges pointwise to the zero sequence, z[∞] := (0,0,...): For all n, z^m_n < ε for m > n/ε.
- The sequence does not converge uniformly: for all $m, z_n^m \to \infty$ as $n \to \infty$

Pointwise Convergence

Given a collection {Z_n}_{n≥1}, the product topology on Z = ∏_{n≥1} Z_n is the weakest topology making the projections continuous: Let π_n: Z → Z_n be the *n*th coordinate projection (π_n(z₁, z₂,...,) = z_n). Then z^m → z⁰ if, for all n, π_n(z^m) → z_n⁰ (that is, this is the topology of pointwise convergence).

Pointwise Convergence

- Given a collection {Z_n}_{n≥1}, the product topology on Z = ∏_{n≥1} Z_n is the weakest topology making the projections continuous: Let π_n: Z → Z_n be the *n*th coordinate projection (π_n(z₁, z₂,...,) = z_n). Then z^m → z⁰ if, for all n, π_n(z^m) → z_n⁰ (that is, this is the topology of pointwise convergence).
- A set G ⊂ Z is open in the product topology if, and only if, π_n(G) = Z_n for all but finitely many n. This implies that if G is open, then there exists n' such that for all n > n', π_n(G) = Z_n.

Pointwise Convergence

If Z_n is a metric space, with metric d_n, the product topology is metrizable.
 Fix ρ ∈ (0, 1), Define

$$d_{\rho}((z_1, z_2, \dots,), (z'_1, z'_2, \dots,)) := \sum_n \rho^n \max\{d_n(z_n, z'_n), 1\}.$$

Then d_{ρ} is a metric for the product topology (any ρ induces the same topology).

• Endowing $Z_n = \{0, 1\}$ with the discrete metric, d(z, z') = 0 if z = z' and 1 otherwise, we have

$$d_{
ho}(z^m,0)=
ho^{-m}
ightarrow 0$$
 as $m
ightarrow\infty.$

Uniform Convergence

• The uniform (or box) topology, is metrized by the sup metric:

$$d_{\mathbb{S}}((z_1, z_2, \ldots,), (z'_1, z'_2, \ldots,)) := \sup_n \max\{d_n(z_n, z'_n), 1\}.$$

• Endowing $Z_n = \{0, 1\}$ with the discrete metric, d(z, z') = 0 if z = z' and 1 otherwise, we have

$$d_{\mathbb{S}}(z^m,0) = 1 \not\rightarrow 0 \text{ as } m \rightarrow \infty.$$

Now back to our story

We have

$$X_1^i := X_0^i \times \Delta(X_0^j),$$

and

$$X_n^i := X_{n-1}^i \times \Delta(X_{n-1}^k) = X_0^i \times \prod_{\ell=0}^{n-1} \Delta(X_\ell^k).$$

- Player *i*'s *n*th order belief is $\delta_i^n \in \Delta(X_{n-1}^i)$.
- *i*'s type is the infinite hierarchy, $t_i := (\delta_i^1, \delta_i^2, \ldots) \in \prod_{n=0}^{\infty} \Delta(X_n^i) =: T_i^0$.
- With the Prohorov metric, each space X_n^i is a nice metric space, and $t_i^{(m)} = (\delta_{i,(m)}^1, \delta_{i,(m)}^2, \dots) \rightarrow t_i = (\delta_i^1, \delta_i^2, \dots)$ in the product topology if

$$\delta^n_{i,(m)} \to \delta^n_i \qquad \forall n.$$

The email game

• Recall $\Theta = \{\theta_0, \theta_1\}$, with prob *p* on θ_1 .

• Let $t_i^{(m)}$ denote player *i*'s type after sending *m* messages.

At the type t₂⁽⁰⁾, player 2 has belief δ₂¹: it assigns prob pε/[(1 − p) + pε] =: p' to θ₁ and 1 − p' to θ₀.
 Player 2 assigns prob 1 − p' to player 1 assigning prob 0 to θ₁, and prob p' to 1 assigning prob 1 to θ₁. That is,

$$\delta_2^2 = (\mathbf{1} - \boldsymbol{p}') \circ (\theta_0, \overline{\delta}_1^1) + \boldsymbol{p}' \circ (\theta_1, \widetilde{\delta}_1^1)$$

where $\bar{\delta}_1^1 = 1 \circ \theta_0 + 0 \circ \theta_1$ and $\tilde{\delta}_1^1 = 0 \circ \theta_0 + 1 \circ \theta_1$.

