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Multi-voxel pattern analysis (MVPA) has been applied successfully to a variety of fMRI research questions in
healthy participants. The full potential of applying MVPA to functional data from patient groups has yet to be
fully explored. Our goal in this study was to investigate whether MVPA might yield a sensitive predictor of
patient symptoms. We also sought to demonstrate that this benefit can be realized from existing datasets,
even when they were not designed with MVPA in mind. We analyzed data from an fMRI study of the neural
basis for face processing in individuals with an Autism Spectrum Disorder (ASD), who often show fusiform
gyrus hypoactivation when presented with unfamiliar faces, compared to controls. We found reliable
correlations between MVPA classification performance and standardized measures of symptom severity that
exceeded those observed using a univariate measure; a relation that was robust across variations in ROI
definition. A searchlight analysis across the ventral temporal lobes identified regions with relationships
between classification performance and symptom severity that were not detected using mean activation.
These analyses illustrate that MVPA has the potential to act as a sensitive functional biomarker of patient
severity.
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Introduction

In 2001, Haxby and colleagues demonstrated that information that
was not evident from univariate analyses could be decoded from
patterns of fMRI activation across voxels (Haxby et al., 2001). Since
the publication of this seminal study, a class of techniques referred to
as multi-voxel pattern analysis (MVPA) has been applied to a variety
of questions (e.g., Cox and Savoy, 2003; O'Toole et al., 2005; Spiridon
and Kanwisher, 2002; for reviews see Haynes and Rees, 2006; Norman
et al., 2006; O'Toole et al., 2007). These techniques analyze recorded
activity patterns using tools such as machine learning classifiers, to
measure the information present within populations of voxels.

Despite the success of applying MVPA in a wide range of contexts,
few studies have extended the method to investigations of atypical
neural activity. Several functional studies have used multivariate
approaches to classify individuals into different groups (in contrast to
classifying trials into conditions) for depression (Fu et al., 2008) and
drug addiction (Zhang et al., 2005). Similarly, functional models have
predicted future responses to Cognitive Behavioral Therapy (full vs.
partial) in depressed patients (Costafreda et al., 2009) and estimated
years-to-onset of Huntington's disease symptoms (Rizk-Jackson et al.,
2010). Only a small number of clinical studies have conducted within-
subject between-condition MVPA: abnormal activity patterns have
been reported during object representation and working memory
processes in schizophrenia (Kim et al., 2010; Yoon et al., 2008), and
unusual patterns have been detected in the medial prefrontal cortex of
participants on the autism spectrum during mental state reflections
(Gilbert et al., 2009).Noneof these patient studies usedMVPAmeasures
to predict individual differences in clinical symptom severity.

The primary goal of this paper is to report the potential forMVPA to
give high levels of sensitivity in relating fMRI data to patient
symptoms. By incorporating the unique contributions of individual
voxels, subtleties within activation patterns are reflected in MVPA
outcomemeasures, such as classification performance. Such subtleties
are often ignored in univariate analyses, where the levels of voxel
activation, or mean activation of a region, are evaluated. In a region
that is functionally relevant to a disorder with atypical cognitive or
behavioral symptoms, this multivariate characterization could act as a
sensitive measure of variation among affected individuals. To
investigate this possibility here, we use MVPA to examine a dataset
from a study of fusiform gyrus activation in individuals with an Autism
Spectrum Disorder (ASD; Schultz et al., 2008).

Investigating the face processing differences in people with autism
has been a very active area of research, not least because of the
importance of face processing to successful social functioning. Among
other deficits, ASD patients show large impairments in recognizing
facial identity across changes in viewing conditions (Wolf et al., 2008),
despite typical performance at processing complex objects (Boucher
and Lewis, 1992; Wolf et al., 2008). A large number of functional
neuroimaging investigations have studied the neural substrates of
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these behavioral abnormalities, particularly in the fusiform gyrus, a
highly face-selective brain region, which has come to be known as the
fusiform face area (FFA; Kanwisher et al., 1997; Kanwisher and Yovel,
2006; Winston et al., 2004), although the specificity of fusiform
computations is much debated (Gauthier et al., 1999; Kanwisher and
Yovel, 2006; Schultz et al., 2003). The FFA is strongly activated when
typically-developing individuals view faces, but is frequently hypoac-
tive when individuals with an ASD view unfamiliar faces (Critchley
et al., 2000; Deeley et al., 2007; Grelotti et al., 2005; Hall et al.,
2003; Hubl et al., 2003; Koshino et al., 2008; Pierce et al., 2001; Piggot
et al., 2004; Schultz et al., 2000, 2008; Wang et al., 2004). The
processes responsible for this relative hypoactivation are an area of
ongoing debate.1 Although it is a related and important question,
the present study is neutral on the proximate causes of hypoactiva-
tion, focusing instead on the potential for MVPA to give a sensitive
functional biomarker.

A secondary aim of the paper is to provide an example of the way
MVPA can be used to realize this benefit in studies designed without
MVPA in mind. This suggestion may resonate with patient-group
investigators looking to make the most of existing datasets, which are
often expensive, time-consuming and logistically difficult to obtain. In
this study, we illustrate this point with an extreme case; analyzing a
dataset from an fMRI study that was not planned with MVPA in mind
and that was, in many ways, sub-optimal for this purpose. Designing a
study for subsequent MVPA typically involves a number of consider-
ations: The established sensitivity of MVPA to subtle visual differences
(e.g., Kamitani and Tong, 2005) makes controlling visual properties,
such as luminance and the visual angle of presented images, par-
ticularly important. Additionally, in order to draw conclusions about a
specific category, an appropriate number of classes are required. Any
two-way classification is affected by the activity patterns of both
classes, so multiple comparisons are required for drawing conclusions
about one condition of interest. For example, above-chance classifi-
cation between class A and class B could be due to encoded class A
information (where the classifier succeeds based on ‘A vs. not-A’) or
class B information (‘B vs. not-B’). The successful separation of A vs. B,
C and D, but not among B, C and D, however, gives some confidence
that A, or at least certain features of A, are central to an area's encoded
information (as applied in O'Toole et al., 2005; Spiridon and
Kanwisher, 2002).

