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Introduction

@ Fundamental space of uncertainty is ©, a set of parameters.

@ Assume © is finite, though can extend to metric spaces that are complete
(Cauchy sequences converge), separable (countably dense subset).

@ Will be concerned with beliefs over ©, beliefs over beliefs over ©, ...

Example
@ Suppose © = {6y, 01}, and . € A(©) C R?, set of probability distributions.

@ If (un) C A(©), then p, — 1 is convergence in the usual Euclidean sense:
un(0) — w(0) for each 6.

@ Thisis equivalentto forallf : © — R,

S 1 (0)n(6) — S H(O)6).

s
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When are distributions close?

@ Fix a metric space Z.
o IfZ = {60,061}, then give Z discrete topology: d(6,0') =0if 6 =6, and 1
otherwise. Singletons are open.
e IfZ =[0,1], thend(x,y) = |x — y|. Singletons are not open.
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When are distributions close?

@ Fix a metric space Z.

o IfZ = {60,061}, then give Z discrete topology: d(6,0') =0if 6 =6, and 1
otherwise. Singletons are open.
e If Z =[0,1], thend(x,y) = [x — y|. Singletons are not open.

@ The Borel o-algebra is the o-algebra generated by the open sets (trivial if
Z is finite). A Borel measure is a measure defined over the Borel sets.
The restriction to Borel sets (as events) and Borel measures is a mild
one, and yields a nice mathematical structure.

@ The set of Borel probability measures over the space Z is denoted A(Z).

o IfZ = {0,601}, then A(Z) is [0, 1].
o If Z =0,1], then A(Z) can be described by the set of probability
distribution functions on [0, 1].

-
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Topology of Weak Convergence

@ Endow A(Z) with the topology of weak convergence: ux — u iff for all
bounded continuous functions f : Z — R, [fdu — [fdp.
o If Z is finite, then all functions are contiuous, and this is equivalent to the
usual convergence of probabilities.
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Topology of Weak Convergence

@ Endow A(Z) with the topology of weak convergence: ux — u iff for all
bounded continuous functions f : Z — R, [fdu — [fdp.
o If Z is finite, then all functions are contiuous, and this is equivalent to the
usual convergence of probabilities.
@ Suppose Z is a subset of the real line, and denote the distribution
function of u (respectively, ux) by F (resp., Fx). Then, ux converges
weakly to p if and only if for all continuity points z of F, Fy(z) — F(2).
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Example 1

@ Suppose Z = [0,1], and € A(Z).
@ Suppose pu, is the simple probability measure (i.e., has finite support)
given by

yK, z =k/nforsomek € {0,1,...,n— 1},
Mn({z}): 1_Zkyr|1(> z :17
0, otherwise.

@ Then, u, converges weakly to p if

y¥ = p((2k —1)/2n, (2k + 1)/2n].
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Example 1

o If
v = p[(3k —1)/3n, (3k +1)/3n].

then distributions do not converge.

@ While both definitions of yX assign probabilities to k /n using an interval
containing k /n, the difficulty with the second one is that the intervals
exclude too much of the state: for n large, almost one third of the interval
[0,1] is excluded. So, if v is uniform for example, the limit of i, has an
atom of size 1/3 atz = 1.

-
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Example 2
@ Suppose Z = [0,1], and n € A(Z) is the simple probability measure

1 9,12
z1) = J 2 33
uiz}) 0, otherwise.
@ Let i, be the probability measure with density
(5 z €05,
i(n—=2), z e[ 57],
fa(z) = { &, z e 53550,
Hn-2), 7 e [5m),
2n+3
\a(n)v Z € [ g—rt 71]
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Prohorov metric

@ If Z is complete, separable, metric (with metric d), then so is A(Z), that
is, A(Z) is also complete, separable, metric with the topology of weak
convergence.

@ The standard metric used to metrize the space of probability measures is
the Prohorov metric: For any Borel set B C Z, define

B®:={x|d(x,B) <e} ={x ]Jggd(x,y) <e}.

For any u, A € A(Z), the Prohorov distance between p and X is given by

dP(u, ) == inf{e > 0: u(B) < A\(B°) +¢,\(B) < u(B°) + ¢, VB Borel}.
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Hierarchies of Beliefs
Mertens and Zamir (1985), Brandenburger and Dekel (1993)

@ To keep notation manageable, focus on two players, i and k.
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Hierarchies of Beliefs
Mertens and Zamir (1985), Brandenburger and Dekel (1993)

@ To keep notation manageable, focus on two players, i and k.