• At the type $t_1^{(0)}$, player 1 assigns prob 0 to θ_1 (this is $\overline{\delta}_1^1$). Player 1 assigns probability 1 to player 2 being of type t_2^0 and so having first order belief

$$ar{\delta}_2^1 = (\mathbf{1} - \mathbf{p}') \circ heta_0 + \mathbf{p}' \circ heta_1, \text{ i.e., } \delta_1^2 = \mathbf{1} \circ (heta_0, ar{\delta}_2^1)$$

• At the type $t_1^{(1)}$, player 1 assigns prob 1 to θ_1 (this is $\tilde{\delta}_1^1$). Player 1 assigns probability $\varepsilon/[\varepsilon + (1 - \varepsilon)\varepsilon] =: p''$ to player 2 being type $t_2^{(0)}$, and so assigning prob p' to θ_1 , and prob 1 - p'' to 2 being type $t_2^{(1)}$ and so assigning prob 1 to θ_1 . Denote this second order belief by

$$ilde{\delta}_1^2 := oldsymbol{p}'' \circ (heta_1, (\mathbf{1} - oldsymbol{p}') \circ heta_0 + oldsymbol{p}' \circ heta_1) + (\mathbf{1} - oldsymbol{p}'') \circ (heta_1, \mathbf{0} \circ heta_0 + \mathbf{1} \circ heta_1).$$

• Player 2's third order belief at $t_2^{(0)}$ is given by

$$\delta_2^3 = (1 - \boldsymbol{p}') \circ (\theta_0, \bar{\delta}_1^1, 1 \circ \bar{\delta}_1^2) + \boldsymbol{p}' \circ (\theta_1, \tilde{\delta}_1^1, \tilde{\delta}_1^2),$$

and so on.

i's beliefs over t_k

Lemma

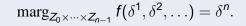
Suppose $\{Z_n\}_{n\geq 0}$ is a collection of Polish spaces, and define

$$D := \{ (\delta^1, \delta^2, \ldots) \mid \delta^n \in \Delta(Z_0 \times \cdots \times Z_{n-1}), \forall n \ge 1, \\ \max_{Z_0 \times \cdots \times Z_{n-2}} \delta^n = \delta^{n-1}, \forall n \ge 2 \}.$$

There exists a homeomorphism (i.e., a one-to-one and onto continuous function with a continuous inverse)

$$f: D \to \Delta\left(\prod_n Z_n\right)$$

satisfying



Proof

Kolmogorov's extension (existence) theorem implies that for all (δ¹, δ²,...) ∈ D, there exists unique measure f(δ¹, δ²,...) := δ ∈ Δ(∏_nZ_n) satisfying

$$\operatorname{marg}_{Z_0 \times \cdots \times Z_{n-1}} \delta = \delta^n.$$

- It remains to verify that f and f^{-1} are both continuous.
- Since f⁻¹(δ) = (marg_{Z₀} δ, marg_{Z₀×Z₁} δ,...), and if (δ_k) converges to δ, then so do the marginals of δ_k, f⁻¹ is trivially continuous.
 - Note the role of the product topology here. This does not prove that f^{-1} is continuous under a stronger topology, such as the box topology (which implies uniform, not pointwise, convergence) on *D*.

Proof (concl.)

- We now prove the continuity of *f*.
- Suppose $((\delta_k^1, \delta_k^2, \ldots))_k$ is a sequence in *D* converging to $(\delta^1, \delta^2, \ldots)$.
- Then, for each n, $\delta_k^n \to \delta^n$. We need to show $f(\delta_k^1, \delta_k^2, ...) =: \delta_k$ weakly converges to $f(\delta^1, \delta^2, ...) =: \delta$.
- A cylinder set is a set *C* with property that there exists a finite set *J* and $(z'_n)_{n\in J}$ such that $z \in C$ if $z_n = z'_n$ for all $n \in J$.
- The collection of all cylinder sets is a convergence-determining class for weak convergence. Consequently, we need only show convergence on every cylinder set.
- For any cylinder *C*, there is an \bar{n} such that δ_k^n agrees with δ_k on *C* for all $n \geq \bar{n}$, and so $\delta_k(C) \rightarrow \delta(C)$.

