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Cognitive flexibility is involved in virtually every complex 
behaviour from mental arithmetic to processing of visual 
stimuli. For example, when navigating complex environ-

ments, humans can flexibly switch between two foci of attention or 
between two processing modalities in order to effectively respond 
to sensory inputs. Although it is a hallmark of human cognition, 
flexible switching is also associated with a measurable cost: moving 
from one task to another induces a natural extension in the time it 
takes a person to respond to stimuli1. In patients with neurological 
syndromes, this cost is even greater, to the point where it can ham-
per a patient’s ability to engage in the basic activities of daily living2, 
impacting long-term cognitive outcomes3. In healthy individuals, 
cognitive flexibility varies considerably, and individual differences 
in this trait contribute to mental facets ranging from the develop-
ment of reasoning ability4 to quality of life in late age5. Clarifying 
the nature of cognitive flexibility in the human brain is critical to 
understand the human mind.

The physiological origins of cognitive flexibility are thought to 
lie in corticobasal ganglia–thalamocortical loops6: regions of the 
fronto-parietal and cingulo-opercular systems are activated by 
cognitive switching tasks7–10. In switching paradigms, the anterior 
cingulate is thought to contribute negative feedback detection fol-
lowing switches11, whereas the lateral prefrontal cortex maintains 
rules and inhibits incorrect responses12 and the medial parietal 
lobes contribute to shifts in spatial attention, working memory and 
categorization rules13. All of these regions anatomically connect to 
subcortical regions, which are postulated to mediate processes that 
both suppress prepotent motor responses and transition between 
behavioural outputs to meet task goals14. Interactions between corti-
cal systems and motor outputs are thought to be anatomically medi-
ated by subcortical circuits7,9,15–17. However, understanding exactly 
how this circuit supports task switching has remained challenging, 
particularly because it requires the integration of regional activity, 

inter-regional anatomical connectivity and observable measures of 
behaviour. Whereas regional activity and behavioural markers of 
cognitive flexibility are relatively straightforward to estimate, it is 
less straightforward to integrate these features with the white matter 
structure (the connectome18) that guides the propagation of func-
tional signals19–21.

Given the complex and diverse neurobiology involved in cog-
nitive control, frameworks that include a concise correspondence 
between brain network structure, function and cognitive measures 
have the potential to produce more comprehensive understanding 
of human cognition22,23. Conceptually, underlying white matter net-
work organization in the brain physically mediates communication 
among brain regions. However, analytic frameworks that explicitly 
use white matter structure to constrain cognitively relevant func-
tional signals are lacking. Such approaches may allow investigators 
to assign the relative contributions of well-described systems in the 
brain8,24 to specific cognitive variables by integrating neurophysi-
ological dynamics and anatomy.

To address this challenge, we aimed to identify the multimodal 
integration of network anatomy and functional signals that support 
cognitive switching. Here, we introduce an approach that allows us 
to examine the distinct contributions of functional signals in the 
context of anatomically linked regions in human brain networks. In 
a cohort of 28 healthy adult human subjects, we collected diffusion 
spectrum imaging (DSI) data as well as blood oxygen level-dependent  
(BOLD) functional magnetic resonance imaging (fMRI) data 
acquired during the performance of a cognitive switching paradigm 
based on a set of shapes that could be perceived as composed of dif-
ferent features at the local versus global scales25 (see Fig. 1). From 
the DSI data, we constructed anatomical brain networks in which 
111 cortical, subcortical and cerebellar regions26,27 were linked pair-
wise by the density of streamlines reconstructed by a tractography 
algorithm. Next, we used the eigenspectrum of these anatomical 
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networks to measure the relative separation of framewise BOLD 
signals across brain regions (see Fig. 2 and Methods). Specifically, 
each regional signal was decomposed into a proportion that aligned 
well with the anatomical network (aligned) and a proportion that 
did not align tightly with the network (liberal; see Fig. 3 for a sche-
matic example of these types of signals). Intuitively, alignment and 
liberality measured different amounts of signal deviation from the 
underlying anatomical network.

To define these measures, we used a generalization of the tradi-
tional Fourier transform for time-series analysis to the graph domain 
using a graph Fourier transform (GFT)28, which can quantify the way 
in which signals are organized atop an underlying graph. In conven-
tional frequency analysis using the Fourier transform, low frequency 
components represent time series that vary slowly over time, whereas 
high frequency components denote time series that vary rapidly over 
time. In graph frequency analysis using GFT, aligned components 
represent signals that vary smoothly across the graph, whereas lib-
eral components denote signals that vary highly across the graph at 
single moments in time. Because we used GFT for the BOLD mea-
surements at each time point instead of across time points, this tech-
nique identifies where and to what extent BOLD signals across the 
brain are organized in a manner that is aligned with white matter 
networks. Conceptually, this technique allowed us to identify to what 
degree individual BOLD signals deviate weakly versus strongly from 
the underlying white matter anatomy. Just as a single brain region 
can display a time  series with both low and high frequency com-
ponents, so too can a single brain region display both aligned and 
liberal components (see Fig. 4 for a schematic representation of the 
distinction between time Fourier transformation and GFT).

We anticipated that functional alignment with anatomical 
networks is an individually variable feature that facilitates cogni-
tive flexibility. Whereas previous studies have focused on region-
specific mechanisms associated with this process, our approach 
allowed us to examine the role of local neural processes across 
the brain’s distributed anatomical network. We hypothesized that 
moment-to-moment alignment in human brain networks facilitates 
switching performance, measured by switch costs, indicating inter-
individual variability in the degree of organization of information  

processing by the topology of underlying anatomy. Our switching 
task presumably involved proactive control—sustained and antici-
patory maintenance of goal-relevant information—and reactive 
control—transient, stimulus-driven goal reactivation29. In proac-
tive switching, activation in the lateral prefrontal cortex is thought 
to be associated with maintaining task goals, whereas reactive con-
trol may be associated with a more transient activation of lateral 
prefrontal cortex and a broader network of corticobasal ganglial 
mechanisms interacting with the pre-supplementary motor area, 
and anterior cingulate cortex29. In this ‘dual mechanisms of control’ 
framework, both processes may be semi-independent and engaged 
simultaneously, and normative human function may represent 
a balance between these modes29. However, the representation of 
these modes of function is incompletely understood in human 
brain networks, calling for a need to focus on the joint contribu-
tions of anatomical and functional network properties that support 
effective cognitive control8,30.

