The Role of Action Information in Thematic Relations between Objects

Ruthie E. Wittenberg1, Christine E. Watson2, Laurel J. Buxbaum2, & Sharon L. Thompson-Schill1

¹University of Pennsylvania, ²Moss Rehabilitation Research Institute

Does action information play a role in the processing of thematic relationships between objects?

Introduction

- •Object concepts: organized both taxonomically (categorically) and thematically (in terms of associated roles in events)
- •Thematic information: 1. Critical for determining relationships between manipulable objects; 2. Activates a bilateral temporo-parietal network including inferior parietal lobules and middle temporal gyrus
- •Left temporo-parietal cortex: plays an important role in action-based object relationships
- *Stroke patients with left temporo-parietal lesions less sensitive to the action element of thematically-related manipulable objects than healthy controls or patients with other lesion loci

Hypotheses

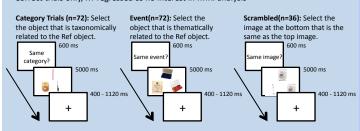
- •Left Angular Gyrus: more active when thinking about event/thematic similarity compared to category/taxonomic similarity
- •Left Angular Gyrus: not differentially activated for taxonomic judgments made with action compared to taxonomic judgments made without action
- •Precuneus: more activation for taxonomic judgments compared to thematic judgments
- •Taxonomic relationships between objects will show greater activation in anterior temporal lobe than thematic relationships

Methods

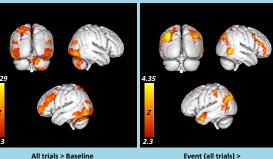
Participants

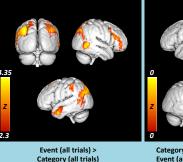
•14 participants from the University of Pennsylvania (5 females), mean: 21.8 years, range: 18-30

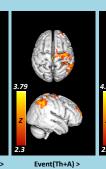
Stimuli

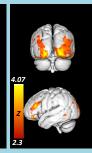

- •Task and stimuli based on Tsagkaridis et al. 2014
- •36 groups of objects, 2 triads formed from each group=72 unique triads; 36 scrambled trials

Action Ref-Tax-ThA (72) Category

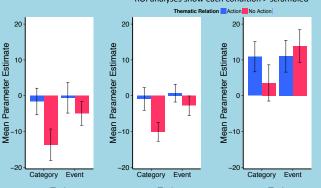





- •Both kinds of judgments made on all 36 Ref-Tax-ThA triads and all 36 Ref-Tax-ThNoA Triads.
- •Event-related, 4 runs of 45 trials each (7 min 39 sec total per run), 3 second TRs
- Data collected on a 3-T Siemens Trio system and 32-channel array head coil; echo-planar fMRI performed in 42 axial slices and 3 mm isotropic voxels
- Correct trials only, RT regressed as no interest in fMRI analysis



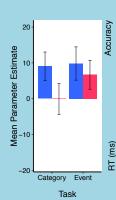
Results **Whole Brain**

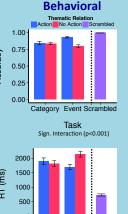


Category (all trials) > Event (all trials) (n.s.)

Event(Th-A) > Event(Th+A)

Anatomical Regions of Interest (ROIs)


Anatomical regions defined from Harvard Oxford Cortical atlas, thresholded at 25% ROI analyses show each condition > scrambled



Task Left Posterior Middle Temporal Gyrus Sign. Interaction (p=0.037)

Left Precuneus Sign. main effects of task (p=0.0352) and thematic relation (p<0.001)

Category Event Scrambled Task

Conclusions

Event vs. Categorical Similarity

- •Whole brain analyses: thinking about event similarity activates bilateral temporoparietal areas
- •ROI analyses: stronger activation for Event vs. Category in left AG, but not strongly active for either task
- •Contrary to hypothesis, left precuneus was more active for Event vs. Category
- •Whole brain analyses showed Event > Category in left anterior temporal cortex
- •No areas more active for Category > Event judgments

Events Based on Common Action (Th+A) vs. Co-occurrence in Space and Time (Th-A)

- •Whole-brain analyses showed more activation in right AG for Th+A, among other areas
- •ROI analysis in left pMTG showed not just Th+A > Th-A, but also that Event or Category (Th+A) activates pMTG •Areas predicted to be more active for Th+A during Event trials were actually more active for Th-A

Future Analyses

Parameter

- 1. Collected motor imagery localizer; can use to create functional ROIs in which to examine Th+A/Th-A differences
- 2. Have continuous ratings of similarity between target and correct answer, e.g. action similarity, thematic similarity, taxonomic similarity. Can use to find regions whose activations vary with similarities.

References

- [1] Buxbaum & Kalenine (2010)
- [2] Jackson et al. (2015)
- [3] Kalenine et al. (2009) [4] Pluciennicka et al. (2015)
- [5] Sass et al. (2009) [6] Tsagkaridis et al. (2014)

Acknowledgements

This research was supported by NIH grant RO1 EY021717 awarded to STS and R01 NS065049 awarded to LB.

Contact

wittenb@sas.upe

