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Fix a normal form game {(Ai , ui)}i∈{1,...,n}.
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An action a′

i strictly dominates another action a′′
i if for all a−i ∈ A−i ,
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A strategy ai is a strictly dominant strategy if it strictly dominates every
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Definition
An action a′

i strictly dominates another action a′′
i if for all a−i ∈ A−i ,

ui(a′
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i , a−i).

A strategy ai is a strictly dominant strategy if it strictly dominates every
strategy a′′

i 6= ai , a′′
i ∈ Ai .

A rational player i will not play a strictly dominated action.



Rationality and Best Replies
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M 2 2
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On the left, M is not dominated, and is the unique best reply to
1
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2 ◦ R.
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On the left, M is not dominated, and is the unique best reply to
1
2 ◦ L + 1

2 ◦ R.

On the right, M is not dominated by L or by R, is never a best reply, and
is dominated by 1

2 ◦ T + 1
2 ◦ B.
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Rationality and Best Replies

Definition

The strategy a′
i ∈ Ai is strictly dominated by the mixed strategy αi ∈ Δ(Ai) if

Ui(αi , a−i) > Ui(a′
i , a−i) ∀a−i ∈ A−i .

Lemma

Suppose n = 2. The action a′
1 ∈ A1 is not strictly dominated by a pure or

mixed strategy if, and only if, a′
1 ∈ arg max u1(a1, α2) for some α2 ∈ Δ(A2).
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Iterated Deletion of Dominated Strategies
Common Belief in Rationaity

L C R

T 1, 0 1, 2 0, 1

B 0, 3 0, 1 2, 0

Result of these iterated deletions is TC.



Rationalizability
Bernheim (1984); Pearce (1984)

Suppose we have a two player game, u : A → R2.
Finite action spaces, |Ai | < ∞. Define, for all μ ∈ Δ(Ak),

BRi(μk) := arg max
ai∈Ai

ui(ai , μ).



Rationalizability
Bernheim (1984); Pearce (1984)

Suppose we have a two player game, u : A → R2.
Finite action spaces, |Ai | < ∞. Define, for all μ ∈ Δ(Ak),

BRi(μk) := arg max
ai∈Ai

ui(ai , μ).

Definition
Let A0

i = Ai for i = 1, 2. Set

A`+1
i =

⋃

μk∈Δ(A`
k )

BRi(μk).

The set of rationalizable strategies for i is the set Ri ⊂ Ai given by

Ri := ∩`A`
i .



Best Reply Set

Definition
A set B = B1 × B2 ⊂ A is a best reply set if for all i , every ai ∈ Bi is a best
reply to some μ ∈ Δ(Bk).

The set B is a full best reply set if for all ai ∈ Bi , there exists μ ∈ Δ(Bk) such
that

ai ∈ BRi(μ) ⊂ Bi .
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Best Reply Set

Definition
A set B = B1 × B2 ⊂ A is a best reply set if for all i , every ai ∈ Bi is a best
reply to some μ ∈ Δ(Bk).

The set B is a full best reply set if for all ai ∈ Bi , there exists μ ∈ Δ(Bk) such
that

ai ∈ BRi(μ) ⊂ Bi .

A strategy profile is a best reply set (considered as a singleton) if, and
only if, it is a Nash equilibrium.

A strategy profile is a full best reply set (considered as a singleton) if, and
only if, it is a strict Nash equilibrium.



Epistemic Models
Dekel and Siniscalchi (2014)

Definition
An epistemic model for the complete information normal form game u is a
collection (Ai , Ti , κi)i , where Ti is a compact metric space, and κi is a
continuous mapping with κi : Ti → Δ(Ak × Tk).

A type in Ti is called an epistemic type.
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Epistemic Models
Dekel and Siniscalchi (2014)

Definition
An epistemic model for the complete information normal form game u is a
collection (Ai , Ti , κi)i , where Ti is a compact metric space, and κi is a
continuous mapping with κi : Ti → Δ(Ak × Tk).

A type in Ti is called an epistemic type.

Each epistemic type ti ∈ Ti induces a hierarchy of beliefs, (δ1
ti , δ

2
ti , . . .),

where δ1
ti ∈ Δ(Ak), δ2

ti ∈ Δ(Ak × Δ(Ai)), . . ..

Moreover, any coherent hierarchy of beliefs induces a universal type.



Player i believes an event Ek ⊂ Ak × Tk if

κi(ti)(Ek) = 1.

Define
Bi(Ek) = {(ai , ti) ∈ Ai × Ti : κi(ti)(Ek) = 1}.

Note that Bi(Ek) places no restrictions on Ai and so has a cross product
structure. So, will sometimes treat Bi(Ej) as a subset of Ti .



Rationality and Belief in Rationality
Definition
Action ai is rational for ti if

ai ∈ BRi(margAk
κi(ti)).

Ri := {(ai , ti) ∈ Ai × Ti : ai is rational for ti}.
Player i believes k is rational at ti if ti ∈ Bi(Rk).
Player i is rational and believes k is rational if

(ai , ti) ∈ Ri ∩ Bi(Rk).

Both players are rational and believe the other player is rational if

((a1, t1), (a2, t2)) ∈R1 ∩ B1(R2) × R2 ∩ B2(R1)

= (R1 × R2) ∩ (B1(R2) × B2(R1)) =: R ∩ B(R).
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κ2(t ′2) 1 0 0 0

κ2(t ′′2 ) 0 0 0 1
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Common Belief in Rationality

Define R := R1 × R2 ⊂ A1 × T1 × A2 × T2 and
B(R) := B1(R2) × B2(R1) ⊂ A1 × T1 × A2 × T2.

Definition
The event that there is rationality and common belief in rationality is

RCBR := R ∩ B(R) ∩ B2(R) ∙ ∙ ∙ = R ∩ CB(R).

In simple iterated deletion example, RCBR = {(Tt ′1, Lt ′2)}.

In battle of the sexes, RCBR = A1 × {(t ′1, LT ′
2), (t

′
1, RT ′′

2 )}.



Theorem

Fix a game.

1 In any model, the projection of the event RCBR on A is a full best
response set.

2 In any complete model (i.e., the κi are onto), the projection of the event
RCBR on A is the set of rationalizable strategy profiles.

3 For every full best response set B, there is a finite model in which the
projection of the event RCBR on A is B.



What about Iterated Admissibility?

L M R

U 1, 1 1, 1 0, 0

D 1, 1 0, 0 1, 1

Iterated admissibility leads to UL, DL.

But order matters!



BERNHEIM, B. D. (1984): “Rationalizable Strategic Behavior,” Econometrica,
52(4), 1007–1028.

DEKEL, E., AND M. SINISCALCHI (2014): “Epistemic game theory,” in
Handbook of Game Theory, volume 4, ed. by H. P. Young, and S. Zamir.
North Holland.

PEARCE, D. (1984): “Rationalizable Strategic Behavior and the Problem of
Perfection,” Econometrica, 52(4), 1029–50.


