An Introduction to Epistemic Game Theory

George J. Mailath

University of Pennsylvania and Australian National University

February 2019

Rationality

• What are the implications of rationality?

Rationality

- What are the implications of rationality?
- Fix a normal form game $\{(A_i, u_i)\}_{i \in \{1,...,n\}}$.

Definition

An action a'_i strictly dominates another action a''_i if for all $a_{-i} \in A_{-i}$,

$$u_i(a'_i, a_{-i}) > u_i(a''_i, a_{-i}).$$

A strategy a_i is a *strictly dominant strategy* if it strictly dominates every strategy $a''_i \neq a_i, a''_i \in A_i$.

Rationality

- What are the implications of rationality?
- Fix a normal form game $\{(A_i, u_i)\}_{i \in \{1, \dots, n\}}$.

Definition

An action a'_i strictly dominates another action a''_i if for all $a_{-i} \in A_{-i}$,

$$u_i(a'_i, a_{-i}) > u_i(a''_i, a_{-i}).$$

A strategy a_i is a *strictly dominant strategy* if it strictly dominates every strategy $a''_i \neq a_i, a''_i \in A_i$.

• A rational player *i* will not play a strictly dominated action.

• On the left, *M* is not dominated, and is the unique best reply to $\frac{1}{2} \circ L + \frac{1}{2} \circ R$.

- On the left, *M* is not dominated, and is the unique best reply to $\frac{1}{2} \circ L + \frac{1}{2} \circ R$.
- On the right, *M* is not dominated by *L* or by *R*, is never a best reply, and is dominated by ¹/₂ ∘ *T* + ¹/₂ ∘ *B*.

Definition

The strategy $a'_i \in A_i$ is strictly dominated by the mixed strategy $\alpha_i \in \Delta(A_i)$ if

$$U_i(\alpha_i, \mathbf{a}_{-i}) > U_i(\mathbf{a}'_i, \mathbf{a}_{-i}) \qquad \forall \mathbf{a}_{-i} \in \mathbf{A}_{-i}.$$

Definition

The strategy $a'_i \in A_i$ is strictly dominated by the mixed strategy $\alpha_i \in \Delta(A_i)$ if

$$U_i(\alpha_i, \mathbf{a}_{-i}) > U_i(\mathbf{a}'_i, \mathbf{a}_{-i}) \qquad \forall \mathbf{a}_{-i} \in \mathbf{A}_{-i}.$$

Lemma

Suppose n = 2. The action $a'_1 \in A_1$ is not strictly dominated by a pure or mixed strategy if, and only if, $a'_1 \in \arg \max u_1(a_1, \alpha_2)$ for some $\alpha_2 \in \Delta(A_2)$.

	L	С	R
Т	1,0	1,2	0, 1
В	0,3	0, 1	2,0

	L	С	F	2
Т	1,0	1,2	0,	1
В	0,3	0, 1	2,	0

Common Belief in Rationaity

• Result of these iterated deletions is *TC*.

Rationalizability

Bernheim (1984); Pearce (1984)

- Suppose we have a two player game, $u : A \rightarrow \mathbb{R}^2$.
- Finite action spaces, $|A_i| < \infty$. Define, for all $\mu \in \Delta(A_k)$,

$$\mathsf{BR}_i(\mu_k) := rg\max_{\mathbf{a}_i \in \mathsf{A}_i} \mathsf{U}_i(\mathbf{a}_i,\mu).$$

Rationalizability

Bernheim (1984); Pearce (1984)

- Suppose we have a two player game, $u : A \to \mathbb{R}^2$.
- Finite action spaces, $|A_i| < \infty$. Define, for all $\mu \in \Delta(A_k)$,

$$\mathsf{BR}_{i}(\mu_{k}) := rg\max_{a_{i} \in \mathcal{A}_{i}} \mathit{U}_{i}(a_{i},\mu).$$

Definition

Let
$$A_i^0 = A_i$$
 for $i = 1, 2$. Set

$$A_i^{\ell+1} = \bigcup_{\mu_k \in \Delta(A_k^\ell)} BR_i(\mu_k).$$

The set of rationalizable strategies for *i* is the set $\mathcal{R}_i \subset A_i$ given by

$$\mathcal{R}_i := \cap_{\ell} A_i^{\ell}.$$

Best Reply Set

Definition

A set $B = B_1 \times B_2 \subset A$ is a best reply set if for all *i*, every $a_i \in B_i$ is a best reply to some $\mu \in \Delta(B_k)$.

The set *B* is a full best reply set if for all $a_i \in B_i$, there exists $\mu \in \Delta(B_k)$ such that

 $a_i \in BR_i(\mu) \subset B_i.$

Best Reply Set

Definition

A set $B = B_1 \times B_2 \subset A$ is a best reply set if for all *i*, every $a_i \in B_i$ is a best reply to some $\mu \in \Delta(B_k)$.