We hypothesized that we could identify anatomy-aligned func-
tional signals in the brain that potentially represent efficiently orga-
nized signals with respect to anatomy, in addition to liberal signals 
that do not correspond to the inherent organization of underlying 
white matter networks. In our approach, four distinct possibilities 
existed dependent on the signal type. As such, it was possible that 
increasing or relaxing the alignment of the most aligned signals was 
associated with better performance or that increasing or relaxing the 
liberality of the most liberal signals was associated with better per-
formance. Among these possibilities, we anticipated that variation 
in liberality of the most liberal signals—those signals which deviate 
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Fig. 1 | Cognitive task requiring perceptual switching. a, Example stimuli 
based on Navon local–global features. Subjects were trained to respond to 
the larger (or global) shape if the stimulus was green and to the smaller 
(or local) shape if it was white. b, An example of the non-switching 
condition for responses. Subjects viewed a sequence of images and were 
instructed to respond as quickly and accurately as possible. c, An example 
of the switching condition between stimuli requiring global and local 
responses. Here, trials with a red exclamation point are switches from the 
previous stimulus.
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Fig. 2 | Multimodal approach to the study of cognitive switching using 
emerging graph signal processing tools. a, A notion of signal independence 
on a schematic modular network. Left: an aligned signal on top of a given 
graph is one in which the magnitude of functional signals, represented 
by the directionality of the coloured cones, corresponds tightly to that 
expected by the network’s organization. In this example, one cluster of 
nodes contains similar positive signals, and the other cluster contains 
similar negative signals. Right: a liberal signal on top of a given graph is one 
in which signals diverge significantly from the underlying network. b, For 
each of the 28 subjects, a white matter graph (a weighted adjacency matrix 
including white matter streamlines) is constructed from 111 anatomically 
defined regions where connections are the streamline density between 
region pairs. Cb, cerebellum; Hemi, hemisphere; L, left; R, right. c, From 
BOLD fMRI data acquired during the performance of the Navon task, we 
extract regional mean time series, which we treated as graph signals. R, region;  
TR, repetition time. d, For each subject, graph signals were decomposed into 
aligned and liberal components using the underlying eigenspectrum of the 
white matter graph. Aligned and liberal signals were mapped to the nodes in 
the brain, and we estimated the correlation between the relative alignment 
(or liberality) and the switch costs estimated from behavioural performance 
on the task. See Methods for details.
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greatly from anatomical expectations—would be most strongly cor-
related with cognitive switching. This hypothesis is built on the fact 
that the rules learned in our cognitive switching tasks are learned 
shortly before performing the task, and are therefore unlikely to 
be represented in changes in long-distance white matter pathways. 
Flexible functional deviations in white matter organization may 
therefore be associated with efficient switching. However, it was 
possible that either increasing or decreasing liberality would be 
associated with better performance. In the case of increasing liber-
ality, a particularly anatomy-divergent signal organization may have 
contributed to cognitive flexibility. In the case of decreasing liber-
ality, modest alignment among liberal signals may have provided 
beneficial organization that efficiently supports cognitive flexibility. 
To discriminate between these possibilities, our method allowed us 
to examine whether structure and function operate synergistically 
or divergently to promote cognitive performance. We addition-
ally examined the relationship between signal alignment and other 
related behavioural measures—inhibition and working memory—
using a Stroop paradigm and working memory task (for brevity, ref-
erences to Supplementary Tables for these two tasks are mentioned 
in the main text where relevant).

Results
BOLD signal alignment concentrations across the brain. We 
observed that aligned signals were concentrated within default 
mode, fronto-parietal, cingulo-opercular and subcortical systems 
across subjects, whereas the liberal signals were concentrated 
largely in the subcortical system (Fig. 5). The significance of these 
concentrations within systems was confirmed statistically using a 
non-parametric permutation test (α =  0.05) in which we shuffled 
the values of alignment (or liberality) uniformly at random across 
brain regions before computing the mean alignment (or liberality) 
value within each system31.

Interestingly, we observed that the insula, anterior cingulate and 
subcortical systems shared both aligned and liberal signals, indicat-
ing that the content of BOLD signals in these areas are complex with 
respect to underlying anatomy. The values of both alignment and 
liberality were significantly greater than expected in these struc-
tures. Other regions across the brain expressed relatively lower 
amounts of both of these properties. By separating the signal com-
ponents across regions, we were able to identify potentially behav-
iourally sensitive proportions of signals occurring atop anatomical 
networks. To see results from an analysis of the spatial correspon-
dence between aligned and liberal signals in the current dataset, see 
Supplementary Information.

Associations between BOLD signal alignment and cognitive 
switch costs. Next, we calculated the correlation between aligned 
and liberal BOLD signals across the brain and cognitive switch costs 
(response times during trials with a colour-cued switch versus non-
switch trials). We observed that variability in aligned signals was not 
associated with switch costs (R =  0.15, P =  0.43, accounting for 2% 
of the variance), whereas variability in liberal signals accounted for 
32% of the variance (R =  0.57, P =  0.002; see Fig. 6). Using aligned 
signals as covariates in a partial correlation analysis between liberal-
ity and switch costs revealed that the correlation remained signifi-
cant (R =  0.55, P =  0.002). Among the liberal signals, lower values 
of liberality (that is, relative alignment) were also associated with 
lower switch costs during both fixation (R =  0.62, P =  0.0006) and 
non-switching (R =  0.71, P =  0.0001) perceptual blocks.

