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QUESTIONS

METHODS

Simulation and Model Fits

Utility of MB control
• Utility is measured as the linear 

effect across w for each combination 
of the other parameters (500 iterations).

• Averaged over αinit, increasing 
learning rate variability (η) increases 
the utility of MB control (tested at 
λ = 0.5, ψ = 4*SD).

Optimal parameters
• Though increasing η increases the 

utility of MB control, reward rate is
maximized using a fixed LR (η = 0, 
α = 0.9, w = 1.0; averaged over β; 
tested at λ = 0.5, ψ = 4*SD).

• However, a highly variable learning 
rate also performs well (η = 1.0, w = 1.0),
suggesting multiple strategies for
successful performance.

Model fits
• Model evidence suggests most subjects

were better fit with a fixed learning rate.
• Notably, learning rates were high (fixed 

LR model: median = 0.81 [IQR = 0.34]).
• Corroborating the regression analysis, 

subjects displayed a range of w values 
(median = 0.54 [IQR = 0.82]).

• In the full model η and w were 
uncorrelated (rho = .097, p = 0.20).

1. What is the relationship between model-based learning and learning-rate 
adaptation in human subjects, and do individual differences demonstrate 
a tradeoff between these capacities?

2. How does the use of an adaptive learning rate affect the utility of model 
based control?

• Typical model-free (MF) reinforcement learning (RL) algorithms are 
computationally efficient but tend to fare poorly in dynamic environments. Two 
disparate approaches have been proposed as mechanisms by which humans and 
other animals might flexibly adapt to change.

• In model-based learning (MB), a “cognitive map” can be used to 
dynamically update reward values via forward planning [1,2].

• Humans display adaptive learning rates, modulating their learning rate 
(LR) in accordance with environmental volatility [3,4]. 

• To date, the interaction of these two forms of flexibility has not been tested, 
though neurogenetic evidence suggests that individuals who are more model-
based may display less learning rate adaptation [3,5].

Subjects 
N = 200 completed two blocks of a reinforcement learning task (final N = 173 after 
performance cutoffs) 

Two-step task

Behavioral Performance
Overall accuracy and reversal learning
• Subjects learn the task, performing  

better in the deterministic condition
(t(172) = 3.87, p < .0002).

• Subjects demonstrate variability in reversal 
threshold (defined as number of trials to 
5/5 correct choices) and the extent to which 
they are model-based (see below).

Model-based learning
• We replicate the canonical two-step 

hybrid MB/MF pattern. A mixed 
effects regression confirms a significant 
main effect of reward (β = 0.44, z = 10.05,
p < .0001) and a significant reward x transition 
interaction (β = 0.46, z = 8.06, p < .0001). 
Effects of transition and previous correct choice 
also significant (transition: β = 0.19, z = 5.81,
p < .0001; correct: β = 0.41, z = 12.01, p < .0001).

Predictors of reversal performance

• Subject-specific reward x transition interaction 
(MB index) and reward (MF index) beta weights 
were extracted from the mixed effects model. 

• Contrary to the hypothesis, both indices 
predict better reversal performance in block 1, 
even controlling for the effect of the other 
(MB: β = -1.26, t(169) = -4.80, p < .0001; MF: 
β = -1.20, t(169) = -4.40, p < .0001).

• There was also a significant interaction 
(MBxMF: : β = 0.61, t(169) = 2.09, p = .038).

Funding for this research was provided by 
NIH grant #R01DC009209. Task code, 
simulation and fitting code, and stimuli 
adapted from [2].
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• Our revised version of the two-step task successfully elicits MB control.
• We failed to find the hypothesized relationship between adaptive learning 

rates and MB control. However, our task design did not elicit clear evidence 
of adaptive learning rates. 

• On average, subjects demonstrated near-optimal learning rates for the task.
• If task design is not to blame, genetic differences may not be representative 

of overall individual differences.
• The positive relationship between MB index and reversal performance 

suggests it taps learning characteristics other than the use of MB control.

SUMMARY & CONCLUSIONS

Task design
• Assesses MB control
• Two first-stage options, leading 

to one of two second-stage 
states

• Each second stage state has one 
choice, leading to reward

• Rewards: real-valued, gaussian
(SD = 6), with a distance of 15 
points between second-stage 
generative means

• Means of the options reverse 
every 20 trials

• Reversals/block: 7
• Trials/block: 140
• Block 1: reversal learning 

(deterministic transitions)
• Block 2: MB learning (stochastic 

transitions: P(common)=0.8)

The model
• Hybrid MB/MF [2]
• MF component has 

variable learning rate 
(Pearce-Hall) [6]

Parameters
αinit β λ w η ψ

initial 
learning 

rate

inverse 
temp

eligibility
trace

mixing 
weight

learning
rate 

decay

PE 
scaling

Block 1

Block 2

Model fits

model LL AIC BIC # best 
fit 

(AIC)
full -10179 22434 25488 72

fixed 
LR

-10611 22605 24641 101