The above design considerations are recommended where possi-
ble; however, it is still possible to benefit from the MVPA approach
when a dataset has been designed for univariate analyses. The dataset
analyzed herewas collected to examine how fusiformactivation varies
during face tasks that differ in their attentional and perceptual loads
(Schultz et al., 2008), in individuals with autism. Designed specifically
for univariate analyses, the study was organized in a way contrary to
the optimal design considerations reviewed above: the stimuli in
each condition were not individually matched for luminance, and two
categories of stimuli, faces and houses, were presented to participants.
Additionally, the house condition required participants to make a
‘same’ vs. ‘different’ judgment about two side-by-side houses, while
the face condition was intentionally varied along several dimensions
by run, including the perceptual judgments required, number of face
stimuli, and presence or absence of emotional expression. A constant
house conditionwas included in the study to act as a common baseline
for between-run comparisons of the different face tasks. Finally, each
1 For example, recent evidence has suggested that hypoactivation may be less
robust for familiar faces (Pierce et al., 2004; Pierce and Redcay, 2008), but this is not
always found (Grelotti et al., 2005). A further debate concerns the source of fusiform
signal variance in ASD patients: while some studies have suggested that individual
differences in looking behavior may drive signal variance (Bookheimer et al., 2008;
Dalton et al., 2005; Hadjikhani et al., 2004, 2007; Perlman et al., 2010), the paradigms
used in several of these studies have been critiqued (Klin, 2008; Schultz et al., 2008)
and not all investigations have been able to confirm this (Humphreys et al., 2008;
Schultz et al., 2008).
face condition was allocated a relatively short amount of fMRI time
(five 20-second blocks each) giving a small number of trials for each of
the face conditions.

In this study, we applied MVPA to four of the six runs in this fMRI
dataset by classifying the activity patterns for viewing faces and
houseswithin the participants. By grouping together the different face
trials into one class, we were able to increase the number of trials to
a suitable level for performing MVPA (see Pereira et al., 2009 for a
discussion of the factors relevant to selecting classifier exemplars),
while allowing us to investigate underlying commonalities in face
activity patterns between the different face tasks. Our results showed
that classification performancewasmore strongly related to symptom
severity than a univariate measure of mean activation. The greater
sensitivity of MVPA was consistent across a variety of approaches to
defining the regions of interest, including an anatomical definition,
face-responsive voxels defined in the control group, and even in an
area defined based on the mean activation difference itself. Further-
more, using a roaming searchlight analysis across the ventral
temporal (VT) lobe, we found a symptom severity relationship with
MVPA in regions of cortex that were not highlighted using a univariate
measure. This is the first study, to our knowledge, that reports a
link between functional MVPA results and standardized measures
of symptom severity: an important target for many patient-based
investigations.We also hope this studywill be encouraging to patient-
group researchers who are looking to maximize the utility of existing
fMRI datasets, and to those searching for functional techniques
that are sensitive to patient symptoms.

Materials and methods

Participants

Twelve males on the autism spectrum (ages 9.3–24.2, mean (M)=
13.9 years) and twelve typically-developing male controls (ages 9.4–
23.3, M=13.6 years) were selected for these analyses from a total
sample of more than twenty in each group on the basis of having the
lowest scanner movement, while matching the groups by age. All
participants were recruited and studied at the Yale Child Study Center.
All participants or their legal guardians gave informedwritten consent
and were compensated for their participation, in accordance with
procedures and protocols approved by the Institutional Review Board
of the Yale University School of Medicine. Each ASD diagnosis was
confirmed by a consensus diagnosis process involving two Ph.D level
clinicians experienced with ASD differential diagnoses, using results
from the Autism Diagnostic Observation Schedule (ADOS; Lord et al.,
1989, 2000) and Autism Diagnostic Interview-Revised (ADI-R; Le
Couteur et al., 1989; Lord et al., 1994). Total ADOS scores ranged
between 9 and 22 (M=15.9, standard deviation (s.d.)=4.3). The
ADOS is a set of standardized semi-structured interactions between a
clinician and the relevant individual. The participant's behaviors and
responses are recorded and scored by the clinician against a series
of standardized categories. An algorithm is subsequently used to
combine these scores, where a cut-off helps determine each diagnosis.
The ADI is an extensive structured interview, conducted by a
clinician, with a parent of the patient. The interviewee is questioned
extensively about his or her knowledge and experiences of the
patient's current and prior behaviors, and developmental trajectory.
Responses are scored according to an established list of criteria, which
are then combined through a standardized algorithm. These forms of
assessment are suitable for participants of all ages: the clinician
administering the ADOS selects one of four different modules of
interactions, based on the mental age of the individual being assessed.

Control participants were screened for personal and family
histories of psychiatric disorders and neurological trauma, and
current axis I disorders with standardized symptom inventories
that cover all DSM-IV axis I disorders: the parent report Childhood



Fig. 1. Examples of stimuli with associated presentation times. Two of the analyzed runs featured face stimuli in a same vs. different task (top row) and two featured a passive-
viewing task (bottom row).
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Symptom Inventory for children aged 5–11 years (Gadow and
Sprafkin, 1994), the Adolescent Screening Inventory for individuals
aged 12–18 years (Gadow et al., 2002), and the Adult Self-Report
Inventory for individuals older than 18 years (Gadow et al., 1999).

Participants' IQs were assessed using theWASI,WISC-IV orWAIS-III.
The ASD group's mean IQ (M=101.6, s.d.=21.8) was lower than the
control group's (M=112.8, s.d.=10.1), although not significantly
so (t22=1.60, p=0.12). The groups did not differ in chronological
age (t22=0.19,p=0.85). All participantswere administered theBenton
Test of Facial Recognition (Benton et al., 1994), the Edinburgh
Handedness Inventory (Oldfield, 1971) and a computerized battery
of face recognition, perception and memory (Wolf et al., 2008) as part
of the original study. All participants, except for one in each group,
were right handed. Scores on the Benton Facial Recognition Task
were significantly higher (t22=3.45 , p=0.002) in controls (M=43.1,
s.d.=2.8) than in ASD individuals (M=38.1, s.d.=4.2), as expected
(Wolf et al., 2008).

Stimuli and design

Participants were presented with gray-scale face and house
images. The facial expressions and behavioral task differed among
the four runs (see Fig. 1). Images were presented in alternating 20-
second blocks separated by 12 s of rest, giving a total of five face and
five house blocks in each run. In the first face task, participants viewed
two neutral expression faces side-by-side and indicated with a button
press whether the images showed the same or different people. The
pictures were presented for 3500 ms, followed by a 500 ms inter-
stimulus interval (ISI). Participants were asked to answer as quickly
and confidently as possible. The second task followed the same format
as the first but with fearful instead of neutral faces. In the third
task, participants passively-viewed single neutral faces for 1750 ms,
followed by a 250 ms ISI. The fourth task had participants passively
view dynamic movies of faces changing their expression from neutral
to fearful. The neutral face appeared for 1250 ms, followed by 500 ms
of an emotion morph and then 1750 ms of a fearful expression. The
house stimuli in each run were presented side-by-side for 3500 ms
and participants were asked to indicate with a button press whether
the images showed the same or different houses. Run order was
counterbalanced across participants by reversing the task order in half
the sample. The block order varied across runs within participants.2
2 The original experiment also contained a fifth run investigating image fixation on a
cross hair presented between the eyes on each face, and a sixth run with overlapping
faces and houses, which were not analyzed here.
All participants practiced the tasks for 20 to 40 min before the
scanning session until it was clear that they understood the tasks. All
participants also underwent mock scanning to habituate them to the
scanning environment and to train them to stay still.

