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SUMMARY

Human visual perception is both stable and adaptive.
Perception of complex objects, such as faces, is
shaped by the long-term average of experience as
well as immediate, comparative context. Measure-
ments of brain activity have demonstrated corre-
sponding neural mechanisms, including norm-based
responses reflective of stored prototype representa-
tions, and adaptation induced by the immediately
preceding stimulus. Here, we consider the possibility
that these apparently separate phenomena can arise
from a single mechanism of sensory integration
operating over varying timescales. We used fMRI to
measure neural responses from the fusiform gyrus
while subjects observed a rapid stream of face stim-
uli. Neural activity at this cortical site was best ex-
plained by the integration of sensory experience
over multiple sequential stimuli, following a decay-
ing-exponential weighting function. Although this
neural activity could be mistaken for immediate neu-
ral adaptation or long-term, norm-based responses,
it in fact reflected a timescale of integration inter-
mediate to both. We then examined the timescale
of sensory integration across the cortex. We found
a gradient that ranged from rapid sensory integra-
tion in early visual areas, to long-term, stable repre-
sentations in higher-level, ventral-temporal cortex.
These findings were replicated with a new set of
face stimuli and subjects. Our results suggest that
a cascade of visual areas integrate sensory expe-
rience, transforming highly adaptable responses
at early stages to stable representations at higher
levels.

INTRODUCTION

Neural responses to stimuli are modulated by recent sensory

history over varying timescales. On short timescales, neural

responses are reduced if sensory input is similar or iden-

tical to preceding stimuli (i.e., neural adaptation [1]). At

longer timescales, integration over many stimuli is required

to generate ‘‘prototype’’ representations (the central tendency
of sensory experience [2–4]). The presence of a prototype

representation is inferred from the finding that the ampli-

tude of a neural response reflects the distance of a

stimulus from the center of a stimulus space (a ‘‘norm-based’’

response [4–6]).

These effects of sensory history have been measured

separately in single-unit studies in animal models [5–7] and in

neuroimaging responses in humans [4]. They can seemingly

co-occur, as for example both types of neural response

have been observed to faces within macaque infero-temporal

cortex [5–8] and the human fusiform gyrus [4, 6, 9]. While it is

possible that neural adaptation and norm-based responses

are manifestations of separate neural mechanisms that

overlap at points of the visual hierarchy, we consider here the

possibility that these neural responses represent the action

of a single mechanism. Specifically, both neural adapta-

tion and norm-based responses reflect the deviation of a

current stimulus from a neural prior that is formed from

stimulus history. Temporal integration that operates at an

intermediate timescale might both manifest neural adaptation

and generate a prior that produces apparent norm-based re-

sponses, with the degree of one effect or another depending

on the intrinsic timescale of neural processing. We take as

our inspiration recent work that has shown a hierarchy of

timescales of integration in macaque cortex [10], and that

norms are not stationary but continuously updated by experi-

ence [11].

We collected blood-oxygen-level-dependent (BOLD) fMRI

data from 15 subjects while they viewed a continuous stream

of face stimuli. After characterizing the perceptual similarity of

the faces, we modeled neural responses to the stimuli based

upon an exponential integration of stimulus history (as has

been observed in retinal ganglion cells [12]). Using this model,

we can characterize the timescale of temporal integration in

neural responses that show modulatory effects of stimulus

history. We then tested whether neural responses within the

fusiform gyrus are explained by separate neural adaptation

and norm-based mechanisms or whether a single temporal

integration mechanism can better account for the data. We

also measured for each point on the cortical surface the time

constant of temporal integration and determined whether there

is a systematic organization to cortical responses as a function

of our measure of temporal history (as has been found with

other approaches [13]). Finally, we repeated the study with a

different set of face stimuli and subjects to examine the replica-

bility of our results.
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Figure 1. Stimuli and Neural Modeling

(A) Synthetic faces varied in identity, skin tone, and

gender (see Figure S1A). Behavioral ratings of

pairwise face similarity were used to obtain the

three-dimensional perceptual similarity space via

multi-dimensional scaling.

(B) An example series of five stimulus pre-

sentations are plotted as a path through the

perceptual similarity space.

(C) A ‘‘prior’’ can be calculated as a function of the

temporal integration parameter (m) applied to the

sequence of previous stimuli and plotted as a

point in the perceptual space. The prior will be

shifted to a varying degree by each subsequent

stimulus. Stimuli are integrated over longer dura-

tions for larger values of m, and the prior stays

close to the center of the stimulus space. For

smaller values of m, the prior more closely tracks

the path of presented stimuli.

