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a b s t r a c t 

There is growing interest in how neuromodulators shape brain networks. Recent neuroimaging studies provide 

evidence that brainstem arousal systems, such as the locus coeruleus-norepinephrine system (LC-NE), influence 

functional connectivity and brain network topology, suggesting they have a role in flexibly reconfiguring brain 

networks in order to adapt behavior and cognition to environmental demands. To date, however, the relationship 

between brainstem arousal systems and functional connectivity has not been assessed within the context of a task 

with an established relationship between arousal and behavior, with most prior studies relying on incidental 

variations in arousal or pharmacological manipulation and static brain networks constructed over long periods 

of time. These factors have likely contributed to a heterogeneity of effects across studies. To address these issues, 

we took advantage of the association between LC-NE-linked arousal and exploration to probe the relationships 

between exploratory choice, arousal —as measured indirectly via pupil diameter —and brain network dynamics. 

Exploration in a bandit task was associated with a shift toward fewer, more weakly connected modules that 

were more segregated in terms of connectivity and topology but more integrated with respect to the diversity 

of cognitive systems represented in each module. Functional connectivity strength decreased, and changes in 

connectivity were correlated with changes in pupil diameter, in line with the hypothesis that brainstem arousal 

systems influence the dynamic reorganization of brain networks. More broadly, we argue that carefully aligning 

dynamic network analyses with task designs can increase the temporal resolution at which behaviorally- and 

cognitively-relevant modulations can be identified, and offer these results as a proof of concept of this approach. 
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. Introduction 

The brain has a remarkable capacity to adaptively shift processing to
upport a diverse array of behavioral goals, contextual demands, and en-
ironmental changes. This fact raises two fundamental questions: What
eural mechanisms allow the brain to rapidly shift between states that
orm the substrates of different cognitive processes and behaviors, and
ow does the brain maintain a balance between the stability necessary to
upport ongoing behavior and the flexibility necessary to adapt to new
xigencies? A number of theoretical proposals have pointed to a role for
euromodulatory systems in answering these questions, and in partic-
lar the neuromodulatory actions of norepinephrine (NE), a key com-
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onent of physiological arousal ( Arnsten et al., 2010 ; Aston-Jones and
ohen, 2005 ; Bouret and Sara, 2005 ; Yu and Dayan, 2005 ). The pri-
ary source of NE in the brain is the locus coeruleus (LC), a pontine
ucleus that projects widely throughout the cortex ( Berridge and Wa-
erhouse, 2003 ). NE has complex effects at the single neuron level, but a
ommon finding is that it increases the signal-to-noise ratio of neural re-
ponses, effectively modulating the gain of the neural response function
 Berridge and Waterhouse, 2003 ; Hasselmo et al., 1997 ; Hurley et al.,
004 ), which will tend to amplify and propagate stronger neural ac-
ivity while suppressing weaker activity ( Aston-Jones and Cohen, 2005 ;
ldar et al., 2016 ; Mather et al., 2016 ). Simulations suggest these effects
f gain modulation can collectively lead to changes in functional con-
 

ticle under the CC BY-NC-ND license 

https://doi.org/10.1016/j.neuroimage.2021.118369
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2021.118369&domain=pdf
mailto:ntardiff@sas.upenn.edu
https://doi.org/10.1016/j.neuroimage.2021.118369
http://creativecommons.org/licenses/by-nc-nd/4.0/


N. Tardiff, J.D. Medaglia, D.S. Bassett et al. NeuroImage 240 (2021) 118369 

n  

T  

c  

t  

f  

s  

s  

u  

D  

p  

C
 

s  

n  

a  

d  

R  

B  

v  

t  

i  

J  

h  

t  

o  

n  

2  

f  

c  

c  

s  

e  

l  

h  

c  

G  

t
 

f  

a  

e  

m  

N  

t  

t  

e  

M  

s  

n  

w  

g  

n  

o  

l  

t  

p  

r  

s  

w  

t
 

a  

I  

d  

a  

s  

f  

c  

w  

c  

t  

i  

P  

A  

m  

b  

g  

S  

g  

w  

c  

f
 

a  

o  

b  

2  

K  

n  

t  

b  

p  

fi  

r  

i  

b  

n  

n

2

2

 

I  

U  

r  

o  

o  

c  

a  

c  

n  

f  

a  

o

2

 

t  

w  

l  

t  

t  

t  

t  

(  

T  

b  

i  

b  
ectivity and network topology ( Eldar et al., 2013 ; Shine et al., 2018a ).
hese features make the LC-NE system well situated to effect large-scale
hanges in brain networks and cognitive function. Several prominent
heories have ascribed this system such a role, suggesting that it resets
unctional brain networks in support of specific behaviors and cognitive
tates as dictated by environmental demands ( Bouret and Sara, 2005 ),
hifts the balance of information processing from top-down to bottom-
p depending on the uncertainty of internal world models ( Yu and
ayan, 2005 ), or shifts the brain between states of exploration and ex-
loitation based on ongoing estimates of task utility ( Aston-Jones and
ohen, 2005 ). 

Recent studies have begun to explore the association between brain-
tem arousal systems and functional brain networks using functional
euroimaging. Neuromodulators including norepinephrine, dopamine,
nd acetylcholine have been implicated in coordinating brain network
ynamics ( Birn et al., 2019 ; Eldar et al., 2013 ; Guedj et al., 2017 ;
offman et al., 2016 ; Shafiei et al., 2019 ; Turchi et al., 2018 ; van den
rink et al., 2018 , 2016b ; Záborszky et al., 2018 ; Zerbi et al., 2019 ; see
an den Brink et al., 2019 for review). For example, utilizing the fact
hat activity in LC and other brainstem neuromodulatory nuclei leads to
ncreases in pupil diameter ( de Gee et al., 2017 ; Gilzenrat et al., 2010 ;
oshi et al., 2016 ; Reimer et al., 2016 ; Varazzani et al., 2015 ), studies
ave found that elevated pupil diameter —either baseline pupil during
ask or endogenous fluctuations during rest —is associated with stronger
verall functional connectivity and greater clustering of functional con-
ections ( Eldar et al., 2013 ; van den Brink et al., 2016b ; Warren et al.,
016 ), as well as an increase in the diversity of connectivity between
unctional modules, potentially indicating greater integration among
ognitive systems ( Shine et al., 2016 ). NE-linked changes in functional
onnectivity have also demonstrated spatial patterning consonant with
pecific catecholamine receptor distributions in humans ( van den Brink
t al., 2018 ) and mice ( Zerbi et al., 2019 ). Pharmacological manipu-
ation of NE with atomoxetine, a norepinephrine transporter blocker,
as produced conflicting results, with resting-state studies finding de-
reased connectivity between networks ( van den Brink et al., 2016b ; see
uedj et al., 2017 for similar result in macaques), but increased connec-

ivity between networks in a task-based study ( Shine et al., 2018b ). 
The heterogenous results across studies likely stem from a number of

actors, including differences in the methods used to construct and an-
lyze brain networks, as well as differences in neural response between
ndogenous fluctuations of LC-NE activity and manipulation with ato-
oxetine, which influences LC firing in addition to increasing cortical
E levels ( Bari and Aston-Jones, 2013 ). Importantly, the divergence be-

ween task and rest effects may stem from the inverted-U-shaped rela-
ionship between catecholamine levels and their neural and cognitive
ffects ( Aston-Jones and Cohen, 2005 ; Berridge and Waterhouse, 2003 ;
cGinley et al., 2015 ; Robbins and Arnsten, 2009 ), where the resting

tate is presumably associated with lower arousal levels. Furthermore,
eural activity varies between rest and task, and between different tasks,
hich as outlined above will interact with neuromodulation of neural
ain to amplify (or suppress) activity specific to that particular cog-
itive state at that particular moment in time. Given that the actions
f LC-NE and other brainstem arousal systems depend on the under-
ying state of the system, it is critical to ask what the relationship be-
ween brain network organization, neuromodulatory activity, and task
erformance is for particular classes of behaviors and at behaviorally-
elevant timescales. To date, however, the relationship between brain-
tem arousal systems and functional connectivity has not been assessed
ithin the context of a task with an established relationship between

hese systems and behavior. 
The role of the LC-NE system in mediating between exploration

nd exploitation provides a strong place to begin to form these links.
t has been proposed that increases in tonic LC-NE activity promote
isengagement from the current task (exploitation) in order to seek
lternatives (exploration) ( Aston-Jones and Cohen, 2005 ). Direct LC
timulation promotes patch leaving and general disengagement during
2 
oraging ( Kane et al., 2017 ), and pupil diameter has been found to in-
rease with exploratory choice ( Jepma and Nieuwenhuis, 2011 ) and
ith decreases in task utility signaling the need to disengage from the

urrent course of action ( Gilzenrat et al., 2010 ). More broadly, elevated
onic LC activity and pupil diameter have been linked to distractibil-
ty ( Aston-Jones and Cohen, 2005 ; Bouret and Sara, 2005 ; Ebitz and
latt, 2015 ; Unsworth and Robison, 2016 ; van den Brink et al., 2016a ).
 number of studies have found that performance in cognitively de-
anding tasks is supported by increased integration among functional

rain networks, with poorer performance predicted by decreased inte-
ration ( Braun et al., 2015 ; Ekman et al., 2012 ; Gießing et al., 2013 ;
hine et al., 2016 ; Vatansever et al., 2015 ). This pattern of results sug-
ests a potential parallel between elevated LC-NE activity and brain net-
ork integration —namely, that elevated LC-NE activity may lead to de-

reased functional integration, which may in turn provide a substrate
or exploration. 

We tested this hypothesis in the present study. Subjects completed
 two-armed bandit task while undergoing fMRI and pupillometry. In
rder to meet the goal of linking arousal, functional connectivity, and
ehavior, we examined dynamic functional connectivity ( Calhoun et al.,
014 ; Fedorenko and Thompson-Schill, 2014 ; Khambhati et al., 2018b ;
opell et al., 2014 ; Medaglia et al., 2015 ), going beyond the static con-
ectivity measures used in most prior studies in this domain to more
ightly link arousal, connectivity changes, and behavior. Furthermore,
y time-locking our analyses to exploratory choice and utilizing semi-
arametric time series methods, we demonstrate the ability to uncover
ne-grained fluctuations in functional network dynamics at a temporal
esolution generally not achieved with dynamic functional connectiv-
ty. By addressing the above hypotheses at a timescale consonant with
ehavior, we seek to develop a more fundamental understanding of the
eural bases of exploratory states and arousal-linked mechanisms of dy-
amic network reconfiguration. 

. Methods 

.1. Subjects 

Forty subjects (22 female, M age = 23.48 years) completed the study.
nformed consent was obtained from each subject in accordance with the
niversity of Pennsylvania IRB. All subjects in the final sample (1) were

ight-handed; (2) were between 18 and 35 years old; (3) had normal
r corrected-to-normal vision; (4) had no known learning impairments
r history of neurological or psychological disorders; and (5) were not
urrently taking any psychiatric medications or medications known to
ffect the autonomic nervous system. Two subjects were excluded be-
ause it was later determined they were taking medications that did
ot meet the inclusion criteria. Four additional subjects were excluded
rom the analyses for excessive head movement during scanning (aver-
ge framewise displacement across runs > 0.2 mm), for a final sample
f 34 (20 female, M age = 22.82 years). 