Neutral face stimuli were taken from a single standardized set
(Endl et al., 1998). Fearful face images were from multiple sources
(Gur et al., 2002; Karolinska directed emotional faces image set,
Lundqvist and Litton, 1998; NimStim Face Stimulus Set, Tottenham
et al., 2002; Japanese and Caucasian Facial Expressions of Emotion;
Matsumoto and Ekman, 1988, California Facial Expressions, Dailey
et al., 2001; Pictures of Facial Affect, Ekman and Friesen, 1976; in-
house database). The dynamic faces were from a custom stimuli
collection created with MorphMan 2000 Software (STOIK Imaging,
Moscow). All stimuli were presented once during the experiment.
Hair, ears and any other peripheral identifying features were cropped
from all faces. The house stimuli were custom photographs of houses
in New Haven, CT. All stimuli were converted to grayscale and resized
to 150×210 pixels. Stimuli were presented using E-Prime (Psychol-
ogy Software Tools Inc., Pittsburgh, PA) and PsyScope 1.2.5 for the
dynamic faces (Cohen et al., 1993).

Scanning

Functional T2-weighted imageswere acquired using a Siemens Trio
3-T scanner with a standard quadrature head coil. 40 axial slices were
acquired parallel to the AC–PC plane, with whole-brain coverage. In-
plane voxel size=3.516×3.516 mm, slice thickness=3.5 mmwithno
gap, TR=2320 ms, TE=25, flip angle=60°. T1-weighted anatomical
images with the same thickness were acquired in the same session
(TR=300, TE=2.43, flip angle=60°), as was a T1-weighted 3D
anatomical data set (MP-RAGE, TR=2530, TE=3.66, TI=1100, flip
angle=7°, resulting in 1 mm3 voxels). Stimuli were presented on a
translucent screen at the rear of the scanner and viewed through a
periscopic prism system mounted on the head coil. Singly-presented
faces subtended approximately 8° of visual angle horizontally in the
middle of the screen. Side-by-side stimuli subtended 19° of visual
angle horizontally. During trials requiring a response, participants
used fiber-optic button boxes in each hand to indicate their choice.

Imaging preprocessing

Imaging data were preprocessed using the Analysis of Functional
NeuroImages (AFNI) software package (Cox, 1996). All functional
images were slice time corrected and deobliqued to bring them in line
with the axial plane. The first four volumes of each functional run



Fig. 2. Fusiform regions of interest. Regions for each hemisphere (red) are shown on the
total area of all regions (white) at x=39, y=−46, z=−15. The three approaches to
defining the regions of interest included: placing spheres at three sets of FFA
coordinates from published studies (top), isolating voxel clusters significantly active
to faces in the control group (middle), using the clusters of hypoactivation in the ASD
group (bottom). Right and left are reversed by convention.
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were removed to allow the signal to homogenize, and signal spikes
were removed (using AFNI's 3dDespike). A motion correction
algorithmwas applied to register all volumes to the closest functional
volume to the anatomical scan (Cox and Jesmanowicz, 1999) and the
anatomical image was aligned to this same functional volume. Linear
and quadratic trends were removed from each run and low frequency
patterns were removed using a high-pass filter threshold of
0.0125 Hz. Voxel activation was scaled to have a mean of 100, with
a maximum limit of 200. The skull was removed from the anatomical
images, and all images were transformed into a standardized space
(Talairach and Tournoux, 1988). Voxels in the functional datasets
were resampled in the process to 3.5 mm×3.5 mm×3.5 mm. All
participants displayed less than 3.6 mmofmovement. The two groups
did not differ in mean (t22=0.87, p=0.39) or maximum (t22=1.30,
p=0.21) movement in the scanner.

Regions

All analyses were conducted within the boundaries of the VT
cortex, which was manually defined for each participant in the same
manner as in previous studies (Haxby et al., 2001), extending 70 to
20 mm posterior to the anterior commissure in Talairach brain atlas
coordinates, consisting of lingual, parahippocampal, fusiform and
inferior temporal gyri. To examine the area of the fusiform gyrus
typically activated by faces, we defined regions of interest in three
distinct ways. Although a face localizer is a frequent method for
locating the fusiform area responsive to faces, this is not suitable for a
patient group known to show reduced fusiform activation to faces.
In the first approach for sampling the relevant fusiform area, we
placed three spheres (radius 0.5 cm each) at the average Talairach
coordinates for the centers of right hemisphere FFA activation from
face vs. object comparisons in previous studies (+40x, −55y, −10z
from Kanwisher et al., 1997; +38x, −58y, −10z and +36x, −50y,
−10z from Schultz et al.'s (2000) control groups 1 and 2). The
overlapping spheres covered a total region of 29 voxels. Although the
FFA's exact location varies between individuals, this approachwas one
way to approximate the area typically involved in face processing. We
focused on the right hemisphere in this approach, as left hemisphere
coordinates were not given in one of the published studies (Schultz
et al., 2000), and only a small proportion of participants contributed
to the average left hemisphere coordinates in the other (Kanwisher
et al., 1997).

In the second approach, we isolated the area of significantly
greater activation to faces than to houses in the right and left VT
cortices of the control group. For this purpose we performed a
traditional univariate analysis on images smoothed with a Gaussian
filter (full-width, half-maximum=8mm) and extracted beta values
from a face vs. house contrast using the four runs (with six nuisance
vectors for translation and rotation movement), in the VT lobe of
control participants. Corrected significance was established with a
Monte Carlo voxel-cluster threshold technique (program AlphaSim)
in the intersection of participants' VT regions, giving an overall
corrected alpha level of 0.05 (voxelwise pb0.001; cluster size N=3
voxels). This resulted in a 25-voxel right fusiform gyrus cluster
(center of mass at +41x, −39y, −17z) and a 29-voxel left fusiform
gyrus cluster (center of mass at −47x, −41y, −16z) that were
significantly more active to faces than houses in the control group.
Conducting MVPA within these clusters would be circular for the
controls, so they were only used for assessing the relationship
between classification accuracies and symptom severity in patients
(an independent group from the control participants).

In the third approach to defining relevant regions, we directly
examined the area of face hypoactivation, by isolating the cluster of
voxels that showed significantly less face activation in the ASD group
than in the control group. We used the univariate approach described
above, with the same corrected threshold, to identify the fusiform
hypoactive area, by applying a two-tailed between-groups t-test to
the face vs. house coefficients in the intersection of participants' VT
regions. A 23-voxel cluster of face hypoactivation was detected in the
right fusiform gyrus of the ASD group (center of mass at +41x,−38y,
−18z). A 6-voxel cluster was identified in the left fusiform gyrus
(center of mass at −49x, −41y, −16z). We believe the area of
fusiform hypoactivation is a very suitable area to test the sensitivity of
MVPA, given that there is theoretical interest in the hypoactivation,
and considering that defining the region based on univariate
activation should only help the univariate relationship in a compar-
ison to MVPA. The fusiform regions of interest are shown in Fig. 2.