See also Figure S1.
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RESULTS

We measured neural temporal integration by obtaining fMRI re-

sponses to a set of 27 computer-generated faces. In separate

behavioral studies, we assessed the perceptual organization of

these stimuli and found that the mutual similarity of the faces is

well described by three dimensions (Figures 1A and S1A). The

Euclidean distance between any pair of faces within this space

reflects the perceptual dissimilarity of the pair.

We then considered the behavior of a neural system that is

exposed to a series of faces. The sequential stimuli trace a

path through the perceptual space (red points; Figure 1B). We

propose that the system retains a memory of the weighted,

average history of these stimuli. This neural ‘‘prior’’ is described

as a point in the perceptual space. When a new stimulus is pre-

sented, the face is integrated into the running average and thus

the prior is updated to a new position (blue points; Figure 1C).

In studies of retinal ganglion cells, the influence of past pulses

of light upon the current state of the system is well described by a

decaying exponential in time [12]. The exponential integration of

cone input, for example, has a time constant of seconds and ac-

counts for the perception of color after-images [14]. In such a

system, a single parameter describes the degree to which the

prior is updated by the presentation of each subsequent stimulus

(here expressed as the temporal integration parameter m; see
2 Current Biology 26, 1–8, July 11, 2016
Experimental Procedures). For systems

with m close to one, the prior will equally

weigh the entire history of stimuli and

thus tend to remain at the center of the

stimulus space. For m close to zero, the

system has a shorter ‘‘memory,’’ and

the prior is updated continuously to the

location of the just-presented stimulus.

A model with an intermediate temporal

integration parameter will show an inter-

mediate tendency for the prior to trail

the sequentially presented stimuli.

To test this model of neural representa-

tion, we studied 15 subjects with fMRI
while they viewed a counter-balanced stream of stimuli [15] (Fig-

ure 2A). Subjects performed a continuous perceptual judgment

task, but crucially this judgment regarded an aspect of the

stimulus that was unrelated to its position within the perceptual

space: the appearance of the face on each trial was randomly

set to appear slightly older or younger in age, and the subject

was asked to report this age appearance by button press.

The age change was subtle (similarity ratings for young and

old face sets were highly correlated: r = 0.95); mean accuracy

across subjects was slightly, but significantly, above chance

for this demanding attention task (mean 58% ± 2% SEM;

chance 50%). Blank trials occurred in the stream of stimuli at

counter-balanced intervals during which the subject withheld a

response.

In prior studies of neural adaptation, it has been found that the

response to a stimulus is proportional to its dissimilarity from the

immediately preceding stimulus [9, 16]. Separately, studies of

norm-based coding have found that the response to a stimulus

is proportional to its distance from the center of a stimulus space

[4, 5]. These results can also be described as a neural response

that is proportional to distance from a stored prior. Within this

framework, tests for norm-based coding are sensitive to sys-

tems that show long temporal integration properties, while tests

for neural adaptation are sensitive to systems that integrate over

shorter timescales. A prior that integrates information over
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Figure 2. Experimental Design and ROI Analysis

(A) During scanning, subjects observed a continuous stream of face stimuli

while performing an unrelated attention task. Neural responses were modeled

using continuous covariates that tracked the distance between the current

stimulus and the calculated ‘‘prior’’ on every trial. A set of 21 models with

different values of the temporal integration parameter (m) was evaluated.

(B) Average across-subject (n = 15) fit to the neural data for the range of

models, within an across-subject, face-responsive region of interest (ROI) in

the right fusiform gyrus (inset). The shaded region represents SEM calculated

by bootstrap resampling across subjects. The peak corresponds to a model

with an intermediate temporal integration parameter (m = 0.85). The shape of

this curve is dictated by the sampling of models on the x axis, here a linear

scale of m. An alternative scaling based on the half-life of the underlying

exponential is presented in Figure S3C. Schematics below the plot demon-

strate the behavior of the prior for three representative values of m.

See also Figure S3.
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intermediate timescales would in principle show both of these

modulatory effects.