The set *B* is a full best reply set if for all $a_i \in B_i$, there exists $\mu \in \Delta(B_k)$ such that

 $a_i \in BR_i(\mu) \subset B_i.$

 A strategy profile is a best reply set (considered as a singleton) if, and only if, it is a Nash equilibrium.

Best Reply Set

Definition

A set $B = B_1 \times B_2 \subset A$ is a best reply set if for all *i*, every $a_i \in B_i$ is a best reply to some $\mu \in \Delta(B_k)$.

The set *B* is a full best reply set if for all $a_i \in B_i$, there exists $\mu \in \Delta(B_k)$ such that

$$a_i \in BR_i(\mu) \subset B_i.$$

- A strategy profile is a best reply set (considered as a singleton) if, and only if, it is a Nash equilibrium.
- A strategy profile is a full best reply set (considered as a singleton) if, and only if, it is a strict Nash equilibrium.

Epistemic Models

Dekel and Siniscalchi (2014)

Definition

An epistemic model for the complete information normal form game *u* is a collection $(A_i, T_i, \kappa_i)_i$, where T_i is a compact metric space, and κ_i is a continuous mapping with $\kappa_i : T_i \to \Delta(A_k \times T_k)$.

A type in T_i is called an epistemic type.

Epistemic Models

Dekel and Siniscalchi (2014)

Definition

An epistemic model for the complete information normal form game *u* is a collection $(A_i, T_i, \kappa_i)_i$, where T_i is a compact metric space, and κ_i is a continuous mapping with $\kappa_i : T_i \to \Delta(A_k \times T_k)$.

A type in T_i is called an epistemic type.

• Each epistemic type $t_i \in T_i$ induces a hierarchy of beliefs, $(\delta_{t_i}^1, \delta_{t_i}^2, \ldots)$, where $\delta_{t_i}^1 \in \Delta(A_k)$, $\delta_{t_i}^2 \in \Delta(A_k \times \Delta(A_i)), \ldots$.

Epistemic Models

Dekel and Siniscalchi (2014)

Definition

An epistemic model for the complete information normal form game *u* is a collection $(A_i, T_i, \kappa_i)_i$, where T_i is a compact metric space, and κ_i is a continuous mapping with $\kappa_i : T_i \to \Delta(A_k \times T_k)$.

A type in T_i is called an epistemic type.

- Each epistemic type $t_i \in T_i$ induces a hierarchy of beliefs, $(\delta_{t_i}^1, \delta_{t_i}^2, \ldots)$, where $\delta_{t_i}^1 \in \Delta(A_k)$, $\delta_{t_i}^2 \in \Delta(A_k \times \Delta(A_i)), \ldots$.
- Moreover, any coherent hierarchy of beliefs induces a universal type.

• Player *i* believes an event $E_k \subset A_k \times T_k$ if

$$\kappa_i(t_i)(E_k) = 1.$$

Define

$$B_i(E_k) = \{(a_i, t_i) \in A_i \times T_i : \kappa_i(t_i)(E_k) = 1\}.$$

Note that $B_i(E_k)$ places no restrictions on A_i and so has a cross product structure. So, will sometimes treat $B_i(E_i)$ as a subset of T_i .

Rationality and Belief in Rationality

Definition

Action a_i is rational for t_i if

 $a_i \in BR_i(\operatorname{marg}_{A_k} \kappa_i(t_i)).$

- $R_i := \{(a_i, t_i) \in A_i \times T_i : a_i \text{ is rational for } t_i\}.$
- Player *i* believes *k* is rational at t_i if $t_i \in B_i(R_k)$.
- Player *i* is rational and believes *k* is rational if

 $(a_i, t_i) \in R_i \cap B_i(R_k).$

• Both players are rational and believe the other player is rational if

 $((a_1, t_1), (a_2, t_2)) \in R_1 \cap B_1(R_2) \times R_2 \cap B_2(R_1)$ $= (R_1 \times R_2) \cap (B_1(R_2) \times B_2(R_1)) =: R \cap B(R).$

			Lt'_2	Rt'_2	Lt_2''
1	R	$\kappa_1(t_1')$	1	0	0
-	0.0	$\kappa_1(t_1'')$	0	0	0
1, 1	2,0		Tt'_1	Bt'_1	Tt''_1
0,0	2,0 0,1	$\kappa_2(t_2')$	<i>Tt</i> ₁ 1	<i>Bt</i> ' ₁ 0	<i>Tt</i> ₁ '' 0