These results demonstrate that relative BOLD signal alignment 
among liberal signals with anatomy was associated with greater 
cognitive flexibility, a finding that highlights the importance of 
simultaneously considering both functional and anatomical neu-
roimaging in the study of higher-order cognitive processes. This 
indicates that behaviourally relevant signals can be dissociable in 
the graph domain even when the same regions partially contribute 
to both types of signals. Liberal signals were specifically related to 
cognitive switching as opposed to performance more generally dur-
ing the Navon task. We found that the liberal signals in all blocks 
were correlated with response times during trials that occurred 
during switching blocks as well as switch costs. Liberal signals  
were not correlated with performance on the non-switching blocks, 
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Fig. 3 | Signal decomposition into anatomy. BOLD signals are decomposed 
into aligned and liberal signal components. Left side of the equation: a 
schematic BOLD signal on a simple anatomical network. Here, two signals 
are stronger in the high direction than in the low direction. Right side of the 
equation: the signals across the network are decomposed into an aligned 
and liberal component. The original signals can be reconstructed from a 
basis set including a weighted part of the signal that is aligned with the 
anatomical network and another part that is liberal with respect to the 
anatomical network. Variable names indicate the following: x, the original 
BOLD signal measurements; xA, the part of the original BOLD signal that is 
aligned with anatomy; xL, the part of the original BOLD signal that is liberal 
with respect to anatomy.
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Fig. 4 | Signal frequency in the time domain versus alignment in the graph 
domain. a, A simple graph can represent a signal process in time. Imagine 
that the nodes in the graph are moments in time, and the edges between 
nodes represent links between adjacent moments in time. The image on 
the left then represents a low frequency signal process in which the orange 
cones represent positive signals that do not vary significantly with respect 
to the time dimension. The image on the right represents a high frequency 
signal process in which the orange cones represent positive signals and 
the blue cones represent negative signals. The signals flip from moment 
to moment, which is the basis of a high frequency signal. A traditional 
Fourier analysis on real signals can separate both high and low frequency 
activity observed in a single set of nodes (moments in time). b, We can 
extend this notion directly to more complex graph structures, such as those 
observed in human brain networks with the GFT. As in the time graph in a, 
we observe nodes, edges and a signal at each node. Unlike the time graph, 
which constitutes a linear ordering of connected nodes, the more complex 
graph may have modules and other mesoscale features. On the left, we 
observe an aligned signal: the signals in nodes that highly connect to one 
another exhibit similar signals to one another. On the right, the signal is 
liberal with respect to the underlying graph: the signals in nodes that highly 
connect to one another do not exhibit similar signals to one another. In real 
signals, such as BOLD signals observed at a single moment in time, each 
node can contribute signals that may be to some extent aligned and to 
some extent liberal.
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suggesting that these signals are specifically related to cognitive 
control demands introduced during the switching condition relative 
to the non-switching condition (see Supplementary Tables 1–4).

The specificity of BOLD signal alignment in cognitive control. 
The fact that statistically significant relationships could be found 
between switching performance and the signals calculated in the 
Navon fixation, non-switching and switching blocks suggests that 
liberal signal organization is a stable variable in the context of 
the Navon task (see Supplementary Information). Thus, testing 
whether liberal signals are specifically relevant during the switching 
task relative to other cognitive control processes, such as inhibition 
and working memory, is crucial. In additional analyses, covarying 
for Stroop performance did not reduce the correlations between 
liberality during the Navon task and switching behaviour (see 
Supplementary Tables 17, 18). Moreover, we find that BOLD liber-
ality observed in the same subjects during fixation periods between 
Stroop inhibition task blocks does not correlate with cognitive 
switching performance (see Supplementary Tables 21, 22). Finally, 
no relationship between BOLD signal alignment and working 
memory performance was observed in an independent sample from 
the Human Connectome Project (see Supplementary Tables 27–30).

Discussion
Taken together, these findings indicate that the liberality–switch-
ing relationship was specific to the Navon task and not accounted 
for by cognitive inhibition or working memory, providing evidence 
of a sensitive and specific brain–behaviour relationship. Overall, 
these findings may indicate that some brains are at a natural advan-
tage to meet switching demands, and that switching-specific rela-
tionships between signal and anatomy can be detected when task 
demands necesitate preparedness for cognitive switches. Given the 
persistence of the liberality signal across task blocks, the current 
study is compatible with the notion that these signals exist through-
out the task, potentially representing proactive cognitive control. 
Future event-related studies could determine whether liberal versus 
aligned signals are associated with the proactive or reactive aspects 
of control in cognitive switching.

In some theoretical accounts of cognitive control, we might 
expect that performance is facilitated by associations between 
stimulus features that could have arisen from practice32, and the 
neuroplastic changes that facilitate such learned associations could 
have effects at scales detectable with diffusion imaging33–36. In that 
case, one possibility is that greater reliance on these pathways (for 
example, measured here as the highly aligned BOLD signal com-
ponent) would be facilitative of better performance, potentially 
representing reliance on well-learned information when perform-
ing cognitive switches. However, the rules for the current Navon 
task were learned shortly before performance, perhaps limiting 
the use of overlearned representations and emphasizing the neural 
processing represented by the liberal BOLD signals. Nevertheless, 
relative alignment of the liberal BOLD signals with white matter 
anatomy was associated with better performance, suggesting that 
even in the context of a recently learned task, increased functional 
reliance on white matter network organization is advantageous for 
performance. While speculative, future studies could test whether 
a dissociation exists between overlearned and newly learned tasks 
and whether the effect observed here generalizes to other recently 
learned switching tasks. Such studies could provide intuition for the 
neuroanatomical expression of the interplay between learning at 
short versus long timescales and cognitive control.

