
Trends
Descriptive analytical approaches indi-
cate that diverse facets of the environ-
ment adhere to a complex network
structure.

Recent advances offer insight into how
learners might acquire and access net-
work representations. Specifically,
higher-order topological properties of
networks have been shown to facilitate
learning.

Emerging neuroimaging techniques
construe the brain itself as complex sys-
tem, revealing how network dynamics
support learning.

We suggest that network science
approaches are compatible with statis-
tical learning approaches to knowledge
acquisition. That is, local statistical reg-
ularities extracted from sensory input
form the building blocks of complex net-
work structures. Broader architectural
properties of network structures might
then explain learning effects beyond
sensitivity to local statistical information.
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A core question in cognitive science concerns how humans acquire and repre-
sent knowledge about their environments. To this end, quantitative theories of
learning processes have been formalized in an attempt to explain and predict
changes in brain and behavior. We connect here statistical learning approaches
in cognitive science, which are rooted in the sensitivity of learners to local
distributional regularities, and network science approaches to characterizing
global patterns and their emergent properties. We focus on innovative work that
describes how learning is influenced by the topological properties underlying
sensory input. The confluence of these theoretical approaches and this recent
empirical evidence motivate the importance of scaling-up quantitative
approaches to learning at both the behavioral and neural levels.

Relating Two Approaches
From the earliest stages of development, the human brain is tasked with the monumental feat of
building and efficiently accessing an enormously complex constellation of knowledge. Even the
most mundane interactions with our environment require a rich understanding of its component
parts as well as of the scales at which they relate to form a larger system. Thus, knowledge can
be represented at multiple levels, ranging from local associations between elements to complex
networks built from those local associations. Until recently a dominant approach to human
learning has focused on micro-level patterns, often the pairwise relationships between the
constituents of sensory input. In the present review we turn our attention to exciting advances in
the application of network science to the study of broader architectural patterns to which human
learners are sensitive.

One source of compelling support for locally driven learning derives from demonstrations that
infants can extract words from continuous speech based on the conditional probabilities
between syllables [1]. Ongoing work continues to elucidate the power of statistical relationships
exploited by both infants and adults, making ‘statistical learning’ one of the most robust and
deeply explored phenomena in the field of cognitive science [2–5]. An underlying rationale has
been that local associations, such as co-occurrence frequency or the conditional probabilities
that facilitate word segmentation, assist in directing the learner to component parts of a cognitive
system. Knowledge of these component parts not only opens up other informative cues to
structure ([6] for review) but also spurs the development of sophisticated representations of
dependencies between higher-order units (e.g., [7]). While evidence has thus supported a key
role for local computations in complex learning environments, intriguing counter-evidence
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Glossary
Assortative mixing: a measure of
whether nodes with similar properties
(e.g., high degree) are more likely to
share an edge.
Clustering coefficient: the extent to
which adjacent neighbors of a given
node are also connected to one
another. This measure may be
calculated for an individual node or
expressed as an average across a
network.
Community structure: a graph
property wherein nodes are densely
connected in clusters that in turn
share only weak connections with
one another. Communities are
commonly also referred to as
modules.
Coreness: a measure of how deeply
a given node is embedded in a
network. A node has high coreness if
it is retained in the network after
recursively pruning nodes with low
degree.
Degree: the number of edges
incident to a given node. A node has
high degree if it is densely connected
to many other nodes and low degree
if it is only sparsely connected.
Complex networks may have skewed
degree distributions such that certain
nodes are far more richly connected
than others, forming hubs.
Dyad: a pair of nodes sharing an
edge.
Edges: links between the vertices in
a network. If an edge is directed,
then the order in which nodes are
connected is meaningful (e.g.,
temporal order is important for a
syntactic network, but not for a
phonological network).
Nodes: vertices, or connection
points, which comprise a network.
Shortest characteristic path
length: a measure of network
efficiency; it is, on average, the least
possible distance between every pair
of nodes when traversing along the
edges of a network.
Small-world network: a family of
networks defined by short
characteristic path length and a high
degree of clustering.
suggests that statistical bootstrapping mechanisms may be overwhelmed by real-world cogni-
tive systems (e.g., natural language [8]; but see [9,10]). Because the issues of scalability in
statistical learning are as yet unresolved, we stress here the value of also considering the global
network structure that emerges from pairwise relationships between constituent elements in the
environment.