We measured the influence of stimulus history upon neural

response in our data. To do so, we created a family of models,

each of which assumed a different time constant of a decaying

exponential integration of the sequential face stimuli. We then

modeled the neural response to each face as linearly propor-

tional to the Euclidean distance between the continuously up-

dated prior and the current stimulus, similar to a prediction error

signal [17, 18], and convolved these neural models with a hemo-

dynamic response function [19] to obtain predictors for effects

within the BOLD fMRI data (Figure 2A). Importantly, the models

with assumed temporal integration parameters of m = 0 and

m = 1 correspond exactly to tests for one-back neural adaptation

and norm-based effects, respectively. We confirmed in a series

of simulations (Figure S2) that the temporal integration value

measured using this approach is robust to variations in incidental

aspects of the data, including variation in the shape of the hemo-

dynamic response and nonlinearities in the transformation of

neural response to BOLD signal.

Within the right fusiform face area (FFA), we measured the

amount of variance that each model explained in the BOLD

fMRI data as a function of the assumed temporal integration (Fig-

ure 2B). Across subjects, a significant amount of variance was

explained by the model that assumed a m of one (i.e., for which

the prior is fixed at the center of the stimulus space), which could

be interpreted as a norm-based coding response (variance ex-

plained: 0.94%, t(14) = 3.3, p = 0.005). Essentially the same re-

sults are obtained if the norm-based effect is modeled as relative

to the running average of all stimuli up to that point in the

sequence, as opposed to being fixed in the center (variance ex-

plained: 0.91%, t(14) = 3.3, p = 0.005). This illustrates that the

central tendency of a random sampling of stimuli quickly con-

verges upon the center of the stimulus space. Separately, we

found that a significant amount of variance was explained by

the model that assumed a m of zero, which could be interpreted

as a neural-adaptation effect (variance explained: 0.51%, t(14) =

2.4, p = 0.03). These modulatory effects are reliable across sub-

jects, albeit small (compared with an average of 6.0% variance

explained by themain effect of the stimuli versus a blank screen).

Across the entire range of modeled windows of temporal inte-

gration, however, the best fit to the data was found for an inter-

mediate parameter of m = 0.85 (variance explained: 1.25%). This

implies that the influence of previously presented faces upon an

updated neural prior drops by about half every four stimuli (Fig-

ure S3C) or 7 s (presuming an exponential integration function;

considered in Figure S3). Importantly, a system that demon-

strates this intermediate level of temporal integration gives rise

tomodulatory neural responses that can appear both as sequen-

tial neural adaptation and as norm-based responses.

Perhaps the FFA actually has separate neural mechanisms:

one that implements a neural adaptation response relative to

the last presented stimulus, and one that implements a norm-

based coding response relative to a stored, central prototype.

We used a cross-validation approach to test whether this

‘‘dual-mechanism’’ model better accounts for the BOLD fMRI

data than a model with a single mechanism of intermediate tem-

poral integration. The data from n�1 subjects were submitted

to two analyses. First, an average, best fitting value for m was
Current Biology 26, 1–8, July 11, 2016 3



Figure 3. Temporal Integration in the Visual Hierarchy

Measured temporal integration parameter (m) across subjects in V1, V2, V3,

and FFA. We observed increasing temporal integration along the visual

hierarchy, ranging from m = 0.29 ± 0.12 in area V1, m = 0.62 ± 0.13 in area V3,

and m = 0.87 ± 0.04 in FFA. Means and SEs were obtained by bootstrap

resampling.
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derived (the single-mechanism model). Second, the average

parameter estimates for separate m = 0 and m = 1 covariates

were obtained and then used to construct a single covariate

that combined both effects (the dual model). We then examined

the variance explained in the reserved data from the nth subject.

We observed that the proportion of variance explained by the

single-mechanism model was greater than the variance ex-

plained by the dual model (variance explained by a single-mech-

anism model: 1.18% ± 0.27% SEM; variance explained by the

dual model: 0.85% ± 0.26% SEM; difference paired t test:

t(14) = 3.4, p = 0.005). A left-hemisphere fusiform region showed

the same effect (Figure S3B; variance explained by a single-

mechanism model: 1.24% ± 0.21% SEM; variance explained

by the dual model: 0.96% ± 0.22% SEM; difference paired

t test: t(14) = 2.9, p = 0.0119). Similar results were obtained

when the test was conducted as the number of subjects with a

better fitting model (in right FFA, the single-mechanism model

explains more variance than the combined model in 12 out of

the 15 subjects; one-sided binomial test: p = 0.0176; in left

FFA, the single-mechanism model explains more variance than

the combinedmodel in 11 out of 15 subjects; one-sided binomial

test: p = 0.0592). Therefore, not only is the single temporal inte-

gration model conceptually parsimonious, but it also provides a

better fit to the data within the FFA.