Although ASD individuals frequently show reduced fusiform face
activity, their parahippocampal place area (PPA; Epstein and
Kanwisher, 1998) demonstrates robust activity to images of places
(Humphreys et al., 2008). We assessed the right and left PPA regions
for a relationship between classification performance and symptom
severity. We expected that faces and houses would be successfully
classifiedwithin the PPA, however by examining the relationshipwith
symptom severity, we could determine if any such link extended to
other relevant areas of VT cortex. We localized PPA clusters in the
right and left hemispheres by first identifying the peak voxel in a
houseN face activation contrast (in the manner described above for
the second fusiform approach) in the right and left medial ventral
temporal lobes of each participant. We then centered a 3×3×3 voxel
cluster at each peak voxel, creating a 27-voxel cluster in each
hemisphere: a volume similar in size to the fusiform regions.

Finally, to verify that any relationship to symptoms was specific to
this latter stage of visual processing, we analyzed two areas in the
occipital lobe sensitive to basic visual features: a voxel clusterwith the
same volume as one of the fusiform regions of interest (ROIs), and a
larger area based on the approximate location of Brodmann's area 17
(BA17). We defined the volume-matched cluster by localizing the
cluster of 23 voxels (the same volume as the right hypoactive fusiform
region) with the greatest response to face and house trials compared

image of Fig.�2
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to the fixation period, near to the calcarine sulcus in each participant.
This anatomical restriction helped localize the cluster to the typical
region of V1. The BA17 region was defined through the AFNI
implementation of the Talairach daemon database (Lancaster et al.,
2000). This area was included to ensure that we checked for symptom
relationships with classification performance in activity patterns
that may be distributed across a larger volume.
Multi-voxel pattern analysis

All pattern analyses were implemented in MATLAB using custom
scripts and the framework provided by the Princeton Multi-Voxel
Pattern Analysis toolbox (Detre et al., 2006). MVPA was conducted on
spatially unsmoothed data. All time points were first convolved with a
model of the hemodynamic response and thresholded at 0.8 for each
slice repetition time (TR), giving eight TRs in each block. The multi-
voxel analyses were performed in a 5-fold cross-validation procedure:
the data were separated into five across-run folds so that each fold
included data from every run and, therefore, examples from all face
conditions. A classifier was then trained on four folds and tested on
the independent fifth, where the testing set was alternated for each of
five iterations. We performed z-scoring within each cross-validation
fold to preserve fold independence. To reduce the risk of the classifier
model overfitting the training data in the large BA17 region, an
ANOVA feature selection method was employed for this area, where
voxels are selected that differ significantly between face and house
conditions with a liberal threshold of pb0.05. Crucially, the ANOVA
was only conducted on training data for each fold, therefore ensuring
that feature selection was not peaking. This particular selection
approach preserves a reasonable number of features and has been
used successfully in a number of MVPA studies (e.g., Diana et al., 2008;
McDuff et al., 2009; Polyn et al., 2005). This feature selection
procedure yielded a mean of 58 voxels (s.d.=12) for controls and
66 voxels (s.d.=19) for patients.

A ridge regression classifier was used for the classification
procedure; an attractive choice for its ability to compensate for multi-
collinearity among features (a property of fMRI data). The method
has also achieved success in previous machine learning appli-
cations (Zhang and Yang, 2003). Classification performance was
recorded as the proportion of correct guesses from all iterations of
the cross-validation procedure. Ridge regression requires a value to be
selected for its penalty parameter. A custom script was developed to
select this parameter using an embedded cross-validation technique,
where the classifier was trained on part of the training data and
tested on the remaining training time-points using a range of penalty
values. By restricting the penalty-search process to training data, we
ensured that the testing data remained independent. The process
was performed for a broad range of penalty values (0, 0.01, 0.1, 1, 10,
100, 1000, and 10,000) and then for a narrower search of ten penalties
around the broad-search penalty that gave the highest classification
performance. The penalty value giving the highest overall classifica-
tion performance on the training data was selected for the test set
classification.

To compare classification performance of the control and patient
groups, we used two-tailed between-group t-tests on classification
accuracy. We employed permutation testing (Golland and Fischl,
2003) to assess whether each individual's classification performance
was greater than expected by chance, by randomly permuting
class labels one thousand times to simulate the null distribution. All
permutations included the same number of face and house blocks in
each fold to avoid biasing the classifier, and the complete cross-
validation process was conducted for each permutation, including
the described penalty-search procedure. Classification performance in
the top 5% of the random permutations indicated above-chance
accuracy (at pb0.05).
We also examined within- and between-category pattern corre-
lations, in a similar manner to Haxby et al. (2001), to explore the basis
for the significant MVPA-symptom relationships we report. Specifi-
cally, we calculated mean face and house patterns for each of the four
runs and then correlated every face and house trial's activity pattern
with the other runs' average patterns, in each participant. The
resulting correlations were averaged to give a measure of within-
category reliability for faces (face trials correlated with mean face
patterns) and houses (house trials correlated with mean house
patterns), and a measure of between-category similarity (face trials
correlated with mean house patterns and house trials correlated with
mean face patterns).

Searchlight analysis

We employed a spherical searchlight analysis (Kriegeskorte et al.,
2006) to explore how the relationship to symptoms varied for the
univariate and multivariate results across the VT lobe. Three-
dimensional searchlight clusters were first mapped onto the VT area
of each participant, creating a series of voxel clusters that covers the
VT cortex. For the voxels within each searchlight, activity patterns for
the face and house trials were classified with a Gaussian Naive Bayes
classifier in a 5-fold cross-validation procedure, with all types of face
stimuli in each fold, as described above. Classification performance
was allocated to the central voxel of each searchlight, giving a map
of accuracies. This analysis was performed three times for each
participant, using radii of 2, 3 and 4 voxels, producing clusters with
volumes of 33, 123 and 257 voxels respectively, when not restricted
by the VT region's boundaries. To directly compare the multivariate
searchlights with a univariate approach, we also recorded the
mean activation to faces and to houses within each searchlight. We
compared the methods' sensitivities to symptom severity by
correlating the ASD individuals' multivariate result (classification
performance) and then univariate result (mean activation to faces
minus mean activation to houses) from each searchlight, with the
ADOS social scores, where higher scores indicate a greater number
and severity of social symptoms indicative of autism. It is not appro-
priate to report the maximum correlation values from an extensive
analysis such as this (Vul et al., 2009), however it is possible to
compare the sensitivities of the univariate and multivariate measures
to symptom severity. To achieve this aim, we permuted the clinical
scores 10,000 times and then correlated the MVPA and univariate
results with the permuted clinical scores. This created a null
distribution for testing the significance of the correlation with the
actual clinical scores.