.2. Materials and procedure 

Subjects completed the Leapfrog bandit task ( Knox et al., 2012 ). In
his highly constrained two-armed bandit ( Fig. 1 A), the options are al-
ays 10 points apart in value; when the options are selected, they de-

iver payoffs deterministically. After every trial, with probability P (flip)
he currently lesser-valued option may jump in value by 20 points
o become the superior option. Which option is better thus alternates
hroughout the task, and subjects must balance (1) choosing the option
hat is the best according to their current knowledge (exploiting) and
2) sampling the other option to find out if it has improved (exploring).
he constrained nature of this task is advantageous because trials can
e classified as exploratory or exploitative solely on the basis of behav-
or, without recourse to model-based analyses necessitated by drifting
andits ( Daw et al., 2006 ; Ebitz et al., 2018 ). Concretely, trials were
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Fig. 1. Analyzing brain network integration and arousal dur- 

ing exploration. A Stimuli and trial timing for the Leapfrog 

task. Each trial was followed by a 1000 ms ITI during 

which —in addition to the option images —a light gray rect- 

angle was present in the center of the display to maintain lu- 

minance. Note that stimuli are higher contrast than they were 

during the experiment. B We recorded pupil diameter as an in- 

dex of brainstem arousal systems. C We parcellated the brain 

into 200 cortical regions ( Schaefer et al., 2018 ) and 15 sub- 

cortical regions ( Fischl et al., 2002 ), assigned each region to 

an established cognitive system (colors; Yeo et al., 2011 ) and 

extracted the average BOLD time course from each region. We 

then computed continuous wavelet coherence between each 

pair of regions. D We averaged coherence across the 0.08–

0.125 Hz frequency range to produce a single time-varying 

measure of connectivity strength per node pair. This proce- 

dure resulted in one 215 ×215 ×240 weighted adjacency ma- 

trix per task run. E We submitted the adjacency matrices to 

a multislice modularity optimization algorithm ( Jeub et al., 

2011 ; Mucha et al., 2010 ), yielding time-varying brain net- 

works, where each node is assigned to a module in the network 

(colors). We repeated this procedure across a range of param- 

eter values of the modularity-maximization algorithm, which 

resulted in 102 time-varying networks per task run. Brain net- 

works were visualized using BrainNet Viewer ( Xia et al., 2013 ). 

F At each time point, we computed the modular allegiance 

matrix, which identifies the probability that two nodes were 

placed in the same module, across the parameter space. G We 

then used the modular allegiance matrices to compute global 

brain network integration, which measures the extent to which 

nodes from different cognitive systems (C) were placed into the 

same module at a particular point in time, across the brain. 

Vertical dotted lines indicate time windows in which an ex- 

ploratory choice was made. H To characterize the relationship 

between integration and exploration, for each subject we ex- 

tracted peri-explore time courses spanning 12 s before to 18 s 

after explore choices. 
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lassified as explore trials if subjects chose the option that was lesser-
alued, based on previously observed outcomes (e.g., choosing the right
ption after having observed that the left option was now worth 120
oints and prior choice of the left option had yielded 110 points). 

Subjects completed four blocks of the task, with 80 trials per block
320 trials total). To minimize luminance-mediated changes in pupil
iameter, task stimuli were luminance-matched grayscale images and
ere only modestly brighter than the background. Option changes were

andomly generated per participant based on the underlying P (flip).
 (flip) was fixed within blocks but alternated across blocks (low volatil-
ty: P (flip) = 0.05; high volatility: P (flip) = 0.20), with the order of al-
ernation counterbalanced across subjects. At the start of block 1, the
eft and right options were set to a value of 100 and 110, respectively.
n a separate behavioral session prior to the scan session, subjects were
nstructed about the structure of the task (including the initial option
alues), performed 8 practice trials to familiarize themselves with the
ontrols and the task display, and then performed an identical version
f the task to the scanner version, excepting that the stimuli were not
uminance-controlled. While subjects received information about the
olatility levels by completing the behavioral session, they were not
old about the volatility changes. To minimize eye movements, subjects
ere instructed to fixate on the center of the task display, except during

he ITI, when they were told to keep their gaze within a 189 ×179-pixel
ight gray rectangle in the center of the display. Subjects made their re-
ponses with the index and middle finger of their right hand. Because
3 
he increase in payoffs throughout the task could distort choice behav-
or, subjects were incentivized to choose the currently best option on
ll trials rather than maximize their payoffs ( Otto et al., 2014 ). Subjects
ere paid $10/h for the behavioral session (length 1 h) and $20/h for

he scan session (length 1.5–2 h) plus a bonus determined by 𝑝 × 𝑏 𝑚𝑎𝑥 

𝑛 𝑡𝑟𝑖𝑎𝑙𝑠 
,

ounded to the nearest dollar, where p is the number of choices of the
urrently best option, b max is the maximum possible bonus ($10 behav-
oral, $15 scan), and n trials is the total number of trials. The task was writ-
en in PyPsyExp ( https://gureckislab.org/pypsyexp/sphinx/ ) and run in
he PsychoPy environment ( Peirce, 2009 ). 

The fMRI session began with eye tracker calibration, after which
cans were run in the following order: Leapfrog block 1, B0 field map,
eapfrog block 2, Leapfrog block 3, T1, Leapfrog block 4. Subjects were
eminded of the initial option values before the start of block 1. Because
f the scans between task blocks, they were also reminded of the current
ption values before the start of blocks 2 and 4. Prior to the first Leapfrog
lock and after the last block, we also collected a five-minute resting-
tate scan, which we did not analyze here. 

.3. MRI data acquisition 

Magnetic resonance images were collected using a Siemens Prisma
T scanner (Siemens Medical Systems, Erlangen, Germany) with a
4-channel head coil. T1-weighted anatomical images were acquired
MPRAGE; repetition time [TR] = 1810 ms; echo time [TE] = 3.45 ms;

https://gureckislab.org/pypsyexp/sphinx/
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ip angle [FA] = 9 ̊; field of view [FOV] = 240 mm; matrix = 256 ×256;
oxel size = 0.9 ×0.9 ×1.0 mm; 160 slices). During task runs, T2 ∗ -
eighted functional volumes were collected using multiband echo pla-
ar imaging (EPI; TR = 1000 ms; TE = 30 ms; FA = 60 ̊; FOV = 208
m; matrix = 104 ×104; voxel size = 2.0 ×2.0 ×2.0 mm; 72 slices; multi-

and acceleration factor = 6). A field map was also acquired for distor-
ion correction of the EPI images (TR = 580 ms; TE 1 = 4.12 ms; TE
 = 6.58 ms; flip angle = 45°; voxel size = 3.0 mm × 3.0 mm × 3.0 mm;
oV = 240 mm). 

.4. MRI preprocessing 

Preprocessing was performed using FSL ( Jenkinson et al., 2012 ) and
reeSurfer ( Fischl, 2012 ). Cortical reconstruction and volumetric seg-
entation of the anatomical data were performed with FreeSurfer. Func-

ional data were despiked by replacing values greater than 7 RMSE from
 1-degree polynomial fit to the time course of each voxel with the aver-
ge value of the adjacent TRs. Motion correction parameters were com-
uted by registering each volume of each run to the middle volume us-
ng a robust registration algorithm (mri_robust_register; Reuter, Rosas,
 Fischl, 2010 ) and voxel shift maps for EPI distortion correction were
alculated using PRELUDE and FUGUE ( Jenkinson, 2004 , 2003 ); the re-
ulting transformations were combined and simultaneously applied to
he functional images. Boundary-based registration between structural
nd functional images was performed with bbregister ( Greve and Fis-
hl, 2009 ). To account for motion and physiological noise, the follow-
ng nuisance time series were regressed from the functional data: (1)
4 motion regressors ( Friston et al., 1996 ); (2) the five first principal
omponents of non-neural sources of noise (i.e., white matter, CSF), ob-
ained with FreeSurfer segmentation tools (aCompCor; Behzadi et al.,
007 ); (3) cardiac and respiratory rhythms derived from pulse oximetry
ata collected during each scan ( Verstynen and Deshpande, 2011 ; due
o technical issues, pulse oximetry data were unavailable for two sub-
ects); and (4) local noise, estimated as the average white matter signal
ithin a 15 mm radius of each gray matter voxel (ANATICOR; Jo et al.,
010 ). The data were then high-pass filtered with a cutoff frequency of
.009 Hz. 

In the analyses reported in Section 3.6 , to account for task-evoked
ctivity, additional nuisance regressors were included corresponding to
he choice and outcome phases of the task. The choice phase was mod-
led as a boxcar beginning at the onset of the choice signal ( Fig. 1 A)
nd lasting for 1.5 s. The outcome phase was modeled as a boxcar last-
ng for the duration of the 1.5 s outcome presentation. In blocks with
issing responses, the signal for a missed trial (a question mark) was

dditionally modeled as a boxcar beginning at the onset of the question
ark (the start of the wait phase) and lasting for the remaining 2.5 s of

he trial. All task regressors were convolved with the canonical double-
amma hemodynamic response function prior to nuisance regression. 

.5. Network construction 

The cortex was parcellated into 200 regions based on the Schaeffer
00-parcel atlas ( Schaefer et al., 2018 ). To this we added 15 subcor-
ical regions segmented by FreeSurfer ( Fischl et al., 2002 ). The aver-
ge BOLD time series was extracted from each region, and functional
onnectivity between all pairs of regions was estimated via continu-
us wavelet coherence in the range of 0.08–0.125 Hz ( Grinsted et al.,
004 ). This frequency range has been previously shown to be sensitive
o dynamic changes in task-based functional connectivity ( Bassett et al.,
011 ; Braun et al., 2015 ; Craig et al., 2018 ; Gerraty et al., 2018 ;
un et al., 2004 ). The continuous wavelet transform (CWT) was chosen
ver the more common discrete wavelet transform to provide additional
ensitivity to time-varying changes around exploration. This procedure
roduces a connectivity value for each TR, sampled across the frequency
ange. Note that no windowing of the time series was performed prior
o transformation, as the CWT is itself a sliding-window method (i.e., a
4 
onvolution), and additional windowing would produce unwanted edge
ffects ( Grinsted et al., 2004 ). We then averaged across the frequency
ange to produce a single time-varying connectivity measure between
ach region. Finally, given that the resultant signal was heavily over-
ampled, the connectivity time series were then downsampled by a fac-
or of 2 (Matlab decimate ), providing a final sampling rate of 0.5 Hz, and
ielding one 215 ×215 ×240 weighted adjacency matrix per task run. 