Under a complex systems approach, the network structure of a system is studied by determin-
ing its component elements (nodes, see Glossary) as well as the relational links between them
(edges). Once this scaffolding is constructed, it is possible to probe large-scale topological and
dynamical properties over and above those present in the pairwise relations between elements.
In fact, one defining characteristic of complex systems is that the explanatory power of their
global architecture exceeds that of their local architecture [11]. Network science is increasingly
applied to answer questions about the structure of immensely complex information: how might
we represent or navigate spatial maps [12,13], object features [14], semantic concepts [15–17],
and grammatical relationships [18]? It has also been effectively harnessed by cognitive neuro-
scientists to examine how structural and functional connections in the brain give rise to various
cognitive capacities [19–25]. Despite these many advances, the integration of network science
and cognitive science has tended to focus either on (i) the description of networks derived from
the sensory world, or (ii) the mechanisms by which the human brain engages with the sensory
world, with little communication between these two areas. We focus here on a related but
distinct line of questioning that may begin to bridge these branches of cognitive science. Namely,
how can topological properties of sensory input drive the process of human learning?

In the subsequent sections we offer examples of complex networks present in our everyday
environment, focusing particularly on descriptive analyses of language networks. Next, we detail
a growing body of experimental work that links topological properties of networks to knowledge
acquisition. We then discuss the intersection between distributional approaches to learning,
which offer insight into the acquisition of local statistical patterns, and network-based
approaches to learning, which offer complementary insight into the acquisition of higher-order
patterns. Finally, we describe cutting-edge neuroimaging work that construes the brain itself as a
dynamical complex system, highlighting the importance of bridging internal network models of
brain function with higher-order patterns in external networks.

Complex Networks Are Pervasive
Complex systems approaches rest on the premise, not tied to any particular domain, that the
world can be decomposed into parts, and that those parts interact with one another in
meaningful ways. Therefore, diverse facets of human knowledge can and have been studied
under the lens of network science. Cognitive systems are generally thought to adhere to a
complex network structure, a type of graph structure that is neither truly random nor truly regular
[26]. Random graphs are collections of nodes that are linked by edges selected at random from
a uniform distribution of all possible connections. Regular graphs are collections of nodes that
share connections to the same number of neighbors, thus having equivalent degree. Falling
between these two extremes (Figure 1), complex networks display their own set of unique
properties including, but not limited to: community structure (nodes may pattern in densely
connected groupings), skewed degree distribution (a few nodes may be densely connected,
forming ‘hubs’), and distinctive mixing patterns (nodes may be more likely to share a link with
other nodes that have either similar or dissimilar properties). As we will explore in detail in the
following section, human learners are adept at exploiting topological properties such as these as
they extract structure from sensory input.

In principle, network analysis of cognitive systems requires only that a given dataset be parsed
into discrete elements (nodes) and that some relationships between those elements be specified
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Figure 1. Visualization of Network Types. Regular networks, also known as lattices, are collections of nodes with
equivalent degree (left panel). Random networks are collections of nodes that are linked by edges selected at random from a
uniform distribution of all possible connections. We show here a random network generated from an Erdó́s–Rényi model
with an edge probability of 0.3 (right panel). In the center panel we display a complex network with community structure,
much like a network that could be derived from a learner's language environment.
(edges). In practice, this process presents a number of challenges, not least among them is
determining the appropriate level of granularity of the elements or what exactly constitutes a
relationship (for a thoughtful assessment of these topics, see [27]). Nevertheless, network-based
approaches remain extremely powerful and have been successfully applied to several pressing
questions. In the visual domain, complex network modeling techniques have been used to
understand processes essential to scene perception such as texture and shape discrimination
[28–30]. Moreover, the burgeoning field of social network analysis has offered unprecedented
insight into how humans transmit information and interact with one another [31,32]. Perhaps
more than any other branch of cognitive science, quantitative linguistics has adopted network-
based approaches as a cornerstone methodology [33–36]. Across levels of the language
hierarchy, graph theoretical methods have been applied to the study of phonological
[37,38], semantic [39–41], and syntactic dependency systems [42,43]. In a phonological
network, for example, the nodes of the graph correspond to the phonetic transcription of a
word (e.g., as drawn from a dictionary), and edges are placed between words if they differ by no
more than one phoneme (Figure 2). In this way, network approaches to cognitive systems tend
to be built on existing distributional measures (in this case, phonological neighborhood density
[44]). However, as discussed below, the higher-order architectural properties of these cognitive
networks likely have their own set of consequences for learnability.