@ Superscripts often indicate whose space of uncertainty the space
describes. At the first level, X} := © is the domain of i’s beliefs, and
similarly for k (i.e., XX := ©).

@ Player i’s first order belief 6! over © = X} are in A(X}):

5t e A(XQ).
@ Similarly, k’s first order belief is ;:

St € AXE).
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Hierarchies of Beliefs

@ Buti does not know k’s beliefs, i.e., i does not know X} x A(X{) and so
has second order beliefs:

62 € A(X x A(XE)).
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@ Buti does not know k’s beliefs, i.e., i does not know X} x A(X{) and so
has second order beliefs:

62 € A(X x A(XE)).

@ Note that the second order beliefs allow for i's beliefs over © to be
correlated with the beliefs over k’s beliefs.
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Hierarchies of Beliefs

@ Buti does not know k’s beliefs, i.e., i does not know X} x A(X{) and so
has second order beliefs:

62 € A(X x A(XE)).

@ Note that the second order beliefs allow for i's beliefs over © to be
correlated with the beliefs over k’s beliefs.

@ Moreover, for sensible beliefs (i.e., coherent, defined soon), the second
order beliefs subsume the first order beliefs since the second order
marginal on X/ should equal the first order belief.
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Third Order Beliefs

Player i’s third order beliefs
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Third Order Beliefs

Player i’s third order beliefs are over
@ X/, the parameter space ©,
@ A(XY), player k’s beliefs over ©, and

@ A(XK x A(X})), player k's beliefs over X, i.e., jointly over © and i’s
beliefs over ©.
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Fourth Order Beliefs

@ Define ' '
X} 1= X x A(XE)

and then recursively

. . . n-1
Xbi= Xy} AXE) = X5 x [T axh).

& 9
BT
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Fourth Order Beliefs
@ Define ' '
X} == Xb x A(XY).
and then recursively
Xj =Xy A L) =X [T A
@ So, i’s fourth level of uncertainty is over

i i k k k
X3 = XO X A(XO ) X A(Xl ) X A(Xz )
=0 ks beliefs over ®  k’s belief over Xk k’s belief over XX
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Hierarchies of Beliefs

@ Define ' '
Xy = Xg x A(Xg),

and then recursively

. . B n-1
Xn = Xag X AXKy) = Xo x [T A,

& 9
BT
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Hierarchies of Beliefs

@ Define ' '
Xy = Xg x A(Xg),

and then recursively
. . . n—-1
Xn = Xag X AXKy) = Xo x [T A,

@ Letd" € A(X] ) denote i’s nth order beliefs.
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Hierarchies of Beliefs

@ Define ' '
Xy = Xg x A(Xg),

and then recursively
. . . n—-1
Xn = Xag X AXKy) = Xo x [T A,

@ Letd" € A(X] ) denote i’s nth order beliefs.
@ Playeri’'s type, t := (61, 02,...) € [I75 A(X)) = T2
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Hierarchies of Beliefs

@ Define ' '
Xy = Xg x A(Xg),

and then recursively
. . . n—-1
Xn = Xag X AXKy) = Xo x [T A,

@ Letd" € A(X] ) denote i’s nth order beliefs.
@ Playeri’'s type, t := (61, 02,...) € [I75 A(X)) = T2
@ Similarly, t € T?.
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A Detour and Some Examples

@ We are thus naturally led to dealing with sequences (infinite hierarchies)
of beliefs. Need to think about convergence of sequences of sequences
of beliefs.
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A Detour and Some Examples

We are thus naturally led to dealing with sequences (infinite hierarchies)

of beliefs. Need to think about convergence of sequences of sequences
of beliefs.

Suppose Z, = {0,1} foralln € {1,2,...}, and consider the sequence in
I1,Zn =21 x Z, x --- whose mth term is given by z™ := (z"), where

m 1, n=m,
z) =
0, n#m.
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@ Then,

A Detour and Some Examples

z! :(1000...),
=(0,1,0,0,...),
=(0,0,1,0,...),

z* :(0001 )

o)
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A Detour and Some Examples

@ Then,
zt :(1000 ),
=(0,1,0,0,...),
=(0,0,1,0,...),
z* :(000 1,...)

@ Then z™ converges pointwise to the zero sequence, z* := (0,0,0,0...):

Foralln,z' =0 form > n.




A Detour and Some Examples

@ Then,
zt :(1000 ),
=(0,1,0,0,...),
=(0,0,1,0,...),
z* :(000 1,...)