Coherency

Definition

A type $t_i \in T_i^0$ is coherent if for all $n \ge 2$,

$$\operatorname{marg}_{X_i^{n-2}} \delta_i^n = \delta_i^{n-1}$$

The set of coherent types is denoted T_i^1 .

Theorem

There is a homeomorphism $f : T_i^1 \to \Delta(\Theta \times T_k^0)$ satisfying

$$\operatorname{marg}_{X_{n-1}^i} f(\delta^1, \delta^2, \ldots) = \delta^n.$$

Define

$$T_i^{\ell} := \{ t_i \in T_i^1 \mid f(t_i)(\Theta \times T_k^{\ell-1}) = 1 \},$$

Define

$$T_i^{\ell} := \{t_i \in T_i^1 \mid f(t_i)(\Theta \times T_k^{\ell-1}) = 1\},\$$

and

$$T_i^* := \cap_{\ell=1}^\infty T_i^\ell.$$

Define

$$T_i^{\ell} := \{ t_i \in T_i^1 \mid f(t_i)(\Theta \times T_k^{\ell-1}) = 1 \},$$

and

$$T_i^* := \cap_{\ell=1}^\infty T_i^\ell.$$

Definition

The universal type space for player *i* is the set T_i^* .

Define

$$T_i^{\ell} := \{t_i \in T_i^1 \mid f(t_i)(\Theta \times T_k^{\ell-1}) = 1\},\$$

and

$$T_i^* := \cap_{\ell=1}^\infty T_i^\ell.$$

Definition

The universal type space for player *i* is the set T_i^* .

 The set T₁^{*} × T₂^{*} is the set of pairs of types for which it is common belief that players' types are coherent.

The infinite regress does end

Theorem

There is a homeomorphism $g: T_i^* \to \Delta(\Theta \times T_\ell^*)$ satisfying

$$\operatorname{marg}_{X_{n-1}^{i}} g(\delta^{1}, \delta^{2}, \ldots) = \delta^{n}.$$

Belief-Closed Subsets

Definition

A set $T_1 \times T_2$ is belief-closed subset of the universal type space $T_1^* \times T_2^*$ if for all $t_i \in T_i$,

$$g(t_i)(\Theta \times T_j) = 1.$$

In the email game, let t_i^(∞) denote the hierarchy of beliefs that player i believes θ = θ₁ and believes it is common belief that the game is θ = θ₁. Then {t₁^(∞)} × {t₂^(∞)} is belief closed. (Moreover, t_i^(m) → t_i^(∞).)

Models

Definition

A model or type structure is the collection (Θ, T, κ) , where $T = T_1 \times T_2$ is a type space, and $\kappa = (\kappa_1, \kappa_2)$ is a pair of mappings with $\kappa_i : T_i \to \Delta(\Theta \times T_j)$. The model is complete if each κ_i is onto.

Model for email game 1

	$\theta_0 t_2^{(0)}$	$\theta_1 t_2^{(0)}$	$\theta_1 t_2^{(1)}$	•••	$\theta_1 t_2^{(m-1)}$	$\theta_1 t_2^{(m)}$	•••
· · · ·					0		
$\kappa_1(t_1^{(1)})$	0	p''	1 – <i>p</i> ″	•••	0	0	
$\kappa_1(t_1^{(2)})$	0	0	$p^{\prime\prime}$	•••	0	0	
÷	:	÷	÷		÷	÷	
$\kappa_1(t_1^{(m)})$	0	0	0	•••	$\rho^{\prime\prime}$	1 – <i>p</i> ″	•••
÷	:	:	÷		÷	÷	

Model for email game 2

	$\theta_0 t_1^{(0)}$	$\theta_1 t_1^{(1)}$	$\theta_1 t_1^{(2)}$	•••	$\theta_1 t_1^{(m)}$	$\theta_1 t_1^{(m+1)}$	•••
					0	0	
$\kappa_2(t_2^{(1)})$	0	p''	1 – <i>p</i> ″	•••	0	0	•••
$\kappa_2(t_2^{(2)})$	0	0	p"		0	0	
÷	:	÷	÷		÷	÷	
$\kappa_2(t_2^{(m)})$	0	0	0	•••	p″	1 – <i>p</i> ″	•••
÷	:	÷	÷		÷	÷	