Network Topology Influences Learning and Memory
Historically, complex network analyses of cognitive structures have had a descriptive focus.
Naturally, the first step in understanding how networks structures develop [45–47] is to
characterize existing topological properties (e.g., based on text or production-based corpora).
Only recently has network topology been linked to empirical evidence of human learning. This
relationship is typically examined in one of two ways: (i) by exposing adult learners to a set of
tightly controlled stimuli and asking how they retain knowledge based on its underlying archi-
tecture, and (ii) by extracting the network properties of adult speech and charting its influence on
the trajectory of word learning in young children. Most of this empirical work has taken place in
the language domain, likely because the topologies of language systems are richly characterized
and also because mastery of a complex language system represents an unequivocal learning
challenge [35].

Central to the production and comprehension of language lies the construct of a mental lexicon.
To interact successfully with our language environment it is essential to develop, adapt, and
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beer 

yearnear

dear

hear (here) 

silk
sulk

milk

sink (sync)

silly

High clustering coefficient

Low clustering coefficient

Figure 2. Sample (Not Exhaustive) Phonological Networks of Two English Words, ‘Beer’ and ‘Silk’, That Differ
in Their Clustering Coefficients. Note how the phonological neighbors of ‘beer’ tend also to be phonological neighbors
of each other, resulting in a high clustering coefficient. By contrast, the phonological neighbors of silk are not phonological
neighbors, resulting in a low clustering coefficient.
efficiently access the conceptual, grammatical, and sound-based properties of words. Accu-
mulating evidence suggests that phonological (sound-based) network properties play a key role
in mediating various aspects of this process. Interestingly, the clustering coefficient of a word
(construed in this case as a node in a phonological network) has been shown to predict how
robustly that word is acquired [48]. The clustering coefficient indicates whether the neighboring
nodes of a target word are also connected to each other. In Figure 2 we offer examples of words
with high and low clustering coefficients. Words in the phonological neighborhood of ‘beer’ (i.e.,
those that overlap but for a single phoneme) also tend to overlap with each other (e.g., hear–
year–near–dear), resulting in a high clustering coefficient. By contrast, words in the neighbor-
hood of ‘silk’ (e.g., milk–sulk–silly–sink) do not share a strong phonological relationship with each
other, resulting in a low clustering coefficient. One week after training on pseudoword–novel
object pairings, adult participants were better able to match a pseudoword to its corresponding
object if that pseudoword had a high clustering coefficient. Complementary results indicate that,
after training on the phonological neighbors of a target word (but not the word itself), learners
tended to erroneously endorse target words with low clustering coefficient. By contrast, results
from a different long-term memory task (in which target words were not withheld) indicated that
low clustering coefficient conferred a recognition advantage; correct endorsement was higher
when compared to words with high clustering coefficient [49]. These findings are complemented
by word recognition studies that demonstrate a processing [50,51] and production [52]
advantage for words with low clustering coefficient, suggesting that words with these properties
are more rapidly accessed from the mental lexicon. Taken together, these results suggest that
dense interconnectedness between nodes in a network can confer an advantage for learning,
but a disadvantage for retrieval. The effect of network topology on a given cognitive process may
therefore differ depending on the precise nature of the task at hand.
632 Trends in Cognitive Sciences, August 2016, Vol. 20, No. 8



To be clear, the clustering coefficient of a target word represents only one well-studied example
of topological influences on learning and memory. When analyzing phonological properties of
caregiver speech, it was found that children <30 months of age were most likely to produce
words with a high degree and low coreness (a measure of how deeply a node is embedded in a
network) [53]. Larger-scale architectural properties may also play a role in accessing the mental
lexicon. One example of such a macro-level property is assortative mixing by degree. This
network property encapsulates the phenomenon that words with many phonological neighbors
(high degree) are linked to words that also have many phonological neighbors, while words with
few phonological neighbors (low degree) are linked to words that share this property. Although
assortative mixing has not been examined in a learning context, its effects are observable in
psycholinguistic studies of lexical access. When the sound quality of a word with high degree is
degraded, listeners are most likely to misperceive that item as a different word with equally high
degree [54]. Other higher-level patterns in the phonological network have been implicated in
memory processes. For example, words drawn from so-called ‘giant components’ exhibiting
small-world network properties such as a high clustering coefficient and short character-
istic path length are recalled less reliably than words drawn from ‘lexical islands’ that share no
connection to the giant component [55].