@ Then z™ converges pointwise to the zero sequence, z* := (0,0,0,0...):
Foralln,z' =0 form > n.

@ The sequence does not converge uniformly: For all m (no matter how
%zﬁ large), there exists n such that z" # 0O (in particular, n = m).
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Another Example

@ Suppose Z, =R foralln € {1,2,...}, and consider the sequence in

[1,Zn = Z1 x Z, x --- whose mth term is given by z™ := (z"), where
z" =n/m.
Then,
z' =(1,2,3,...),
z2=(3,2,3,..),
z2=(%223..),
and so on.

@ Then z™ converges pointwise to the zero sequence, z* := (0,0,...): For
alln, z" <eform>n/e.

@ The sequence does not converge uniformly: for allm, z" — co as n — c0s=
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Pointwise Convergence

@ Given a collection {Z,}n>1, the product topology on Z =[], -, Zn is the
weakest topology making the projections continuous: Let 7, : Z — Z, be
the nth coordinate projection (mn(z1,2,...,) = zn). Then z™ — z° if, for
all n, m,(z™M) — z?2 (that is, this is the topology of pointwise convergence).
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Pointwise Convergence

@ Given a collection {Z,}n>1, the product topology on Z =[], -, Zn is the
weakest topology making the projections continuous: Let 7, : Z — Z, be
the nth coordinate projection (mn(z1,2,...,) = zn). Then z™ — z° if, for
all n, m,(z™M) — z?2 (that is, this is the topology of pointwise convergence).

@ Aset G C Z is open in the product topology if, and only if, 7,(G) = Z, for
all but finitely many n. This implies that if G is open, then there exists n’
such that for all n > n’, m,(G) = Z,.
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Pointwise Convergence

@ If Z, is a metric space, with metric d,,, the product topology is metrizable.
Fix p € (0,1), Define

d,((21.22,.--.), (21,25, ....)) = > _ p"max{dn(zn, 2}), 1}.
n

Then d, is a metric for the product topology (any p induces the same

topology).
@ Endowing Z, = {0, 1} with the discrete metric, d(z,z’') =0ifz =z"and 1
otherwise, we have

d,(z"0)=p™"" - 0asm — occ.
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Uniform Convergence

@ The uniform (or box) topology, is metrized by the sup metric:
ds((z1,22,...,),(21,25,---,)) == supmax{dn(zn, z;,), 1}.
n

@ Endowing Z, = {0, 1} with the discrete metric, d(z,z’) =0ifz =z’ and 1
otherwise, we have

ds(z",0)=1/A0asm — oo.
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Now back to our story

@ We have _ . '
X1 = X x AX)),
and o
Xn = Xag X AXy) = Xo x [ A,

@ Player i’s nth order belief is 6" € A(X] ;).
@ i’s type is the infinite hierarchy, t := (6}, 62,...) € [In2, AX}) = T2
@ With the Prohorov metric, each space X/ is a nice metric space, and

t™ = (0t mys Oy - -+ ) — ti = (6}, 0%, ... ) in the product topology if




The email game
@ Recall © = {6y, 61}, with prob p on 0;.
o Let ti(m) denote player i’s type after sending m messages.
@ At the type tz(o), player 2 has belief §3: it assigns prob
pe/[(1 —p) + pe] =: p’ to 6, and 1 — p’ to by.
Player 2 assigns prob 1 — p’ to player 1 assigning prob 0 to 6, and prob
p’ to 1 assigning prob 1 to ¢;. That is,
05 = (L= p') o (6o,01) +p o (61, 01)
where 61 =106y +006; and 61 =006y + 1 o ;.
@ At the type t{o), player 1 assigns prob 0 to 6, (this is 6}). Player 1 assigns
probability 1 to player 2 being of type t9 and so having first order belief

0 =(1—p)obo+p obs, ie., 65 =1o(bo,0;)

-



@ At the type t{l), player 1 assigns prob 1 to ¢, (this is Si).
Player 1 assigns probability /[ + (1 — ¢)e] =: p” to player 2 being type
tz(o), and so assigning prob p’ to #;, and prob 1 — p” to 2 being type tz(l)
and so assigning prob 1 to ;. Denote this second order belief by

0 :=p" o (01,(1 —p")obo+p 061)+ (L —p”)o (61,000 +1obs).
@ Player 2’s third order belief at téo) is given by
53 - (1 - p/) © (907 5%’ 1o S%) + p, © (917 Siv Si)?

and so on.