These findings complement previous studies of executive func-
tion that have focused on node-level, edge-level and module-level 
features of brain networks16,37. Here, we examined brain function 
as a series of time-evolving states31,38 that were organized in relation 
to the underlying pattern of white matter tracts. The state-based 

focus of our approach also offers insights into the differential extent 
to which specific cognitive systems deviate from tract anatomy, 
underscoring anatomical contributions to the organization of brain 
dynamics across subjects. It also allowed us to examine the com-
plexity in BOLD signals that is not evident in functional connectiv-
ity analyses computed over time39. Because functional connectivity 
in fMRI is typically computed over many BOLD time points, our 
approach characterizes the organization of the elements that consti-
tute common functional connectivity measures.

Our results contextualize previous models of corticostriatal cog-
nitive switching mechanisms14,40 within a connectomic perspec-
tive. As a complement to previous findings implicating individual 
prefrontal, parietal and striatal systems in cognitive switching, our 
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Fig. 5 | Non-parametric permutation test for signal concentration within 
cognitive systems. a, For the 28 subjects, the liberal signal concentrations 
sorted from highest (top) to lowest (bottom) concentration across all 
regions. b, Liberal signals are most concentrated in subcortical regions. 
c, Aligned signal concentrations sorted from highest (top) to lowest 
(bottom) concentration across all regions in all 28 subjects. d, Aligned 
signals are most concentrated in fronto-parietal, cingulo-opercular, default 
mode and subcortical systems. The bars in a and c represent the mean 
signal liberality or alignment in the 111 regions colour-coded by their 
system assignment. The x axes represent the GFT signal values for each 
region, where increasing values represent more liberality in a and more 
alignment in c. In panels b and d, the grey bars represent the 25th and 
75th percentiles of the values in the null permutations, the grey whiskers 
extend to the most extreme data points not considered outliers, and the 
grey dots represent outliers in the permutation distributions. The green 
dot represents the observed value for the system. An asterisk indicates a 
statistically significant signal concentration in the system relative to the 
null distribution in the permutation test (*P <  0.05). Cing.-operc, cingulo-
opercular; atten., attention; front.-parie., fronto-parietal; somatosens., 
somatosensory; vent., ventral.
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results highlight the importance of anatomical network organiza-
tion, and the central role of subcortical functional dynamics atop 
that structure. This observation is particularly noteworthy in the 
context of prior studies, which showed that subcortical and ante-
rior cingulate regions manage multiple inputs and outputs among 
cortical systems during task transitions9,41, potentially requiring 
more diverse signal organization relative to anatomical networks. In 
addition, a high convergence of weak liberal and aligned signals was 
observed in the cerebellum, complementing the high convergence 
of strong liberal and aligned signals in the cingulate and subcorti-
cal regions, which are thus responsible for most of the behavioural 
variance in our analysis (see Supplementary Tables 9, 10). Notably, 
cerebellar architecture has a tenfold greater neural density than 
other regions in the brain42 with distinctive neural dynamics; thus, 
our approach may not be sensitive to cerebellar signaling properties 
thought to contribute to higher cognitive function43, which could 
form a focus for future research involving measurements of neural 
spike trains and cerebellar microcircuitry.

Our approach also adds a critical perspective to broader interests 
in the relationship between brain network anatomy and function. 
Previous reports have established relationships between anatomi-
cal networks and functional connectivity20,44–48. The information 
content in BOLD correlations computed over long time  series is 
relatively low39. Our current work applied an altogether distinct 
approach to this problem by linking anatomy, function, and cog-
nition. The time repetition-wise analysis is similar to studies of 
BOLD signal amplitude in cognitive conditions, which has formed 
a backbone of cognitive neuroscience research since the invention 
of fMRI. Specifically, the alignment measure was based on the dis-
tribution of BOLD signal amplitudes across brain regions at single 
time points in different cognitive conditions, rather than correla-
tions in BOLD signals across regions over time. This means that 
the alignment measure described a feature of neural organization 
that was expressed in each measurement in time in each individual, 
rather than a second-order functional connectivity statistic. We 
found that across cognitive conditions the alignment measure was 
highly stable, operating as a trait-like variable. This indicates that 
the function–anatomy relationship is consistent within a person but 
variable between persons, and thus useful in examining individual 
variability in cognition.

With respect to recent dynamic network analyses of executive 
function, our results contribute a crucial anatomically grounded 
perspective. The current approach represents a framework in which 
to understand the dual features of anatomical organization and 
functional processes supporting cognitive flexibility in the human 
connectome. Here, high functional dependence in fronto-parietal, 
cingulo-opercular, default mode and subcortical systems is not asso-
ciated with intersubject switching variability. Critically, our results 
indicate that regions that participate in highly flexible systems49 
in temporal network analysis demonstrate high dependence on 
underlying anatomical networks across frames of BOLD data dur-
ing fixation, low cognitive control conditions and task conditions 
(see Supplementary Information for further analysis and discus-
sion). Previous studies identify dynamic network roles for fronto-
parietal and cingulo-opercular regions in cognitive switching, and 
our results indicate that moment-to-moment signal configurations 
in highly flexible systems are strongly organized by structure across 
time (see Supplementary Information for addition analysis and dis-
cussion). In the context of this highly organized cortical activity, the 
current results suggest that subcortical systems contain highly lib-
eral signals. The extent to which subcortical systems exhibit relative 
alignment may form a flexible integrative role across the many com-
putations supported by cortical systems. The relationship between 
anatomically bound momentary signal organization and functional 
reconfigurations in temporal networks may more generally provide 
an area for future research.

Notably, our results do not explain the potential cognitive role of 
highly aligned signals. We hypothesized that signal organization in 
the most liberal signals would be related to flexibility, representing 
the brain’s dynamic freedom from anatomical constraints. It could 
also have been the case that relatively less alignment in the most 
aligned signals, representing modest dynamic freedom, was associ-
ated with greater flexibility. However, we did not observe this in the 
current data. It is possible that highly aligned signals are optimally 
configured in healthy brains. Important future directions could 
involve examining whether highly aligned signals are disrupted in 
clinical samples and associated with cognitive deficits.