While the FFA is notable for having enhanced responses to

faces, our stimuli evoke broad responses throughout the ventral

visual cortex as compared to the blank trials. The same mea-

surement of temporal integration that we performed within the

FFA region of interest may be conducted at other locations

across the visual cortex. Prior studies have examined the relative

sensitivity of visual cortex to information that varies on shorter or

longer timescales and a gradient of temporal sensitivity is gener-

ally found, with the shortest timescale of representation present

within the primary visual cortex [13, 20]. We defined areas V1-V3

using a surface-based anatomical template [21] and calculated

the mean, across-subject temporal integration parameter that

best fit the modulatory effect in these areas (Figure 3). We

observed an increase in temporal integration along the visual

hierarchy, with mean integration parameters ranging from

m = 0.29 ± 0.12 to m = 0.62 ± 0.13 between areas V1 and V3, cor-
4 Current Biology 26, 1–8, July 11, 2016
responding to half-lives of approximately 0.5 trials (�0.8 s) and

1.5 trials (�2.2 s), respectively (in contrast to m = 0.87 ± 0.04

and a half-life of �7.5 s in the FFA).

We then calculated the mean, across-subject temporal inte-

gration parameter, m, that best fit the modulatory effect at each

point on the cortical surface (constrained to those points for

which the model explained more than 0.2% of the fMRI signal

variance; Figure S4A). We observed a clear gradient of temporal

integration across the cortical surface in both hemispheres (Fig-

ure 4A). In the medial and posterior areas of the visual cortex,

values of m close to zero were found, indicating a short temporal

integration window and a modulatory effect consistent with im-

mediate (1-back) neural adaptation effects. Moving inferiorly

and laterally, the measured m steadily increases, reflecting an

ever-greater degree of integration of stimulus history, approach-

ing norm-based effects of central tendency. Along a single tra-

jectory (Figure 4B), the temporal integration value is found to

be consistent across observers relative to the change across

cortex. Across the surface of the cortex, variation in temporal

integration is quite similar in the two hemispheres (correlation

between hemispheres of the intersection of thresholded vertices

on FreeSurfer-sym surface: r = 0.79).

We tested whether this result is reproducible and can be

generalized beyond our initial stimuli. We collected a separate

dataset from 19 subjects using a different set of face stimuli

that varied in skin tone, aspect ratio, and internal facial features

(Figure S1E). Measures of perceptual similarity again suggested

a three-dimensional perceptual space (Figures S1F and S1G).

We repeated the fMRI experiment and analysis. The proportion

of variance explained by the single-mechanism model was

greater than the variance explained by the dual model in the

left FFA (variance explained by a single-mechanism model:

1.18% ± 0.24% SEM; variance explained by the dual model:

1.00% ± 0.27% SEM; difference paired t test: t(18) = 2.3,

p = 0.0352), but not in the right FFA (variance explained by a

single-mechanism model: 0.95% ± 0.25% SEM; variance ex-

plained by the dual model: 0.95% ± 0.27% SEM; difference

paired t test: t(18) = 0.05, p = 0.9643). When the test was con-

ducted as the number of subjects with a better fitting model,

the single-mechanism model explained more variance than the

combinedmodel in 13 out of the 19 subjects (one-sided binomial

test: p = 0.0835) within both the left and right FFAs (Figure S3E).

A cortical gradient of temporal integration was also found in

this dataset (Figure 4C). The pattern of temporal integration

values across the cortex (Figure 4D) was similar between hemi-

spheres in this dataset (correlation between hemispheres of the

intersection of thresholded vertices on FreeSurfer-sym surface:

r = 0.82), and similar to that found in our first dataset (correlation

between datasets of the intersection of thresholded vertices:

r = 0.69).

DISCUSSION

Our study beginswith the observation that a single temporal inte-

gration mechanism could theoretically produce both short-term

adaptation and norm-based responses, as each phenomenon

reflects the similarity of a current stimulus to a continuously up-

dated neural prior. Based upon work in retinal ganglion cells [12]

we assumed an exponential integrator, which is characterized by
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Figure 4. A Gradient of Temporal Integration

(A) Measured temporal integration parameter (m)

across subjects at each cortical point that showed a

modulatory effect of stimulus history (>0.2% fMRI

signal explained). White overlays indicate the points

sampled in (B).