-
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I's beliefs over ty

Lemma
Suppose {Z,}n>0 is a collection of Polish spaces, and define

D:={(6%6%..)| 0" € A(Zo X -+ X Zn_1),Vn > 1,

mar&(,xmxzn_z 0" = 5”*1,Vn > 2}

There exists a homeomorphism (i.e., a one-to-one and onto continuous
function with a continuous inverse)

f:D—>A<HnZn>

satisfying
marg, ..., f(6%6%...) ="

s



Proof

@ Kolmogorov’s extension (existence) theorem implies that for all
(6,62,...) € D, there exists unique measure f(§*,02,...) :=§ € A([],, Zn)
satisfying

marg, §=0o"

0XXZn_1

@ It remains to verify that f and f~! are both continuous.
@ Since () = (marg, d, marg, ., d,...), and if (%) converges to 4, then
so do the marginals of &, f 1 is trivially continuous.

@ Note the role of the product topology here. This does not prove that f 1 is
continuous under a stronger topology, such as the box topology (which
implies uniform, not pointwise, convergence) on D.

-
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Proof (concl.)

We now prove the continuity of f.

Suppose ((d;, 6%, -..)), is a sequence in D converging to (4%, 2,...).
Then, for each n, §7 — &". We need to show f (43, 0z, ...) =: ok weakly
converges to f(d1,62,...) =: 4.

A cylinder set is a set C with property that there exists a finite set J and
(z/)nes Such thatz € C if z, = z/ foralln € J.

The collection of all cylinder sets is a convergence-determining class for
weak convergence. Consequently, we need only show convergence on
every cylinder set.

For any cylinder C, there is an n such that ¢; agrees with g, on C for alll
n > n, and so &(C) — §(C). O

-
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Coherency

Definition
Atype t; € T? is coherent if for all n > 2,

marg— 6 = 6" .

The set of coherent types is denoted T

Theorem
There is a homeomorphism f : T} — A(© x T_?) satisfying

marg; f(6*,6%,...) =d"




of

@ Define

The Universal Type Space

T = {h e T x TV =1},
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@ Define

and

The Universal Type Space

T = {h e T x TV =1},

* [e'e) l
TI — ﬂelei .



The Universal Type Space

@ Define
Ti={teT [ ft)(O©x TS =1},
and
Definition

The universal type space for player i is the set T;*.

e

2

b
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The Universal Type Space

@ Define
Ti={teT [ ft)(O©x TS =1},
and
Definition

The universal type space for player i is the set T;*.

@ The set T x T; is the set of pairs of types for which it is common belief
that players’ types are coherent.




of

The infinite regress does end

Theorem
There is a homeomorphism g : T* — A(© x T/) satisfying

marg; g(0%,8%,...) ="
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Belief-Closed Subsets

Definition

A set T, x T, is belief-closed subset of the universal type space T;* x T if for
all tieT,
g(t,)(@ X TJ) = 1.

@ In the email game, Iett ) denote the hierarchy of beliefs that player i
believes § = 6, and belleves it is common belief that the game is 6 = 6;.
Then {t{™} x {t{*} is belief closed. (Moreover, t™ — t(*) )




Models

Definition

A model or type structure is the collection (©,T,x), where T =T; x T, isa
type space, and k = (x1, k2) iS @ pair of mappings with «; : Ty — A(© x Tj).
The model is complete if each x; is onto.

3
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Model for email game 1

0otl” 0,67 o,tY o™ o, t{™
r(t?) | 1 0 0 0 0
™| 0 pr 1-p” 0 0
mt?) | o 0 p” 0 0
k(™) |0 0 0 p”  1-p”




Model for email game 2

Hotfo) elt](_l) 0t {2) S gt im) elt](-erl)
PP 1-p 0O ... O 0
0 p” 1—-p" - 0 0
0 0 p” . 0 0

38




@ The mapping k = (k1, k2), ki : Ti — A(© x Ty), induces a hierarchy of
beliefs for each player. For example,

o = margsi(t),
©
for all Borel B C © x A(©),

67 (B) = ri(t)({(0, &) | (9, margs ri(&)) € B}),
and for all Borel B C © x A(©) x A(© x A(0)),

67(B) = ri(t)({(6, 1) | (6, margs rx (t), marg, ooy ik (t)) € B}).