Results and discussion

MVPA results

Before relating MVPA results to symptom severity, we tested for
significant classification performance in the regions of interest. Three
approaches were taken to define these regions, as described in the
Methods, in part because of the difficulty of using a traditional face
localizer in a group characterized by face hypoactivation. In the first
approach, three overlapping spheres were placed at coordinates from
previous FFA studies, giving a 29-voxel cluster in the right fusiform
gyrus. Both the typically-developing (M=0.74, s.d.=0.09) and ASD
(M=0.78, s.d.=0.07) groups showed high face vs. house classifica-
tion performance, where chance was 0.50. Permutation tests revealed
that classification performance was significantly above chance for all
typically-developing and ASD participants (pb0.05 for all but one
control who had a trend at p=0.06). There were no significant group
differences in classification performance (t22=1.24, p=0.23).

The second approach employed a 25-voxel cluster in the right
fusiform gyrus and a 29-voxel cluster in the left fusiform gyrus,
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reflecting significant face activation in the control group. These were
not suitable regions of analysis for the control participants, but ASD
participants demonstrated high classification performance in the
right (M=0.69, s.d.=0.11) and left (M=0.64, s.d.=0.06) regions.
Permutation testing revealed significant above-chance performance
for all but one ASD individual in the right cluster (ten participants at
pb0.02, one at p=0.05, and one at p=0.38) and all but two in the
left cluster (ten participants at pb0.02, one at p=0.09, and one at
p=0.39). The participant with the least significant result in the
right cluster (p=0.38) and a trend in the left cluster (p=0.09)
corresponded to the left-handed ASD individual in the sample.

The final fusiform region of interest was the fusiform hypoactiva-
tion detected in the ASD group through a univariate group
comparison: a 23-voxel cluster in the right fusiform gyrus and a 6-
voxel cluster in the left fusiform gyrus. The control group showed high
classification performance in the right (M=0.71, s.d.=0.08) and left
(M=0.71, s.d.=0.08) clusters. The ASD group had lower perfor-
mance in the right hypoactive cluster (M=0.66, s.d.=0.09) than
controls, although not significantly so (t22=1.53, p=0.14). The ASD
group's classification performance in the smaller left fusiform cluster
(M=0.54, s.d.=0.04) was significantly lower than the control
group's (t22=6.51, pb0.001). Permutation testing showed that
classification accuracies were significantly above chance in the right
and left regions for all controls (pb0.04). In the ASD group,
classification performance was significant or approaching significant
for the right cluster in all but one participant (nine at pb0.05, two at
pb0.08 — including the left-handed ASD participant, one at p=0.18),
however for the left hypoactive cluster, ten of the ASD participants'
classification accuracies were not significantly above chance (two at
pb0.03, one at p=0.06, and nine at pN0.13). As performance in the
left hypoactive region was not significant for the majority of the ASD
group, possibly because of the small size of the cluster (6 voxels), we
did not analyze this area further.

To assess the importance of the voxel patterns, we replaced the
voxel responses with the regions' mean activation levels at each time
point, and repeated the above classifications. This replacement
produced a substantial reduction in ASD classification performance
for the coordinate-defined spheres (M=0.59, s.d.=0.07; two-tailed
paired comparison: t11=9.43, pb0.001), the area of control-group
right face activation (M=0.52, s.d.=0.07; t11=6.99, pb0.001),
control-group left face activation (M=0.54, s.d.=0.06; t11=6.61,
pb0.001), and the right hypoactive cluster (M=0.50, s.d.=0.07;
t11=5.56, pb0.001). Control participants also experienced significant
reductions in classification performance for the coordinate-defined
spheres (M=0.56, s.d.=0.07; t11=5.62, pb0.001) and right hypoac-
tive cluster (M=0.64, s.d.=0.05; t11=3.59, p=0.004). It is note-
worthy that in the region of right hypoactivation, using mean
Fig. 3. Classification performance within the fusiform regions of interest for control and AS
region. The dash-marks within each bar show classification performance when the voxel p
appropriate to analyze the controls' data in the control-group face activation regions, for re
activation values instead of the voxel patterns was particularly
detrimental for ASD classification performance: the mean reduction
in performance was 0.07 (s.d.=0.07) for controls and 0.16 (s.d.
=0.10) for ASD participants, giving a significant group-difference in
the size of the decrease (t10=2.83, p=0.02). Using mean activation
values here is conceptually similar to a typical univariate analysis, but
has an advantage of producing results on the same scale as MVPA. The
MVPA and mean-replaced classification results are shown in Fig. 3.

We conducted face vs. house classifications in PPA clusters for each
participant, for our subsequent analysis of the relationship between
MVPA results and symptom severity. In a 27-voxel cluster centered
in the right PPA of each individual, control (M=0.84, s.d.=0.07) and
ASD (M=0.87, s.d.=0.05) participants showed high classification
performance. Similarly, a 27-voxel cluster in the left PPA gave high
classification performance in the control (M=0.82, s.d.=0.08) and
ASD (M=0.85, s.d.=0.06) individuals. Permutation testing revealed
greater-than-chance accuracy for both regions in every participant
(pb0.04). We also conducted the face vs. house classification within
two visually-responsive occipital areas, a 23-voxel cluster near the
calcarine sulcus of each participant, and a larger approximation of
BA17, for subsequently relating performance to symptom severity. In
the 23-voxel cluster, classification performance was high in control
(M=0.67, s.d.=0.04) and ASD (M=0.69, s.d.=0.06) participants,
with no significant difference between the groups (t22=0.90,
p=0.38). Permutation testing showed greater-than-chance accuracy
in all participants (pb0.05). Similarly for the BA17 region, classifica-
tion performance was high in control (M=0.77, s.d.=0.04) and ASD
(M=0.76, s.d.=0.04) participants, with no significant difference
between the groups (t22=0.48, p=0.64). Permutation testing
revealed greater-than-chance accuracy in all participants (pb0.002).
We had predicted above-chance performance in these regions in
advance, because of the visual differences in the stimuli, as described
in the introduction. Verifying above-chance classification perfor-
mance is important for the later link to symptom severity: as the two
stimuli classes can be distinguished in these visually-responsive areas,
any lack of a relationship with symptom severity in the next stage of
the investigation cannot be because there is no relevant information
in these regions.