Clearly, the network structure of the lexicon has been most commonly framed in terms of
phonological patterns. Nonetheless, its semantic organization (i.e., how words are related to
each other via their meaning or co-occurrence in a corpus) has also been shown to influence
word learning. For example, the distinctness of the features of an object, such as shape and
surface properties, has been shown to predict age of acquisition of the word corresponding to
that object. Phrased another way, objects that are topologically disconnected from other objects
in a semantic network are labeled at the youngest age [14]. Graph analytic techniques have also
been successfully applied to model child output [56,57]. In one recent study, a semantic network
was constructed such that a node in the network represented a word known by children aged
15–36 months, and each edge represented co-occurrence statistics as derived from a database
of caregiver speech [57]. Word knowledge of typically-developing children exhibited character-
istic small world properties, but the networks of late-talking children exhibited this quality to a
lesser degree. Thus, language acquisition is influenced not only by the network architecture of
input but also by differences in how that input is transformed to an individual's own distinct
network topology. More broadly, these developmental studies highlight the potential power of
harnessing network science to better understand individual differences in core cognitive capaci-
ties (see also [58]). In the following section we turn to the essential question of how the learner
begins to build complex network representations.

Local Statistics Underpin Network Architecture
The Impact of Local Statistics
As introduced previously, statistical learning persists as an influential and well-supported theory
of how learners extract structure from our external world. While we mainly focus on the effect of
pair-based conditional probabilities, statistical learning fits into a broader distributional learning
literature. In fact, longstanding interest in how we compute local contingencies can be traced to
even earlier studies of associative learning mechanisms in animals (e.g., [59]). As used to
describe complex knowledge acquisition in humans, the term ‘distributional information’ encom-
passes the context in which elements in the environment appear together and with what
regularity (e.g., frequency or probability). Sensitivity to distributional information is thus evident
in charting the influence of patterns of co-occurrence frequency (e.g., how often do groupings of
elements appear together? [60], see also a related literature on ‘chunking’ in finite-state grammar
learning [61]) or the conditional probabilities between elements (e.g., what is the probability that a
given element will follow another?). Manipulation of distributional statistics has also used to
examine the acquisition of phonetic categories [62,63], phrase structure [64,65], and syntactic
Trends in Cognitive Sciences, August 2016, Vol. 20, No. 8 633



dependencies [66]. Outside such learning contexts, the influence of distributional statistics is
also observed in the processing of already familiar input. During natural language comprehen-
sion, for example, knowledge about grammatical dependencies result in a processing benefit for
expected (probable) structures [67,68]. Likewise, processing costs associated with improbable
structures can be overcome by sharply shifting their frequency in the immediate sensory
environment [69]. Thus, the computation of statistical regularities is a continuous process that
permeates both the acquisition of novel representations and the processing of familiar structures
(for further discussion of the intersection between these capacities see [65,70,71]).

While distributional sensitivity is often demonstrated via linguistic stimuli, we note that, outside
the language domain, pairwise statistical patterns have been shown to drive the parsing of tonal
groupings [72], visual events [73,74], and spatial scenes [75]. Evidence therefore points to
statistical learning as a powerful domain-general mechanism, or one that can perform equivalent
computations regardless of both input modality (e.g., auditory or visual; but see [76,77]). Despite
its wide applicability, an important and growing area of research probes constraints on our
distributional learning capacities (i.e., how might this learning mechanism break down in the
context of multiple patterns [78,79]? At what levels of abstraction does it operate [80]? And how
does learning interact with attentional processes [81,82]?).

Local Statistics Give Rise to Complex Networks
While the evidence suggests that associations can be computed hierarchically (e.g., to order
words into phrases and phrases into sentences [66]; more generally [83]), many learning studies
solely involve the manipulation of non-hierarchical, pairwise statistical information such as co-
occurrence frequencies or conditional probabilities. From a complex network perspective, this
amounts to constructing dyads in the network. However, a notable recent study suggests that
learners also capitalize on regularities that emerge from global network architecture [84].
Participants in this study viewed a continuous stream of images generated by a random walk
through a graph with community structure (i.e., three distinct groupings of interconnected
nodes). Each node of the graph corresponded to a unique image, and the random walk through
the graph ensured that transition (conditional) probabilities between images in the sequence
were uniform (i.e., not a cue to an event boundary, as in canonical segmentation studies; e.g.,
[1]). Despite the absence of pairwise probabilistic information, learners were able to segment
groupings of images based solely on the community structure of the underlying graph, accu-
rately detecting when the stream shifted from one cluster to the next. While this finding
represents a tremendous step forward in our understanding of macro-level topological influ-
ences on the learning process, we stress that this account is by no means incompatible with
existing statistical learning accounts. Exactly as early segmentation tasks demonstrated that
conditional probabilities were sufficient to drive word extraction (for further discussion of this
point see [4]), the present task demonstrates that community structure is also sufficient to drive
event segmentation. In real-world situations, learners likely exploit a combination of the local and
global-level cues that are available to them.