@ The mapping k = (k1, k2), ki : Ti — A(© x Ty), induces a hierarchy of
beliefs for each player. For example,

o = margsi(t),
©
for all Borel B C © x A(©),

67 (B) = ri(t)({(0, &) | (9, margs ri(&)) € B}),
and for all Borel B C © x A(©) x A(© x A(0)),

67(B) = ri(t)({(6, 1) | (6, margs rx (t), marg, ooy ik (t)) € B}).

@ Leth; : T; — T;* be the mapping describing for each type t;, player i’s

hierarchy of beliefs h;(t;) € T;*. Clearly, h1(T1) x h(T>) is belief closed.

-



@ The mapping k = (k1, k2), ki : Ti — A(© x Ty), induces a hierarchy of
beliefs for each player. For example,

o = margsi(t),
©
for all Borel B C © x A(©),

67 (B) = ri(t)({(0, &) | (9, margs ri(&)) € B}),
and for all Borel B C © x A(©) x A(© x A(0)),

67(B) = ri(t)({(6, 1) | (6, margs rx (t), marg, ooy ik (t)) € B}).

@ Leth; : T; — T;* be the mapping describing for each type t;, player i’s

hierarchy of beliefs h;(t;) € T;*. Clearly, h1(T1) x h(T>) is belief closed.

@ Suppose (0, T, x) is a model with © and T; Polish spaces, and x
continuous. Then,

t" — 7 = hi(t") — hi(t™).

-
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@ Define hj : A(® x Tj) — A(© x T}*) by

hy(A)(B) = A{(6,t) : (6,h(t)) € B} ¥ BorelBC© xT/".
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@ Define hj : A(® x Tj) — A(© x T}*) by
hy(A)(B) = A{(6,t) : (6,h(t)) € B} ¥ BorelBC© xT/".
@ Then we have the following commutative diagram:

Ti L) A(@ X Tj)

y

ﬁjl
T —— AO©xT/)

@ sothatforallt € T;,

g(hi(t)) = hy(ri(t)).




Two Special Models

Definition
A model (©,T, k) isfinite if |© x T| < oc.




Two Special Models

Definition
A model (©,T, k) is finite if |© x T| < co.

Definition

A model (©, T, k) satisfies the common prior assumption (CPA) if there exists
a probability measure . € A(© x T) such that for all i and Borel subsets B of
© x Ty, and for all tj € T;,

Fi(t)(B) = (B | {ti}).

3




How Restrictive is CPA?

Definition

Let '[iF be the set of all belief hierarchies for i corresponding to a finite model,
i.e., t € T if ti € hi(T;) for some finite model (© x T, x); the set T is the set
of finite types for i.

Define

T = {hi(t) | t; € T; for some finite model (© x T, x)
that satisfies the CPA}.




How Restrictive is CPA?

Definition

Let '[iF be the set of all belief hierarchies for i corresponding to a finite model,
i.e., t € T if ti € hi(T;) for some finite model (© x T, x); the set T is the set
of finite types for i.

Define

T = {hi(t) | t; € T; for some finite model (© x T, x)
that satisfies the CPA}.

Theorem (Mertens and Zamir, 1985, Lipman, 2003)

Suppose O is finite. Both T.” and T,°™ are dense subsets of the universal type
% space T;.

f«‘/' v
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Common Knowledge

@ In partition model, structure of players’ information is “common
knowledge,” but only in an informal sense (since common knowledge is
defined given the information partitions or o-algebras).
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Common Knowledge

@ In partition model, structure of players’ information is “common
knowledge,” but only in an informal sense (since common knowledge is
defined given the information partitions or o-algebras).

@ Since (2 is supposed to be a “complete” description of the uncertainty, the
universal types model implies the partition model with

Q=0xT; xT;.



Common Knowledge

@ In partition model, structure of players’ information is “common
knowledge,” but only in an informal sense (since common knowledge is
defined given the information partitions or o-algebras).

@ Since (2 is supposed to be a “complete” description of the uncertainty, the
universal types model implies the partition model with

Q=0xT; xT;.

@ Let F denote the Borel o-algebra of © x T; x T;. Then 1's information is
described by the sub o-algebra
F!:= {0 xB x T; | B aBorel subset of T;}, and similarly for 2.