.6. Multislice modularity optimization 

In order to identify changes in network architecture over time, the
onnectivity matrices were submitted to a Louvain-like locally greedy
odularity maximization algorithm ( Mucha et al., 2010 ) implemented

n Matlab ( Jeub et al., 2011 ). This method, which has been used exten-
ively to estimate time-varying modular structure in functional brain
etworks ( Bassett et al., 2015 , 2011 ; Gerraty et al., 2018 ; Mattar et al.,
015 ), maximizes a multilayer quality function given by: 

𝑄 𝑚𝑢𝑙 𝑡𝑖𝑠𝑙 𝑖𝑐𝑒 = 

1 
2 𝜇

∑
𝑖𝑗𝑠𝑟 

[(
𝐴 𝑖𝑗𝑠 − 𝛾𝑠 

𝑘 𝑖𝑠 𝑘 𝑗𝑠 

2 𝑚 𝑠 
𝛿𝑠𝑟 

)
+ 𝛿𝑖𝑗 𝜔 𝑗𝑠𝑟 

]
𝛿
(
𝑔 𝑖𝑠 , 𝑔 𝑗𝑟 

)
, (1) 

here the adjacency matrix of layer s has components A ijs , g is gives the
odule assignment of node i in layer s, g jr gives the module assignment

f node j in layer r, k js is the intralayer strength of node j in layer s , 𝑐 𝑗𝑠 =
𝑟 𝜔 𝑗𝑠𝑟 is the interlayer strength of node j in layer s , 𝜅𝑗𝑠 = 𝑘 𝑗𝑠 + 𝑐 𝑗𝑠 is the

trength of node j in layer s , and the total edge weight of the network

s given by 𝜇 = 

1 
2 𝜅𝑗𝑟 . The quantity 

𝑘 𝑖𝑠 𝑘 𝑗𝑠 

2 𝑚 𝑠 
corresponds to the Newman-

irvan null model ( Newman and Girvan, 2004 ), where 𝑚 𝑠 = 

1 
2 
∑

𝑖𝑗 𝐴 𝑖𝑗𝑠 

s the total edge weight in layer s . The structural resolution parameter 𝛾s 

f layer s and the interlayer coupling parameter 𝜔 jsr from node j in layer
 to node j in layer r tunes the size of the modules within each layer and
he number of modules across layers (i.e., time), respectively. In this
ase, the structural resolution parameters were assumed to be constant
cross layers ( 𝛾s = 𝛾); the interlayer coupling parameters were set to a
onstant value 𝜔 for all s and r representing immediately adjacent layers
nd were set to 0 everywhere else, producing an ordered multilayer
etwork. 

The choice of 𝛾 and 𝜔 is not entirely straightforward. Often, they
re left at a default value of 1 ( Bassett et al., 2013 ). In other instances,
hey are selected to optimize some quantity, such as Q multislice or other
etwork measures of interest ( Weir et al., 2017 ). Then, given the near
egeneracy of the modularity landscape ( Good et al., 2010 ), the mod-
larity maximization algorithm is run a number of times (e.g., 100) at
he selected parameter values. To avoid dependence of our results on a
articular point in parameter space and to increase sensitivity to fluctua-
ions in integration regardless of scale, here we repeated the modularity
aximization procedure a single time across a range of parameter val-
es ( 𝛾 ∈ [ 1 . 14 , 1 . 19 ] discretized by a step size of 0.01; 𝜔 ∈ [ 0 . 05 , 0 . 85 ]
iscretized by a step size of 0.05) rather than multiple times at a sin-
le set of parameter values (see Vaiana et al., 2019 for a related ap-
roach). The range of 𝛾 was chosen such that on average the number
f non-singleton modules in a layer approximated the number of non-
ingleton cognitive systems in our resting-state reference partition (see
ection 2.7 below and Fig. 1 C); the range of 𝜔 was chosen to optimize
etwork flexibility, which quantifies how often nodes switch modules
cross layers ( Bassett et al., 2011 ). We chose to optimize 𝜔 with respect
o network flexibility to increase sensitivity to rapid changes in network
rchitecture. The ranges used in the study were identified via a larger
arameter sweep over 𝛾 and 𝜔 (Figure S1A,B), where the final range
as chosen to meet the criteria above and yield ~100 repetitions of
odularity maximization. 

Maximizing the above multilayer modularity quality function is NP
ard. To improve the quality of the multilayer partitions, we used a
euristic algorithm that at each step chooses moves (of a node into a
odule) probabilistically in proportion to the increase in the multilayer

uality index ( Bazzi et al., 2016 ; Jeub et al., 2011 ). In order to avoid
ocal minima, after each run of the Louvain algorithm, module assign-
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ents were revised to maximize the persistence of modules across time
ithout altering the intralayer modular structure ( Bazzi et al., 2016 ;

eub et al., 2011 ). Modifying the multilayer partition in this fashion
s guaranteed to increase multilayer modularity and helps avoid large
hanges in module assignment across time that are not accompanied by
rominent changes in intralayer modular structure ( Bazzi et al., 2016 ).
he resultant partition was then used as the starting point for an ad-
itional run of the Louvain algorithm, and this procedure was repeated
ntil the output partition converged ( Jeub et al., 2011 ). These steps were
epeated across the parameter grid, yielding 102 time-varying networks
er run. 

.7. Integration 

At each time point, a module allegiance matrix P t was constructed,
ith entries: 

𝑃 𝑡 
𝑖𝑗 
= 

1 
𝑂 

∑𝑂 

𝑜 =1 𝑎 
𝑜𝑡 
𝑖𝑗 
, (2) 

here O is the number of final output partitions ( O = 102) and the al-
egiance value 𝑎 𝑜𝑡 

𝑖𝑗 
for nodes i and j is 1 if the nodes were placed in the

ame module at time t of partition o and 0 otherwise. Intuitively, 𝑃 𝑡 
𝑖𝑗 

is
he fraction of times that two nodes were placed in the same module,
cross the parameter space (see Braun et al., 2015 for a similar approach
o computing network measures per time window). See Figure S1C for
he standard deviation of modular allegiance values across the parame-
er space. 

In order to then use the modular allegiance matrices to assess the
nteraction between brain regions across time, we assigned each net-
ork node to a resting-state cognitive system. All cortical nodes were
reviously assigned to one of seven resting-state systems identified from
arge-scale resting-state data ( Schaefer et al., 2018 ; Yeo et al., 2011 ). All
ubcortical nodes were assigned to an eighth subcortical system with the
ollowing exceptions: bilateral amygdala and hippocampus were placed
n the limbic system, while the brainstem was assigned to its own sin-
leton system. See Figure S1D for the correspondence between average
ask connectivity and the resting-state cognitive systems. 

The integration of brain region i in cognitive system s at time t can
hen be computed as: 

𝐼 𝑡𝑠 
𝑖 
= 

1 
𝑁− 𝑛 𝑠 

∑
𝑗∉𝑠 𝑃 

𝑡 
𝑖𝑗 
, (3) 

here N is the total number of nodes (brain regions) and n s is the number
f nodes in system s ( Mattar et al., 2015 ). Integration thus quantifies the
robability at a given time that a node from a given cognitive system is
laced into the same module as nodes from other cognitive systems. Av-
raging integration across nodes then provides a measure of the global
evel of integration in the brain at each time point. 

Integration can also be computed for each system and between each
air of systems. The integration of system s with the rest of the brain
i.e., all systems not s ) is: 

 

𝑡 
𝑠 
= 

1 
𝑛 𝑠 
(
𝑁 − 𝑛 𝑠 

)
∑
𝑖 ∈𝑠 

∑
𝑗∉𝑠 

𝑃 𝑡 
ij 
, (4) 

ndicating the tendency for nodes from system s to be placed into mod-
les with nodes from other systems at time t . Similarly, the integration
etween two systems k and l is given by: 

𝐼 𝑡 
𝑘𝑙 

= 

1 
𝑛 𝑘 𝑛 𝑙 

∑
𝑖 ∈𝑘 

∑
𝑗∈𝑙 𝑃 

𝑡 
𝑖𝑗 
, (5) 

here n k is the number of nodes in system k and n l is the number of
odes in system l. High integration between two systems at a given time
ndicates a departure from resting-state structure and is suggestive of
trong functional interactions between cognitive systems. 

.7.1. Peri-explore integration analysis 

Statistical analysis of change in the integration time course around
xploration presents several methodological challenges. The time series
5 
s strongly autocorrelated due to the nature of the fMRI BOLD signal and
he CWT, which increases the risk of type I error due to violation of the
ndependence assumption of linear regression. The response to explo-
ation is of an unknown functional form and possibly non-monotonic,
aking standard linear regression —even using polynomial terms —a po-

entially poor fit. Finally, there is no clear contrast or baseline because
f the sluggishness of the signal relative to task timing (the ITI is only
 s), so we cannot directly contrast explore with exploit time courses as
ndividual exploit trials cannot be resolved; rather, explore trials occur
gainst an effectively continuous background of exploit trials. 

To address all these issues, we utilized generalized additive mixed
odels (GAMMs) in the peri-explore integration analyses. GAMMs are

n extension of the regression framework that allow for the fitting of
rbitrary (e.g., nonlinear, nonmonotonic) functions, including both lin-
ar and nonlinear random effects terms ( Wood, 2017 ). These nonlinear
unctions, or smooths, are fit using maximum likelihood estimation us-
ng a weighted sum of basis functions. The basis functions are selected
rom families of penalized splines, where overfitting is mitigated and
herefore smoothness is enforced by a penalty on basis function coef-
cients. The appropriate smoothness for a given data set is controlled
ia smoothing parameters that are estimated as part of the fitting pro-
edure (see Baayen et al., 2017 ; Pedersen et al., 2019 ; and van Rij et al.,
019 for tutorials, and Wood, 2017 for additional technical and mathe-
atical details). 

Prior to model fitting, peri-explore integration time courses were ex-
racted and processed as follows. After identifying the points in the in-
egration time course that contained each exploratory choice, we ex-
racted the time series immediately preceding (following) the choice
indow, up to the previous (next) exploratory choice. For this analy-

is, we did not include peri-explore epochs in which subjects explored
mmediately following a missed flip (i.e., subjects exploited and saw
 change). We excluded these trials (median per subject: 1, range: 0–
) because they are rare and surprising, which might confound any
ubsequent physiological signature related to exploration. In order to
solate the effect of a single exploratory choice given the sluggish-
ess of the integration time course, we further restricted the anal-
sis to explore choices preceded by a minimum of 2 exploit trials
nd followed by a minimum of 4 exploit trials. Given limits on the
mount of data per subject, we made the buffer asymmetric to maxi-
ize our sensitivity to the exploration-evoked response while includ-

ng as much data as possible. We additionally excluded the first and
ast peri-explore periods of every block. The final analysis window was
hen restricted to encompass the 12 s prior to the explore time point
xtending to 18 s post-explore (median peri-explore periods per sub-
ect: 21.5, range: 2–37). We then downsampled the time series to 0.25
z (by dropping every other data point) as a first step in mitigating
utocorrelation. 