(B) Plot of across-subject average, regional m from

the set of sampled points ranging from superior-

medial to inferior-lateral. Data points fit with a four-

parameter sigmoid function. Means and SEs were

obtained by bootstrap resampling.

(C and D) The corresponding measures of temporal

integration from a second, independent dataset

across the cortical surface (C) and along the indi-

cated trajectory (D).

See also Figure S4.
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a single parameter. Our empirical results demonstrate that neu-

ral responses to faces within the FFA are better described by this

single mechanism operating over intermediate timescales, as

opposed to separate adaptation and norm-based responses.

We previously demonstrated that adaptation and norm-based

responses can be confounded in measurement and have pro-

posed analytic techniques to estimate their separate influence

[22]. Here, we test our prior assumption that the two effects

reflect separable processes and instead find that they can be

manifestations of a single underlying mechanism.

We note that our findings do not challenge the existence of

stable, norm-based representations of faces, which are sup-

ported by a wealth of empirical neural [3, 4, 23] and behavioral

[2, 11] results. We do find an intermediate degree of temporal

integration in the FFA, suggesting that responses that appear

norm-based at this location reflect a prior that is subject to modi-

fication on a timescale of seconds to minutes. In other regions,

particularly more anterior and lateral in the ventral temporal

lobe, we find temporal integration parameters that approach

m = 1, consistent with stimulus representations that are stable

over longer timescales. Indeed, within the right FFA for our sec-

ond dataset, we cannot reject a pure, norm-based mechanism

on the basis of average variance explained (Figure S3E). Relat-

edly, we do not have imaging signal available from the most

anterior portions of the temporal lobe (Figures S4A and S4C); it

is possible that these sites contain stimulus representations

that are stable on a timescales of months to years. We note as

well that our stimulus sequences are not designed to address

the subtle question of norm-based versus exemplar coding [24].

We view our results instead as an explanation for the emer-

gence of new prototype representations at the center of a previ-

ously unseen stimulus space [25] and for the updating of existing

prototypes [11], without the need to invoke a qualitatively novel

systemof temporal integration. Under our theoretical framework,
any relatively long temporal integrator will

construct a neural prior near the center of

a perceptual space after presentation of

a few randomly selected stimuli. This ac-

cords with experimental demonstrations

of norm-based effects that vary during

measurement of neural response [5, 6] or

behavior [26]. Prior work on cortical time-
scales has measured autocorrelations [27] or the dependence

of neural response on stimulation duration [13]. Here, we quantify

the effect of stimulus history relative to a specific temporal inte-

gration function, and again find a cortical gradient [13, 20]. While

the gradient we observe does not perfectly align with the position

of visual areas, we do find ever-longer timescales of neural inte-

gration toward ventral occipito-temporal cortex. In agreement

with theoretical models [10] and electrophysiologic studies in pri-

mates [27], we expect that sequential cortical areas act as a

cascade of temporal integrators to represent stable properties

of the visual environment. We observe in our data as well some

alignment of the gradient with the eccentricity axis of visual cor-

tex, with shorter temporal integration at greater eccentricities.

Perhaps relatedly, psychophysical and retinal ganglion cell

sensitivity is also shifted to shorter temporal integration at

greater eccentricities (e.g., [28]).We consider it an intriguing pos-

sibility that early specialization in the visual pathway gives rise to

variation in temporal integration across the cortex.

Our analysis assumes an exponential form for integration. In

simulations (Figure S2), we find that our approach (assuming

an exponential form) accurately recovers relative temporal inte-

gration for other monotonically decreasing functions (e.g., linear,

or power law [29, 30]). We view a key finding of our work to be the

superiority of a single-mechanismmodel within the fusiform face

area. We concede that demonstrating this superiority over one

dual-mechanism model does not disprove all possible multi-

mechanism models that combine varying timescales, though

we feel any such proposal must now justify added mechanisms.