The mapping κ = (κ₁, κ₂), κ_i : T_i → Δ(Θ × T_k), induces a hierarchy of beliefs for each player. For example,

$$\delta_i^1 = \max_{\Theta} \kappa_i(t_i),$$

for all Borel $B \subset \Theta \times \Delta(\Theta)$,

 $\delta_i^2(\boldsymbol{B}) = \kappa_i(t_i)(\{(\theta, t_k) \mid (\theta, \operatorname{marg}_{\Theta} \kappa_k(t_k)) \in \boldsymbol{B}\}),$

and for all Borel $B \subset \Theta \times \Delta(\Theta) \times \Delta(\Theta \times \Delta(\Theta))$,

$$\delta_i^3(\boldsymbol{B}) = \kappa_i(t_i)(\{(\theta, t_k) \mid (\theta, \operatorname{marg}_{\Theta} \kappa_k(t_k), \operatorname{marg}_{\Theta \times \Delta(\Theta)} \kappa_k(t_k)) \in \boldsymbol{B}\}).$$

The mapping κ = (κ₁, κ₂), κ_i : T_i → Δ(Θ × T_k), induces a hierarchy of beliefs for each player. For example,

$$\delta_i^1 = \max_{\Theta} \kappa_i(t_i),$$

for all Borel $B \subset \Theta \times \Delta(\Theta)$,

 $\delta_i^2(\boldsymbol{B}) = \kappa_i(t_i)(\{(\theta, t_k) \mid (\theta, \operatorname{marg}_{\Theta} \kappa_k(t_k)) \in \boldsymbol{B}\}),$

and for all Borel $B \subset \Theta \times \Delta(\Theta) \times \Delta(\Theta \times \Delta(\Theta))$,

 $\delta_i^3(\boldsymbol{B}) = \kappa_i(t_i)(\{(\theta, t_k) \mid (\theta, \operatorname{marg}_{\Theta} \kappa_k(t_k), \operatorname{marg}_{\Theta \times \Delta(\Theta)} \kappa_k(t_k)) \in \boldsymbol{B}\}).$

• Let $h_i : T_i \to T_i^*$ be the mapping describing for each type t_i , player *i*'s hierarchy of beliefs $h_i(t_i) \in T_i^*$. Clearly, $h_1(T_1) \times h_2(T_2)$ is belief closed.

The mapping κ = (κ₁, κ₂), κ_i : T_i → Δ(Θ × T_k), induces a hierarchy of beliefs for each player. For example,

$$\delta_i^1 = \max_{\Theta} \kappa_i(t_i),$$

for all Borel $B \subset \Theta \times \Delta(\Theta)$,

 $\delta_i^2(\boldsymbol{B}) = \kappa_i(t_i)(\{(\theta, t_k) \mid (\theta, \operatorname{marg}_{\Theta} \kappa_k(t_k)) \in \boldsymbol{B}\}),$

and for all Borel $B \subset \Theta \times \Delta(\Theta) \times \Delta(\Theta \times \Delta(\Theta))$,

 $\delta_i^3(\boldsymbol{B}) = \kappa_i(t_i)(\{(\theta, t_k) \mid (\theta, \operatorname{marg}_{\Theta} \kappa_k(t_k), \operatorname{marg}_{\Theta \times \Delta(\Theta)} \kappa_k(t_k)) \in \boldsymbol{B}\}).$

- Let $h_i : T_i \to T_i^*$ be the mapping describing for each type t_i , player *i*'s hierarchy of beliefs $h_i(t_i) \in T_i^*$. Clearly, $h_1(T_1) \times h_2(T_2)$ is belief closed.
- Suppose (Θ, T, κ) is a model with Θ and T_i Polish spaces, and κ continuous. Then,

$$t_i^m \to t_i^\infty \Longrightarrow h_i(t_i^m) \to h_i(t_i^\infty).$$

• Define
$$\tilde{h}_j : \Delta(\Theta \times T_j) \to \Delta(\Theta \times T_j^*)$$
 by
 $\tilde{h}_j(\lambda)(B) = \lambda\{(\theta, t_j) : (\theta, h_j(t_j)) \in B\} \quad \forall \text{ Borel } B \subset \Theta \times T_j^*.$

