Arousal-induced changes in functional brain networks
during exploration and exploitation
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*  Here we probed the relationship between NE and network dynamics within an p=.01) g
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* This relationship is reliable across
subjects (+(8) =-3.82, p =.005).
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Both more integrated brain network states and moderate NE activity facilitate
focused task performance (exploitation), while less integrated states and high
NE activity lead to distraction/error (exploration) [2, 6]. Therefore we expect:
* Across blocks, average baseline pupil diameter will be associated with Explore vs. Exploit Trials
less integration between modules.
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* Deterministic reward

* Fixed distance between options

* Options “take turns” being the best,
changing based on underlying Py,

peri-explore pupil is reliable at a .05 <p <.10 level (F(1,8) = 3.75, p = .089).

* Baseline pupil diameter (reflecting tonic
prp ( 5 The apparent dip in integration around exploration is not significant.
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Coherence Network Assignment Matrices Matrix ; (t(8) =0.56, p = .59). T 005" *  We confirm our prediction of decreased integration with increasing baseline
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