All GAMMs included a smooth for time as well as by-subject ran-
om smooths for time. Models also included by-time-course linear ran-
om intercepts and slopes in order to account for additional variance
ue to drifts in integration over time, which helps to further alleviate
utocorrelation in the residuals ( van Rij et al., 2019 ). Because model
esiduals were still autocorrelated, we also introduced an AR1 model to
ach GAMM. For analyses of global integration, the AR1 parameter that
inimized AIC in a grid search ( 𝜌 ∈ [ 0 . 00 , 0 . 99 ] in steps of 0.01) was

elected for the final model ( Wood, 2017 ). For by-system integration,
esidual autocorrelation was very similar in each system, so we selected
he 𝜌 that minimized AIC for the model with the median AR1 value. The
ame approach was used for between-system integration. Significance
as assessed based on a Wald statistic (i.e., testing the null hypothesis

hat the smooth = 0), with p -values computed using the F -distribution
ith degrees of freedom based on the effective degrees of freedom of

he smooth ( Wood, 2017 , 2013 ). 
To ask whether there was overall evidence for significant differences

etween peri-explore time courses at the by-system and between-system
evels, we conducted a model comparison procedure. We fit a full model
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o data from all systems (between-system interactions), which included
ach system (between-system interaction) as a separate smooth. We then
t a reduced model that assumed one global smooth for all data. Both
he full and reduced models included by-system (between-system inter-
ction) intercepts, since the focus was on differences in the form of the
odulation rather than on baseline differences in the absolute level of

ntegration. Because of the complexity of these models, we replaced the
y-subject random smooths for time used in other models with paramet-
ic random effects terms: by-subject random intercepts and by-subject
andom effects of system and time. The models were then compared
sing AIC. 

To confirm the results of the global integration GAMM, a permuta-
ion analysis was conducted. Within each block, the assignment of ex-
loration time points to the integration time course was permuted 500
imes, with the constraint that permuted time points must be ones in
hich subjects actually made a choice and the mean inter-explore in-

erval of each permutation must be within one unit of the true mean
nterval for that block. Peri-explore time courses were then extracted
nd analyzed identically to the true time courses, resulting in a GAMM
t for each permutation. The significance of the true data was then as-
essed relative to this distribution. Note that we constructed our per-
utation distribution from the p -values of the smooths rather than the

- values. Unlike a standard parametric linear analysis, the number of de-
rees of freedom differs between models, owing primarily to differences
n the roughness of the fit, and also to slight differences in the amount
f data in each permutation as a result of preprocessing exclusions. Us-
ng F- values can thus produce conservative results, as smooths with
ewer effective degrees of freedom may benefit from larger F- values.
ecause the p -value computation takes degrees of freedom into account
 Wood, 2013 ), it is a more appropriate measure in this case. 

.8. Additional network measures 

To better characterize the network dynamics surrounding explo-
ation, we computed four additional measures, using the Brain Connec-
ivity Toolbox ( Rubinov and Sporns, 2010 ): strength, system segrega-
ion, modularity, and number of modules. 

Changes in integration will be accompanied by changes in the un-
erlying patterns or strength of functional connectivity. Therefore, the
verage strength, s, of node i at time t was computed as: 

𝑠 𝑡 
𝑖 
= 

1 
𝑁−1 

∑
𝑗 𝐴 

𝑡 
𝑖𝑗 
. (6) 

By averaging node strength separately for within- and between-
ystem connections across the whole brain, system segregation

 Chan et al., 2014 ) was computed as: 

𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑒𝑔 𝑟𝑒𝑔 𝑎𝑡𝑖𝑜𝑛 = 

�̄� 𝑤 − ̄𝑠 𝑏 
�̄� 𝑤 

, (7) 

here �̄� 𝑤 is the mean within-system strength and �̄� 𝑏 is the mean
etween-system strength, across the whole brain. Unless otherwise
oted, we computed system segregation relative to the Yeo cognitive
ystems ( Yeo et al., 2011 ), to match our procedure for integration, rather
han to the module assignments at each time point. 

The single-layer modularity Q ( Blondel et al., 2008 ) was computed
t each time t using as input the module assignments derived from each
un o of multilayer modularity ( Eq. 1 ). Specifically: 

𝑄 

𝑡 
𝑜 
= 

1 
2 𝑚 

∑
𝑖𝑗 

[
𝐴 𝑖𝑗 − 

𝑘 𝑖 𝑘 𝑗 

2 𝑚 

]
𝛿
(
𝑐 𝑖 , 𝑐 𝑗 

)
, (8) 

here 𝑘 𝑖 = 

∑
𝑗 𝐴 𝑖𝑗 and 𝑚 = 

1 
2 
∑

𝑖𝑗 𝐴 𝑖𝑗 , and where o and t super/subscripts
re omitted for clarity. The Q values were then averaged over all o runs
o produce a single value at each time point. Both system segregation
nd modularity are considered to measure the extent to which cognitive
ystems are segregated ( Chan et al., 2014 ; Cohen and D’Esposito, 2016 ;
ubinov and Sporns, 2010 ), meaning they have the potential to provide
vidence convergent with integration as to the nature of the topological
hanges accompanying exploration. Note that Q ( Eq. 1 ) was not
multislice 

6 
sed for these analyses because it yields a single value per run, reflecting
verall modularity in time and space, whereas here the question is how
odularity changes across time. Finally, because changes in integration
ay in part reflect modules coalescing or dividing, the number of modules

as defined as the average number of modules present at each time
oint, averaged over runs of the GenLouvain algorithm. 

As with integration, the significance of peri-explore modulation was
ssessed using GAMMs. Because the number of modules were heavily
kewed, these data were fit with an inverse Gaussian regression (log
ink). A single AR1 parameter 𝜌 was used for the strength-based mea-
ures (strength, system segregation), and a separate single 𝜌 parameter
as used for the modularity-based measures ( Q , number of modules). 

.9. Pupillometry 

Eye position and pupil diameter of the right eye were recorded dur-
ng scanning at a sampling rate of 250 Hz with an EyeLink 1000 Plus
SR Research) equipped with the Long Range Mount. The PyGaze tool-
ox was used to interface with the eye tracker ( Dalmaijer et al., 2014 ).
eriods of missing data due to blinks or other artifacts were linearly in-
erpolated after removing an additional 25 samples (100 ms) surround-
ng the blink on either side. Additional artifacts were identified by com-
uting the difference between consecutive samples of the pupil time
ourse. High velocity periods, defined as samples differing in diameter
y more than 50 in absolute value (a.u.) from the preceding sample were
emoved, and for runs of high velocity > 4 samples we additionally re-
oved 25 samples on either side of the run, identical to the procedure
escribed for blinks. These censored periods were then linearly interpo-
ated (median total proportion interpolated data per subject: 0.13, range
.01–0.40). The pupil time course was then low-pass filtered with a 4
z cutoff. The data were then normalized by z -scoring within-subject
cross data from all functional runs. Gaze position data for time points
issing or removed from the pupil time course were also interpolated.
locks in which > 50% of the pupil data were missing or censored were
ot included in the analysis (two blocks from one subject). 

.9.1. Pupil analysis 

Baseline pupil diameter was calculated as the average diameter in
he last 500 ms of the fixation period at trial start. For trial-level anal-
ses, data were downsampled to 50 Hz (all pupil downsampling was
erformed with Matlab decimate ), and all models included vertical and
orizontal gaze position as covariates. Analyses of the choice period also
ontrolled for baseline pupil diameter at the start of the trial. Analyses
or the outcome period instead controlled for average pupil diameter in
he last 250 ms of the wait period between the end of the choice window
nd the onset of the outcome stimulus. 

For the post-explore pupil analysis, pupil diameter was downsam-
led to 2 Hz, since the focus was on slower changes in diameter over a
onger timescale. For pre- and post-explore pupil analyses, we used the
ame restrictions on the data as described for integration ( Section 2.7.1 ),
xcept we relaxed the minimum number of exploit trials post-explore to
. For analyses of the post-explore peak/minimum, we identified peaks
s the maximum dilation in the period from 0–12 s post-explore. The
ost-peak minimum was then identified in the period from the peak to
8 s post-explore. 

.10. Pupil–network relationships 

To characterize the relationship between pupil-linked arousal and
ntegration, we first downsampled pupil diameter to the sampling rate
f the TR and then applied a low-pass filter by convolving it with a Gaus-
ian with a standard deviation equal to that of the median wavelet scale
sed to compute wavelet coherence for the network analysis (9.80 s).
inally, we downsampled the filtered time course to the sampling rate
f the integration time course (0.5 Hz). We then computed the cross-
orrelation between the pupil diameter and each network measure
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S  
ver the peri-explore period, using the same peri-explore criteria de-
cribed for peri-explore integration ( section 2.7.1 ). To plot the cross-
orrelation and compute within- and across-subject averages, we first
isher z -transformed the correlations. Because the presence of autocor-
elation biases the variance of sample correlations, we corrected the
 -transformed correlations for this bias, using the method of Pyper and
eterman (1998) , producing Z-scores ( Afyouni et al., 2019 ). This pro-
edure essentially weights each z value in proportion to its effective
egrees of freedom. We then averaged the Z-scores within subject and
ssessed the significance of the correlation at the peak lag using a one-
ample t -test against 0, across subjects . 

.11. Data analysis 

Statistical analyses were performed in R (R R Core Team, 2019 ).
inear and logistic mixed effects models were implemented in the lme4
ackage ( Bates et al., 2015b ), except when an AR1 model was fit for
he residuals, in which case nlme was used ( Pinheiro et al., 2019 ).

here possible, models included random intercepts for subjects and ran-
om slopes for all within-subjects variables (i.e., the maximal model;
arr et al., 2013 ). In cases where the maximal model failed to converge
r produced singular fits, we iteratively reduced the random effects
tructure until convergence, following steps outlined by Bates and col-
eagues ( Bates et al., 2015a ). Post-hoc comparisons were computed us-
ng the emmeans package ( Lenth, 2016 ). GAMMs for the analysis of peri-
xplore integration time courses were implemented in the mgcv package
 Wood, 2017 ). Where noted, significance levels were corrected for mul-
iple comparisons using the Bonferroni-Holm method ( Holm, 1979 ). 

. Results 

We first characterized the pupil response to exploration in order
o confirm that exploration leads to increases in pupil-linked arousal
 Jepma and Nieuwenhuis, 2011 ). We also established the onset and
ime course of this response relative to choice behavior, which licenses
nferences about the underlying neuromodulatory dynamics and their
elationship to exploratory state. We then examined the dynamic mod-
lation of global brain network integration around exploration, utiliz-
ng generalized additive mixed models (GAMMs), a semi-parametric re-
ression approach (see Methods Section 2.7.1 ) that provides a princi-
led method of uncovering nonmonotonic fluctuations in slowly-varying
ime series, obviating the need to pre-specify the functional form of the
odulation (i.e., impose linearity) or to enforce arbitrary decisions re-

ated to time-averaging. We then asked whether there was heterogene-
ty in the modulation of integration across cognitive systems, which is
elevant to assessing whether shifts into an exploratory state reflect a
rain-wide phenomenon or possess anatomical specificity. We also ex-
mined additional measures of connectivity and topology to provide
onvergent evidence for the dynamic modulation of integration and to
etter characterize the form of this modulation. Finally, we utilized a
ross-correlation approach to relate pupil dynamics and brain network
ynamics, providing evidence for arousal-linked modulation of brain
etwork dynamics at a relatively fine temporal scale. As a comparison
ith prior studies, we also examined block-level changes in pupil diam-

ter and brain network dynamics. These results are reported in section
3 of the Supplementary Material. 