-
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Defining Common Belief

® GivenAC O x T x T, (and A € F), at state w = (0,11, 1) player 1
assigns probability g(t1)(Ay,) to A, where A, := {(0,t2) | (0,t1,t2) € A}.
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Defining Common Belief

® GivenAC O x T x T, (and A € F), at state w = (0,11, 1) player 1
assigns probability g(t1)(Ay,) to A, where A, := {(0,t2) | (0,t1,t2) € A}.
@ FixE C ©. Theni believes E at t; if

S Vil(E) = {f, S g(f,)(E x Tg) = 1},
and i believes that k believes E if

t e VAE) = {t e Ty [g(t)(© x V{(E)) = 1}.
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Defining Common Belief

® GivenAC O x T x T, (and A € F), at state w = (0,11, 1) player 1
assigns probability g(t1)(Ay,) to A, where A, := {(0,t2) | (0,t1,t2) € A}.
@ FixE C ©. Theni believes E at t; if

teViHE) = {t e TV [ g(t)(E x ) =1},
and i believes that k believes E if
t e VA(E) = {t e TV [ g(t)(© x V{(E)) = 1}.
@ Proceeding recursively, define for ¢ > 2,

VHE) :={t e T | g(t)(© x VIHE)) = 1}.
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Defining Common Belief

® GivenAC O x T x T, (and A € F), at state w = (0,11, 1) player 1
assigns probability g(t1)(Ay,) to A, where A, := {(0,t2) | (0,t1,t2) € A}.
@ FixE C ©. Theni believes E at t; if

teViHE) = {t e TV [ g(t)(E x ) =1},
and i believes that k believes E if
t e VA(E) = {t e TV [ g(t)(© x V{(E)) = 1}.
@ Proceeding recursively, define for ¢ > 2,
VI(E) = {t e T{" | g(t)(© x V" (E)) = 1}.

@ Player i believes E is common belief att; if t € V;(E), where .
Vi(E) := N,V£(E). Note that V4 (E) x V,(E) is a belief closed set. =
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Common Knowledge and Common Belief

@ In partition interpretation, 1 knows A € F at w if
w € KHA) = {(0,12, 1) | g(t1)(Ay) = 1},

where Atl = {(9,t2) ’ (6,t1,t2) € A}
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Common Knowledge and Common Belief

@ In partition interpretation, 1 knows A € F at w if
w € KHA) = {(0,t. t2) | 9(t)(Ay) = 1},

) ’ (6,t1,t2) c A}

where A, = {(¢,
= KY(A) NK2(A).

@ Define K(A):

e
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Common Knowledge and Common Belief

@ In partition interpretation, 1 knows A € F at w if

w € KYA) = {(0: 11, 1) | 9(ta)(A) = 1},

where A, = {(6,t2) | (0,11, 1) € A}.

@ Define K(A) := K}(A) N K?(A).

@ In the partition interpretation, A is common knowledge at w if
we KA NKKA) N - =1 K (A).

& 9
BT



Common Knowledge and Common Belief

@ In partition interpretation, 1 knows A € F at w if

w € KYA) = {(0: 11, 1) | 9(ta)(A) = 1},

where Atl = {((9,1:2) ’ (6,t1,t2) € A}
@ Define K(A) := K}(A) N K?(A).
@ In the partition interpretation, A is common knowledge at w if
we KA NKKA) N - =1 K (A).
Theorem (Common Belief=Common Knowledge)

ForallE C ©,
© x Vi(E) x V2(E) = Ko (E x Ty x T3).

=,
2.

e
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Proof that CB=CK

KYE x Ty x T3) = {(6,t1,t2) | 9(ta)(E x T5) = 1}
=0 x V{(E)xT,,
— K(E xT; xT;) =0 x V}(E) x V4(E).
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Proof that CB=CK

KYE x Ty x T3) = {(6,t1,t2) | 9(ta)(E x T5) = 1}
=0 x V{(E)xT,,
— K(E xT; xT;) =0 x V}(E) x V4(E).

KIK(E x Ty x T;) = K}(© x V}(E) x V4(E))
= {(0,t1,) | 9(ts)(© x V3(E)) = 1}
=0 x VE) xT,,
— KK(E x T; x T;) = © x VZ(E) x VZ(E).
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Proof that CB=CK

° KHE x T{ x T3) = {(0,t1,t2) | 9()(E x T3) =1}
= O x V{(E)xT;,
= K(E xT; xT;) =0 x V}(E) x V4(E).
° KK(E x T; x T3) = K}© x VL(E) x VI(E))
={(0,t1,12) | 9(t2)(© x V3(E)) = 1}

=0 x VA(E) x T;,
— KK(E x T; x T;) = © x VZ(E) x VZ(E).

@ Continue to iterate and take intersections.
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