It is possible that the role of aligned signals may be better 
explained in the context of other cognitive control processes50. 
One possible role for modestly aligned signals is to reduce noise 
when overcoming predisposed response tendencies for successful 
goal-directed behavioural switching. Specifically, subcortical struc-
tures maintain a high degree of signal alignment overall. Modest 
alignment of the most liberal signals in these same regions enable 
organized coordination across regions to facilitate switching. We 
speculate that anatomically aligned signals in fronto-parietal, cin-
gulo-opercular, default mode and subcortical systems organize the 
dynamic signals contributing to cortical mechanisms of cognitive 
control, attention, and resting and preparedness processes, respec-
tively. It would be interesting to test whether highly aligned signals 
in association cortices and subcortical structures are associated 
with domain-general performance variability across modalities51. 
In cognitive switching, specifically, the extent to which signal lib-
erality relates to performance during tasks involving other sensory 
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Fig. 6 | Lower independence is associated with lower switch costs.  
a, For the 28 subjects, the liberal signals are concentrated especially in 
subcortical regions and cingulate cortices. b, Reduced liberality (increased 
alignment) is associated with reduced switch costs across subjects. c, 
Aligned signals are concentrated especially in subcortical, default mode, 
fronto-parietal and cingulo-opercular systems. d, Variability in aligned 
signals was not significantly associated with switch costs across subjects. 
In panels a and c, the coloured bars represent the GFT signal values at each 
region, where increasing values represent more liberality or alignment, 
respectively. In panels b and d, the x axes represent the mean liberality or 
alignment across regions of the brain, and the y axes represent the mean 
switch cost during the Navon task. L, left hemisphere; R, right hemisphere.
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modalities, transitioning between internally and externally focused 
attention and divergent thinking remains to be established. In addi-
tion, the relevance of liberal signals to cognitive flexibility may be 
further examined in populations with reduced performance, such as 
aging52, Gilles de la Tourette syndrome53 and Parkinson’s disease54.

Of note, the current study design establishes a correlative rela-
tionship between the neural measure of liberality and cognitive 
flexibility. Experiments that examine a causal relationship could 
provide important validation. Specifically, interventions involving 
medications that influence attention, behavioural training para-
digms and noninvasive brain stimulation could examine whether 
BOLD signal alignment is sensitive to interventions and whether 
induced changes in liberal and aligned signals underlie changes in 
behaviour. Some promising mechanistic approaches involve a com-
bination of biologically plausible models combined with fMRI and 
diffusion tractography, such as in dynamic causal modelling55. In 
addition, many approaches for diffusion tractography and parcel-
lation are now available, although each has its strengths and limita-
tions. Future studies that are focused on robust classification and 
prediction procedures could seek to further optimize network gen-
eration in these regards.

In conclusion, our results support the use of network science for 
clarifying mechanisms of executive function specifically and cog-
nition more generally22,23. Recent literature firmly establishes that 
white matter organization is a critical, but incomplete determinant 
of functional signals in brain networks20,44–48. Conceptually, the cur-
rent approach acknowledges that without structure, functional sig-
nals lack a mediating organization. By examining functional signal 
alignment within underlying white matter networks, we identify an 
important definition of dynamic contributions to cognitive switch-
ing that discriminates between the contributions of subcortical 
and other systems. Similar applications to other large multimodal 
neuroimaging datasets could contribute to biomarker analyses in 
psychiatric disease and neurological disorders, many of which are 
associated with deficits in executive function56–58.

Methods
In this study, subjects performed a Navon switching task and Stroop inhibition 
task during fMRI scanning. We additionally acquired diffusion spectrum imaging 
data for white matter tractography. Within the Desikan–Killiany anatomical 
atlas59 combined with the Harvard–Oxford subcortical parcels60 and Diedrichsen 
cerebellar atlas27, we extracted preprocessed BOLD signals for each region for 
each time point. Then, we performed diffusion tractography and extracted an 
anatomical network in the same parcellation for each subject. To create the measure 
of BOLD signal alignment with underlying anatomical networks, we used tools 
from graph signal processing. Specifically, we treated observed BOLD vectors 
across regions at each time point as a signal on each subject’s underlying anatomical 
graph. Then, we applied GFT to identify signals that were either highly aligned 
with the anatomical network or liberal with respect to the anatomical network for 
each subject. Across subjects, we calculated the correlation between the aligned (or 
liberal) signals and the behavioural variables of interest: in the Navon task, switch 
costs, which measure the time taken to perform a switch relative to a non-switch, 
and in the Stroop task, inhibition costs, which measure the time taken to  
respond to trials where cognitive inhibition is required relative to trials without  
inhibition demands.

Subjects. A total of 30 subjects were recruited. All subjects were screened for prior 
history of psychiatric or neurological illness. One subject was excluded due to 
near-chance performance on the task (accuracy =  52%). One additional subject 
was excluded due to technical problems on the day of scanning. The final sample 
included 28 individuals (mean age =  25.6, s.d. =  3.5, 70% Caucasian, 13 females). 
All subjects volunteered with informed consent in writing in accordance with 
the Institutional Review Board/Human Subjects Committee at the University of 
Pennsylvania.

Behavioural task. All participants completed a local–global perception task based on 
classical Navon figures25. Local–global stimuli consisted of four shapes—a circle, X, 
triangle or square—that were used to build the global and local aspects of the stimuli. 
In all trials, the local feature did not match the global feature, ensuring that subjects 
could not use information about one scale to infer information about another. Stimuli 
were presented on a black background in a block design with three block types (see 
Fig. 2). In the first block type, subjects viewed white local–global stimuli.  

In the second block type, subjects viewed green local–global stimuli. In the third 
block type, stimuli switched between white and green across trials uniformly at 
random with the constraint that 70% of trials included a switch in each block.  
In all blocks, subjects were instructed to report only the local features of the stimuli 
if the stimulus was white, and to report only the global feature of the stimuli if the 
stimulus was green. Blocks were administered in a random order. Subjects responded 
using their right hand with a four-button box. All subjects were trained on the task 
outside the scanner until proficient at reporting responses using a fixed mapping 
between the shape and button presses (that is, index finger =  circle, middle  
finger =  X, ring finger =  triangle, little finger =  square). In the scanner, blocks were 
administered with 20 trials apiece separated by 20-s fixation periods with a white 
crosshair at the center of the screen. Each trial was presented for a fixed duration  
of 1,900 ms separated by an interstimulus interval of 100 ms during which time  
a black screen was presented.