.1. Exploration modulates pupil dilation 

Confirming our prediction, pupil dilation responses were higher for
xplore choices relative to exploit choices ( Fig. 2 A,B). The difference
as reliable beginning 260 ms before the button press and continued

o be reliable for the remainder of the choice period (all p s corrected <

.03). Elevated baseline pupil diameter has been previously found prior
o exploration, distraction, and disengagement ( Ebitz and Platt, 2015 ;
7 
ilzenrat et al., 2010 ; Jepma and Nieuwenhuis, 2011 ). Given the re-
ults of these prior studies, we also examined baseline pupil diameter.
hile there was no overall difference in baseline diameter between ex-

lore and exploit trials ( Fig. 2 C, p > 0.31), baseline pupil diameter var-
ed significantly among the three trials just prior to and including the
xplore trial ( Fig. 2 D; F (2, 5032) = 6.56, p = 0.001). This effect was
riven primarily by a decrease in pupil diameter from the second to
he first trial pre-explore ( 𝛽 = −0 . 06 , 𝑡 (5032) = −3 . 62 , 𝑝 corrected = 0 . 009) ,
otentially reflecting in part the diminishing influence of the previous
xploratory choice. Although pupil diameter rose on the explore trial
elative to the immediately preceding trial, this rise was not significant
 𝛽 = 0 . 03 , 𝑡 (5032) = 1 . 80 , 𝑝 corrected = 0 . 14) , and baseline diameter on the
xplore trial was still numerically smaller than that of two trials previous
 𝛽 = −0 . 03 , 𝑡 (5032) = −1 . 81 , 𝑝 corrected = 0 . 14) . This finding indicates that
n this task, increased post-explore pupil responses were driven by the
xplore choice itself and not by a gradual ramping of arousal. 

Because pupil dilation is also modulated by outcomes, particularly
f they are surprising ( Alamia et al., 2019 ; Friedman et al., 1973 ;
avín et al., 2014 ; Nassar et al., 2012 ; Preuschoff, 2011 ), we also ex-
mined pupil dilation in response to changes in payoffs. In the Leapfrog
ask, because payoffs are deterministic except for the stochastic jumps,
utcomes will either be the same as when the option was last checked, or
hey will have jumped in value. Therefore, we divided trials into three
lasses, based on whether subjects explored and the payoff increased
explore–change), explored and the payoff was unchanged (explore–
o change), or exploited and the payoff was unchanged (exploit–no
hange). Trials in which subjects exploited and the payoff increased
exploit–change) were excluded from the analysis as there were very
ew per subject (M = 5.94). Given the paucity of the exploit–change
ype, we contrasted the response to change within explore trials only. 

Pupil dilation was slightly elevated in response to a change in out-
ome ( Fig. 3 A,B). This separation began to emerge in the averaged data
round 500 ms after the outcome presentation but was only reliable in
he last 100 ms of the outcome period (all p s corrected < 0.047). This effect
as much smaller in magnitude than the continued effect of exploration
n the pupil response (contrast of explore trials with exploit–no change
rials), which was reliable throughout the outcome period ( Fig. 3 A,C; all
 s corrected < 0.0001). Note that this effect is not simply due to the differ-
nce present at the end of the choice period, as these analyses controlled
or average pupil diameter in the 250 ms prior to outcome presentation;
ather, this effect appears to reflect an extended influence of exploration
n post-choice arousal. 

We next sought to characterize the duration of the arousal response
 Fig. 4 A). Pupil diameter was significantly elevated above the explore-
rial baseline for 7.5 s post-choice, approximately the start of the out-
ome period of the subsequent trial (all p s corrected < 0.015). This result
eld when controlling for gaze position (all p s corrected < 0.039) and when
dditionally constraining the analysis to those epochs with minimal eye
ovements ( < 50 pixels root mean squared; all p s corrected < 0.028). The

ustained duration of the effect also does not appear to be primarily
ttributable to an artifact of averaging over subjects with variable ex-
loration responses ( Fig. 4 B). The median peak exploration response
median of within-subject medians) from 0–12 s post-explore occurred
.0 s post-choice, which is very similar timing to the peak at 3.5 s in
he time-averaged data. Furthermore, most individual subjects’ median
eaks were not significantly different from the group median (31/34
ubjects, sign test [corrected]). Similarly, the median minimum pupil
ilation in the window from the post-explore peak to 18 s post-explore
as 14.5 s, identical to the time-averaged minimum. The minimum in
ll subjects was consistent with this group median (34/34 subjects, sign
est [corrected]). Nor was the time course significantly modulated by
utcome type, although there was a small modulation that was signifi-
ant at an uncorrected p < 0.05 level from 4–5.5 s post-choice, consistent
ith the effect seen at the trial level at the end of the outcome period
nd extending into the ITI and the start of the subsequent trial (Figure
3). The smearing out of the outcome effect by time-locking on choice,
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Fig. 2. Pupil dilation is reliably modulated by choice type. A Average pupil response to explore choices and exploit choices across subjects. Pupil diameter was 

z -scored within subject, and the evoked response was calculated relative to a baseline taken from the average of the 500 ms prior to the choice period. Here and 

throughout, error bars accompanying averaged data reflect the standard error of the mean (SEM). See Figure S2 for the pupil response across the entire trial, 

including the baseline period, aligned to trial start. B The contrast of explore > exploit from a mixed-effects regression model at every time point. Pupil diameter 

was downsampled from 250 to 50 Hz. The regression model controls for baseline pupil diameter and gaze position. Error bars are 95% confidence intervals for the 

parameter estimates. Black line indicates p < 0.05. C There was no difference between baseline pupil diameter on explore and exploit trials. D Pre-explore baseline 

pupil diameter on the trials preceding exploration. Only the decrease from the second to the first trial pre-explore was significant. Note: this analysis was restricted 

to peri-explore epochs with at least two exploit trials pre- and post-explore (see section 2.9.1 ), which leads to a somewhat different estimate of explore trial baseline 

pupil than in 2C. 
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s well as the trial restrictions imposed on this analysis, may have made
t more difficult to detect the small modulation by outcome found in the
rial-level data. 

Increases in pupil diameter with exploratory choice thus seem po-
entially explained as a transient increase in tonic arousal driven purely
y the choice to shift from exploitation to exploration, rather than an
rtifact or a response to the outcome. Nor does increased arousal ap-
ear to be the cause of the exploratory choice, rather than its effect.
owever, an additional possibility is that pupil dilation in response to
xploration is due to the greater uncertainty in the outcome on explore
rials as compared to exploit trials. Indeed, the probability of observing
 change in option value on explore trials is fairly uncertain ( P (change |
xplore) = 0.41), while it is unlikely on exploit trials ( P (change | ex-
loit) = 0.13). If uncertainty were driving the response, it might be
xpected that the pupillary response to exploration would differ be-
ween volatility conditions, as P (change | explore) was higher in the
igh volatility blocks ( P (change | explore,high) = 0.57; P (change | ex-
lore,low) = 0.24). This was not the case. There was no effect of volatil-
ty condition, nor any volatility x choice type interaction during the
hoice period (Figure S4; all p s = 1). Similarly, there was no ef-
corrected 

8 
ect of volatility condition on the post-explore time course (Figure S4; all
 s corrected > 0.62). Given subjects’ overall weak sensitivity to the volatil-
ty conditions (Figure S8A), these results do not completely rule out a
ole for uncertainty, but they raise the possibility that exploratory choice
tself, isolated from effects of uncertainty or surprise, can drive shifts in
rousal (see Section 4.3 for further discussion). 

.2. Exploration transiently modulates peri-explore integration 

Integration was also significantly modulated around exploration
 Fig. 5 A.; F (3.32, 4551.90) = 4.03, p = 0.002). Integration appears to
ncrease leading up to exploration, peak around the explore choice, and
all thereafter. To rule out the possibility that this result was reflective
f some more general oscillation in the data, we refit the GAMM on data
n which the location of explore trials was permuted within each block
500 permutations; see Methods Section 2.7.1 ). A permutation test sug-
ested that the modulation was unique to exploration ( p = 0.006). 

To understand the factors driving this change in integration, it is
mportant to answer two questions: (1) Which cognitive systems and
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Fig. 3. The effect of outcomes on pupil response. A Average pupil response to outcomes, separated by whether the choice was explore or exploit. The evoked response 

was calculated relative to the average pupil diameter in the 250 ms prior to presentation of the payoff. Note that exploit–change trials are not shown, as they were 

rare outcomes and were thus not analyzed. B The contrast of explore–change > explore–no change from a mixed-effects model of the outcome period. Outcome 

changes induced reliably larger pupil dilation at the end of the outcome period. C The contrast of explore > exploit–no change from the same model. This contrast 

reflects the effect of exploration over and above the effect during the choice period, as the model controls for average pupil diameter in the 250 ms prior to outcome 

presentation. The model also controls for gaze position. 

Fig. 4. Modulation of pupil diameter post-explore. A The post-explore pupil time course, aligned to the explore choice. Dashed vertical lines indicate the approximate 

start times of subsequent trials. The small upward modulations in the time course shortly after each trial start are due to subsequent exploit choices. Pupil diameter 

was significantly elevated above the explore-trial baseline for 7.5 s post-choice. B The post-explore pupil diameter latency to peak and latency from peak to the 

post-peak minimum (max 18 s post-explore) across all data (top); the median latency to peak and post-peak minimum for each subject (bottom). 

9 
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Fig. 5. A The peri-explore integration time course is significantly modulated around exploration. All peri-explore time courses both here and below were mean- 

centered prior to averaging for display purposes. Uncentered time courses were used in the statistical analyses, and trial-to-trial variability was captured using by-trial 

random effects. B The peri-explore pupil time course, downsampled to the sampling rate of the integration time course and low-pass filtered. 
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Fig. 6. The modulation of peri-explore integration varies by cognitive system. A 

The integration of each cognitive system with all other systems (i.e., the rest of 

the brain). B Pairwise integration between cognitive systems that demonstrated 

a significant modulation around exploration. See Figure S5 for all between- 

system time courses. ∗ p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001. 
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heir interactions contribute most to these dynamics? and (2) How do
hanges in integration relate to other global network properties? 

.3. Evidence for differential modulation of integration across cognitive 

ystems 

To answer the first question, we computed system-level integration,
hich we define as the integration of each cognitive system with all
ther systems (i.e., with the rest of the brain; see Methods Section 2.7 ,
q. 4 ). While qualitatively there was some evidence of global modu-
ation when examining each cognitive system individually, this effect
as only significant for the dorsal attention, default, frontoparietal,
nd limbic systems ( Fig. 6 A.; dorsal attention: F (3.19, 4505.57) = 4.05,
 corrected = 0.018; limbic: F (3.32, 4623.70) = 3.53, p corrected = 0.036;
rontoparietal: F (3.30, 4554.87) = 3.40, p corrected = 0.037; default:
 (4.05, 4548.81) = 5.31, p corrected = 0.0006). To provide stronger evi-
ence for differences across systems, we conducted a model comparison
rocedure in which we asked whether the data were better fit by a model
ith separate time courses for each system ( full model) or by model with
 single time course for all systems ( shared model). The full model failed
o provide a sufficiently better fit to overcome the additional degrees of
reedom required to fit separate time courses ( Δdf = 14, ΔAIC = 11.02).