Statistical learning and complex network approaches are therefore compatible, but the marriage of
these two disciplines has the potential to offer additional insight into the acquisition of large-scale
structural knowledge. As they are currently implemented, statistical learning approaches provide
the building blocks of graph structure, while complex systems approaches can reveal higher-order
relational patterns over and above those captured by co-occurrence statistics. We suggest here
that the types of local relationships typically manipulated in statistical learning paradigms (e.g.,
syllable, word, or phrase co-occurrence) are not only correlated with particular micro-level
topological properties of complex networks (i.e., the degree of a target node) but themselves
underpin macro-level properties such as community structure (Figure 3). For example, in quanti-
tative linguistics, co-occurrence networks generated from temporal adjacency between words in a
634 Trends in Cognitive Sciences, August 2016, Vol. 20, No. 8
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Figure 3. Pairwise Statistics Underpin Network Topology. When four pseudowords (tudaro, bikuti, pigola, budopa)
are concatenated together to form a continuous stream of syllables, evidence from Saffran et al. (1996) indicates that these
words can be segmented via the dip in transitional probabilities at word boundaries [1]. We show here that the co-
occurrence between syllables can also be used to construct a weighted graph (black lines indicate a high bigram frequency
and red lines indicate a low bigram frequency). A community detection algorithm consisting of a series of short random
walks through this graph [108] will then reveal robust cluster structure corresponding to each word in the stream (shown in
green, pink, purple, and blue).
given context have been used to probe broader topological properties of semantic systems (e.g.,
[85]). Moreover, because the edges of a network are interpreted as any relationship between two
nodes, it is possible to build probabilistic information into the weights of an edge when modeling the
graph structure of a system. While the densely clustered graph structure discussed previously [84]
involved edges of equal weights (uniform transitional probabilities), a random walk on a weighted
graph would result in the traversal of some edges more than others , potentially leading to novel
segmentation patterns. Thus, probability of co-occurrence can be used to determine the regularity
Trends in Cognitive Sciences, August 2016, Vol. 20, No. 8 635



with which graph edges are traversed (e.g., as a temporal sequence unfolds). Indeed, an important
line of future work might be to explore how learning is influenced by topological properties of a
complex network in addition to the specific sequence in which its edges are traversed. Preliminary
evidence suggests that the impact of general topological properties outweighs that of algorithms
dictating the order in which its constituent elements are revealed or retrieved [86].

Statistical learning researchers are already tackling new questions with concepts closely tied to
network science: how does the sparseness or density of input influence generalization [87]?
What latent structures support acquisition [88]? A more formal integration of network science
methods with current statistical learning approaches will allow current experimental methods to
be ‘scaled up’ to unprecedented levels (see criticisms in [8]). While mounting evidence indicates
that statistical learning mechanisms act on larger lexicons (and that these learning effects can
persist over years [89]), increased communication between statistical learning and complex
network science will likely offer additional insight into the influence of macro-level topological
properties on this process. Network topology might also have far-reaching impact on cognitive
capacities that support or influence learning (e.g., attention, working memory, general intelli-
gence; see [76]). For a more detailed treatment of how network-based approaches might be
applied to the study of learning, refer to the Outstanding Questions.

The Human Brain Is a Dynamical Complex System
As with all efforts to understand a cognitive process, probing how that process is implemented in
the human brain must be considered in addition to patterns of human behavior. Particularly as
related to linguistic functions such as processing and production, this integrative approach
between brain and behavior has been applied with success [90]. With the advent of functional
magnetic resonance imaging (fMRI), similar strides have been made in increasing our under-
standing of the neural regions recruited during statistical learning (e.g., in segmentation tasks
[91–95]). However, this univariate approach is relatively coarse, revealing only areas that, on
average, show increased neural activity above a significance threshold or related to a behavioral
measure. To address this potential concern, we now survey one additional avenue of promising
research: the study of the human brain itself as a dynamical complex system [19,21,23].