Relationship to symptoms

We investigated the sensitivity of MVPA to individual variation in
patient symptoms by examining the relationship of classification
performance to standardized measures of clinical severity. We
also assessed the relationship between symptoms and a univariate
measure. Face vs. house classification accuracy was significantly
negatively correlated with patients' ADOS total scores for all the right
D participants. The bars reflect classification accuracy using the voxel patterns of each
attern at each timepoint is replaced by the region's mean activation. Note: it was not
asons discussed in the text.

image of Fig.�3
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fusiform regions (Table 1). These scores are a measure of severity
from a structured extended interaction with the patient by an
experienced clinical professional. Higher ADOS scores indicate greater
severity of symptoms, such that lower classification accuracies were
found in more severely affected ASD individuals. Significant negative
correlations were also found between the ADOS social component
sub-scores and classification accuracies in the right hypoactive and
control-group right face activation clusters (Fig. 4). The coordinate-
defined spheres relationship approached significance. The social
component score of the ADI, an additional assessment of social
symptom severity from rated interviews with one of the patients'
parents, was significantly related to classification performance in all
three right fusiform regions. Performance in the left area of control-
group face activation was not significantly related to the clinical
measures, although it approached significance for the ADOS total
score. The regions' mean activation values (face z-scores–house
z-scores) were not significantly correlated with any measure of
clinical severity. Table 1 lists the statistical values for these results.

Analyses of the PPA clusters showed that classification perfor-
mance was not significantly correlated with ADOS total or social
scores (Table 1). Classification accuracies were, however, significantly
correlated with ADI social scores in the right and left PPA clusters
(both at p=0.02). Despite this latter significant result, the weak
relationship between PPA classification accuracy and symptom
severity as measured by the ADOS, suggests a degree of specificity
for the fusiform areas. Classification performance within the 23-voxel
cluster near the calcarine sulcus, and within the approximate BA17
region, was not significantly correlated with ADOS total or social
scores (all pN0.7), suggesting the significant relationships in the
fusiform regions do not result from differences in basic visual
processing. This is also evidence against scanner motion acting as a
mediating factor in the significant relationships with symptoms: any
Table 1
Correlations between multivariate and univariate results and clinical measures of symptom
between correlations (degrees of freedom=9).

MVPA perfo

r

Coordinate-defined spheres ADOS total −0.58
ADOS social score −0.57
ADI social score −0.59

Control-group face activation (right) ADOS total −0.70
ADOS social score −0.72
ADI social score −0.79

Control-group face activation (left) ADOS total −0.52
ADOS social score −0.48
ADI social score −0.19

Hypoactivation cluster ADOS total −0.72
ADOS social score −0.75
ADI social score −0.77

Volume-matched right PPA cluster ADOS total −0.38
ADOS social score −0.34
ADI social score −0.66

Volume-matched left PPA cluster ADOS total −0.46
ADOS social score −0.47
ADI social score −0.66

Volume-matched occipital cluster ADOS total 0.10
ADOS social score 0.09
ADI social score −0.13

Brodmann area 17 ADOS total −0.09
ADOS social score −0.07
ADI social score −0.58

⁎ statistically significant at pb0.05.
systematically-varying scanner motion would affect other brain areas
encoding stimuli differences. Although BA17 classification perfor-
mance was unexpectedly significantly negatively correlated with ADI
social scores (p=0.05), the very weak correlations with ADOS scores
(p=0.78 andp=0.83), and aweakADI relationshipwithperformance
in the 23-voxel occipital cluster (p=0.68), give confidence that the
strong fusiform and ADOS correlations are not because of early visual
processing or motion differences. Motion effects are further ruled-out
by the very weak correlations between scanner movement and
classification performance in all the fusiform regions (coordinate-
defined spheres: r=−0.06, p=0.84; control-group right face activa-
tion: r=−0.14, p=0.66; control-group left face activation: r=0.00,
pN0.99; right hypoactive cluster: r=−0.07, p=0.84).

Additionally, neither age (coordinate-defined spheres: r=0.04,
p=0.90; control-group right face activation: r=0.13, p=0.69;
control-group left face activation: r=−0.11, p=0.74; hypoactive
cluster: r=0.16, p=0.63) nor IQ (coordinate-defined spheres:
r=0.37, p=0.24; control-group right face activation: r=0.47,
p=0.12; control-group left face activation: r=0.18, p=0.58;
hypoactive cluster: r=0.42, p=0.17) were significantly correlated
with performance in the fusiform regions, suggesting these variables
were not driving the significant effects. Finally, we examined
the signal-to-noise ratio (SNR) to ensure that the relationships
between classification performance and symptom severity were not
driven by a systematically lower SNR in participants with greater
symptom severity. For each ASD individual, we calculated a value for
the SNR by dividing the mean baseline (an estimate of the signal) by
the standard deviation of the residual time series (an estimate of
the noise). There were no significant relationships between symptom
severity, measured through the ADOS social scores, and mean
SNRs in the VT lobe (r=0.03, p=0.93), right control-group face
activation (r=−0.36, p=0.25), left control-group face activation
severity. The right column lists the results of paired two-tailed t-tests for differences

rmance Mean face activation Correlation difference

p r p t p

0.05⁎ 0.37 0.23 −2.57 0.03⁎

0.055 0.31 0.33 −2.29 0.05⁎

0.04⁎ −0.10 0.77 −1.59 0.15

0.01⁎ −0.31 0.33 −2.08 0.07
0.01⁎ −0.39 0.21 −1.74 0.12
0.002⁎ −0.50 0.10 −1.72 0.12

0.08 −0.03 0.92 −3.37 0.008⁎

0.11 −0.04 0.91 −2.73 0.02⁎

0.54 0.18 0.57 −1.99 0.08

0.008⁎ −0.30 0.34 −2.30 0.05⁎

0.005⁎ −0.35 0.26 −2.26 0.05*
0.003⁎ −0.39 0.21 −2.20 0.06

0.22 – – – –

0.28 – – – –

0.02⁎ – – – –

0.13 – – – –

0.12 – – – –

0.02⁎ – – – –

0.76 – – – –

0.77 – – – –

0.68 – – – –

0.78 – – – –

0.83 – – – –

0.05⁎ – – – –



Fig. 4. Scatter plots of face vs. house classification performance against ADOS social scores of the ASD participants. Each plot reflects one of the approaches to defining the fusiform
regions: coordinate-defined spheres (left), control-group right face activation (middle) and right hypoactive cluster (right). The y-axis begins at the level of chance.
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(r=−0.46, p=0.13) or right hypoactive cluster (r=−0.31,
p=0.33). The SNR in the coordinate-defined spheres was close
to being significantly related to symptom severity (r=−0.57,
p=0.055), however the weak relationships for the other regions
suggest that systematic differences in SNR cannot account for the
MVPA-symptom severity relationships.