Т

В

 $\frac{Rt_2''}{0}$

Bt″₁

0

• $R_1 = \{Tt'_1, Tt''_1\}; R_2 = \{Lt'_2, Rt''_2\}.$

•
$$R_1 = \{Tt'_1, Tt''_1\}; R_2 = \{Lt'_2, Rt''_2\}.$$

• $B_1(R_2) = A_1 \times T_1; B_2(R_1) = A_2 \times \{t'_2\}.$

•
$$R_1 = \{Tt'_1, Tt''_1\}; R_2 = \{Lt'_2, Rt''_2\}.$$

• $B_1(R_2) = A_1 \times T_1; B_2(R_1) = A_2 \times \{t'_2\}.$
• $B_1B_2(R_1) = A_1 \times \{t'_1\}, R_1 \cap B_1(R_2) \cap B_1B_2(R_1) = \{Tt'_1\}.$

•
$$R_1 = \{Tt'_1, Tt''_1\}; R_2 = \{Lt'_2, Rt''_2\}.$$

• $B_1(R_2) = A_1 \times T_1; B_2(R_1) = A_2 \times \{t'_2\}.$
• $B_1B_2(R_1) = A_1 \times \{t'_1\}, R_1 \cap B_1(R_2) \cap B_1B_2(R_1) = \{Tt'_1\}.$
• $B_2B_1(R_2) = A_2 \times T_2, R_2 \cap B_2(R_1) \cap B_2B_1(R_2) = \{Lt'_2\}.$

	Lt'_2	Rt'_2	Lt_2''	Rt_2''
$\kappa_1(t_1')$	$\frac{1}{4}$	0	0	$\frac{3}{4}$
$\kappa_1(t_1'')$	0	1	0	0
	Tť ₁	Bt'_1	<i>Tt</i> ₁ "	<i>Bt</i> '' ₁
$\kappa_2(t_2')$	<i>Tt</i> ₁ 1	<i>Bt</i> ' ₁ 0	<i>Tt</i> ₁ " 0	<i>Bt</i> ₁ '' 0

• $R_1 = \{Tt'_1, Bt'_1, Bt''_1\}; R_2 = \{Lt'_2, Rt''_2\}.$

•
$$R_1 = \{Tt'_1, Bt'_1, Bt''_1\}; R_2 = \{Lt'_2, Rt''_2\}.$$

• $B_1(R_2) = A_1 \times \{t'_1\}; B_2(R_1) = A_2 \times T_2.$

- $R_1 = \{Tt'_1, Bt'_1, Bt''_1\}; R_2 = \{Lt'_2, Rt''_2\}.$
- $B_1(R_2) = A_1 \times \{t'_1\}; B_2(R_1) = A_2 \times T_2.$
- $B_1B_2(R_1) = A_1 \times T_1, R_1 \cap B_1(R_2) \cap B_1B_2(R_1) = A_1 \times \{t'_1\}.$

•
$$R_1 = \{Tt'_1, Bt'_1, Bt''_1\}; R_2 = \{Lt'_2, Rt''_2\}.$$

• $B_1(R_2) = A_1 \times \{t'_1\}; B_2(R_1) = A_2 \times T_2.$
• $B_1B_2(R_1) = A_1 \times T_1, R_1 \cap B_1(R_2) \cap B_1B_2(R_1) = A_1 \times \{t'_1\}.$
• $B_2B_1(R_2) = A_2 \times T_2, R_2 \cap B_2(R_1) \cap B_2B_1(R_2) = \{Lt'_2, Rt''_2\}.$

Common Belief in Rationality

• Define $R := R_1 \times R_2 \subset A_1 \times T_1 \times A_2 \times T_2$ and $B(R) := B_1(R_2) \times B_2(R_1) \subset A_1 \times T_1 \times A_2 \times T_2$.

Definition

The event that there is rationality and common belief in rationality is

$$RCBR := R \cap B(R) \cap B^2(R) \cdots = R \cap CB(R).$$

- In simple iterated deletion example, $RCBR = \{(Tt'_1, Lt'_2)\}$.
- In battle of the sexes, $RCBR = A_1 \times \{(t'_1, LT'_2), (t'_1, RT''_2)\}$.

Theorem

Fix a game.

- In any model, the projection of the event RCBR on A is a full best response set.
- In any complete model (i.e., the κ_i are onto), the projection of the event RCBR on A is the set of rationalizable strategy profiles.
- For every full best response set B, there is a finite model in which the projection of the event RCBR on A is B.

What about Iterated Admissibility?

	L	М	R
U	1,1	1,1	0,0
D	1,1	0,0	1,1

- Iterated admissibility leads to UL, DL.
- But order matters!

BERNHEIM, B. D. (1984): "Rationalizable Strategic Behavior," Econometrica, 52(4), 1007–1028.

- DEKEL, E., AND M. SINISCALCHI (2014): "Epistemic game theory," in Handbook of Game Theory, volume 4, ed. by H. P. Young, and S. Zamir. North Holland.
- PEARCE, D. (1984): "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, 52(4), 1029–50.