Diffusion spectrum imaging acquisition and processing. Diffusion spectrum 
images were acquired on a Siemens 3.0T Tim Trio for all subjects along with a 
T1-weighted anatomical scan at each scanning session. We followed a parallel 
strategy for data acquisition and construction of streamline adjacency matrices 
as in previous work31,61. DSI scans sampled 257 directions using a Q5 half-shell 
acquisition scheme with a maximum b-value of 5,000 and an isotropic voxel size 
of 2.4 mm. We used an axial acquisition with the following parameters: repetition 
time (TR) =  5 s; echo time (TE) =  138 ms; 52 slices; field of view (FoV) =  231, 231, 
125 mm. We acquired a three-dimensional SPGR T1 volume (TE =  minimal full; 
flip angle =  15 degrees; FOV =  24 cm) for anatomical reconstruction. All subjects 
volunteered with informed consent in writing in accordance with the Institutional 
Review Board/Human Subjects Committee, University of Pennsylvania.

DSI data were reconstructed in DSI Studio (www.dsi-studio.labsolver.org) 
using q-space diffeomorphic reconstruction (QSDR)62. QSDR first reconstructs 
diffusion-weighted images in native space and computes the quantitative 
anisotropy (QA) in each voxel. These QA values are used to warp the brain to a 
template QA volume in Montreal Neurological Institute (MNI) space using the 
statistical parametric mapping (SPM) nonlinear registration algorithm. Once in 
MNI space, spin density functions were again reconstructed with a mean diffusion 
distance of 1.25 mm using three fibre orientations per voxel. Fibre tracking 
was performed in DSI studio with an angular cutoff of 35°, step size of 1.0 mm, 
minimum length of 10 mm, spin density function smoothing of 0.0, maximum 
length of 400 mm and a QA threshold determined by DWI signal in the colony-
stimulating factor. Deterministic fibre tracking using a modified FACT algorithm 
was performed until 1,000,000 streamlines were reconstructed for each individual.

Anatomical scans were segmented using FreeSurfer63 and parcellated using the 
connectome mapping toolkit26. A parcellation scheme including n =  129 regions 
was registered to the B0 volume from each subject’s DSI data. The B0 to MNI voxel 
mapping produced via QSDR was used to map region labels from native space to 
MNI coordinates. To extend region labels through the grey–white matter interface, 
the atlas was dilated by 4 mm64. Dilation was accomplished by filling non-labelled 
voxels with the statistical mode of their neighbours’ labels. In the event of a tie, one 
of the modes was arbitrarily selected. Each streamline was labeled according to its 
terminal region pair.

Finally, we included a cerebellar parcellation27. We used FSL to nonlinearly 
register the individual’s T1 to MNI space. Then, we used the inverse transform 
parameters to warp the cerebellum atlas to the individual T1. We registered 
the subject’s DSI image to the T1. We used the inverse parameters from this 
registration to map the individualized cerebellar parcels into the subject’s DSI 
space. Finally, we merged the cerebellar label image with the dilated cortical and 
subcortical parcellation image.

From these data and parcellation, we constructed an anatomical connectivity 
matrix, A, for which the element Aij represented the number of streamlines 
connecting different regions20, divided by the sum of volumes for regions i and j65. 
Prior to data analysis, all cerebellum-to-cerebellum edges were removed from each 
individual’s matrix, because cerebellar lobules are demonstrably not anatomically 
connected directly to one another66.

Functional imaging acquisition and processing. fMRI images were acquired 
during the same scanning session as the DSI data on a 3.0T Siemens Tim Trio 
whole-body scanner with a whole-head elliptical coil by means of a single-shot 
gradient-echo T2* (TR =  1,500 ms; TE =  30 ms; flip angle =  60°; FOV =  19.2 cm; 
resolution 3 mm ×  3 mm ×  3 mm). Preprocessing was performed using FEAT 
(fMRI expert analysis tool) v.6.0 a component of the FSL software package67. To 
prepare the functional images for analyses, we completed the following steps: 
skull-stripping with BET to remove non-brain material, motion correction with 
MCFLIRT (FMRIB’s linear image registration tool)67, slice-timing correction 
(interleaved), spatial smoothing with a 6-mm 3D Gaussian kernel and high-pass 
temporal filtering to reduce low frequency artifacts. We also performed EPI 
unwarping with fieldmaps in order to improve subject registration to standard 
space. Native image transformation to a standard template was completed using 
FSL’s affine registration tool, FLIRT67. Subject-specific functional images were 
co-registered to their corresponding high-resolution anatomical images via a 
boundary based registration (BBR)68 technique and were then registered to the 
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standard MNI-152 structural template via a 12-parameter linear transformation. 
Finally, each participant’s individual anatomical image was segmented into grey 
matter, white matter and cerebrospinal fluid (CSF) using the binary segmentation 
function of FAST (FMRIB’s automated segmentation tool)69 v.4.0. The white matter 
and CSF masks for each participant were then transformed to native functional 
space and the average time series were extracted. Images were spatially smoothed 
using a kernel with a full-width at half-maximum of 6 mm. These values were used 
as confound regressors on our time series along with 18 translation and rotation 
parameters as estimated by MCFLIRT70.

Functional decomposition into anatomical networks. To investigate our 
hypothesis that BOLD signal alignment with anatomy is related to cognitive 
flexibility, we applied an analysis from spectral graph theory71. Specifically, we used 
GFT28 to represent the BOLD signals in the graph domain. This allowed us to take 
observed BOLD time series and examine the extent to which they were aligned to 
or liberal from the underlying graph representing the white matter connections 
between regions.