We then asked whether any interactions between cognitive sys-
ems differentially contributed to the system-level changes by com-
uting between-system integration, the integration of two cognitive
ystems with each other ( Eq. 5 ). Qualitatively, only some between-
ystem interactions appeared to change around integration ( Figure
5), and significant modulation of between-system integration was
ound only for the dorsal attention–limbic, dorsal attention–default,
nd frontoparietal–default interactions ( Fig. 6 B; dorsal attention–limbic:
 (3.36, 4466.03) = 5.36, p corrected = 0.006; dorsal attention–default:
 (3.57, 4428.86) = 5.11, p corrected = 0.007; frontoparietal–default:
 (4.03, 4368.86) = 5.19, p corrected = 0.003). However, the model com-
arison procedure again failed to demonstrate a better fit for a full model
ompared to a shared model ( Δdf = 54, ΔAIC = 19.51). 

Together, the system-level and between-system results provide sug-
estive but inconclusive evidence for specificity in changes in integra-
ion. While it is not the case that integration was reliably modulated
hroughout the brain, these differences were not themselves reliable.
or between-system interactions that were reliably modulated, the ef-
ects could be reflective of common neuromodulatory input ( van den
rink et al., 2019 ), of interactions between these systems underlying
ecisions to explore, or of changes in interactions between these sys-
ems providing the substrate for exploratory states. 
10 
.4. Exploration induces complex changes in connectivity and topology 

Regarding the second question above, changes in integration be-
ween cognitive systems could be accompanied by other changes in the
nderlying connectivity and topology. For example, although integra-
ion is based on network topology and not directly on connectivity, in-
uitively increases in integration might reflect a shift toward increased
unctional connectivity strength. Contrary to this expectation, average
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Fig. 7. A Average node strength, B system segregation, C number of modules, and D modularity all showed significant modulations in the peri-explore period. 
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ode strength demonstrated an opposing profile to integration, reaching
 minimum and plateauing close to the time of choice ( Fig. 7 A; F (3.80,
297.55) = 7.64, p < 0.0001). To assess whether strength changed dif-
erentially within and between cognitive systems, potentially contribut-
ng to the change in integration, we computed a strength-based measure
f system segregation —the difference in within- versus between-system
onnectivity, as a percentage of within-system connectivity ( Chan et al.,
014 ; see Methods section 2.8 , Eq. 7 ). Thus, increases in this quantity
eflect an increase in the relative strength of within-system connectiv-
ty. While both within- and between-system connectivity demonstrated
 qualitatively similar peri-explore profile (Figure S6), system segrega-
ion demonstrated a positive modulation in favor of within-system con-
ectivity ( Fig. 7 B; F (3.18, 4337.78) = 4.79, p = 0.0007). This result was
ot driven by a mismatch between the assignment of nodes to cognitive
ystems relative to the dynamic modular structure of the network, as a
imilar pattern was obtained when computing system segregation rela-
ive to the module assignment at every time point (Figure S6; F (3.38,
449.78) = 5.24, p = 0.0002). 

This increase in system segregation, usually inferred to reflect a de-

rease in the integration of network modules, suggests that the posi-
ive modulation of integration may rather reflect a transient topological
hift toward fewer modules. This was indeed the case ( Fig. 7 C; F (4.38,
268.60) = 5.27, p < 0.0001). We then asked how these changes in con-
ectivity and topology related to the (single-layer) modularity of the
etwork (see Methods section 2.8 , Eq. 8 ), which is also often considered
 measure of segregation ( Rubinov and Sporns, 2010 ). Because modular-
ty is a measure of the extent to which intra-module strength is greater
han expected, it might be predicted to positively associate with sys-
11 
em segregation. Alternatively, it could be predicted to track with the
umber of modules, as fewer modules often accompany a less modular
tructure. Here, we found that modularity demonstrated a positive fluc-
uation during the peri-explore period, in line with the increase in sys-
em segregation ( Fig. 7 D; F (3.68, 4522.20) = 6.10, p < 0.0001). Finally,
hile the network measures demonstrated similar time courses around

xploration and were moderately to strongly intercorrelated (0.39–0.86,
n absolute value; Table S1), network measures computed over func-
ional connectivity matrices in which the topological structure of the
etwork was permuted demonstrate significant differences in correla-
ion structure (Table S2), suggesting that the functional organization of
he brain during the task strongly drove the relationships in the data. 

In sum, around exploration, there was a temporary shift toward a
maller collection of more loosely connected modules that included
odes from a greater diversity of cognitive systems. This counterintu-
tively led to an increase in measures normally taken to measure seg-
egation (modularity, system segregation), while at the same time in-
reasing our measure of integration. While these results are consistent
ith our hypothesis that integration would be modulated around ex-
loration, they are not entirely in line with the directionality of the
ypothesis —that exploration would decrease integration. This inconsis-
ency is due both to the heterogeneity across measures and to the fact
hat the integration results could be consistent with either a localized
eak concomitant with exploration, or with an increase during exploita-
ion followed by a decrease following exploration. Unfortunately, the
emporal resolution of our analysis is not sufficient to fully disentangle
hese two possibilities. Notably, using wavelet analysis, the minimum
ize of an effect produced by a transient will be approximately the size
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Fig. 8. Pupil–network cross-correlations. The 

cross-correlation between each network mea- 

sure and the downsampled and low-pass- 

filtered pupil time course during the peri- 

explore period. Average cross-correlations and 

SEMs were computed by first Fisher z- 

transforming the correlations at each lag, and 

then back-transforming for display. 
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f the wavelet’s “cone of influence ” (COI), which is the central segment
f the wavelet in which changes in the underlying signal have the great-
st impact on wavelet power ( Torrence and Compo, 1998 ; see Figure S7
or a visualization of the COIs in this study). Qualitatively, the integra-
ion and modularity time courses might be consistent with a transient,
hile the shifts in strength and the number of modules appear longer

asting and potentially indicative of more enduring changes to the net-
ork around exploration. We return to these topics in the discussion. 

.5. The relationship between pupil-linked arousal and network integration 

nd segregation 

Both pupil diameter and measures of network integration and segre-
ation were modulated around exploration, raising the possibility that
upil-linked arousal systems, such as the LC-NE system, influence in-
egration during exploration, as hypothesized. To more formally as-
ess this possibility, we computed the cross-correlation between pupil
iameter and our network measures (see Methods section 2.10 ). All
easures demonstrated a peak at lag 0 ( Fig. 8 ), so we therefore as-

essed the significance of the zero-lag correlation across subjects. This
elationship was weak overall, with the only significant correlation
ccurring for pupil–strength ( r ave = 0.157, t (33) = 2.57, p = 0 . 015).
12 
owever, the relationship was at a trend level for all other measures
ut integration (integration: r ave = − 0.035 , t (33) = − 0.88, p = 0 . 38;
ystem segregation: r ave = − 0.098, t (33) = − 1.77, p = 0 . 085; num-
er of modules: r ave = 0.086, t (33) = 2.01, p = 0 . 053; modularity:
 ave = − 0.079, t (33) = − 1.90, p = 0 . 066). This finding extends prior
ork demonstrating a positive association between pupil diameter and
verall strength of functional connectivity at the block level ( Eldar et al.,
013 ; Warren et al., 2016 ). Given that the other measures are all ulti-
ately derived from connectivity strength, it may be that further noise

ntroduced by those calculations —particularly those involving the com-
utation of modularity —may have served to partially obscure these re-
ationships. It may also be the case that the effect of brainstem arousal
ystems during exploration is best characterized as influencing overall
onnectivity strength, which then interacts with other factors to affect
hese other measures. Yet taken together, these results suggest a role for
upil-linked neuromodulatory activity in the complex changes in net-
ork connectivity and topology around exploration. 

.6. Accounting for task-evoked confounds 

A potential concern with the preceding analyses is that the func-
ional interactions could reflect parallel responses to task events in the
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bsence of genuine neural interactions ( Cole et al., 2019 ; O’Reilly et al.,
012 ). In order to address this confound, we re-ran all network-based
nalyses, after additionally regressing out task events from the BOLD
ime series (see Methods section 2.4 , Tables S3–S5). All principal results
eported without task regression hold except: (1) The subcortical sys-
em now shows significant modulation of integration around exploration
 (2.89, 4605.64) = 3.58, p corrected = 0.043. (2) The modulation of inte-
ration between the dorsal attention and limbic systems fell to a trend
evel ( F (2.96, 4465.94) = 4.24, p corrected = 0.072). (3) The correlations
or pupil–system segregation, pupil–modularity, and pupil–number of
odules fell below trend-level (all p s > 0.13). Crucially, the pupil–

trength correlation remained significant ( r ave = 0.154, t (33) = 2.60,
 = 0 . 014). In short, task-evoked responses were not a strong driver of
he exploration-induced modulations reported above. 

. Discussion 

Here we assessed the relationship between changes in pupil diam-
ter, brain network integration, and behavior in the context of ex-
loratory choice. Consonant with our predictions and corroborating pre-
ious findings ( Jepma and Nieuwenhuis, 2011 ), we found that explo-
ation induced a reliable increase in pupil diameter. This increase is
onsistent with the adaptive gain theory of LC-NE function, which states
hat changes in tonic LC firing mediate between states of exploration and
xploitation ( Aston-Jones and Cohen, 2005 ). We also examined changes
n brain network integration around exploration. While our hypothesis
hat integration would be modulated around exploration was confirmed,
he simple directionality of the hypothesis was not. Rather than find-
ng strictly reduced integration, exploration-linked alterations in func-
ional network architecture across a range of measures were consistent
ith a shift toward fewer, more weakly connected modules that were
oth more segregated in terms of connectivity and topology but also
ore integrated with respect to the diversity of cognitive systems rep-

esented in each module. Importantly, overall functional connectivity
trength decreased, and changes in connectivity were associated with
hanges in pupil diameter, in line with the hypothesis that changes in
C-NE or other pupil-linked neuromodulatory activity contribute to the
ynamic reorganization of brain networks. These findings are the first
o tightly link arousal, brain network dynamics, and behavior in human
ubjects, going beyond prior studies, which relied on incidental varia-
ions in arousal or pharmacological manipulation assayed over longer
eriods of time. In so doing, this study has pushed the temporal grain at
hich sliding-window network analyses have been applied, indicating

he possibility of using these methods to uncover finer-timescale changes
hen carefully coupled to behaviors of interest. 

.1. Complex peri-explore network dynamics 

We found that during the peri-explore period, when the brain has
ewer, larger modules, cognitive systems are more weakly connected
nd less internally homogenous (lower connectivity strength), and the
atio of within- versus between- system strength is higher (system seg-
egation). Having fewer modules in turn increases integration because
egions from different cognitive systems become intermingled in these
oose modules. This pattern of results suggests that when brain func-
ional connectivity is relatively high, its topological structure tends to
etter respect the boundaries of the resting-state cognitive systems.
hen overall connectivity strength is lower, such as during exploration,

he boundaries between cognitive systems tend to dissolve, favoring
arger, looser modules. Despite this, system segregation increases be-
ause it is a relative measure, so connectivity within cognitive systems
eed only decrease less than connectivity between cognitive systems. 