• Define
$$\tilde{h}_j : \Delta(\Theta \times T_j) \to \Delta(\Theta \times T_j^*)$$
 by
 $\tilde{h}_j(\lambda)(B) = \lambda\{(\theta, t_j) : (\theta, h_j(t_j)) \in B\} \quad \forall \text{ Borel } B \subset \Theta \times T_j^*.$

• Then we have the following commutative diagram:

$$\begin{array}{ccc} T_i & \stackrel{\kappa_i}{\longrightarrow} & \Delta(\Theta \times T_j) \\ & & & \tilde{h}_j \\ & & & \tilde{h}_j \\ T_i^* & \stackrel{g}{\longrightarrow} & \Delta(\Theta \times T_j^*) \end{array}$$

• so that for all $t_i \in T_i$,

$$g(h_i(t_i)) = \tilde{h}_j(\kappa_i(t_i)).$$

Two Special Models

Definition A model (Θ, T, κ) is finite if $|\Theta \times T| < \infty$.

Two Special Models

Definition A model (Θ , T, κ) is finite if $|\Theta \times T| < \infty$.

Definition

A model (Θ, T, κ) satisfies the common prior assumption (CPA) if there exists a probability measure $\mu \in \Delta(\Theta \times T)$ such that for all *i* and Borel subsets *B* of $\Theta \times T_k$, and for all $t_i \in T_i$,

$$\kappa_i(t_i)(B) = \mu(B \mid \{t_i\}).$$

How Restrictive is CPA?

Definition

Let T_i^F be the set of all belief hierarchies for *i* corresponding to a finite model, i.e., $\tilde{t}_i \in T_i^F$ if $\tilde{t}_i \in h_i(T_i)$ for some finite model ($\Theta \times T, \kappa$); the set T_i^F is the set of finite types for *i*.

Define

$$T_i^{\text{CPA}} := \{ h_i(t_i) \mid t_i \in T_i \text{ for some finite model } (\Theta \times T, \kappa)$$

that satisfies the CPA $\}.$

How Restrictive is CPA?

Definition

Let T_i^F be the set of all belief hierarchies for *i* corresponding to a finite model, i.e., $\tilde{t}_i \in T_i^F$ if $\tilde{t}_i \in h_i(T_i)$ for some finite model ($\Theta \times T, \kappa$); the set T_i^F is the set of finite types for *i*. Define

$$T_i^{ ext{CPA}} := \{ h_i(t_i) \mid t_i \in T_i ext{ for some finite model } (\Theta imes T, \kappa) \ ext{ that satisfies the CPA} \}.$$

Theorem (Mertens and Zamir, 1985, Lipman, 2003) Suppose Θ is finite. Both T_i^F and T_i^{CPA} are dense subsets of the universal type space T_i .

Common Knowledge

 In partition model, structure of players' information is "common knowledge," but only in an informal sense (since common knowledge is defined given the information partitions or *σ*-algebras).

Common Knowledge

- In partition model, structure of players' information is "common knowledge," but only in an informal sense (since common knowledge is defined given the information partitions or *σ*-algebras).
- Since Ω is supposed to be a "complete" description of the uncertainty, the universal types model implies the partition model with

$$\Omega = \Theta \times T_1^* \times T_2^*.$$

Common Knowledge

- In partition model, structure of players' information is "common knowledge," but only in an informal sense (since common knowledge is defined given the information partitions or *σ*-algebras).
- Since Ω is supposed to be a "complete" description of the uncertainty, the universal types model implies the partition model with

$$\Omega = \Theta \times T_1^* \times T_2^*.$$

Let *F* denote the Borel *σ*-algebra of Θ × *T*^{*}₁ × *T*^{*}₂. Then 1's information is described by the sub *σ*-algebra

 $\mathcal{F}^1 := \{ \Theta \times B \times T_2^* \mid B \text{ a Borel subset of } T_1^* \}, \text{ and similarly for 2.}$

• Given $A \subset \Theta \times T_1^* \times T_2^*$ (and $A \in \mathcal{F}$), at state $\omega = (\theta, t_1, t_2)$ player 1 assigns probability $g(t_1)(A_{t_1})$ to A, where $A_{t_1} := \{(\theta, t_2) \mid (\theta, t_1, t_2) \in A\}$.