The approach differed from structure–function analyses of pairwise 
relationships between anatomical and functional network connections20,44–48.  
The GFT provided a distinct perspective from connectivity analyses by allowing 
the spectrum of the entire anatomical matrix to inform estimates of how BOLD 
signals in each observation (not functional connections computed over time)  
align with white matter. Importantly, each element (region) in either the aligned  
or liberal BOLD signal vector represented the extent to which that region 
conformed to or deviated from the expected signal with respect to the  
topology of the entire white matter network, rather than with respect to single 
anatomical connections.

An important conceptual benefit of the GFT is that it could be used to 
study how the topology of an individual’s anatomical network informed the 
expected structure of the BOLD signal. We assessed the deviation of the BOLD 
signal from this expectation at each moment in time, as opposed to an average 
over all moments in time, which provides inherently limited information39. 
The approach thus used functional measurements that are commonly used to 
construct functional graphs, and examined their expression atop anatomy in 
single individuals. Another important benefit of the GFT is that it allowed us to 
treat signal alignment and liberality as related phenomena that are not mutually 
exclusive from one another. Intuitively, this can be understood by analogy to 
Fourier analysis in the time domain, where a time series can be transformed into 
the frequency domain such that its high and low frequency content can be studied. 
Similarly, GFT can be used to transform a vector of BOLD magnitudes at a single 
TR into aligned and liberal portions with respect to the anatomical network. The 
aligned and liberal signals are directly analogous to low and high frequencies in 
traditional Fourier analysis, and are, as such, not mutually exclusive. Thus, the 
GFT allowed us to consider the amount of signal that was aligned and liberal with 
respect to the graph. Only if the signal was perfectly aligned or unaligned with  
the graph would we expect the transformed signals to exhibit nonzero quantities  
of both signal characteristics. This is analogous to expecting any natural signal  
in the time domain to represent frequency domain content that exceeds a  
single frequency.

Conceptually, there was no initial analytic constraint on where the aligned 
and liberal signals most prominently exist in the brain; indeed, it was possible 
that they may have overlapped in the same regions of the brain. This too can be 
understood by analogy to traditional time–frequency analysis using the Fourier 
transform. A priori, each moment in time in a Fourier transformation contributes 
to the transformed time–frequency representation of the data, including both 
high and low frequency activity. Analogously, regions across the brain expressed 
BOLD signals that contribute to both aligned and liberal signals that are separated 
by the GFT. This allowed us to detect which specific nodes are contributing most 
to aligned and liberal signals, and we could empirically determine to what extent 
the aligned and liberal signals overlapped in the brain. See Fig. 4 for a schematic 
illustrating the analogy between signal frequency in the time domain and signal 
alignment in the graph domain.

It is important to note that the ranges of aligned and liberal signals are 
extremes along a continuum of alignment selected to be robust to noise. We use 
the terms aligned and liberal to categorically refer to each extreme. Critically, it is 
the case that increasing alignment does not imply decreasing liberality, because 
these refer to two distinct ranges in the graph signal. This is because our selection 
of aligned and liberal signals is analogous to selecting the high and low frequency 
ranges of a signal in a traditional Fourier transformation. For example, if we 
used a traditional Fourier transformation on a full time series and selected only 
frequencies of 1–10 Hz and 90–100 Hz in the time–frequency domain, shifts from 
1 to 10 Hz would represent increasing frequency, but would still be represented in 
the 1–10 Hz range. Similarly, shifts from 100 to 90 Hz would represent decreasing 
frequency. However, it is not necessarily the case that shifts in the 1–10 Hz range 
are associated with changes in the 90–100 Hz range and vice versa. Thus, it is 
sensible to speak about both ranges separately, and it is not necessarily the case 
that they correlate with one another. To determine whether they are correlated 
with one another, the presence and variability at each end of the spectrum must be 
empirically investigated in a natural system.

It is crucial to clarify the biological and cognitive relevance of the alignment/
liberality measure. Biologically, the measure described the deviation of the 
BOLD signal organization across the brain at each time point with respect to its 
underlying anatomy. This is interesting because we might assume on the one hand 
that cognitive function must to some extent depend on underlying anatomy to 
organize signal processes, but on the other hand that some cognitive processes 
may benefit from deviating from this anatomy. Here, we anticipated that the 
most liberal signals would be sensitive to variability in switch costs, because 
these are the signals that most highly deviate from underlying white matter 
network organization. Intuitively, these signals were those that may facilitate rapid 
cognitive switches based on a recently learned rule, because the rules cannot 
be represented in the connecting white matter pathways reconstructed by our 
diffusion tractography. Our method identified the spatial distribution and intensity 
of the aligned and liberal signals so that we could test for the behaviourally 
relevant components of BOLD signal organization in subject-specific white matter 
networks.

We then proceeded to the technical definition of our alignment and liberality 
measures. We analysed the signal defined on a connected, weighted and symmetric 
graph, G =  (V, A), where V =  {1,… ,n} is a set of n vertices or nodes representing 
individual brain regions and ∈ ×A Rn n is defined as above. Because the network A 
was symmetric, it had a complete set of orthonormal eigenvectors associated with 
it28,71. For this reason, it had an eigenvector decomposition, Λ= A V VT , in which 
Λ was the set of eigenvalues, ordered so that λ λ λ≤ ≤ … ≤ −n0 1 1, and = =

−vV { }k k
n

0
1 

was the set of associated eigenvectors. Following refs 28,72, we used the eigenvector 
matrix to define the GFT of the graph signal ∈ Rx n as

=∼x v x (1)T

Given = … −
∼ ∼ ∼x xx [ , , ]n

T
0 1 , we could express the original signal as = ∑ =

− ∼xx vk
n

k k0
1 ,  

a sum of the eigenvector components vk. The contribution of vk to signal x was 
the GFT component ∼xk. Note that the smoothness of vk on the network can be 
evaluated in the quadratic form = ∑ ∈A A v i v jv v ( ) ( )k