The overall decrease in connectivity strength during the peri-explore
eriod may thus be particularly important in driving the present results.
losely mirroring our findings, in a model of coupled oscillators, global
ecreases in coupling strength can lead to decreases in synchronization
13 
oth within and between modules, as well as increases in modularity
 Zhao et al., 2010 ). Changes in coupling strength have also been a target
f modeling the effect of neuromodulatory systems on brain networks,
hich can lead to nonlinear changes in the degree of integration in the
etwork ( Shine et al., 2018a ). 

However, the complex changes in functional network architecture
uring the peri-explore period contrast with some prior findings in the
iterature. For example, performing the cognitively demanding n -back
ask has been found to increase brain network integration as measured
n the present study ( Braun et al., 2015 ), as measured by the diver-
ity of intermodular connections (participation coefficient; Shine et al.,
016 ), and as measured by the average path length between nodes
global efficiency; Cohen and D’Esposito, 2016 ). It has also been found
o decrease modularity ( Cohen and D’Esposito, 2016 ; Vatansever et al.,
015 ) and system segregation ( Cohen and D’Esposito, 2016 ) —both
aken as measures of segregation —and decrease the number of mod-
les ( Vatansever et al., 2015 ). In the n -back task, all measures converge
n a depiction of brain networks that have become more integrated
less segregated) in their connectivity and topology. Indeed, while in-
egration and segregation can be measured separately ( Deco et al.,
015 ; Rubinov and Sporns, 2010 ), such measures display anticorrela-
ions in both computational models ( Deco et al., 2015 ) and empirical
ata ( Cruzat et al., 2018 ), as is also implied by the findings from the
 -back data across studies. 

The divergence between these findings and the conflicting changes in
ntegration and segregation found during exploration highlight the need
o assess putative changes in integration across a range of tasks and mea-
ures. Network measures differ in whether they are based on topology
r connectivity strength and differ in their focus on within- or between-
etwork interactions. Therefore, different measures can be expected
o show different sensitivities. For example, a neural network model
rained on multiple measures of segregation and integration was better
ble to predict performance across a range of tasks than the individual
easures alone, suggesting that each contributes unique information

 Bertolero et al., 2018 ). Additionally, some network measures are rela-
ive, and so apparently contradictory changes may not be contradictory
n relative terms, such as our finding of increased system segregation in
he presence of increased integration. Moreover, as implied by our ini-
ial hypotheses, more integration —however defined —may not always
e better. For example, performance in motor tasks has been shown
o benefit from increased segregation of brain networks ( Bassett et al.,
015 ; Cohen and D’Esposito, 2016 ). Indeed, it has been suggested that
ore modular brain networks are of benefit in simple tasks that rely

n segregation of processing and relatively isolated cognitive systems,
hile less modular networks are better in more complex tasks that re-
uire integrated processing ( Yue et al., 2017 ). 

This discussion raises the following question: What is the benefit of
odulating integration in the context of exploration, which is not well-

aptured by the distinction between simplicity and complexity? Indeed,
hese changes in state occur in the context of a single task. Modeling
ork suggests that networks constrained to be sparser and more mod-
lar in some cases are better at converging to the solution in a given
ask ( Bernatskiy and Bongard, 2015 ) and better adapt to task changes
 Clune et al., 2013 ). Importantly, structural brain networks are not only
odular, but also small-world, characterized by high clustering and

hort path lengths ( Bassett and Bullmore, 2006 ). While small-world net-
orks need not be modular, this property of the brain has been proposed

o balance the segregated processing afforded by modularity with the in-
egrative processing afforded by more global connectivity ( Bassett and
ullmore, 2006 ; Gallos et al., 2012 ). Interestingly, small-world topology
as been shown to impact exploration and exploitation in the context of
roblem-solving networks. In such networks, agents attempt to find the
est solution to a problem in parallel (e.g., guessing the number that
ields the highest payoff), where individuals connected to each other
n the network have access to one another’s answers. Networks of hu-
an subjects as well as simulated agents display more exploration of
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he problem space in less connected networks, as greater segregation
f information promotes the coexistence of a greater variety of possible
olutions ( Lazer and Friedman, 2007 ; Mason et al., 2008 ). While fully
onnected networks excel in unimodal problem spaces, small-world net-
orks excel in multimodal problem spaces ( Mason et al., 2008 ). No-

ably, some of the same benefits of structural connectivity can be ob-
ained by changing the dynamics, such that agents can only occasion-
lly view the solutions of their network neighbors ( Bernstein et al., 2018 ;
azer and Friedman, 2007 ). As may be expected, these results are highly
ependent on the type of problem to be solved ( Mason and Watts, 2012 ;
hore et al., 2015 ), and they come from networks quite distinct from
rain networks. However, they suggest the intriguing possibility that
ynamically increasing segregation in the brain during exploration may
ncrease its ability to flexibly adapt when exploring new problem spaces
r environments. The fact that the overall number of modules decreased,
ontributing to an increase in integration of different cognitive systems,
ay serve to balance this segregation by increasing the diversity of pro-

essing within each module. Although these ideas are speculative by
ay of analogy to other networks, they suggest important areas for fu-

ure research utilizing neural network models. 

.2. Specificity of network effects 

While brainstem neuromodulatory nuclei project widely throughout
he cortex, there appears to be some specificity in their effects on brain
etworks ( van den Brink et al., 2019 ). To take the LC as an example,
hile some studies have suggested that LC-NE-linked modulation of net-
ork connectivity is relatively global, in keeping with the diffuse pro-

ections of LC ( Eldar et al., 2013 ), others have uncovered heterogeneity
n these effects and linked those heterogeneities to catecholamine recep-
or distributions ( van den Brink et al., 2018 , 2016b ; Zerbi et al., 2019 ).
urthermore, recent work in rodents indicates that LC neuron projec-
ions and the interactions among LC ensembles are far more regionally
pecific with respect to their cortical targets than previously appreciated
 Totah et al., 2019 ). 

We also found suggestive evidence for anatomical specificity: mod-
lation of integration around exploration was most reliable in the de-
ault, dorsal attention, limbic, and frontoparietal systems and their in-
eractions. While the default mode system was initially defined based
n its decreased activity during task ( Raichle, 2015 ), a growing body
f work suggests its relevance for task processing. In particular, it has
een implicated in working memory ( Vatansever et al., 2015 ), task
witching ( Crittenden et al., 2015 ), attentional shifting ( Arsenault et al.,
018 ), and creative cognition ( Beaty et al., 2016 ). Of particular rel-
vance to the present study, neurons in posterior cingulate —a de-
ault mode area —have been implicated in performance monitoring
 Heilbronner and Platt, 2013 ) and exploration ( Pearson et al., 2009 ).
here is also prior evidence of dynamic interactions between default,
rontoparietal, and dorsal attention systems, with the frontoparietal
ystem potentially regulating activity in the other two systems in or-
er to adjust the balance between internally-generated (default) and
xternally-directed (dorsal attention) processing ( Beaty et al., 2016 ;
ixon et al., 2018 , 2017 ; Smallwood et al., 2012 ). Furthermore, inter-
ctions among limbic, attentional, and catecholamine systems appear to
odulate attention, learning, and memory for salient or motivationally

elevant events ( Clewett and Murty, 2019 ; Gallagher and Holland, 1994 ;
ohanty et al., 2008 ). The Leapfrog task itself has been associated with

oth prefrontal function and arousal ( Blanco et al., 2015 ; Otto et al.,
014 ). While we can only speculate about the role of these systems and
heir interactions in the present study, they may reflect the coordination
f monitoring, decision-making, and attentional processes in service of
exibly shifting between exploitation and exploration based on ongoing
stimates of the relative value of exploring. 

These signs of specificity must be qualified by the fact that the dif-
erences among the time courses were not themselves reliable —model
omparison did not favor GAMMs with separate time courses for each
14 
ystem or between-system interaction over one shared time course,
hough these are likely conservative tests due to the large number of
dditional degrees of freedom needed to fit individual time courses
ver a shared time course. This is particularly the case for the between-
ystem analysis (28 pairwise interactions), where visual inspection sug-
ests very little modulation in some interactions. Future work should
ontinue to examine the role of the LC and other neuromodulatory
tructures in regulating brain network connectivity within specific con-
exts to provide further evidence for the existence of global versus task-
nd region-specific neuromodulatory effects. Such efforts would benefit
rom planned comparisons between regions or networks to increase the
ower to detect differential effects. 

.3. Pupillary response to exploratory state 

While it was not a primary goal of the study, our results also
ear strongly on the role of LC-NE-linked arousal in mediating be-
ween exploration and exploitation. Despite the long-standing hy-
othesis that tonic LC activity mediates between these states ( Aston-
ones and Cohen, 2005 ), relatively few studies have examined this re-
ationship, although most have found support for such a relationship
 Gilzenrat et al., 2010 ; Hayes and Petrov, 2016 ; Jepma and Nieuwen-
uis, 2011 ; Kane et al., 2017 ; cf. Jepma et al., 2010 ; Warren et al.,
017 ). Despite this, open questions remain about the nature of the
elationship. Pupil diameter is sensitive to several non-luminance-
ediated factors, including uncertainty and surprise ( Alamia et al.,
019 ; Friedman et al., 1973 ; Jepma and Nieuwenhuis, 2011 ; Lavín et al.,
014 ; Nassar et al., 2012 ; Preuschoff, 2011 ; Qiyuan et al., 1985 ;
rai et al., 2017 ; Zénon, 2019 ), as well as mental load or task difficulty
 Alnæs et al., 2014 ; Hess and Polt, 1964 ; Kahneman and Beatty, 1966 ;
ahn et al., 2016 ). Notably, past task designs used to test the relation-

hip between LC-NE-linked activity and exploratory state do not always
learly differentiate states of exploration from these other factors. For
xample, a canonical study of exploration —operationalized as task dis-
ngagement —utilized increases in task difficulty to promote disengage-
ent ( Gilzenrat et al., 2010 ). It could thus be the case that pupil di-

meter in this study was more related to other variables than to ex-
loration per se; indeed, it was argued to closely track expected util-
ty, a putative signal of when to initiate exploration ( Aston-Jones and
ohen, 2005 ). While it is an empirical question whether states of ex-
loration reduce to states of uncertainty or low utility, the information
ained by exploration has utility in and of itself, despite the opportu-
ity costs associated with potentially lower payoffs (e.g., directed ex-
loration; Gershman, 2018 ; Kaelbling et al., 1996 ; Knox et al., 2012 ;
ilson et al., 2014 ). Furthermore, mice demonstrate elevated pupil di-

meter during exploratory behaviors that are not associated with imme-
iate payoffs ( McGinley et al., 2015 ), and tonic LC stimulation induces
isengagement and increased decision noise during patch foraging in
ats, which are putative markers an exploratory state ( Kane et al., 2017 ).
xploratory states would thus seem to be at least somewhat separable
rom these other factors and potentially heterogenous in nature. The
implified nature of the Leapfrog task partially mitigates these concerns;
he option values change in a highly constrained way, meaning most of
he uncertainty/difficulty lies in the decision of when to explore, given
he rate of change in the environment ( Knox et al., 2012 ). 