We are receptive to the possibility that another single temporal

integration function could provide a still-better fit to the data,

and note that any such function would also have the property

of being superior to the dual-mechanism alternative tested

here. Different functions would lead, however, to different quan-

titative interpretations of an integration parameter in units of
Current Biology 26, 1–8, July 11, 2016 5
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seconds or stimuli. Relatedly, we cannot determine from our

data if the integration function is indexed by stimuli, seconds,

or some combination. In single-unit studies in early sensory sys-

tems (e.g., the fly H1 visual neuron or mouse retinal ganglion cell

[31, 32]), integration varies with the timing of stimulus changes

and thus is more reflective of stimuli than seconds. Further, it

is possible to interpret the neural ‘‘prior’’ in our approach as a

rolling sensory prediction and the modeled response as an error

signal. It could be that the exact form of the integration function is

related to the minimization of free energy [33]. Future studies

could employ the approach we have described here to examine

the effects of stimulus spacing and duration upon measures of

temporal integration to directly address these questions.

Overall, our results demonstrate that varying timescales of

stimulus integration are present across the cortex and can ac-

count for different modulatory effects of stimulus history. While

a parsimonious explanation for some effects, there are phenom-

ena that do not fit within our account. Most notably, our model

does not easily accommodate themodulation of neural response

produced by identical repetitions of a stimulus after multiple

intervening stimuli [7, 34]. These effects can persist not only

across stimuli, but across sessions [35] and days [36]. There is

evidence that this ‘‘long-lag’’ repetition response arises from a

different mechanism than the ‘‘short-lag’’ response that is the

focus of the current work [34, 37, 38]. Such a dichotomy also

manifests behaviorally. For instance, while orientation judg-

ments are biased away from ‘‘short-lag’’ sensory history estab-

lished on a timescale of seconds to minutes, judgments are

biased toward ‘‘long-lag’’ sensory history [39]. We consider it

likely that the integrated representation of recent stimulus his-

tory we have characterized here co-exists with additional neural

mechanisms for the learning, identification, and comparison of

visual objects.

Our work is part of a growing set of studies that find a distrib-

uted, hierarchical organization of temporal integration across the

cortex [10, 13, 20, 27]. Here, we bring the idea of a hierarchy of

timescales into contact with a well-established literature on neu-

ral adaptation and norm-based effects, showing that the intrinsic

timescale of a cortical region predicts the degree to which it ex-

hibits norm-based responses. Flexible access of this temporal

hierarchy could be the mechanism by which visual behavior is

both sensitive to novelty and captures the stability of visual

experience.
EXPERIMENTAL PROCEDURES

Stimuli and Experimental Design

Synthetic faces were generated with GenHead v.1.2 (Genemation) using three

primary axes with three points along each axis, resulting in 27 distinct stimuli.

For dataset 1, the three axes were gender, skin tone, and internal facial fea-

tures, and for dataset 2, skin tone, aspect ratio, and internal facial features (Fig-

ures S1A and S1E). All stimuli were created in a slightly older and younger

version (a slight change in the skin texture and internal features in the stimulus

generation software); this fourth dimension was used in an attention task.

Stimuli (subtending 5� 3 5� of visual angle) were presented in a counterbal-

anced order [15] of 1,624 trials. Each trial lasted 1,500 ms (1,400-ms stimulus,

100-ms blank screen); blank trials (with no stimulus) were doubled in length to

3,000 ms. On each stimulus trial, the presented face was randomly set to

appear in the older or younger version. Subjects were directed to judge the

age of each face and respond with a bilateral button press and received

several minutes of trainingwith example old and young faces prior to scanning.
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Data Collection

A total of 41 subjects were scanned for dataset 1 (20 subjects) and dataset 2

(21 subjects). From dataset 1, three subjects were excluded for excessive

head motion (recurrent transients of pitch >2�), one because of loss of the

behavioral data, and one due to poor performance in the cover task (>15% tri-

als with no response), leaving a total of 15 subjects (ten female, 12 right

handed), aged 19–25 years. From dataset 2, two subjects were excluded for

excessive head motion (recurrent transients of pitch >2�), leaving a total of

19 subjects (seven female, 15 right handed), aged 19–35 years. All subjects un-

derwent MRI on a 3.0-T Siemens Trio equipped with an eight-channel head

coil. All subjects provided written informed consent, and the study protocol

was approved by the Institutional Review Board of the University of Pennsyl-

vania. Echo-planar images (time repetition [TR] = 3 s, time echo [TE] = 3 ms,

voxel size = 3.00 mm isotropic, 64 3 64 in-plane resolution, 45 axial slices)

were acquired during six scans (duration 408 s each, final scan 396 s). An

MPRAGE image from each subject was reconstructed in surface space and

mapped to the fsaverage template using FreeSurfer; functional data were

transformed to the surface space and smoothed with a 10-mm full width at

half maximum (FWHM) kernel. The fusiform region of interest (ROI) was defined

by a group contrast of the main effect of stimuli versus blank screen, cropped

using the FreeSurfer fusiform label, and narrowed to the top 400 vertices

(approximately 400 mm2 of surface area). ROIs for visual areas V1, V2, and

V3 were defined using an atlas of cortical surface topology [21].