Scores on the Benton face recognition task, where higher scores
indicate greater face recognition ability, were not significantly related
to classification performance in the coordinate-defined spheres
(ASD: r=0.29, p=0.35; controls: r=−0.32, p=0.31) or the left
cluster of control-group face activation (ASD: r=0.46, p=0.13), but
approached significance in the right cluster of control-group face
activation (ASD: r=0.54, p=0.07) and right hypoactive cluster (ASD:
r=0.56, p=0.06; controls: r=−0.28, p=0.37) for ASD participants.

Behavioral performance for the in-scan ‘same vs. different’ task
with neutral faces was not significantly correlated with classification
performance in the fusiform regions for ASD participants (coordinate-
defined spheres: r=0.10, p=0.76; control-group right face activa-
tion: r=−0.23, p=0.47; control-group left face activation: r=
−0.33, p=0.30; right hypoactive cluster: r=−0.15, p=0.63) or
controls (coordinate-defined spheres: r=−0.27, p=0.40; right
hypoactive cluster: r=0.05, p=0.88). It is possible that these
weak correlations are due to behavioral performance approaching
ceiling, although controls (face M=0.88, s.d.=0.07; house M=0.96,
s.d.=0.03) showed greater task accuracy than ASD participants (face
M=0.80, s.d.=0.09; houseM=0.92, s.d.=0.05) for faces (t22=2.34,
p=0.03) and houses (t22=2.66, p=0.01). It is also possible that the
influence of the passive viewing task activation on the classification
results dilutes a link between behavioral and classifier performance.

We also explored whether lower classification accuracies in more
severely-affected participants result from greater variability in their
multi-voxel face patterns, or from their face and house patterns being
less discriminable (more positively correlated). To examine this, we
performed within- and between-category correlation analyses in the
fusiform regions with MVPA-symptom relationships. The right
hypoactive region's face patterns were significantly or close-to-
significantly less correlated with average face patterns in individuals
with increased symptom severity (ADOS social: r=−0.63, p=0.03;
ADI social: r=−0.64, p=0.03; ADOS total: r=−0.54, p=0.07).
There were no significant relationships between house correlations
and ADOS total or social scores, with just a trend for ADI social scores
(r=−0.55, p=0.07). The between-category correlations were more
positive (reflecting less discriminable patterns) in individuals with
higher ADI social scores (r=0.71, p=0.01; r=0.69, p=0.01), but
this did not reach significance for the ADOS total or social scores. In
the right cluster of control-group face activation, only the ADI
scores gave significant relationships: increased symptom severity
was associated with less correlated within-category face patterns
(r=−0.63, p=0.03) and higher between-category correlations
(r=0.78, p=0.003; r=0.73, p=0.01), with a weak trend for house
patterns (r=−0.52, p=0.09). The coordinate-defined spheres had
no significant symptom relationships for within- or between-category
correlations, excepting between house correlations and ADOS total
scores (r=−0.59, p=0.04), although this was not significant for the
ADOS or ADI social scores.

Searchlight analysis

We examined regional variation of multivariate and univariate
sensitivities to symptom severity in the VT lobes using a spherical
searchlight analysis. We ran the searchlight technique with multivar-
iate (face vs. house classification accuracy) and univariate (mean
activation to faces minus mean activation to houses) measures for
each ASD participant. The recorded values for each sphere were
correlatedwith the ADOS social scores. The searchlight procedure was
conducted using a radius of 2, 3 and then 4 voxels to examine how
the results vary with searchlight size. The strength of the relation-
ships between the searchlight measures and symptom severity was
greater overall for the multivariate measure than for mean activa-
tion, indicated by two-tailed paired t-tests on the absolute correla-
tion coefficients of searchlights with a 2-voxel, (t970=3.96, pb0.001),
3-voxel (t970=3.06, p=0.002) and 4-voxel radius (t970=2.47,
p=0.01).

We also examined which searchlights were significantly related to
symptom severity by permuting the participants' ADOS social scores
10,000 times and computing the searchlights' correlations for each
permutation. Comparing the correlation from using the correct ADOS
scores gave a map of p-values for each searchlight size, for the
univariate and multivariate measures. No clusters of more than one
searchlight were significantly correlated with ADOS social scores
when mean activation was employed as the searchlight dependent
variable, for any of the three radii (at a liberal threshold of pb0.01). In
contrast, when classification performance was employed as the
searchlight measure, using a 2-voxel radius detected three searchlight
clusters (of at least 2 contiguous central voxels) that were
significantly related to symptom severity: a 10-voxel cluster centered
in the right fusiform gyrus (center of mass: x=39, y=−36, z=
−18), a 4-voxel cluster centered in the left parahippocampal gyrus
(center of mass: x=−25, y=−39, z=−13) and a 3-voxel cluster
centered in the right inferior temporal gyrus (center of mass: x=58,
y=−31, z=−19). These results are shown in Fig. 5. Using a 3-voxel
searchlight radius revealed a 4-voxel cluster in the right fusiform
gyrus (center of mass: x=41, y=−35, z=−20) that partially
overlapped with the 10-voxel cluster reported in the 2-voxel radius
analysis. No significant searchlights were detected with a 4-voxel
radius. We also applied a cluster-based correction for multiple
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Fig. 5. Searchlights with significant correlations between face vs. house classification
performance and ADOS social scores. Each red voxel represents the center of one
searchlight with a radius of 2 voxels. Significance (pb0.01) was determined by
permuting the clinical scores. Top row: x=36, y=−40, z=−17. Bottom row: x=57,
y=−31, z=−21. Right and left are reversed by convention.
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comparisons, although this did not produce significant results for any
of the searchlight radii. Despite this null finding, the detection of
these regions at a liberal threshold, using MVPA results but not
the univariate measure, suggests the presence of stronger relation-
ships between symptoms and the MVPA results, than the univariate
measure employed here.

Discussion

Review of aims
The primary aim of this study was to examine if MVPA measures

can be sensitive to patient symptom severity. We found that
classification performance, a multivariate measure of separability for
the face and house fMRI patterns, was strongly related to standard
measures of clinical severity in ASD participants. Specifically, in both
anatomically and functionally defined clusters of right fusiform
voxels, classification performance was significantly negatively corre-
lated with symptom severity, while mean activation levels were not.
This greater sensitivity of pattern analyses extended to voxels that
were defined using differences in univariate measures. Assessments
of the PPA region showed that this sensitivity is not a general property
of VT cortex. Analyzing two occipital areas additionally confirmed that
the finding did not generalize to activity patterns involved in early
visual processing. A searchlight analysis across the ventral temporal
lobes detected regions where classification performance was signif-
icantly related to symptom severity, which were not detected using
the searchlights' mean activation levels, although only when a liberal
threshold was employed.