- Given $A \subset \Theta \times T_1^* \times T_2^*$ (and $A \in \mathcal{F}$), at state $\omega = (\theta, t_1, t_2)$ player 1 assigns probability $g(t_1)(A_{t_1})$ to A, where $A_{t_1} := \{(\theta, t_2) \mid (\theta, t_1, t_2) \in A\}$.
- Fix $E \subset \Theta$. Then *i* believes *E* at t_i if

$$t_i \in V_i^1(E) := \{\hat{t}_i \in T_i^* \mid g(\hat{t}_i)(E \times T_k^*) = 1\},$$

and *i* believes that *k* believes *E* if

$$t_i \in V_i^2(E) := \{\hat{t}_i \in T_i^* \mid g(\hat{t}_i)(\Theta \times V_k^1(E)) = 1\}.$$

- Given A ⊂ Θ × T₁^{*} × T₂^{*} (and A ∈ F), at state ω = (θ, t₁, t₂) player 1 assigns probability g(t₁)(A_{t1}) to A, where A_{t1} := {(θ, t₂) | (θ, t₁, t₂) ∈ A}.
 Fin F = Q. Then ibelianse F at t if
- Fix $E \subset \Theta$. Then *i* believes *E* at t_i if

$$t_i \in V_i^1(E) := \{\hat{t}_i \in T_i^* \mid g(\hat{t}_i)(E \times T_k^*) = 1\},$$

and *i* believes that *k* believes *E* if

$$t_i \in V_i^2(E) := \{\hat{t}_i \in T_i^* \mid g(\hat{t}_i)(\Theta \times V_k^1(E)) = 1\}.$$

• Proceeding recursively, define for $\ell \geq 2$,

$$V_i^{\ell}(E) := \{t_i \in T_i^* \mid g(t_i)(\Theta \times V_k^{\ell-1}(E)) = 1\}.$$

- Given A ⊂ Θ × T₁^{*} × T₂^{*} (and A ∈ F), at state ω = (θ, t₁, t₂) player 1 assigns probability g(t₁)(A_{t1}) to A, where A_{t1} := {(θ, t₂) | (θ, t₁, t₂) ∈ A}.
 Fin F = Q. Then ibelianse F at t if
- Fix $E \subset \Theta$. Then *i* believes *E* at t_i if

$$t_i \in V_i^1(E) := \{\hat{t}_i \in T_i^* \mid g(\hat{t}_i)(E \times T_k^*) = 1\},$$

and *i* believes that *k* believes *E* if

$$t_i \in V_i^2(E) := \{\hat{t}_i \in T_i^* \mid g(\hat{t}_i)(\Theta \times V_k^1(E)) = 1\}.$$

• Proceeding recursively, define for $\ell \geq 2$,

$$V_i^{\ell}(E) := \{t_i \in T_i^* \mid g(t_i)(\Theta \times V_k^{\ell-1}(E)) = 1\}.$$

• Player *i* believes *E* is common belief at t_i if $t_i \in V_i(E)$, where $V_i(E) := \bigcap_{\ell} V_i^{\ell}(E)$. Note that $V_1(E) \times V_2(E)$ is a belief closed set.

• In partition interpretation, 1 knows $A \in \mathcal{F}$ at ω if

 $\omega \in K^{1}(A) := \{(\theta, t_{1}, t_{2}) \mid g(t_{1})(A_{t_{1}}) = 1\},\$

where $A_{t_1} := \{(\theta, t_2) \mid (\theta, t_1, t_2) \in A\}.$

• In partition interpretation, 1 knows $A \in \mathcal{F}$ at ω if

$$\omega \in K^{1}(A) := \{(\theta, t_{1}, t_{2}) \mid g(t_{1})(A_{t_{1}}) = 1\},\$$

where $A_{t_1} := \{(\theta, t_2) \mid (\theta, t_1, t_2) \in A\}$. Define $K(A) := K^1(A) \cap K^2(A)$

• Define $K(A) := K^1(A) \cap K^2(A)$.