General Linear Model

Statistical analyses were performed upon the time-series data from each sub-

ject after removing the effects of covariates of no interest by regression. The

covariates of no interest included: a main-effect covariate modeling the

mean response to all face stimuli as compared to the blank trials and its tem-

poral derivative; a covariate modeling the effect of a stimulus following a blank

trial and its temporal derivative; six rigid-body motion parameters; and motion

outliers. The effect in the data of an identical stimulus repetition and its

temporal derivative was also removed. This correction was motivated by the

observation that perfect stimulus repeats produce responses that are non-

continuous with even small stimulus changes [15, 16].

The average residual time series within each region of interest (V1, V2, V3,

and the fusiform area) was modeled with a set of modulation regressors.

Each modulation regressor was constructed using the measured, three-

dimensional perceptual similarity of the sets of faces (Figures 1A and S1)

and an assumed temporal integration parameter (m). The neural response to

the face presented on each trial was modeled as linearly proportional to the

Euclidean distance of that face from a continuously updated prior. A Euclidean

distance metric was assumed as the dimensions of face variation are

perceived as integral [40]. The prior was positioned at the center of the stim-

ulus space for the first trial, and the position of the prior on each subsequent

trial (t) was given by:

rt = rt�1 + ð1� mÞðst � rt�1Þ
where rt represents the coordinates of the position of the prior within the

three-dimensional perceptual space on trial t, rt�1 is the position of the prior

in the previous trial, st is the position of the current stimulus, and m is the

time constant scaled between zero and unity. The fMRI BOLD time series

was modeled using a set of regressors with values of m ranging from 0 to 1

in steps of 0.05. Each covariate was mean centered, convolved with a

canonical hemodynamic responses function [19], and scaled to have unit

variance.

Whole-Brain Mapping

For each of 21 values of m, we combined the individual surfacemaps from each

of the six scans for a subject in their native surface space and then combined

these into a single group map after projecting the individual surface maps to

fsaverage space with an additional 10-mm smoothing kernel (for the purpose

of visualizing the low spatial frequency cortical gradient). The resulting group

maps contained at each vertex the m with the largest weight from the 21

possible. From this surface map, we cropped all vertices for which the tempo-

ral integration regressor with largest weight had a negative modulatory effect

or where less than 0.2% of the total variance was explained (Figure 4A).

To illustrate across-subject variation, ten circular ROIs with a two-vertex
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radius were plotted on the fsaverage surface in a continuous representative

trajectory, running from area V1 to inferior occipito-temporal cortex. The

mean and SEs of m within each of the ten ROIs (and within the four regions

of interest in Figure 3) were obtained by bootstrap resampling, with 10,000

samples from the subject pool with replacement.

Model Description

Let rt be the position of the prior at time t. Given a stimulus st presented at time

t, st follows the update rule

rt = rt�1 + ð1� mÞðst � rt�1Þ; (Equation 1)

i.e., the prior moves by ð1� mÞ in the direction of st . Expanding this recursive

expression, the position of the prior can be written as:

rt = ð1� mÞst +mð1� mÞst�1 +m2ð1� mÞst�2 +.:

Weassume, without loss of generality, that the prior position at time t = 0 is in

the center of the perceptual space, i.e., r0 = 0. Thus, the position of the prior

can be written as:

rt = ð1� mÞ
Xt�1

i = 0

mist�i ; (Equation 2)

i.e., at each time step the stimulus influence on the prior position decays by a

factor of m. We can rewrite Equation 2 as

rt = ð1� mÞ
Xt�1

i = 0

ei lnðmÞst�i

= ð1� mÞ
Xt�1

i = 0

e�list�i ;

wherewe see that the stimulus influence on the prior position decays exponen-

tially with rate l= � ln m. The half-life of this decay is given by

t1=2 =
ln 2

l
= � ln 2

ln m
: (Equation 3)
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