In functional brain networks, relationships arise from correlation or coherence in the neural
response of pairs of neural areas (Figure 4). These relationships are taken to index how regions
communicate with one another dynamically during a given task. Most relevant to the current
review, advances have been made in the application of network-based approaches to uncovering
functional neural mechanisms of the learning process [96,97]. For example, graph theoretical
techniques have been applied to track changes in modular (community) organization as partic-
ipants practiced a simple motor sequence [98]. In this case it was observed that modularity shifted
dynamically over time, and also that it was possible to predict future behavior based on character-
istics of network configuration in a given scanning session. Specifically, flexibility, defined by the
number of changes in the connectivity of nodes to higher-level communities, was a significant
predictor of reaction time speed-up. Especially as indexed in frontal areas, flexibility has also been
linked to performance on various memory tasks, such as those involving short-term contextual
recollection [99] and working memory components [100]. Related work has demonstrated that the
separability of a richly connected ‘core’ of primary sensorimotor regions and a sparsely connected,
flexible ‘periphery’ of association regions increases throughout learning, a measure also found to
predict individual differences in performance on a motor learning task [101]. Ongoing work
examines other dynamical properties that may drive learning (e.g., network centrality [102] and
the autonomy of sensorimotor associations [103]).

As reviewed throughout this manuscript, a key line of research in cognitive science centers on
the learnability of network structures that emerge from external input (e.g., via the topological
636 Trends in Cognitive Sciences, August 2016, Vol. 20, No. 8
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work Structure in the Brain. To inves-
tigate topological properties of task-
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Outstanding Questions
To what extent is network-based learn-
ing constrained? Are the richly studied
topological properties that influence
learning in the language domain also
drivers of learning with non-linguistic
stimuli?

A central finding from the statistical
learning literature is that learners are
sensitive to non-adjacent, in addition
to adjacent, dependencies. How might
the learner exploit adjacent and long-
distance relationships between dyads
to build representations of complex
networks?

A key point here is that learners are
sensitive to local distributional patterns
as well as to higher-order topological
properties, and that these two
accounts are fundamentally compati-
ble. How might learning unfold when
these sources of information are explic-
itly at odds? For example, in a segmen-
tation context, how might a learner
determine event boundaries when ele-
ments are densely clustered but share
only weak connections (i.e., co-occur
infrequently)?

How can empirical data, machine-
learning techniques, and complex sys-
tems approaches to neural represen-
tations be more tightly inter-linked? To
what extent are the topological prop-
erties of sensory input reflected in neu-
ral patterns? As complex systems
approaches to brain activity evolve,
can computational models of cognition
be given a firmer biological basis?
features in language). We propose here that an equally important line of work is to examine how
internal complex system dynamics gives rise to learning, and indeed how acquired knowledge
might be reflected in observable topological patterns in the human brain. While most complex
network approaches to brain connectivity begin with brain parcellation according to
cytoarchitectonic or other anatomical division (Figure 4), some approaches have examined
network structure via voxel-to-voxel associations (i.e., where individual voxels correspond to a
network node [104–107]). In contrast to whole-brain connectivity approaches, which focus on
the coordination of large-scale cognitive systems, voxel-based analysis techniques introduce
the possibility of examining network-based representations as they develop. We submit that
how learners translate network architectures in sensory input to network-based neural repre-
sentations remains an essential but open question. More generally, we propose that the field of
cognitive science stands to benefit enormously from increased incorporation of network-based
approaches, specifically because the adoption of these methods offers a hitherto absent
framework upon which to unify behavioral, computational, and neuroscientific studies of
learning.

Concluding Remarks
Learners attain a complex and highly structured representation of the world. Currently, many
quantitative approaches to learning hinge on sensitivity to local statistics such as co-occurrence
frequencies and transitional probabilities between adjacent elements. While local statistics are
clearly one salient source of structural information, evidence reviewed here suggests that
learners also perceive global organizational patterns. In fact, exciting new results suggest that
learners can acquire knowledge of these large-scale patterns even when local statistics are
relatively uninformative. Thus, as we deepen our understanding of the natural world as a
complex system, we can harness descriptions of its large-scale organizational properties to
Trends in Cognitive Sciences, August 2016, Vol. 20, No. 8 637



then scale-up our approach to the study of learning. Moreover, exactly as we seek to understand
how humans extract both local statistics and global architectural information, it is also useful to
examine how micro- and macro-level brain dynamics support learning. In particular, an exciting
avenue of future research will center on understanding how differences in network architecture
of naturalistic stimuli lead to differences in learnability via unique neurophysiological mechanisms.
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