We have provided an example of obtaining these benefits from a
functional dataset not designed with MVPA in mind. By combining
multiple face conditions into one face class, we were able to utilize a
large number of trials for classifier training and testing. Although the
design of the experiment placed limitations on the conclusions that
can be drawn from the results (discussed below), multivariate
classification performance was still more sensitively related to
symptom severity than the univariate measures we employed.

MVPA and patient groups
The findings in this study provide, to the best of our knowledge, the

first evidence that MVPA functional results can reliably predict clinical
symptoms. The sensitivity to clinical severity obtained using MVPA
supports the idea that subtle variations in activity patterns, reflected in
MVPA results, can in some cases more sensitively reflect individual
variation in an area's functional characteristics, than certainmeasures of
mean activation. It is noteworthy that this stronger link to symptom
severity was also found in a set of voxels that was defined based on a
univariate statistic (i.e., a significant difference in activation values
between groups). This latter finding gives confidence that the greater
sensitivity does not reflect the activity patterns of voxels that are
separate from those demonstrating univariate differences.

The greater sensitivity to individual differences reported herewill be
of interest to researchers who are involved in characterizing variation
across participants in a wide range of fields. Among clinical in-
vestigators, this interest may even extend to those looking to select
individuals for future interventions. As Scherf et al. (2010) noted when
discussing the failure to find a significant relationship between
(univariate) fusiform gyrus activation and ADOS scores, “such predict-
ability could have substantial implications for identifying individuals
whomight benefit from a behavioral intervention designed to improve
face processing” (p.13). Future research will be required to establish if
the sensitivity reported here extends to other patient groups, and to
other regions with reduced univariate activation.

The findings reported in this study are also relevant to clinical
researchers looking to make the most of existing functional datasets.
The detection of regions with patterns of activity that reflect
variations in patient symptoms, without a corresponding significant
univariate relationship, suggests the encouraging possibility that
additional regions of interest may be identifiable in previously-
collected datasets. In this dataset, we found that symptom severity
was related to face vs. house classification performance in a
coordinate-defined area (based on face activity coordinates in prior
literature), which neighbors hypoactivation in this particular group of
ASD participants. A significant relationship here suggests that areas of
the fusiform gyrus without a significant difference in univariate
activation, may nevertheless show activity patterns that vary
systematically with symptom severity. This may be expected from
an activity pattern perspective, where a significant group difference in
univariate activation can be conceptualized as two very distinct
activity patterns. Variations in face perception-related activity may
still be present in nearby areas of cortex, even if undetectable with
univariate techniques.

Linking multivariate searchlight results to individual differences
gives further potential for revealing new regions of interest. In the
context of this dataset, our searchlight finding of a symptom
relationship in the inferior temporal gyrus (ITG) fits with several
previous studies that have suggested the region may play a role in face
processing in this patient group (e.g., Koshino et al., 2008; Schultz et al.,
2000). Someunivariate studies have not detected ITG involvement (e.g.,
Pierce et al., 2001), giving the possibility that systematic differences in
ITG activity – differences that may not always be detectable with
univariate analyses – could have been present, undetected, in the
functional data of such studies. Although the identified searchlight
locations have backing from prior literature, the failure to detect these
regions at a more stringent threshold means these results should be
interpreted with some caution. Despite this caveat, the multivariate
searchlight approach has the potential to highlight new regions that are
functionally related to patient symptoms.

Our examination of within- and between-category correlations
may be of interest to investigators exploring the basis for MVPA-
symptom relationships. In this dataset, the within-participant
consistency of multi-voxel face patterns was lower in individuals
with greater symptom severity in the hypoactive fusiform region. This
may be an underlying factor in the MVPA-symptom relationships,
although our finding that greater symptom severity, when measured
by the ADI, is accompanied by less discriminable face and house
patterns is also suggestive. Future studies may wish to examine
further the relative contributions of face pattern consistency and face/
non-face discriminability, including whether the variations in multi-
voxel face patterns reflect larger differences across face types (which
varied by run here), or within face types.
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Although in this particular context we found multivariate
measures to be a strong predictor of symptoms, there may be other
contexts and questions where univariate measures are more sen-
sitive. In a recent MVPA study, Quamme et al. (2010) reported that
univariate measures were more sensitive thanMVPA to task behavior,
at the group level, in several of the regions they examined. As
Quamme et al. (2010) described, the complexity of MVPA is
accompanied by a vulnerability to over-fitting noise, which is less
likely to occur with across-voxel averages. It is therefore very possible
that univariate measures could provide a more sensitive measure of
individual differences than MVPA in some circumstances. For this
reason, it should not be concluded from this paper that MVPA will
always be a more sensitive measure for tracking functionally-relevant
individual differences, but that in certain circumstances it can be. We
further note that a variety of univariate measures are available for
fMRI analyses. Although we found that MVPA results were a stronger
predictor of symptom severity than the univariate measure we
employed (mean face activation–mean house activation), this may
not apply to all univariate measures. This is additionally relevant
as the MVPA and univariate measures employed here differ in
the number of free parameters. Overall, we view the univariate and
multivariate approaches as complementary, with each adding its
own value.

Despite the findings we report here, it must be acknowledged that
the design of the original fMRI study places a limit on interpretations.
Specifically, the inclusion of two stimulus categories, faces and houses,
limits the condition-specific conclusions that can be drawn, as
discussed in the Introduction. Future studies of neural differences in
face processing may consider including additional stimulus classes,
such as scrambled images and object categories (as in Haxby et al.,
2001; Spiridon and Kanwisher, 2002). Assessing classifications of
faces vs. non-faces, alongside the classification of different non-face
categories, would further investigations of face-specific activity
patterns in ASD individuals. Employing alternative processing and
classification methods may also contribute additional insights (see
O'Toole et al., 2007), for a discussion of different classification
approaches). Another approach for future research would be to
perform MVPA within anatomically-defined ROIs. For example, ASD
symptom severity should be correlated with face-related classifica-
tion performance in the fusiform, but not parahippocampal, gyrus. As
PPA activity can sometimes extend into the fusiform gyrus (Epstein
and Kanwisher, 1998), it may be desirable to restrict such anatom-
ically-defined fusiform ROIs to certain sub-sections of the gyrus for
face vs. house classifications, or expand the non-face classes as
discussed above. Future studies may also wish to use MVPA to study
activity pattern variations for different face identities in individuals
with an ASD. Investigating the nature of the multi-voxel patterns
generated by different faces in this group could advance our
understanding of their face processing differences.

Conclusions
We have shown that MVPA can act as a sensitive fMRI predictor of

patient symptoms.We believe this study highlights an important use of
MVPA techniques for the study of autism and other clinical conditions.
The application of pattern analysis techniques to patient differences is
still in its infancy, but this investigation shows that the approach has the
potential to measure clinically relevant patterns. Furthermore, MVPA
combinedwithmapping techniques can identify brain regions thatmay
not be revealed with certain univariate approaches.
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