Another question concerns the timing of arousal fluctuations rela-
ive to exploratory actions. A key prediction of the adaptive gain theory
s that tonic LC activity and baseline pupil diameter should increase
receding exploration or disengagement and then fall when transition-
ng to exploitation, based on the proposal that tonic LC activity tracks
xpected utility ( Aston-Jones and Cohen, 2005 ; Gilzenrat et al., 2010 ;
epma and Nieuwenhuis, 2011 ). Crucially, we found no anticipatory in-
rease in pupil diameter leading up to the explore trial. This suggests
hat increased arousal was a consequence of the decision to explore,
ather than its cause. This is partially at odds with a prior report that
ound elevated baseline pupil diameter prior to explore trials —though
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ot on exploit trials leading up to exploration ( Jepma and Nieuwen-
uis, 2011 ), and might therefore be taken as support for the supposition
hat baseline pupil was tracking a quantity such as utility in prior stud-
es but not here. While the numerical value of the exploit option does
ot diminish in the Leapfrog task, utility does diminish, as a norma-
ive account of the task demonstrates that the relative value of choos-
ng the exploit over the explore option decreases over time, due to the
ncreasing possibility that the explore option has become the better op-
ion; human subjects —including in this study (Figure S8B) —demon-
trate behavioral signatures at least partially consistent with this model
 Knox et al., 2012 ). Pupil diameter may thus be more sensitive to ex-
licitly decreasing payoffs than to more abstract computations of util-
ty. Task timing might also be a factor. Studies that found anticipatory
rousal with either drifting bandits or the Leapfrog task allotted more
ime before subjects could make a decision, so pre-choice arousal levels
ight be more reflective of the anticipation of making an exploratory

hoice ( Jepma and Nieuwenhuis, 2011 ; Otto et al., 2014 ), whereas our
ask timing may not have provided sufficient time for these signals to
evelop. 

Following the explore choice, pupil diameter remained elevated for
everal seconds. Importantly, response to a change in outcome did not
rive this effect, making a role for surprise unlikely, and the explore
esponse was not sensitive to volatility condition, suggesting it also was
ot due to greater uncertainty in the outcome of explore choices. This
onclusion must be qualified, however, by the relatively weak sensi-
ivity of subject behavior to volatility level. Given that the pupillary
esponse has been shown to be modulated by probabilities and at least
ualitatively demonstrates more extended responses to low probability
vents ( Alamia et al., 2019 ; Qiyuan et al., 1985 ; Zénon, 2019 ), we can-
ot completely rule out this possibility. Nor can we rule out the possibil-
ty that the difference between explore and exploit response was due to
nticipated outcome, which prior studies have demonstrated positively
odulates pupil diameter ( Cash-Padgett et al., 2018 ; Van Slooten et al.,
018 ; Varazzani et al., 2015 ). In this task, we cannot decouple outcome
nticipation from outcome uncertainty due to the constrained nature of
alue changes in this task. Exploration in drifting bandits is associated
ith lower expected outcomes ( Jepma and Nieuwenhuis, 2011 ), and if

ubjects in our study were sensitive to the fact that explore choices re-
ulted in improved outcomes on only 41% of trials, they should not have
nticipated higher outcomes. On the other hand, if subjects were ex-
loring using a normative strategy, they should have a subjective belief
hat the explore option is higher-valued before exploring ( Knox et al.,
012 ). However, outcome-related responses are very sensitive to ongo-
ng task conditions ( Cash-Padgett et al., 2018 ; Van Slooten et al., 2018 ),
o there is no reason to believe such anticipatory responses would per-
ist well into the following trial. Based on this pattern of results and the
bsence of baseline pupil increases prior to choice, we tentatively pro-
ose that a shift into an exploratory state is accompanied by an increase
n arousal that is independent from the decision variables contributing
o the decision to explore. This conclusion is supported by prior work
emonstrating that differences in pupil diameter on explore vs. exploit
rials survive controlling for numerous other factors related to expected
tility, including expected payoff and the entropy of the option values
 Jepma and Nieuwenhuis, 2011 ). Such increases in arousal may have
daptive benefits that are separate from merely encouraging further
vert exploratory choices, such as increasing learning rates ( Ebitz et al.,
018 ). While in our study the increase in arousal was only on the order
f seconds, we predict it would be more extended in contexts requiring
ore extended bouts of exploration. 

Though it is challenging to draw inferences about neural activity
rom pupil diameter ( Joshi and Gold, 2020 ), the timing and duration
f the pupil response provide some constraints. The canonical pupil-
ary response function has an approximately one second lag to peak and
eturns to baseline after about two seconds ( Hoeks and Levelt, 1993 ).
upil responses of similar latency and duration are evoked by single
C spikes and LC microstimulation ( Joshi et al., 2016 ), and response-
15 
elated LC activity tends to be quite sparse, on the order of single spikes
 Kalwani et al., 2014 ; Varazzani et al., 2015 ). Pupil diameter on ex-
loit trials closely followed the canonical pattern ( Fig. 2 A), and is thus
uggestive of phasic LC-NE activity. Pupil diameter on explore trials re-
ained elevated for several seconds following the explore choice. This
ight indicate a brief elevation of tonic LC-NE activity, given the pro-
osed link between the tonic mode of LC firing and exploration ( Aston-
ones and Cohen, 2005 ). Pupil response scales with LC stimulation fre-
uency ( Liu et al., 2017 ), so it is also conceivable the extended response
esults from a phasic LC response that is much larger than for exploit
hoices. Finally, the prolonged response could be due to other neuro-
odulatory influences. In particular, acetylcholine axon activity has

een found to more closely track extended pupil dilations and their slow
ecay, while NE activity correlates more strongly with rapid changes in
upil diameter ( Reimer et al., 2016 ). 

.4. Limitations and future directions 

While this study identified exploration-induced modulation of brain
etwork connectivity on a fairly fine temporal scale, there are a few
aveats that warrant consideration. First, the low-frequency nature of
he continuous wavelet coherence analysis makes it difficult to infer the
xact nature of the underlying neural activity. Indeed, filtering, includ-
ng the use of wavelets, can distort the timing of the underlying signals
 de Cheveigné and Nelken, 2019 ; Yael et al., 2018 ). Thus, while our
nalyses provide evidence of an exploration and arousal-linked mod-
lation, the exact nature of the modulation —its timing and direction-
lity —may be quite different than that uncovered here. On the other
and, wavelet analysis has benefits over correlation-based methods in
obustness to noise and temporal autocorrelation ( Zhang et al., 2016 ). 

Relatedly, we took substantial steps to address temporal autocorre-
ation in our analyses, including the use of GAMMs, AR1 error models,
nd corrected correlation Z-scores. Although the impact of temporal au-
ocorrelation —particularly in nonstationary time series —has long been
ecognized in fields such as economics and statistics ( Granger and New-
old, 1974 ; Johansen, 2012 ; Phillips, 1986 ; Yule, 1926 ), and univariate
nalyses of fMRI data correct for non-independence in the residuals of
MRI GLM analyses due to autocorrelation ( Monti, 2011 ), autocorrela-
ion has not always been taken into account in psychological and neuro-
cientific analyses, including in analyses of pupil–network relationships.
his potentially threatens not only statistical inference (i.e., inflated
ype I error rate), but also in some cases the validity of the parameter
stimates themselves (i.e., inducing spurious correlations). That said,
here has been disagreement as to the severity of the autocorrelation
roblem, likely owing to differences in the underlying signals, the length
f the time series, and the assumptions made about the autoregressive
rocesses ( Afyouni et al., 2019 ; Arbabshirani et al., 2014 ; Baayen et al.,
017 ; Dean and Dunsmuir, 2016 ; Elber-Dorozko and Loewenstein, 2018 ;
onari et al., 2019 ; Leonardi and Van De Ville, 2015 ). We have chosen

o take this problem seriously, although other solutions, such as pre-
hitening or the use of ARIMA models, could have been used, as is

ecommended by some of these authors. We did not use these methods
ere because we did not want to eliminate low-frequency signal com-
onents ( Afyouni et al., 2019 ; Pyper and Peterman, 1998 ), but future
ork could usefully assess the impact of various mitigation strategies
ot only on functional connectivity itself, but also on its relation to
ther signals of interest such as pupil diameter. It may also be worth
nvestigating the use of clustering ( Khambhati et al., 2018a ; Liu et al.,
018 ; Medaglia et al., 2018 ) or deconvolution ( Karahano ğlu et al., 2013 ;
ierda et al., 2012 ) techniques to aid in addressing both issues of tem-

oral precision and autocorrelation. 
While we have attributed the peri-explore modulation to exploration,

his assumption must be examined in more detail in future studies. Given
ur task design and limits on the amount of explore trials per subject,
e cannot completely disentangle effects of exploration from effects of

hange, uncertainty, and overall volatility, although we made several
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ttempts to do so. Furthermore, in the Leapfrog paradigm bouts of explo-
ation are usually on the order of a single trial, and we restricted our net-
ork analyses to explore choices surrounded by several exploit choices

o clearly identify the effects of these individual explore choices. De-
igns that provoke more extended exploratory states may help to over-
ome issues related to temporally isolating the effects of exploration,
nd future work should assess the impact of the frequency and dura-
ion of exploratory states on network dynamics. Additionally, we can-
ot separate effects of exploration from more general effects of atten-
ional shifting. While LC-NE-linked effects on attentional processes are
ell-known and in some sense are partly constitutive of its influence on

xploratory state ( Aston-Jones and Cohen, 2005 ; Corbetta et al., 2008 ;
cGinley et al., 2015 ; Sara and Bouret, 2012 ), exploration has been iso-

ated from switching at the single-neuron level ( Pearson et al., 2009 ), so
t will be important to better delineate the boundaries of these different
rocesses and states in the future. 

Though we have focused on the LC due to its role in regulating
oth pupil diameter and exploration, other neuromodulators, such as
opamine and acetylcholine, have also been implicated in coordinat-
ng brain network dynamics ( Birn et al., 2019 ; Roffman et al., 2016 ;
hafiei et al., 2019 ; Turchi et al., 2018 ; Záborszky et al., 2018 ) and
ave been implicated in uncertainty and exploration ( Beeler et al., 2010 ;
iorillo et al., 2003 ; Yu and Dayan, 2005 ). Acetylcholine in particular
lso influences pupil diameter ( Reimer et al., 2016 ), and therefore we
annot rule out its impact in the present results. Finally, other mech-
nisms, such as thalamic regulation, have been linked to the control
f cortical connectivity ( Halassa and Kastner, 2017 ), which highlights
he need look beyond neuromodulators for other mechanisms of brain
etwork reconfiguration. 

In sum, we have demonstrated a relationship between exploration,
upil-linked arousal, and brain network dynamics. We argue that form-
ng linkages between functional connectivity, behavior, and physiologi-
al markers such as pupil diameter represents a promising path forward
or understanding the impact of neuromodulatory actions on brain net-
ork dynamics and cognitive processing. More generally, we suggest

hat carefully aligning dynamic network analyses with task designs can
ncrease the temporal resolution at which behaviorally- and cognitively-
elevant modulations can be identified. 
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