T
k i j V ij k k,  and that λ=Av vk

T
k k 

is given by the eigenvector decomposition. The quantity ∑ ∈ A v i v j( ) ( )i j V ij k k,  will 
be negative when the signal is varied (highly connected regions possess signals 
of different signs), and positive when the signal is smooth (highly connected 
regions possess signals of same signs). For these reasons, this quantity can be 
thought of as a measure of smoothness (alignment). Consequently, the GFT 
coefficients ∼xk for small values of k indicated how much variables that are highly 
misaligned (liberality) with anatomy contribute to the observed brain signal x. 
GFT coefficients ∼xk for large values of k described how much signals that were 
aligned with the anatomical network contributed to the observed brain signal x. 
The inverse (i) GFT of ∼x with respect to A was defined as

=xx V (2)

Given a graph signal x with GFT ∼x, we could isolate the liberal components 
corresponding to the lowest KL eigenvectors by applying a graph filter HL that 
only kept components with k <  KL and sets other components to 0. The signal 
xL then contained the liberal components of x (those with a low alignment with 
network anatomy). Apart from the graph low-pass filter HL, we also considered 
a middle graph regime HM, which kept only components in the range of KL 
≤  k <  n −  KA, and an aligned graph regime HA, such that only network-aligned 
components with n −  KA ≤  k were kept. Therefore, the liberal regime took the 
lowest KL components, the alignment regime took the highest KA components, 
and the middle regime captured the middle n −  KL −  KM components (here, we 
used the components with the 10 lowest alignment values to represent the liberal 
regime and the components with the 10 highest alignment values to represent 
the aligned regime; see Supplementary Information for robustness of results to 
parameter selection). Because we used xM and xA to respectively denote the signals 
represented by the middle and highly aligned regimes, the original signal could  
be written as the sum x =  xL +  xM +  xA. This formulation gave a decomposition  
of the original signals x into liberal, moderately aligned and highly aligned 
components that respectively represented signals that had high, medium  
and low signal deviation with respect to the anatomical connectivity between 
brain regions.

Previous studies have consistently demonstrated that the aligned and 
liberal components aid in better estimation of unknown movie ratings in 
recommendation systems73, better prediction of cancer using gene interaction 
networks74,75 and learning in neuroimaging data, where learning-related processes 
are demonstrably expressed in low and high components in fMRI data, and 
where the middle component xM is demonstrably less reliable and behaviourally 
uninformative76. In the Supplementary Information, we perform a similar analysis 
to data from ref. 76, but with the current data to examine the stability of our low  
and high alignment measurements to parameter selection. The data indicate 
that the low and high alignment components in the current data are stable. 
Mathematically, this is expected in general for applications of the current 
approach, because eigenvalues at the extreme low and high end are isolated from 
the middle values, which leads to robustness in the high and low ranges of the 
decomposition77.
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We note that this approach allowed signals on the anatomical network to 
contain both aligned and liberal components represented in the same region at a 
single TR. This feature occurred because the anatomical network of n nodes has 
n2 entries (that is, the connection information was encoded in the anatomical 
adjacency matrix for any node i to any node j). Rather than examining a single 
BOLD signal measurement as n independently observed values, the GFT 
represented the signal to be a composite of contributions to the signal across 
subject’s anatomical network topology. The decomposition occured across the 
entire set of signals (here, the vector of BOLD magnitudes across regions at a single 
TR), where there are only n entries. The GFT applied here leverages the fact that 
the n entries in a given vector are not isolated, but are signals on top of the complex 
anatomical network. In the current approach, instead of focusing on the single 
BOLD value observed at each region as a discrete entity, the decomposition was 
sensitive to the observation of pairwise differences among BOLD signals relative 
to those expected by the anatomical network. A proportion of each given region’s 
BOLD signal was estimated to be liberal with respect to the network, which was 
represented by xL, and a proportion was estimated to be aligned with the network, 
which was represented by xA (see Fig. 3). This mathematical separation established 
the notions of alignment and liberality of the BOLD signals in the anatomical 
network. All individual regions in the brain could have some degree of alignment 
and some degree of liberality given the complexity of BOLD signal patterns across 
the network, unless the observed BOLD signals in all regions were perfectly aligned 
or perfectly misaligned with the subject’s anatomical network. This highlights an 
important strength of the use of GFT to examine functional signal liberality in 
anatomical brain networks: in general, the signal can be understood as a network 
level composite of aligned and liberal signals, and the extent to which individual 
regions contribute to these properties can be examined as the variation in the 
weights of the region’s contribution to each of the aligned and liberal components.

Relating signals to behaviour. Following the signal decomposition into aligned 
and liberal signals, we associated the signal concentrations with median switch 
cost (median response time during switching trials versus no-switching trials) 
performance for all accurate trials. To do so, we computed a partial Pearson’s 
correlation between the observed signal value for each subject and their median 
switch cost using the average framewise displacement across BOLD measurements 
as a second-level control for the influences of motion. Specifically, to examine the 
relationship between alignment and switch costs across subjects, we computed 
the partial correlation for the mean of xA for each subject with subjects’ switch 
costs, controlling for average framewise displacement. Then, to examine the 
relationship between liberality and switch costs, across subjects, we computed 
the partial correlation for the mean of xL for each subject with subjects’ switch 
costs, controlling for average framewise displacement. We additionally repeated 
these analyses including age and sex, and found similar slopes for the associations 
between the liberality values and switch costs (see Supplementary Information).

System permutation test. To examine the spatial significance of system-level 
concentration of aligned and liberal signals, we performed a non-parametric 
permutation test for each signal class. For each xL and xA separately, we shuffled the 
observed mean signal concentration values across regions in 10,000 permutations 
for aligned and liberal signals and computed a null distribution of system mean 
signal concentrations for each system. Signals were judged to be significantly 
concentrated in a system if the mean signal concentration in the system was greater 
or less than 95% of the null permutations.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Code availability. Requests for code can be addressed to the corresponding author.

Data availability. Requests for data can be addressed to the corresponding author.
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