• In partition interpretation, 1 knows $A \in \mathcal{F}$ at ω if

$$\omega \in K^{1}(A) := \{ (\theta, t_{1}, t_{2}) \mid g(t_{1})(A_{t_{1}}) = 1 \},\$$

where $A_{t_1} := \{(\theta, t_2) \mid (\theta, t_1, t_2) \in A\}.$

• Define $K(A) := K^1(A) \cap K^2(A)$.

 In the partition interpretation, A is common knowledge at ω if ω ∈ K(A) ∩ KK(A) ∩ · · · =: K_∞(A).

• In partition interpretation, 1 knows $A \in \mathcal{F}$ at ω if

$$\omega \in K^{1}(A) := \{(\theta, t_{1}, t_{2}) \mid g(t_{1})(A_{t_{1}}) = 1\},\$$

where $A_{t_1} := \{(\theta, t_2) \mid (\theta, t_1, t_2) \in A\}.$

• Define
$$K(A) := K^{1}(A) \cap K^{2}(A)$$
.

 In the partition interpretation, A is common knowledge at ω if ω ∈ K(A) ∩ KK(A) ∩ · · · =: K_∞(A).

Theorem (Common Belief=Common Knowledge) For all $E \subset \Theta$, $\Theta \times V_1(E) \times V_2(E) = K_{\infty}(E \times T_1^* \times T_2^*).$

Proof that CB=CK

$$\begin{split} \mathcal{K}^1(E\times T_1^*\times T_2^*) &= \{(\theta,t_1,t_2) \mid g(t_1)(E\times T_2^*) = 1\} \\ &= \Theta \times V_1^1(E) \times T_2^*, \\ \implies \mathcal{K}(E\times T_1^*\times T_2^*) = \Theta \times V_1^1(E) \times V_2^1(E). \end{split}$$

Proof that CB=CK

 $K^{1}(E \times T_{1}^{*} \times T_{2}^{*}) = \{(\theta, t_{1}, t_{2}) \mid g(t_{1})(E \times T_{2}^{*}) = 1\}$ $= \Theta \times V_1^1(E) \times T_2^*$ \implies $K(E \times T_1^* \times T_2^*) = \Theta \times V_1^1(E) \times V_2^1(E).$ $K^1K(E \times T_1^* \times T_2^*) = K^1(\Theta \times V_1^1(E) \times V_2^1(E))$ $= \{(\theta, t_1, t_2) \mid q(t_1)(\Theta \times V_2^1(E)) = 1\}$ $= \Theta \times V_1^2(E) \times T_2^*,$ \implies $KK(E \times T_1^* \times T_2^*) = \Theta \times V_1^2(E) \times V_2^2(E).$

Proof that CB=CK

 $K^{1}(E \times T_{1}^{*} \times T_{2}^{*}) = \{(\theta, t_{1}, t_{2}) \mid g(t_{1})(E \times T_{2}^{*}) = 1\}$ $= \Theta \times V_1^1(E) \times T_2^*$ \implies $K(E \times T_1^* \times T_2^*) = \Theta \times V_1^1(E) \times V_2^1(E).$ $K^1K(E \times T_1^* \times T_2^*) = K^1(\Theta \times V_1^1(E) \times V_2^1(E))$ $= \{(\theta, t_1, t_2) \mid q(t_1)(\Theta \times V_2^1(E)) = 1\}$ $= \Theta \times V_1^2(E) \times T_2^*,$ \implies $KK(E \times T_1^* \times T_2^*) = \Theta \times V_1^2(E) \times V_2^2(E).$

Continue to iterate and take intersections.

BRANDENBURGER, A., AND E. DEKEL (1993): "Hierarchies of Beliefs and Common Knowledge," Journal of Economic Theory, 59(1), 189–198.

LIPMAN, B. L. (2003): "Finite Order Implications of Common Priors," Econometrica, 71(4), 1255–1267.

MERTENS, J.-F., AND S. ZAMIR (1985): "Formulation of Bayesian Analysis for Games with Incomplete Information," International Journal of Game Theory, 14(1), 1–29.

